1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This Go implementation is derived in part from the reference 6 // ANSI C implementation, which carries the following notice: 7 // 8 // rijndael-alg-fst.c 9 // 10 // @version 3.0 (December 2000) 11 // 12 // Optimised ANSI C code for the Rijndael cipher (now AES) 13 // 14 // @author Vincent Rijmen <vincent.rijmen (a] esat.kuleuven.ac.be> 15 // @author Antoon Bosselaers <antoon.bosselaers (a] esat.kuleuven.ac.be> 16 // @author Paulo Barreto <paulo.barreto (a] terra.com.br> 17 // 18 // This code is hereby placed in the public domain. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS 21 // OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 22 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE 24 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 27 // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 28 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 29 // OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 30 // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 // 32 // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission 33 // for implementation details. 34 // http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf 35 // http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf 36 37 package aes 38 39 // Encrypt one block from src into dst, using the expanded key xk. 40 func encryptBlockGo(xk []uint32, dst, src []byte) { 41 var s0, s1, s2, s3, t0, t1, t2, t3 uint32 42 43 s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) 44 s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) 45 s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]) 46 s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]) 47 48 // First round just XORs input with key. 49 s0 ^= xk[0] 50 s1 ^= xk[1] 51 s2 ^= xk[2] 52 s3 ^= xk[3] 53 54 // Middle rounds shuffle using tables. 55 // Number of rounds is set by length of expanded key. 56 nr := len(xk)/4 - 2 // - 2: one above, one more below 57 k := 4 58 for r := 0; r < nr; r++ { 59 t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)] 60 t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)] 61 t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)] 62 t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)] 63 k += 4 64 s0, s1, s2, s3 = t0, t1, t2, t3 65 } 66 67 // Last round uses s-box directly and XORs to produce output. 68 s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff]) 69 s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff]) 70 s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff]) 71 s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff]) 72 73 s0 ^= xk[k+0] 74 s1 ^= xk[k+1] 75 s2 ^= xk[k+2] 76 s3 ^= xk[k+3] 77 78 dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0) 79 dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1) 80 dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2) 81 dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3) 82 } 83 84 // Decrypt one block from src into dst, using the expanded key xk. 85 func decryptBlockGo(xk []uint32, dst, src []byte) { 86 var s0, s1, s2, s3, t0, t1, t2, t3 uint32 87 88 s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) 89 s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) 90 s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]) 91 s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]) 92 93 // First round just XORs input with key. 94 s0 ^= xk[0] 95 s1 ^= xk[1] 96 s2 ^= xk[2] 97 s3 ^= xk[3] 98 99 // Middle rounds shuffle using tables. 100 // Number of rounds is set by length of expanded key. 101 nr := len(xk)/4 - 2 // - 2: one above, one more below 102 k := 4 103 for r := 0; r < nr; r++ { 104 t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)] 105 t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)] 106 t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)] 107 t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)] 108 k += 4 109 s0, s1, s2, s3 = t0, t1, t2, t3 110 } 111 112 // Last round uses s-box directly and XORs to produce output. 113 s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff]) 114 s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff]) 115 s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff]) 116 s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff]) 117 118 s0 ^= xk[k+0] 119 s1 ^= xk[k+1] 120 s2 ^= xk[k+2] 121 s3 ^= xk[k+3] 122 123 dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0) 124 dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1) 125 dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2) 126 dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3) 127 } 128 129 // Apply sbox0 to each byte in w. 130 func subw(w uint32) uint32 { 131 return uint32(sbox0[w>>24])<<24 | 132 uint32(sbox0[w>>16&0xff])<<16 | 133 uint32(sbox0[w>>8&0xff])<<8 | 134 uint32(sbox0[w&0xff]) 135 } 136 137 // Rotate 138 func rotw(w uint32) uint32 { return w<<8 | w>>24 } 139 140 // Key expansion algorithm. See FIPS-197, Figure 11. 141 // Their rcon[i] is our powx[i-1] << 24. 142 func expandKeyGo(key []byte, enc, dec []uint32) { 143 // Encryption key setup. 144 var i int 145 nk := len(key) / 4 146 for i = 0; i < nk; i++ { 147 enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3]) 148 } 149 for ; i < len(enc); i++ { 150 t := enc[i-1] 151 if i%nk == 0 { 152 t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24) 153 } else if nk > 6 && i%nk == 4 { 154 t = subw(t) 155 } 156 enc[i] = enc[i-nk] ^ t 157 } 158 159 // Derive decryption key from encryption key. 160 // Reverse the 4-word round key sets from enc to produce dec. 161 // All sets but the first and last get the MixColumn transform applied. 162 if dec == nil { 163 return 164 } 165 n := len(enc) 166 for i := 0; i < n; i += 4 { 167 ei := n - i - 4 168 for j := 0; j < 4; j++ { 169 x := enc[ei+j] 170 if i > 0 && i+4 < n { 171 x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]] 172 } 173 dec[i+j] = x 174 } 175 } 176 } 177