Home | History | Annotate | Download | only in aes
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This Go implementation is derived in part from the reference
      6 // ANSI C implementation, which carries the following notice:
      7 //
      8 //	rijndael-alg-fst.c
      9 //
     10 //	@version 3.0 (December 2000)
     11 //
     12 //	Optimised ANSI C code for the Rijndael cipher (now AES)
     13 //
     14 //	@author Vincent Rijmen <vincent.rijmen (a] esat.kuleuven.ac.be>
     15 //	@author Antoon Bosselaers <antoon.bosselaers (a] esat.kuleuven.ac.be>
     16 //	@author Paulo Barreto <paulo.barreto (a] terra.com.br>
     17 //
     18 //	This code is hereby placed in the public domain.
     19 //
     20 //	THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
     21 //	OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     22 //	WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23 //	ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
     24 //	LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25 //	CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26 //	SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     27 //	BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     28 //	WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     29 //	OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
     30 //	EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31 //
     32 // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
     33 // for implementation details.
     34 //	http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
     35 //	http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
     36 
     37 package aes
     38 
     39 // Encrypt one block from src into dst, using the expanded key xk.
     40 func encryptBlockGo(xk []uint32, dst, src []byte) {
     41 	var s0, s1, s2, s3, t0, t1, t2, t3 uint32
     42 
     43 	s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
     44 	s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
     45 	s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
     46 	s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])
     47 
     48 	// First round just XORs input with key.
     49 	s0 ^= xk[0]
     50 	s1 ^= xk[1]
     51 	s2 ^= xk[2]
     52 	s3 ^= xk[3]
     53 
     54 	// Middle rounds shuffle using tables.
     55 	// Number of rounds is set by length of expanded key.
     56 	nr := len(xk)/4 - 2 // - 2: one above, one more below
     57 	k := 4
     58 	for r := 0; r < nr; r++ {
     59 		t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)]
     60 		t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)]
     61 		t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)]
     62 		t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)]
     63 		k += 4
     64 		s0, s1, s2, s3 = t0, t1, t2, t3
     65 	}
     66 
     67 	// Last round uses s-box directly and XORs to produce output.
     68 	s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff])
     69 	s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff])
     70 	s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff])
     71 	s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff])
     72 
     73 	s0 ^= xk[k+0]
     74 	s1 ^= xk[k+1]
     75 	s2 ^= xk[k+2]
     76 	s3 ^= xk[k+3]
     77 
     78 	dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)
     79 	dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)
     80 	dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)
     81 	dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)
     82 }
     83 
     84 // Decrypt one block from src into dst, using the expanded key xk.
     85 func decryptBlockGo(xk []uint32, dst, src []byte) {
     86 	var s0, s1, s2, s3, t0, t1, t2, t3 uint32
     87 
     88 	s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
     89 	s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
     90 	s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
     91 	s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])
     92 
     93 	// First round just XORs input with key.
     94 	s0 ^= xk[0]
     95 	s1 ^= xk[1]
     96 	s2 ^= xk[2]
     97 	s3 ^= xk[3]
     98 
     99 	// Middle rounds shuffle using tables.
    100 	// Number of rounds is set by length of expanded key.
    101 	nr := len(xk)/4 - 2 // - 2: one above, one more below
    102 	k := 4
    103 	for r := 0; r < nr; r++ {
    104 		t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)]
    105 		t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)]
    106 		t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)]
    107 		t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)]
    108 		k += 4
    109 		s0, s1, s2, s3 = t0, t1, t2, t3
    110 	}
    111 
    112 	// Last round uses s-box directly and XORs to produce output.
    113 	s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff])
    114 	s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff])
    115 	s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff])
    116 	s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff])
    117 
    118 	s0 ^= xk[k+0]
    119 	s1 ^= xk[k+1]
    120 	s2 ^= xk[k+2]
    121 	s3 ^= xk[k+3]
    122 
    123 	dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)
    124 	dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)
    125 	dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)
    126 	dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)
    127 }
    128 
    129 // Apply sbox0 to each byte in w.
    130 func subw(w uint32) uint32 {
    131 	return uint32(sbox0[w>>24])<<24 |
    132 		uint32(sbox0[w>>16&0xff])<<16 |
    133 		uint32(sbox0[w>>8&0xff])<<8 |
    134 		uint32(sbox0[w&0xff])
    135 }
    136 
    137 // Rotate
    138 func rotw(w uint32) uint32 { return w<<8 | w>>24 }
    139 
    140 // Key expansion algorithm. See FIPS-197, Figure 11.
    141 // Their rcon[i] is our powx[i-1] << 24.
    142 func expandKeyGo(key []byte, enc, dec []uint32) {
    143 	// Encryption key setup.
    144 	var i int
    145 	nk := len(key) / 4
    146 	for i = 0; i < nk; i++ {
    147 		enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3])
    148 	}
    149 	for ; i < len(enc); i++ {
    150 		t := enc[i-1]
    151 		if i%nk == 0 {
    152 			t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24)
    153 		} else if nk > 6 && i%nk == 4 {
    154 			t = subw(t)
    155 		}
    156 		enc[i] = enc[i-nk] ^ t
    157 	}
    158 
    159 	// Derive decryption key from encryption key.
    160 	// Reverse the 4-word round key sets from enc to produce dec.
    161 	// All sets but the first and last get the MixColumn transform applied.
    162 	if dec == nil {
    163 		return
    164 	}
    165 	n := len(enc)
    166 	for i := 0; i < n; i += 4 {
    167 		ei := n - i - 4
    168 		for j := 0; j < 4; j++ {
    169 			x := enc[ei+j]
    170 			if i > 0 && i+4 < n {
    171 				x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]]
    172 			}
    173 			dec[i+j] = x
    174 		}
    175 	}
    176 }
    177