Home | History | Annotate | Download | only in tls
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // TLS low level connection and record layer
      6 
      7 package tls
      8 
      9 import (
     10 	"bytes"
     11 	"crypto/cipher"
     12 	"crypto/subtle"
     13 	"crypto/x509"
     14 	"errors"
     15 	"fmt"
     16 	"io"
     17 	"net"
     18 	"sync"
     19 	"sync/atomic"
     20 	"time"
     21 )
     22 
     23 // A Conn represents a secured connection.
     24 // It implements the net.Conn interface.
     25 type Conn struct {
     26 	// constant
     27 	conn     net.Conn
     28 	isClient bool
     29 
     30 	// constant after handshake; protected by handshakeMutex
     31 	handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
     32 	// handshakeCond, if not nil, indicates that a goroutine is committed
     33 	// to running the handshake for this Conn. Other goroutines that need
     34 	// to wait for the handshake can wait on this, under handshakeMutex.
     35 	handshakeCond *sync.Cond
     36 	handshakeErr  error   // error resulting from handshake
     37 	vers          uint16  // TLS version
     38 	haveVers      bool    // version has been negotiated
     39 	config        *Config // configuration passed to constructor
     40 	// handshakeComplete is true if the connection is currently transferring
     41 	// application data (i.e. is not currently processing a handshake).
     42 	handshakeComplete bool
     43 	// handshakes counts the number of handshakes performed on the
     44 	// connection so far. If renegotiation is disabled then this is either
     45 	// zero or one.
     46 	handshakes       int
     47 	didResume        bool // whether this connection was a session resumption
     48 	cipherSuite      uint16
     49 	ocspResponse     []byte   // stapled OCSP response
     50 	scts             [][]byte // signed certificate timestamps from server
     51 	peerCertificates []*x509.Certificate
     52 	// verifiedChains contains the certificate chains that we built, as
     53 	// opposed to the ones presented by the server.
     54 	verifiedChains [][]*x509.Certificate
     55 	// serverName contains the server name indicated by the client, if any.
     56 	serverName string
     57 	// secureRenegotiation is true if the server echoed the secure
     58 	// renegotiation extension. (This is meaningless as a server because
     59 	// renegotiation is not supported in that case.)
     60 	secureRenegotiation bool
     61 
     62 	// clientFinishedIsFirst is true if the client sent the first Finished
     63 	// message during the most recent handshake. This is recorded because
     64 	// the first transmitted Finished message is the tls-unique
     65 	// channel-binding value.
     66 	clientFinishedIsFirst bool
     67 
     68 	// closeNotifyErr is any error from sending the alertCloseNotify record.
     69 	closeNotifyErr error
     70 	// closeNotifySent is true if the Conn attempted to send an
     71 	// alertCloseNotify record.
     72 	closeNotifySent bool
     73 
     74 	// clientFinished and serverFinished contain the Finished message sent
     75 	// by the client or server in the most recent handshake. This is
     76 	// retained to support the renegotiation extension and tls-unique
     77 	// channel-binding.
     78 	clientFinished [12]byte
     79 	serverFinished [12]byte
     80 
     81 	clientProtocol         string
     82 	clientProtocolFallback bool
     83 
     84 	// input/output
     85 	in, out   halfConn     // in.Mutex < out.Mutex
     86 	rawInput  *block       // raw input, right off the wire
     87 	input     *block       // application data waiting to be read
     88 	hand      bytes.Buffer // handshake data waiting to be read
     89 	buffering bool         // whether records are buffered in sendBuf
     90 	sendBuf   []byte       // a buffer of records waiting to be sent
     91 
     92 	// bytesSent counts the bytes of application data sent.
     93 	// packetsSent counts packets.
     94 	bytesSent   int64
     95 	packetsSent int64
     96 
     97 	// warnCount counts the number of consecutive warning alerts received
     98 	// by Conn.readRecord. Protected by in.Mutex.
     99 	warnCount int
    100 
    101 	// activeCall is an atomic int32; the low bit is whether Close has
    102 	// been called. the rest of the bits are the number of goroutines
    103 	// in Conn.Write.
    104 	activeCall int32
    105 
    106 	tmp [16]byte
    107 }
    108 
    109 // Access to net.Conn methods.
    110 // Cannot just embed net.Conn because that would
    111 // export the struct field too.
    112 
    113 // LocalAddr returns the local network address.
    114 func (c *Conn) LocalAddr() net.Addr {
    115 	return c.conn.LocalAddr()
    116 }
    117 
    118 // RemoteAddr returns the remote network address.
    119 func (c *Conn) RemoteAddr() net.Addr {
    120 	return c.conn.RemoteAddr()
    121 }
    122 
    123 // SetDeadline sets the read and write deadlines associated with the connection.
    124 // A zero value for t means Read and Write will not time out.
    125 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    126 func (c *Conn) SetDeadline(t time.Time) error {
    127 	return c.conn.SetDeadline(t)
    128 }
    129 
    130 // SetReadDeadline sets the read deadline on the underlying connection.
    131 // A zero value for t means Read will not time out.
    132 func (c *Conn) SetReadDeadline(t time.Time) error {
    133 	return c.conn.SetReadDeadline(t)
    134 }
    135 
    136 // SetWriteDeadline sets the write deadline on the underlying connection.
    137 // A zero value for t means Write will not time out.
    138 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    139 func (c *Conn) SetWriteDeadline(t time.Time) error {
    140 	return c.conn.SetWriteDeadline(t)
    141 }
    142 
    143 // A halfConn represents one direction of the record layer
    144 // connection, either sending or receiving.
    145 type halfConn struct {
    146 	sync.Mutex
    147 
    148 	err            error       // first permanent error
    149 	version        uint16      // protocol version
    150 	cipher         interface{} // cipher algorithm
    151 	mac            macFunction
    152 	seq            [8]byte  // 64-bit sequence number
    153 	bfree          *block   // list of free blocks
    154 	additionalData [13]byte // to avoid allocs; interface method args escape
    155 
    156 	nextCipher interface{} // next encryption state
    157 	nextMac    macFunction // next MAC algorithm
    158 
    159 	// used to save allocating a new buffer for each MAC.
    160 	inDigestBuf, outDigestBuf []byte
    161 }
    162 
    163 func (hc *halfConn) setErrorLocked(err error) error {
    164 	hc.err = err
    165 	return err
    166 }
    167 
    168 // prepareCipherSpec sets the encryption and MAC states
    169 // that a subsequent changeCipherSpec will use.
    170 func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
    171 	hc.version = version
    172 	hc.nextCipher = cipher
    173 	hc.nextMac = mac
    174 }
    175 
    176 // changeCipherSpec changes the encryption and MAC states
    177 // to the ones previously passed to prepareCipherSpec.
    178 func (hc *halfConn) changeCipherSpec() error {
    179 	if hc.nextCipher == nil {
    180 		return alertInternalError
    181 	}
    182 	hc.cipher = hc.nextCipher
    183 	hc.mac = hc.nextMac
    184 	hc.nextCipher = nil
    185 	hc.nextMac = nil
    186 	for i := range hc.seq {
    187 		hc.seq[i] = 0
    188 	}
    189 	return nil
    190 }
    191 
    192 // incSeq increments the sequence number.
    193 func (hc *halfConn) incSeq() {
    194 	for i := 7; i >= 0; i-- {
    195 		hc.seq[i]++
    196 		if hc.seq[i] != 0 {
    197 			return
    198 		}
    199 	}
    200 
    201 	// Not allowed to let sequence number wrap.
    202 	// Instead, must renegotiate before it does.
    203 	// Not likely enough to bother.
    204 	panic("TLS: sequence number wraparound")
    205 }
    206 
    207 // extractPadding returns, in constant time, the length of the padding to remove
    208 // from the end of payload. It also returns a byte which is equal to 255 if the
    209 // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
    210 func extractPadding(payload []byte) (toRemove int, good byte) {
    211 	if len(payload) < 1 {
    212 		return 0, 0
    213 	}
    214 
    215 	paddingLen := payload[len(payload)-1]
    216 	t := uint(len(payload)-1) - uint(paddingLen)
    217 	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
    218 	good = byte(int32(^t) >> 31)
    219 
    220 	// The maximum possible padding length plus the actual length field
    221 	toCheck := 256
    222 	// The length of the padded data is public, so we can use an if here
    223 	if toCheck > len(payload) {
    224 		toCheck = len(payload)
    225 	}
    226 
    227 	for i := 0; i < toCheck; i++ {
    228 		t := uint(paddingLen) - uint(i)
    229 		// if i <= paddingLen then the MSB of t is zero
    230 		mask := byte(int32(^t) >> 31)
    231 		b := payload[len(payload)-1-i]
    232 		good &^= mask&paddingLen ^ mask&b
    233 	}
    234 
    235 	// We AND together the bits of good and replicate the result across
    236 	// all the bits.
    237 	good &= good << 4
    238 	good &= good << 2
    239 	good &= good << 1
    240 	good = uint8(int8(good) >> 7)
    241 
    242 	toRemove = int(paddingLen) + 1
    243 	return
    244 }
    245 
    246 // extractPaddingSSL30 is a replacement for extractPadding in the case that the
    247 // protocol version is SSLv3. In this version, the contents of the padding
    248 // are random and cannot be checked.
    249 func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
    250 	if len(payload) < 1 {
    251 		return 0, 0
    252 	}
    253 
    254 	paddingLen := int(payload[len(payload)-1]) + 1
    255 	if paddingLen > len(payload) {
    256 		return 0, 0
    257 	}
    258 
    259 	return paddingLen, 255
    260 }
    261 
    262 func roundUp(a, b int) int {
    263 	return a + (b-a%b)%b
    264 }
    265 
    266 // cbcMode is an interface for block ciphers using cipher block chaining.
    267 type cbcMode interface {
    268 	cipher.BlockMode
    269 	SetIV([]byte)
    270 }
    271 
    272 // decrypt checks and strips the mac and decrypts the data in b. Returns a
    273 // success boolean, the number of bytes to skip from the start of the record in
    274 // order to get the application payload, and an optional alert value.
    275 func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
    276 	// pull out payload
    277 	payload := b.data[recordHeaderLen:]
    278 
    279 	macSize := 0
    280 	if hc.mac != nil {
    281 		macSize = hc.mac.Size()
    282 	}
    283 
    284 	paddingGood := byte(255)
    285 	paddingLen := 0
    286 	explicitIVLen := 0
    287 
    288 	// decrypt
    289 	if hc.cipher != nil {
    290 		switch c := hc.cipher.(type) {
    291 		case cipher.Stream:
    292 			c.XORKeyStream(payload, payload)
    293 		case aead:
    294 			explicitIVLen = c.explicitNonceLen()
    295 			if len(payload) < explicitIVLen {
    296 				return false, 0, alertBadRecordMAC
    297 			}
    298 			nonce := payload[:explicitIVLen]
    299 			payload = payload[explicitIVLen:]
    300 
    301 			if len(nonce) == 0 {
    302 				nonce = hc.seq[:]
    303 			}
    304 
    305 			copy(hc.additionalData[:], hc.seq[:])
    306 			copy(hc.additionalData[8:], b.data[:3])
    307 			n := len(payload) - c.Overhead()
    308 			hc.additionalData[11] = byte(n >> 8)
    309 			hc.additionalData[12] = byte(n)
    310 			var err error
    311 			payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
    312 			if err != nil {
    313 				return false, 0, alertBadRecordMAC
    314 			}
    315 			b.resize(recordHeaderLen + explicitIVLen + len(payload))
    316 		case cbcMode:
    317 			blockSize := c.BlockSize()
    318 			if hc.version >= VersionTLS11 {
    319 				explicitIVLen = blockSize
    320 			}
    321 
    322 			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
    323 				return false, 0, alertBadRecordMAC
    324 			}
    325 
    326 			if explicitIVLen > 0 {
    327 				c.SetIV(payload[:explicitIVLen])
    328 				payload = payload[explicitIVLen:]
    329 			}
    330 			c.CryptBlocks(payload, payload)
    331 			if hc.version == VersionSSL30 {
    332 				paddingLen, paddingGood = extractPaddingSSL30(payload)
    333 			} else {
    334 				paddingLen, paddingGood = extractPadding(payload)
    335 
    336 				// To protect against CBC padding oracles like Lucky13, the data
    337 				// past paddingLen (which is secret) is passed to the MAC
    338 				// function as extra data, to be fed into the HMAC after
    339 				// computing the digest. This makes the MAC constant time as
    340 				// long as the digest computation is constant time and does not
    341 				// affect the subsequent write.
    342 			}
    343 		default:
    344 			panic("unknown cipher type")
    345 		}
    346 	}
    347 
    348 	// check, strip mac
    349 	if hc.mac != nil {
    350 		if len(payload) < macSize {
    351 			return false, 0, alertBadRecordMAC
    352 		}
    353 
    354 		// strip mac off payload, b.data
    355 		n := len(payload) - macSize - paddingLen
    356 		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
    357 		b.data[3] = byte(n >> 8)
    358 		b.data[4] = byte(n)
    359 		remoteMAC := payload[n : n+macSize]
    360 		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:])
    361 
    362 		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
    363 			return false, 0, alertBadRecordMAC
    364 		}
    365 		hc.inDigestBuf = localMAC
    366 
    367 		b.resize(recordHeaderLen + explicitIVLen + n)
    368 	}
    369 	hc.incSeq()
    370 
    371 	return true, recordHeaderLen + explicitIVLen, 0
    372 }
    373 
    374 // padToBlockSize calculates the needed padding block, if any, for a payload.
    375 // On exit, prefix aliases payload and extends to the end of the last full
    376 // block of payload. finalBlock is a fresh slice which contains the contents of
    377 // any suffix of payload as well as the needed padding to make finalBlock a
    378 // full block.
    379 func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
    380 	overrun := len(payload) % blockSize
    381 	paddingLen := blockSize - overrun
    382 	prefix = payload[:len(payload)-overrun]
    383 	finalBlock = make([]byte, blockSize)
    384 	copy(finalBlock, payload[len(payload)-overrun:])
    385 	for i := overrun; i < blockSize; i++ {
    386 		finalBlock[i] = byte(paddingLen - 1)
    387 	}
    388 	return
    389 }
    390 
    391 // encrypt encrypts and macs the data in b.
    392 func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
    393 	// mac
    394 	if hc.mac != nil {
    395 		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil)
    396 
    397 		n := len(b.data)
    398 		b.resize(n + len(mac))
    399 		copy(b.data[n:], mac)
    400 		hc.outDigestBuf = mac
    401 	}
    402 
    403 	payload := b.data[recordHeaderLen:]
    404 
    405 	// encrypt
    406 	if hc.cipher != nil {
    407 		switch c := hc.cipher.(type) {
    408 		case cipher.Stream:
    409 			c.XORKeyStream(payload, payload)
    410 		case aead:
    411 			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
    412 			b.resize(len(b.data) + c.Overhead())
    413 			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
    414 			if len(nonce) == 0 {
    415 				nonce = hc.seq[:]
    416 			}
    417 			payload := b.data[recordHeaderLen+explicitIVLen:]
    418 			payload = payload[:payloadLen]
    419 
    420 			copy(hc.additionalData[:], hc.seq[:])
    421 			copy(hc.additionalData[8:], b.data[:3])
    422 			hc.additionalData[11] = byte(payloadLen >> 8)
    423 			hc.additionalData[12] = byte(payloadLen)
    424 
    425 			c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
    426 		case cbcMode:
    427 			blockSize := c.BlockSize()
    428 			if explicitIVLen > 0 {
    429 				c.SetIV(payload[:explicitIVLen])
    430 				payload = payload[explicitIVLen:]
    431 			}
    432 			prefix, finalBlock := padToBlockSize(payload, blockSize)
    433 			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
    434 			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
    435 			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
    436 		default:
    437 			panic("unknown cipher type")
    438 		}
    439 	}
    440 
    441 	// update length to include MAC and any block padding needed.
    442 	n := len(b.data) - recordHeaderLen
    443 	b.data[3] = byte(n >> 8)
    444 	b.data[4] = byte(n)
    445 	hc.incSeq()
    446 
    447 	return true, 0
    448 }
    449 
    450 // A block is a simple data buffer.
    451 type block struct {
    452 	data []byte
    453 	off  int // index for Read
    454 	link *block
    455 }
    456 
    457 // resize resizes block to be n bytes, growing if necessary.
    458 func (b *block) resize(n int) {
    459 	if n > cap(b.data) {
    460 		b.reserve(n)
    461 	}
    462 	b.data = b.data[0:n]
    463 }
    464 
    465 // reserve makes sure that block contains a capacity of at least n bytes.
    466 func (b *block) reserve(n int) {
    467 	if cap(b.data) >= n {
    468 		return
    469 	}
    470 	m := cap(b.data)
    471 	if m == 0 {
    472 		m = 1024
    473 	}
    474 	for m < n {
    475 		m *= 2
    476 	}
    477 	data := make([]byte, len(b.data), m)
    478 	copy(data, b.data)
    479 	b.data = data
    480 }
    481 
    482 // readFromUntil reads from r into b until b contains at least n bytes
    483 // or else returns an error.
    484 func (b *block) readFromUntil(r io.Reader, n int) error {
    485 	// quick case
    486 	if len(b.data) >= n {
    487 		return nil
    488 	}
    489 
    490 	// read until have enough.
    491 	b.reserve(n)
    492 	for {
    493 		m, err := r.Read(b.data[len(b.data):cap(b.data)])
    494 		b.data = b.data[0 : len(b.data)+m]
    495 		if len(b.data) >= n {
    496 			// TODO(bradfitz,agl): slightly suspicious
    497 			// that we're throwing away r.Read's err here.
    498 			break
    499 		}
    500 		if err != nil {
    501 			return err
    502 		}
    503 	}
    504 	return nil
    505 }
    506 
    507 func (b *block) Read(p []byte) (n int, err error) {
    508 	n = copy(p, b.data[b.off:])
    509 	b.off += n
    510 	return
    511 }
    512 
    513 // newBlock allocates a new block, from hc's free list if possible.
    514 func (hc *halfConn) newBlock() *block {
    515 	b := hc.bfree
    516 	if b == nil {
    517 		return new(block)
    518 	}
    519 	hc.bfree = b.link
    520 	b.link = nil
    521 	b.resize(0)
    522 	return b
    523 }
    524 
    525 // freeBlock returns a block to hc's free list.
    526 // The protocol is such that each side only has a block or two on
    527 // its free list at a time, so there's no need to worry about
    528 // trimming the list, etc.
    529 func (hc *halfConn) freeBlock(b *block) {
    530 	b.link = hc.bfree
    531 	hc.bfree = b
    532 }
    533 
    534 // splitBlock splits a block after the first n bytes,
    535 // returning a block with those n bytes and a
    536 // block with the remainder.  the latter may be nil.
    537 func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
    538 	if len(b.data) <= n {
    539 		return b, nil
    540 	}
    541 	bb := hc.newBlock()
    542 	bb.resize(len(b.data) - n)
    543 	copy(bb.data, b.data[n:])
    544 	b.data = b.data[0:n]
    545 	return b, bb
    546 }
    547 
    548 // RecordHeaderError results when a TLS record header is invalid.
    549 type RecordHeaderError struct {
    550 	// Msg contains a human readable string that describes the error.
    551 	Msg string
    552 	// RecordHeader contains the five bytes of TLS record header that
    553 	// triggered the error.
    554 	RecordHeader [5]byte
    555 }
    556 
    557 func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
    558 
    559 func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
    560 	err.Msg = msg
    561 	copy(err.RecordHeader[:], c.rawInput.data)
    562 	return err
    563 }
    564 
    565 // readRecord reads the next TLS record from the connection
    566 // and updates the record layer state.
    567 // c.in.Mutex <= L; c.input == nil.
    568 func (c *Conn) readRecord(want recordType) error {
    569 	// Caller must be in sync with connection:
    570 	// handshake data if handshake not yet completed,
    571 	// else application data.
    572 	switch want {
    573 	default:
    574 		c.sendAlert(alertInternalError)
    575 		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
    576 	case recordTypeHandshake, recordTypeChangeCipherSpec:
    577 		if c.handshakeComplete {
    578 			c.sendAlert(alertInternalError)
    579 			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
    580 		}
    581 	case recordTypeApplicationData:
    582 		if !c.handshakeComplete {
    583 			c.sendAlert(alertInternalError)
    584 			return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
    585 		}
    586 	}
    587 
    588 Again:
    589 	if c.rawInput == nil {
    590 		c.rawInput = c.in.newBlock()
    591 	}
    592 	b := c.rawInput
    593 
    594 	// Read header, payload.
    595 	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
    596 		// RFC suggests that EOF without an alertCloseNotify is
    597 		// an error, but popular web sites seem to do this,
    598 		// so we can't make it an error.
    599 		// if err == io.EOF {
    600 		// 	err = io.ErrUnexpectedEOF
    601 		// }
    602 		if e, ok := err.(net.Error); !ok || !e.Temporary() {
    603 			c.in.setErrorLocked(err)
    604 		}
    605 		return err
    606 	}
    607 	typ := recordType(b.data[0])
    608 
    609 	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
    610 	// start with a uint16 length where the MSB is set and the first record
    611 	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
    612 	// an SSLv2 client.
    613 	if want == recordTypeHandshake && typ == 0x80 {
    614 		c.sendAlert(alertProtocolVersion)
    615 		return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
    616 	}
    617 
    618 	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
    619 	n := int(b.data[3])<<8 | int(b.data[4])
    620 	if c.haveVers && vers != c.vers {
    621 		c.sendAlert(alertProtocolVersion)
    622 		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
    623 		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
    624 	}
    625 	if n > maxCiphertext {
    626 		c.sendAlert(alertRecordOverflow)
    627 		msg := fmt.Sprintf("oversized record received with length %d", n)
    628 		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
    629 	}
    630 	if !c.haveVers {
    631 		// First message, be extra suspicious: this might not be a TLS
    632 		// client. Bail out before reading a full 'body', if possible.
    633 		// The current max version is 3.3 so if the version is >= 16.0,
    634 		// it's probably not real.
    635 		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
    636 			c.sendAlert(alertUnexpectedMessage)
    637 			return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
    638 		}
    639 	}
    640 	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
    641 		if err == io.EOF {
    642 			err = io.ErrUnexpectedEOF
    643 		}
    644 		if e, ok := err.(net.Error); !ok || !e.Temporary() {
    645 			c.in.setErrorLocked(err)
    646 		}
    647 		return err
    648 	}
    649 
    650 	// Process message.
    651 	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
    652 	ok, off, alertValue := c.in.decrypt(b)
    653 	if !ok {
    654 		c.in.freeBlock(b)
    655 		return c.in.setErrorLocked(c.sendAlert(alertValue))
    656 	}
    657 	b.off = off
    658 	data := b.data[b.off:]
    659 	if len(data) > maxPlaintext {
    660 		err := c.sendAlert(alertRecordOverflow)
    661 		c.in.freeBlock(b)
    662 		return c.in.setErrorLocked(err)
    663 	}
    664 
    665 	if typ != recordTypeAlert && len(data) > 0 {
    666 		// this is a valid non-alert message: reset the count of alerts
    667 		c.warnCount = 0
    668 	}
    669 
    670 	switch typ {
    671 	default:
    672 		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    673 
    674 	case recordTypeAlert:
    675 		if len(data) != 2 {
    676 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    677 			break
    678 		}
    679 		if alert(data[1]) == alertCloseNotify {
    680 			c.in.setErrorLocked(io.EOF)
    681 			break
    682 		}
    683 		switch data[0] {
    684 		case alertLevelWarning:
    685 			// drop on the floor
    686 			c.in.freeBlock(b)
    687 
    688 			c.warnCount++
    689 			if c.warnCount > maxWarnAlertCount {
    690 				c.sendAlert(alertUnexpectedMessage)
    691 				return c.in.setErrorLocked(errors.New("tls: too many warn alerts"))
    692 			}
    693 
    694 			goto Again
    695 		case alertLevelError:
    696 			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
    697 		default:
    698 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    699 		}
    700 
    701 	case recordTypeChangeCipherSpec:
    702 		if typ != want || len(data) != 1 || data[0] != 1 {
    703 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    704 			break
    705 		}
    706 		// Handshake messages are not allowed to fragment across the CCS
    707 		if c.hand.Len() > 0 {
    708 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    709 			break
    710 		}
    711 		err := c.in.changeCipherSpec()
    712 		if err != nil {
    713 			c.in.setErrorLocked(c.sendAlert(err.(alert)))
    714 		}
    715 
    716 	case recordTypeApplicationData:
    717 		if typ != want {
    718 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    719 			break
    720 		}
    721 		c.input = b
    722 		b = nil
    723 
    724 	case recordTypeHandshake:
    725 		// TODO(rsc): Should at least pick off connection close.
    726 		if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) {
    727 			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
    728 		}
    729 		c.hand.Write(data)
    730 	}
    731 
    732 	if b != nil {
    733 		c.in.freeBlock(b)
    734 	}
    735 	return c.in.err
    736 }
    737 
    738 // sendAlert sends a TLS alert message.
    739 // c.out.Mutex <= L.
    740 func (c *Conn) sendAlertLocked(err alert) error {
    741 	switch err {
    742 	case alertNoRenegotiation, alertCloseNotify:
    743 		c.tmp[0] = alertLevelWarning
    744 	default:
    745 		c.tmp[0] = alertLevelError
    746 	}
    747 	c.tmp[1] = byte(err)
    748 
    749 	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
    750 	if err == alertCloseNotify {
    751 		// closeNotify is a special case in that it isn't an error.
    752 		return writeErr
    753 	}
    754 
    755 	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
    756 }
    757 
    758 // sendAlert sends a TLS alert message.
    759 // L < c.out.Mutex.
    760 func (c *Conn) sendAlert(err alert) error {
    761 	c.out.Lock()
    762 	defer c.out.Unlock()
    763 	return c.sendAlertLocked(err)
    764 }
    765 
    766 const (
    767 	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
    768 	// size (MSS). A constant is used, rather than querying the kernel for
    769 	// the actual MSS, to avoid complexity. The value here is the IPv6
    770 	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
    771 	// bytes) and a TCP header with timestamps (32 bytes).
    772 	tcpMSSEstimate = 1208
    773 
    774 	// recordSizeBoostThreshold is the number of bytes of application data
    775 	// sent after which the TLS record size will be increased to the
    776 	// maximum.
    777 	recordSizeBoostThreshold = 128 * 1024
    778 )
    779 
    780 // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
    781 // next application data record. There is the following trade-off:
    782 //
    783 //   - For latency-sensitive applications, such as web browsing, each TLS
    784 //     record should fit in one TCP segment.
    785 //   - For throughput-sensitive applications, such as large file transfers,
    786 //     larger TLS records better amortize framing and encryption overheads.
    787 //
    788 // A simple heuristic that works well in practice is to use small records for
    789 // the first 1MB of data, then use larger records for subsequent data, and
    790 // reset back to smaller records after the connection becomes idle. See "High
    791 // Performance Web Networking", Chapter 4, or:
    792 // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
    793 //
    794 // In the interests of simplicity and determinism, this code does not attempt
    795 // to reset the record size once the connection is idle, however.
    796 //
    797 // c.out.Mutex <= L.
    798 func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
    799 	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
    800 		return maxPlaintext
    801 	}
    802 
    803 	if c.bytesSent >= recordSizeBoostThreshold {
    804 		return maxPlaintext
    805 	}
    806 
    807 	// Subtract TLS overheads to get the maximum payload size.
    808 	macSize := 0
    809 	if c.out.mac != nil {
    810 		macSize = c.out.mac.Size()
    811 	}
    812 
    813 	payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
    814 	if c.out.cipher != nil {
    815 		switch ciph := c.out.cipher.(type) {
    816 		case cipher.Stream:
    817 			payloadBytes -= macSize
    818 		case cipher.AEAD:
    819 			payloadBytes -= ciph.Overhead()
    820 		case cbcMode:
    821 			blockSize := ciph.BlockSize()
    822 			// The payload must fit in a multiple of blockSize, with
    823 			// room for at least one padding byte.
    824 			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
    825 			// The MAC is appended before padding so affects the
    826 			// payload size directly.
    827 			payloadBytes -= macSize
    828 		default:
    829 			panic("unknown cipher type")
    830 		}
    831 	}
    832 
    833 	// Allow packet growth in arithmetic progression up to max.
    834 	pkt := c.packetsSent
    835 	c.packetsSent++
    836 	if pkt > 1000 {
    837 		return maxPlaintext // avoid overflow in multiply below
    838 	}
    839 
    840 	n := payloadBytes * int(pkt+1)
    841 	if n > maxPlaintext {
    842 		n = maxPlaintext
    843 	}
    844 	return n
    845 }
    846 
    847 // c.out.Mutex <= L.
    848 func (c *Conn) write(data []byte) (int, error) {
    849 	if c.buffering {
    850 		c.sendBuf = append(c.sendBuf, data...)
    851 		return len(data), nil
    852 	}
    853 
    854 	n, err := c.conn.Write(data)
    855 	c.bytesSent += int64(n)
    856 	return n, err
    857 }
    858 
    859 func (c *Conn) flush() (int, error) {
    860 	if len(c.sendBuf) == 0 {
    861 		return 0, nil
    862 	}
    863 
    864 	n, err := c.conn.Write(c.sendBuf)
    865 	c.bytesSent += int64(n)
    866 	c.sendBuf = nil
    867 	c.buffering = false
    868 	return n, err
    869 }
    870 
    871 // writeRecordLocked writes a TLS record with the given type and payload to the
    872 // connection and updates the record layer state.
    873 // c.out.Mutex <= L.
    874 func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
    875 	b := c.out.newBlock()
    876 	defer c.out.freeBlock(b)
    877 
    878 	var n int
    879 	for len(data) > 0 {
    880 		explicitIVLen := 0
    881 		explicitIVIsSeq := false
    882 
    883 		var cbc cbcMode
    884 		if c.out.version >= VersionTLS11 {
    885 			var ok bool
    886 			if cbc, ok = c.out.cipher.(cbcMode); ok {
    887 				explicitIVLen = cbc.BlockSize()
    888 			}
    889 		}
    890 		if explicitIVLen == 0 {
    891 			if c, ok := c.out.cipher.(aead); ok {
    892 				explicitIVLen = c.explicitNonceLen()
    893 
    894 				// The AES-GCM construction in TLS has an
    895 				// explicit nonce so that the nonce can be
    896 				// random. However, the nonce is only 8 bytes
    897 				// which is too small for a secure, random
    898 				// nonce. Therefore we use the sequence number
    899 				// as the nonce.
    900 				explicitIVIsSeq = explicitIVLen > 0
    901 			}
    902 		}
    903 		m := len(data)
    904 		if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
    905 			m = maxPayload
    906 		}
    907 		b.resize(recordHeaderLen + explicitIVLen + m)
    908 		b.data[0] = byte(typ)
    909 		vers := c.vers
    910 		if vers == 0 {
    911 			// Some TLS servers fail if the record version is
    912 			// greater than TLS 1.0 for the initial ClientHello.
    913 			vers = VersionTLS10
    914 		}
    915 		b.data[1] = byte(vers >> 8)
    916 		b.data[2] = byte(vers)
    917 		b.data[3] = byte(m >> 8)
    918 		b.data[4] = byte(m)
    919 		if explicitIVLen > 0 {
    920 			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
    921 			if explicitIVIsSeq {
    922 				copy(explicitIV, c.out.seq[:])
    923 			} else {
    924 				if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
    925 					return n, err
    926 				}
    927 			}
    928 		}
    929 		copy(b.data[recordHeaderLen+explicitIVLen:], data)
    930 		c.out.encrypt(b, explicitIVLen)
    931 		if _, err := c.write(b.data); err != nil {
    932 			return n, err
    933 		}
    934 		n += m
    935 		data = data[m:]
    936 	}
    937 
    938 	if typ == recordTypeChangeCipherSpec {
    939 		if err := c.out.changeCipherSpec(); err != nil {
    940 			return n, c.sendAlertLocked(err.(alert))
    941 		}
    942 	}
    943 
    944 	return n, nil
    945 }
    946 
    947 // writeRecord writes a TLS record with the given type and payload to the
    948 // connection and updates the record layer state.
    949 // L < c.out.Mutex.
    950 func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
    951 	c.out.Lock()
    952 	defer c.out.Unlock()
    953 
    954 	return c.writeRecordLocked(typ, data)
    955 }
    956 
    957 // readHandshake reads the next handshake message from
    958 // the record layer.
    959 // c.in.Mutex < L; c.out.Mutex < L.
    960 func (c *Conn) readHandshake() (interface{}, error) {
    961 	for c.hand.Len() < 4 {
    962 		if err := c.in.err; err != nil {
    963 			return nil, err
    964 		}
    965 		if err := c.readRecord(recordTypeHandshake); err != nil {
    966 			return nil, err
    967 		}
    968 	}
    969 
    970 	data := c.hand.Bytes()
    971 	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
    972 	if n > maxHandshake {
    973 		c.sendAlertLocked(alertInternalError)
    974 		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
    975 	}
    976 	for c.hand.Len() < 4+n {
    977 		if err := c.in.err; err != nil {
    978 			return nil, err
    979 		}
    980 		if err := c.readRecord(recordTypeHandshake); err != nil {
    981 			return nil, err
    982 		}
    983 	}
    984 	data = c.hand.Next(4 + n)
    985 	var m handshakeMessage
    986 	switch data[0] {
    987 	case typeHelloRequest:
    988 		m = new(helloRequestMsg)
    989 	case typeClientHello:
    990 		m = new(clientHelloMsg)
    991 	case typeServerHello:
    992 		m = new(serverHelloMsg)
    993 	case typeNewSessionTicket:
    994 		m = new(newSessionTicketMsg)
    995 	case typeCertificate:
    996 		m = new(certificateMsg)
    997 	case typeCertificateRequest:
    998 		m = &certificateRequestMsg{
    999 			hasSignatureAndHash: c.vers >= VersionTLS12,
   1000 		}
   1001 	case typeCertificateStatus:
   1002 		m = new(certificateStatusMsg)
   1003 	case typeServerKeyExchange:
   1004 		m = new(serverKeyExchangeMsg)
   1005 	case typeServerHelloDone:
   1006 		m = new(serverHelloDoneMsg)
   1007 	case typeClientKeyExchange:
   1008 		m = new(clientKeyExchangeMsg)
   1009 	case typeCertificateVerify:
   1010 		m = &certificateVerifyMsg{
   1011 			hasSignatureAndHash: c.vers >= VersionTLS12,
   1012 		}
   1013 	case typeNextProtocol:
   1014 		m = new(nextProtoMsg)
   1015 	case typeFinished:
   1016 		m = new(finishedMsg)
   1017 	default:
   1018 		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   1019 	}
   1020 
   1021 	// The handshake message unmarshalers
   1022 	// expect to be able to keep references to data,
   1023 	// so pass in a fresh copy that won't be overwritten.
   1024 	data = append([]byte(nil), data...)
   1025 
   1026 	if !m.unmarshal(data) {
   1027 		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   1028 	}
   1029 	return m, nil
   1030 }
   1031 
   1032 var (
   1033 	errClosed   = errors.New("tls: use of closed connection")
   1034 	errShutdown = errors.New("tls: protocol is shutdown")
   1035 )
   1036 
   1037 // Write writes data to the connection.
   1038 func (c *Conn) Write(b []byte) (int, error) {
   1039 	// interlock with Close below
   1040 	for {
   1041 		x := atomic.LoadInt32(&c.activeCall)
   1042 		if x&1 != 0 {
   1043 			return 0, errClosed
   1044 		}
   1045 		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
   1046 			defer atomic.AddInt32(&c.activeCall, -2)
   1047 			break
   1048 		}
   1049 	}
   1050 
   1051 	if err := c.Handshake(); err != nil {
   1052 		return 0, err
   1053 	}
   1054 
   1055 	c.out.Lock()
   1056 	defer c.out.Unlock()
   1057 
   1058 	if err := c.out.err; err != nil {
   1059 		return 0, err
   1060 	}
   1061 
   1062 	if !c.handshakeComplete {
   1063 		return 0, alertInternalError
   1064 	}
   1065 
   1066 	if c.closeNotifySent {
   1067 		return 0, errShutdown
   1068 	}
   1069 
   1070 	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
   1071 	// attack when using block mode ciphers due to predictable IVs.
   1072 	// This can be prevented by splitting each Application Data
   1073 	// record into two records, effectively randomizing the IV.
   1074 	//
   1075 	// http://www.openssl.org/~bodo/tls-cbc.txt
   1076 	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
   1077 	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
   1078 
   1079 	var m int
   1080 	if len(b) > 1 && c.vers <= VersionTLS10 {
   1081 		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
   1082 			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
   1083 			if err != nil {
   1084 				return n, c.out.setErrorLocked(err)
   1085 			}
   1086 			m, b = 1, b[1:]
   1087 		}
   1088 	}
   1089 
   1090 	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
   1091 	return n + m, c.out.setErrorLocked(err)
   1092 }
   1093 
   1094 // handleRenegotiation processes a HelloRequest handshake message.
   1095 // c.in.Mutex <= L
   1096 func (c *Conn) handleRenegotiation() error {
   1097 	msg, err := c.readHandshake()
   1098 	if err != nil {
   1099 		return err
   1100 	}
   1101 
   1102 	_, ok := msg.(*helloRequestMsg)
   1103 	if !ok {
   1104 		c.sendAlert(alertUnexpectedMessage)
   1105 		return alertUnexpectedMessage
   1106 	}
   1107 
   1108 	if !c.isClient {
   1109 		return c.sendAlert(alertNoRenegotiation)
   1110 	}
   1111 
   1112 	switch c.config.Renegotiation {
   1113 	case RenegotiateNever:
   1114 		return c.sendAlert(alertNoRenegotiation)
   1115 	case RenegotiateOnceAsClient:
   1116 		if c.handshakes > 1 {
   1117 			return c.sendAlert(alertNoRenegotiation)
   1118 		}
   1119 	case RenegotiateFreelyAsClient:
   1120 		// Ok.
   1121 	default:
   1122 		c.sendAlert(alertInternalError)
   1123 		return errors.New("tls: unknown Renegotiation value")
   1124 	}
   1125 
   1126 	c.handshakeMutex.Lock()
   1127 	defer c.handshakeMutex.Unlock()
   1128 
   1129 	c.handshakeComplete = false
   1130 	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
   1131 		c.handshakes++
   1132 	}
   1133 	return c.handshakeErr
   1134 }
   1135 
   1136 // Read can be made to time out and return a net.Error with Timeout() == true
   1137 // after a fixed time limit; see SetDeadline and SetReadDeadline.
   1138 func (c *Conn) Read(b []byte) (n int, err error) {
   1139 	if err = c.Handshake(); err != nil {
   1140 		return
   1141 	}
   1142 	if len(b) == 0 {
   1143 		// Put this after Handshake, in case people were calling
   1144 		// Read(nil) for the side effect of the Handshake.
   1145 		return
   1146 	}
   1147 
   1148 	c.in.Lock()
   1149 	defer c.in.Unlock()
   1150 
   1151 	// Some OpenSSL servers send empty records in order to randomize the
   1152 	// CBC IV. So this loop ignores a limited number of empty records.
   1153 	const maxConsecutiveEmptyRecords = 100
   1154 	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
   1155 		for c.input == nil && c.in.err == nil {
   1156 			if err := c.readRecord(recordTypeApplicationData); err != nil {
   1157 				// Soft error, like EAGAIN
   1158 				return 0, err
   1159 			}
   1160 			if c.hand.Len() > 0 {
   1161 				// We received handshake bytes, indicating the
   1162 				// start of a renegotiation.
   1163 				if err := c.handleRenegotiation(); err != nil {
   1164 					return 0, err
   1165 				}
   1166 			}
   1167 		}
   1168 		if err := c.in.err; err != nil {
   1169 			return 0, err
   1170 		}
   1171 
   1172 		n, err = c.input.Read(b)
   1173 		if c.input.off >= len(c.input.data) {
   1174 			c.in.freeBlock(c.input)
   1175 			c.input = nil
   1176 		}
   1177 
   1178 		// If a close-notify alert is waiting, read it so that
   1179 		// we can return (n, EOF) instead of (n, nil), to signal
   1180 		// to the HTTP response reading goroutine that the
   1181 		// connection is now closed. This eliminates a race
   1182 		// where the HTTP response reading goroutine would
   1183 		// otherwise not observe the EOF until its next read,
   1184 		// by which time a client goroutine might have already
   1185 		// tried to reuse the HTTP connection for a new
   1186 		// request.
   1187 		// See https://codereview.appspot.com/76400046
   1188 		// and https://golang.org/issue/3514
   1189 		if ri := c.rawInput; ri != nil &&
   1190 			n != 0 && err == nil &&
   1191 			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
   1192 			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
   1193 				err = recErr // will be io.EOF on closeNotify
   1194 			}
   1195 		}
   1196 
   1197 		if n != 0 || err != nil {
   1198 			return n, err
   1199 		}
   1200 	}
   1201 
   1202 	return 0, io.ErrNoProgress
   1203 }
   1204 
   1205 // Close closes the connection.
   1206 func (c *Conn) Close() error {
   1207 	// Interlock with Conn.Write above.
   1208 	var x int32
   1209 	for {
   1210 		x = atomic.LoadInt32(&c.activeCall)
   1211 		if x&1 != 0 {
   1212 			return errClosed
   1213 		}
   1214 		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
   1215 			break
   1216 		}
   1217 	}
   1218 	if x != 0 {
   1219 		// io.Writer and io.Closer should not be used concurrently.
   1220 		// If Close is called while a Write is currently in-flight,
   1221 		// interpret that as a sign that this Close is really just
   1222 		// being used to break the Write and/or clean up resources and
   1223 		// avoid sending the alertCloseNotify, which may block
   1224 		// waiting on handshakeMutex or the c.out mutex.
   1225 		return c.conn.Close()
   1226 	}
   1227 
   1228 	var alertErr error
   1229 
   1230 	c.handshakeMutex.Lock()
   1231 	if c.handshakeComplete {
   1232 		alertErr = c.closeNotify()
   1233 	}
   1234 	c.handshakeMutex.Unlock()
   1235 
   1236 	if err := c.conn.Close(); err != nil {
   1237 		return err
   1238 	}
   1239 	return alertErr
   1240 }
   1241 
   1242 var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
   1243 
   1244 // CloseWrite shuts down the writing side of the connection. It should only be
   1245 // called once the handshake has completed and does not call CloseWrite on the
   1246 // underlying connection. Most callers should just use Close.
   1247 func (c *Conn) CloseWrite() error {
   1248 	c.handshakeMutex.Lock()
   1249 	defer c.handshakeMutex.Unlock()
   1250 	if !c.handshakeComplete {
   1251 		return errEarlyCloseWrite
   1252 	}
   1253 
   1254 	return c.closeNotify()
   1255 }
   1256 
   1257 func (c *Conn) closeNotify() error {
   1258 	c.out.Lock()
   1259 	defer c.out.Unlock()
   1260 
   1261 	if !c.closeNotifySent {
   1262 		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
   1263 		c.closeNotifySent = true
   1264 	}
   1265 	return c.closeNotifyErr
   1266 }
   1267 
   1268 // Handshake runs the client or server handshake
   1269 // protocol if it has not yet been run.
   1270 // Most uses of this package need not call Handshake
   1271 // explicitly: the first Read or Write will call it automatically.
   1272 func (c *Conn) Handshake() error {
   1273 	// c.handshakeErr and c.handshakeComplete are protected by
   1274 	// c.handshakeMutex. In order to perform a handshake, we need to lock
   1275 	// c.in also and c.handshakeMutex must be locked after c.in.
   1276 	//
   1277 	// However, if a Read() operation is hanging then it'll be holding the
   1278 	// lock on c.in and so taking it here would cause all operations that
   1279 	// need to check whether a handshake is pending (such as Write) to
   1280 	// block.
   1281 	//
   1282 	// Thus we first take c.handshakeMutex to check whether a handshake is
   1283 	// needed.
   1284 	//
   1285 	// If so then, previously, this code would unlock handshakeMutex and
   1286 	// then lock c.in and handshakeMutex in the correct order to run the
   1287 	// handshake. The problem was that it was possible for a Read to
   1288 	// complete the handshake once handshakeMutex was unlocked and then
   1289 	// keep c.in while waiting for network data. Thus a concurrent
   1290 	// operation could be blocked on c.in.
   1291 	//
   1292 	// Thus handshakeCond is used to signal that a goroutine is committed
   1293 	// to running the handshake and other goroutines can wait on it if they
   1294 	// need. handshakeCond is protected by handshakeMutex.
   1295 	c.handshakeMutex.Lock()
   1296 	defer c.handshakeMutex.Unlock()
   1297 
   1298 	for {
   1299 		if err := c.handshakeErr; err != nil {
   1300 			return err
   1301 		}
   1302 		if c.handshakeComplete {
   1303 			return nil
   1304 		}
   1305 		if c.handshakeCond == nil {
   1306 			break
   1307 		}
   1308 
   1309 		c.handshakeCond.Wait()
   1310 	}
   1311 
   1312 	// Set handshakeCond to indicate that this goroutine is committing to
   1313 	// running the handshake.
   1314 	c.handshakeCond = sync.NewCond(&c.handshakeMutex)
   1315 	c.handshakeMutex.Unlock()
   1316 
   1317 	c.in.Lock()
   1318 	defer c.in.Unlock()
   1319 
   1320 	c.handshakeMutex.Lock()
   1321 
   1322 	// The handshake cannot have completed when handshakeMutex was unlocked
   1323 	// because this goroutine set handshakeCond.
   1324 	if c.handshakeErr != nil || c.handshakeComplete {
   1325 		panic("handshake should not have been able to complete after handshakeCond was set")
   1326 	}
   1327 
   1328 	if c.isClient {
   1329 		c.handshakeErr = c.clientHandshake()
   1330 	} else {
   1331 		c.handshakeErr = c.serverHandshake()
   1332 	}
   1333 	if c.handshakeErr == nil {
   1334 		c.handshakes++
   1335 	} else {
   1336 		// If an error occurred during the hadshake try to flush the
   1337 		// alert that might be left in the buffer.
   1338 		c.flush()
   1339 	}
   1340 
   1341 	if c.handshakeErr == nil && !c.handshakeComplete {
   1342 		panic("handshake should have had a result.")
   1343 	}
   1344 
   1345 	// Wake any other goroutines that are waiting for this handshake to
   1346 	// complete.
   1347 	c.handshakeCond.Broadcast()
   1348 	c.handshakeCond = nil
   1349 
   1350 	return c.handshakeErr
   1351 }
   1352 
   1353 // ConnectionState returns basic TLS details about the connection.
   1354 func (c *Conn) ConnectionState() ConnectionState {
   1355 	c.handshakeMutex.Lock()
   1356 	defer c.handshakeMutex.Unlock()
   1357 
   1358 	var state ConnectionState
   1359 	state.HandshakeComplete = c.handshakeComplete
   1360 	state.ServerName = c.serverName
   1361 
   1362 	if c.handshakeComplete {
   1363 		state.Version = c.vers
   1364 		state.NegotiatedProtocol = c.clientProtocol
   1365 		state.DidResume = c.didResume
   1366 		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
   1367 		state.CipherSuite = c.cipherSuite
   1368 		state.PeerCertificates = c.peerCertificates
   1369 		state.VerifiedChains = c.verifiedChains
   1370 		state.SignedCertificateTimestamps = c.scts
   1371 		state.OCSPResponse = c.ocspResponse
   1372 		if !c.didResume {
   1373 			if c.clientFinishedIsFirst {
   1374 				state.TLSUnique = c.clientFinished[:]
   1375 			} else {
   1376 				state.TLSUnique = c.serverFinished[:]
   1377 			}
   1378 		}
   1379 	}
   1380 
   1381 	return state
   1382 }
   1383 
   1384 // OCSPResponse returns the stapled OCSP response from the TLS server, if
   1385 // any. (Only valid for client connections.)
   1386 func (c *Conn) OCSPResponse() []byte {
   1387 	c.handshakeMutex.Lock()
   1388 	defer c.handshakeMutex.Unlock()
   1389 
   1390 	return c.ocspResponse
   1391 }
   1392 
   1393 // VerifyHostname checks that the peer certificate chain is valid for
   1394 // connecting to host. If so, it returns nil; if not, it returns an error
   1395 // describing the problem.
   1396 func (c *Conn) VerifyHostname(host string) error {
   1397 	c.handshakeMutex.Lock()
   1398 	defer c.handshakeMutex.Unlock()
   1399 	if !c.isClient {
   1400 		return errors.New("tls: VerifyHostname called on TLS server connection")
   1401 	}
   1402 	if !c.handshakeComplete {
   1403 		return errors.New("tls: handshake has not yet been performed")
   1404 	}
   1405 	if len(c.verifiedChains) == 0 {
   1406 		return errors.New("tls: handshake did not verify certificate chain")
   1407 	}
   1408 	return c.peerCertificates[0].VerifyHostname(host)
   1409 }
   1410