Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 // The original C code, the long comment, and the constants
      8 // below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
      9 // and came with this notice. The go code is a simplified
     10 // version of the original C.
     11 //
     12 // ====================================================
     13 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     14 //
     15 // Developed at SunPro, a Sun Microsystems, Inc. business.
     16 // Permission to use, copy, modify, and distribute this
     17 // software is freely granted, provided that this notice
     18 // is preserved.
     19 // ====================================================
     20 //
     21 //
     22 // __ieee754_acosh(x)
     23 // Method :
     24 //	Based on
     25 //	        acosh(x) = log [ x + sqrt(x*x-1) ]
     26 //	we have
     27 //	        acosh(x) := log(x)+ln2,	if x is large; else
     28 //	        acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
     29 //	        acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
     30 //
     31 // Special cases:
     32 //	acosh(x) is NaN with signal if x<1.
     33 //	acosh(NaN) is NaN without signal.
     34 //
     35 
     36 // Acosh returns the inverse hyperbolic cosine of x.
     37 //
     38 // Special cases are:
     39 //	Acosh(+Inf) = +Inf
     40 //	Acosh(x) = NaN if x < 1
     41 //	Acosh(NaN) = NaN
     42 func Acosh(x float64) float64
     43 
     44 func acosh(x float64) float64 {
     45 	const (
     46 		Ln2   = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
     47 		Large = 1 << 28                    // 2**28
     48 	)
     49 	// first case is special case
     50 	switch {
     51 	case x < 1 || IsNaN(x):
     52 		return NaN()
     53 	case x == 1:
     54 		return 0
     55 	case x >= Large:
     56 		return Log(x) + Ln2 // x > 2**28
     57 	case x > 2:
     58 		return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
     59 	}
     60 	t := x - 1
     61 	return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
     62 }
     63