Home | History | Annotate | Download | only in big
      1 // Copyright 2015 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This file implements multi-precision decimal numbers.
      6 // The implementation is for float to decimal conversion only;
      7 // not general purpose use.
      8 // The only operations are precise conversion from binary to
      9 // decimal and rounding.
     10 //
     11 // The key observation and some code (shr) is borrowed from
     12 // strconv/decimal.go: conversion of binary fractional values can be done
     13 // precisely in multi-precision decimal because 2 divides 10 (required for
     14 // >> of mantissa); but conversion of decimal floating-point values cannot
     15 // be done precisely in binary representation.
     16 //
     17 // In contrast to strconv/decimal.go, only right shift is implemented in
     18 // decimal format - left shift can be done precisely in binary format.
     19 
     20 package big
     21 
     22 // A decimal represents an unsigned floating-point number in decimal representation.
     23 // The value of a non-zero decimal d is d.mant * 10**d.exp with 0.1 <= d.mant < 1,
     24 // with the most-significant mantissa digit at index 0. For the zero decimal, the
     25 // mantissa length and exponent are 0.
     26 // The zero value for decimal represents a ready-to-use 0.0.
     27 type decimal struct {
     28 	mant []byte // mantissa ASCII digits, big-endian
     29 	exp  int    // exponent
     30 }
     31 
     32 // at returns the i'th mantissa digit, starting with the most significant digit at 0.
     33 func (d *decimal) at(i int) byte {
     34 	if 0 <= i && i < len(d.mant) {
     35 		return d.mant[i]
     36 	}
     37 	return '0'
     38 }
     39 
     40 // Maximum shift amount that can be done in one pass without overflow.
     41 // A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word.
     42 const maxShift = _W - 4
     43 
     44 // TODO(gri) Since we know the desired decimal precision when converting
     45 // a floating-point number, we may be able to limit the number of decimal
     46 // digits that need to be computed by init by providing an additional
     47 // precision argument and keeping track of when a number was truncated early
     48 // (equivalent of "sticky bit" in binary rounding).
     49 
     50 // TODO(gri) Along the same lines, enforce some limit to shift magnitudes
     51 // to avoid "infinitely" long running conversions (until we run out of space).
     52 
     53 // Init initializes x to the decimal representation of m << shift (for
     54 // shift >= 0), or m >> -shift (for shift < 0).
     55 func (x *decimal) init(m nat, shift int) {
     56 	// special case 0
     57 	if len(m) == 0 {
     58 		x.mant = x.mant[:0]
     59 		x.exp = 0
     60 		return
     61 	}
     62 
     63 	// Optimization: If we need to shift right, first remove any trailing
     64 	// zero bits from m to reduce shift amount that needs to be done in
     65 	// decimal format (since that is likely slower).
     66 	if shift < 0 {
     67 		ntz := m.trailingZeroBits()
     68 		s := uint(-shift)
     69 		if s >= ntz {
     70 			s = ntz // shift at most ntz bits
     71 		}
     72 		m = nat(nil).shr(m, s)
     73 		shift += int(s)
     74 	}
     75 
     76 	// Do any shift left in binary representation.
     77 	if shift > 0 {
     78 		m = nat(nil).shl(m, uint(shift))
     79 		shift = 0
     80 	}
     81 
     82 	// Convert mantissa into decimal representation.
     83 	s := m.utoa(10)
     84 	n := len(s)
     85 	x.exp = n
     86 	// Trim trailing zeros; instead the exponent is tracking
     87 	// the decimal point independent of the number of digits.
     88 	for n > 0 && s[n-1] == '0' {
     89 		n--
     90 	}
     91 	x.mant = append(x.mant[:0], s[:n]...)
     92 
     93 	// Do any (remaining) shift right in decimal representation.
     94 	if shift < 0 {
     95 		for shift < -maxShift {
     96 			shr(x, maxShift)
     97 			shift += maxShift
     98 		}
     99 		shr(x, uint(-shift))
    100 	}
    101 }
    102 
    103 // shr implements x >> s, for s <= maxShift.
    104 func shr(x *decimal, s uint) {
    105 	// Division by 1<<s using shift-and-subtract algorithm.
    106 
    107 	// pick up enough leading digits to cover first shift
    108 	r := 0 // read index
    109 	var n Word
    110 	for n>>s == 0 && r < len(x.mant) {
    111 		ch := Word(x.mant[r])
    112 		r++
    113 		n = n*10 + ch - '0'
    114 	}
    115 	if n == 0 {
    116 		// x == 0; shouldn't get here, but handle anyway
    117 		x.mant = x.mant[:0]
    118 		return
    119 	}
    120 	for n>>s == 0 {
    121 		r++
    122 		n *= 10
    123 	}
    124 	x.exp += 1 - r
    125 
    126 	// read a digit, write a digit
    127 	w := 0 // write index
    128 	mask := Word(1)<<s - 1
    129 	for r < len(x.mant) {
    130 		ch := Word(x.mant[r])
    131 		r++
    132 		d := n >> s
    133 		n &= mask // n -= d << s
    134 		x.mant[w] = byte(d + '0')
    135 		w++
    136 		n = n*10 + ch - '0'
    137 	}
    138 
    139 	// write extra digits that still fit
    140 	for n > 0 && w < len(x.mant) {
    141 		d := n >> s
    142 		n &= mask
    143 		x.mant[w] = byte(d + '0')
    144 		w++
    145 		n = n * 10
    146 	}
    147 	x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10)
    148 
    149 	// append additional digits that didn't fit
    150 	for n > 0 {
    151 		d := n >> s
    152 		n &= mask
    153 		x.mant = append(x.mant, byte(d+'0'))
    154 		n = n * 10
    155 	}
    156 
    157 	trim(x)
    158 }
    159 
    160 func (x *decimal) String() string {
    161 	if len(x.mant) == 0 {
    162 		return "0"
    163 	}
    164 
    165 	var buf []byte
    166 	switch {
    167 	case x.exp <= 0:
    168 		// 0.00ddd
    169 		buf = append(buf, "0."...)
    170 		buf = appendZeros(buf, -x.exp)
    171 		buf = append(buf, x.mant...)
    172 
    173 	case /* 0 < */ x.exp < len(x.mant):
    174 		// dd.ddd
    175 		buf = append(buf, x.mant[:x.exp]...)
    176 		buf = append(buf, '.')
    177 		buf = append(buf, x.mant[x.exp:]...)
    178 
    179 	default: // len(x.mant) <= x.exp
    180 		// ddd00
    181 		buf = append(buf, x.mant...)
    182 		buf = appendZeros(buf, x.exp-len(x.mant))
    183 	}
    184 
    185 	return string(buf)
    186 }
    187 
    188 // appendZeros appends n 0 digits to buf and returns buf.
    189 func appendZeros(buf []byte, n int) []byte {
    190 	for ; n > 0; n-- {
    191 		buf = append(buf, '0')
    192 	}
    193 	return buf
    194 }
    195 
    196 // shouldRoundUp reports if x should be rounded up
    197 // if shortened to n digits. n must be a valid index
    198 // for x.mant.
    199 func shouldRoundUp(x *decimal, n int) bool {
    200 	if x.mant[n] == '5' && n+1 == len(x.mant) {
    201 		// exactly halfway - round to even
    202 		return n > 0 && (x.mant[n-1]-'0')&1 != 0
    203 	}
    204 	// not halfway - digit tells all (x.mant has no trailing zeros)
    205 	return x.mant[n] >= '5'
    206 }
    207 
    208 // round sets x to (at most) n mantissa digits by rounding it
    209 // to the nearest even value with n (or fever) mantissa digits.
    210 // If n < 0, x remains unchanged.
    211 func (x *decimal) round(n int) {
    212 	if n < 0 || n >= len(x.mant) {
    213 		return // nothing to do
    214 	}
    215 
    216 	if shouldRoundUp(x, n) {
    217 		x.roundUp(n)
    218 	} else {
    219 		x.roundDown(n)
    220 	}
    221 }
    222 
    223 func (x *decimal) roundUp(n int) {
    224 	if n < 0 || n >= len(x.mant) {
    225 		return // nothing to do
    226 	}
    227 	// 0 <= n < len(x.mant)
    228 
    229 	// find first digit < '9'
    230 	for n > 0 && x.mant[n-1] >= '9' {
    231 		n--
    232 	}
    233 
    234 	if n == 0 {
    235 		// all digits are '9's => round up to '1' and update exponent
    236 		x.mant[0] = '1' // ok since len(x.mant) > n
    237 		x.mant = x.mant[:1]
    238 		x.exp++
    239 		return
    240 	}
    241 
    242 	// n > 0 && x.mant[n-1] < '9'
    243 	x.mant[n-1]++
    244 	x.mant = x.mant[:n]
    245 	// x already trimmed
    246 }
    247 
    248 func (x *decimal) roundDown(n int) {
    249 	if n < 0 || n >= len(x.mant) {
    250 		return // nothing to do
    251 	}
    252 	x.mant = x.mant[:n]
    253 	trim(x)
    254 }
    255 
    256 // trim cuts off any trailing zeros from x's mantissa;
    257 // they are meaningless for the value of x.
    258 func trim(x *decimal) {
    259 	i := len(x.mant)
    260 	for i > 0 && x.mant[i-1] == '0' {
    261 		i--
    262 	}
    263 	x.mant = x.mant[:i]
    264 	if i == 0 {
    265 		x.exp = 0
    266 	}
    267 }
    268