Home | History | Annotate | Download | only in math
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 /*
      8 	Floating-point logarithm.
      9 */
     10 
     11 // The original C code, the long comment, and the constants
     12 // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
     13 // and came with this notice. The go code is a simpler
     14 // version of the original C.
     15 //
     16 // ====================================================
     17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     18 //
     19 // Developed at SunPro, a Sun Microsystems, Inc. business.
     20 // Permission to use, copy, modify, and distribute this
     21 // software is freely granted, provided that this notice
     22 // is preserved.
     23 // ====================================================
     24 //
     25 // __ieee754_log(x)
     26 // Return the logarithm of x
     27 //
     28 // Method :
     29 //   1. Argument Reduction: find k and f such that
     30 //			x = 2**k * (1+f),
     31 //	   where  sqrt(2)/2 < 1+f < sqrt(2) .
     32 //
     33 //   2. Approximation of log(1+f).
     34 //	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
     35 //		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
     36 //	     	 = 2s + s*R
     37 //      We use a special Reme algorithm on [0,0.1716] to generate
     38 //	a polynomial of degree 14 to approximate R.  The maximum error
     39 //	of this polynomial approximation is bounded by 2**-58.45. In
     40 //	other words,
     41 //		        2      4      6      8      10      12      14
     42 //	    R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s
     43 //	(the values of L1 to L7 are listed in the program) and
     44 //	    |      2          14          |     -58.45
     45 //	    | L1*s +...+L7*s    -  R(z) | <= 2
     46 //	    |                             |
     47 //	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
     48 //	In order to guarantee error in log below 1ulp, we compute log by
     49 //		log(1+f) = f - s*(f - R)		(if f is not too large)
     50 //		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
     51 //
     52 //	3. Finally,  log(x) = k*Ln2 + log(1+f).
     53 //			    = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
     54 //	   Here Ln2 is split into two floating point number:
     55 //			Ln2_hi + Ln2_lo,
     56 //	   where n*Ln2_hi is always exact for |n| < 2000.
     57 //
     58 // Special cases:
     59 //	log(x) is NaN with signal if x < 0 (including -INF) ;
     60 //	log(+INF) is +INF; log(0) is -INF with signal;
     61 //	log(NaN) is that NaN with no signal.
     62 //
     63 // Accuracy:
     64 //	according to an error analysis, the error is always less than
     65 //	1 ulp (unit in the last place).
     66 //
     67 // Constants:
     68 // The hexadecimal values are the intended ones for the following
     69 // constants. The decimal values may be used, provided that the
     70 // compiler will convert from decimal to binary accurately enough
     71 // to produce the hexadecimal values shown.
     72 
     73 // Log returns the natural logarithm of x.
     74 //
     75 // Special cases are:
     76 //	Log(+Inf) = +Inf
     77 //	Log(0) = -Inf
     78 //	Log(x < 0) = NaN
     79 //	Log(NaN) = NaN
     80 func Log(x float64) float64
     81 
     82 func log(x float64) float64 {
     83 	const (
     84 		Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
     85 		Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
     86 		L1    = 6.666666666666735130e-01   /* 3FE55555 55555593 */
     87 		L2    = 3.999999999940941908e-01   /* 3FD99999 9997FA04 */
     88 		L3    = 2.857142874366239149e-01   /* 3FD24924 94229359 */
     89 		L4    = 2.222219843214978396e-01   /* 3FCC71C5 1D8E78AF */
     90 		L5    = 1.818357216161805012e-01   /* 3FC74664 96CB03DE */
     91 		L6    = 1.531383769920937332e-01   /* 3FC39A09 D078C69F */
     92 		L7    = 1.479819860511658591e-01   /* 3FC2F112 DF3E5244 */
     93 	)
     94 
     95 	// special cases
     96 	switch {
     97 	case IsNaN(x) || IsInf(x, 1):
     98 		return x
     99 	case x < 0:
    100 		return NaN()
    101 	case x == 0:
    102 		return Inf(-1)
    103 	}
    104 
    105 	// reduce
    106 	f1, ki := Frexp(x)
    107 	if f1 < Sqrt2/2 {
    108 		f1 *= 2
    109 		ki--
    110 	}
    111 	f := f1 - 1
    112 	k := float64(ki)
    113 
    114 	// compute
    115 	s := f / (2 + f)
    116 	s2 := s * s
    117 	s4 := s2 * s2
    118 	t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
    119 	t2 := s4 * (L2 + s4*(L4+s4*L6))
    120 	R := t1 + t2
    121 	hfsq := 0.5 * f * f
    122 	return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f)
    123 }
    124