Home | History | Annotate | Download | only in http
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // HTTP server. See RFC 2616.
      6 
      7 package http
      8 
      9 import (
     10 	"bufio"
     11 	"bytes"
     12 	"context"
     13 	"crypto/tls"
     14 	"errors"
     15 	"fmt"
     16 	"io"
     17 	"io/ioutil"
     18 	"log"
     19 	"net"
     20 	"net/textproto"
     21 	"net/url"
     22 	"os"
     23 	"path"
     24 	"runtime"
     25 	"strconv"
     26 	"strings"
     27 	"sync"
     28 	"sync/atomic"
     29 	"time"
     30 
     31 	"golang_org/x/net/lex/httplex"
     32 )
     33 
     34 // Errors used by the HTTP server.
     35 var (
     36 	// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
     37 	// when the HTTP method or response code does not permit a
     38 	// body.
     39 	ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
     40 
     41 	// ErrHijacked is returned by ResponseWriter.Write calls when
     42 	// the underlying connection has been hijacked using the
     43 	// Hijacker interface. A zero-byte write on a hijacked
     44 	// connection will return ErrHijacked without any other side
     45 	// effects.
     46 	ErrHijacked = errors.New("http: connection has been hijacked")
     47 
     48 	// ErrContentLength is returned by ResponseWriter.Write calls
     49 	// when a Handler set a Content-Length response header with a
     50 	// declared size and then attempted to write more bytes than
     51 	// declared.
     52 	ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
     53 
     54 	// Deprecated: ErrWriteAfterFlush is no longer used.
     55 	ErrWriteAfterFlush = errors.New("unused")
     56 )
     57 
     58 // A Handler responds to an HTTP request.
     59 //
     60 // ServeHTTP should write reply headers and data to the ResponseWriter
     61 // and then return. Returning signals that the request is finished; it
     62 // is not valid to use the ResponseWriter or read from the
     63 // Request.Body after or concurrently with the completion of the
     64 // ServeHTTP call.
     65 //
     66 // Depending on the HTTP client software, HTTP protocol version, and
     67 // any intermediaries between the client and the Go server, it may not
     68 // be possible to read from the Request.Body after writing to the
     69 // ResponseWriter. Cautious handlers should read the Request.Body
     70 // first, and then reply.
     71 //
     72 // Except for reading the body, handlers should not modify the
     73 // provided Request.
     74 //
     75 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
     76 // that the effect of the panic was isolated to the active request.
     77 // It recovers the panic, logs a stack trace to the server error log,
     78 // and either closes the network connection or sends an HTTP/2
     79 // RST_STREAM, depending on the HTTP protocol. To abort a handler so
     80 // the client sees an interrupted response but the server doesn't log
     81 // an error, panic with the value ErrAbortHandler.
     82 type Handler interface {
     83 	ServeHTTP(ResponseWriter, *Request)
     84 }
     85 
     86 // A ResponseWriter interface is used by an HTTP handler to
     87 // construct an HTTP response.
     88 //
     89 // A ResponseWriter may not be used after the Handler.ServeHTTP method
     90 // has returned.
     91 type ResponseWriter interface {
     92 	// Header returns the header map that will be sent by
     93 	// WriteHeader. The Header map also is the mechanism with which
     94 	// Handlers can set HTTP trailers.
     95 	//
     96 	// Changing the header map after a call to WriteHeader (or
     97 	// Write) has no effect unless the modified headers are
     98 	// trailers.
     99 	//
    100 	// There are two ways to set Trailers. The preferred way is to
    101 	// predeclare in the headers which trailers you will later
    102 	// send by setting the "Trailer" header to the names of the
    103 	// trailer keys which will come later. In this case, those
    104 	// keys of the Header map are treated as if they were
    105 	// trailers. See the example. The second way, for trailer
    106 	// keys not known to the Handler until after the first Write,
    107 	// is to prefix the Header map keys with the TrailerPrefix
    108 	// constant value. See TrailerPrefix.
    109 	//
    110 	// To suppress implicit response headers (such as "Date"), set
    111 	// their value to nil.
    112 	Header() Header
    113 
    114 	// Write writes the data to the connection as part of an HTTP reply.
    115 	//
    116 	// If WriteHeader has not yet been called, Write calls
    117 	// WriteHeader(http.StatusOK) before writing the data. If the Header
    118 	// does not contain a Content-Type line, Write adds a Content-Type set
    119 	// to the result of passing the initial 512 bytes of written data to
    120 	// DetectContentType.
    121 	//
    122 	// Depending on the HTTP protocol version and the client, calling
    123 	// Write or WriteHeader may prevent future reads on the
    124 	// Request.Body. For HTTP/1.x requests, handlers should read any
    125 	// needed request body data before writing the response. Once the
    126 	// headers have been flushed (due to either an explicit Flusher.Flush
    127 	// call or writing enough data to trigger a flush), the request body
    128 	// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
    129 	// handlers to continue to read the request body while concurrently
    130 	// writing the response. However, such behavior may not be supported
    131 	// by all HTTP/2 clients. Handlers should read before writing if
    132 	// possible to maximize compatibility.
    133 	Write([]byte) (int, error)
    134 
    135 	// WriteHeader sends an HTTP response header with the provided
    136 	// status code.
    137 	//
    138 	// If WriteHeader is not called explicitly, the first call to Write
    139 	// will trigger an implicit WriteHeader(http.StatusOK).
    140 	// Thus explicit calls to WriteHeader are mainly used to
    141 	// send error codes.
    142 	//
    143 	// The provided code must be a valid HTTP 1xx-5xx status code.
    144 	// Only one header may be written. Go does not currently
    145 	// support sending user-defined 1xx informational headers,
    146 	// with the exception of 100-continue response header that the
    147 	// Server sends automatically when the Request.Body is read.
    148 	WriteHeader(statusCode int)
    149 }
    150 
    151 // The Flusher interface is implemented by ResponseWriters that allow
    152 // an HTTP handler to flush buffered data to the client.
    153 //
    154 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations
    155 // support Flusher, but ResponseWriter wrappers may not. Handlers
    156 // should always test for this ability at runtime.
    157 //
    158 // Note that even for ResponseWriters that support Flush,
    159 // if the client is connected through an HTTP proxy,
    160 // the buffered data may not reach the client until the response
    161 // completes.
    162 type Flusher interface {
    163 	// Flush sends any buffered data to the client.
    164 	Flush()
    165 }
    166 
    167 // The Hijacker interface is implemented by ResponseWriters that allow
    168 // an HTTP handler to take over the connection.
    169 //
    170 // The default ResponseWriter for HTTP/1.x connections supports
    171 // Hijacker, but HTTP/2 connections intentionally do not.
    172 // ResponseWriter wrappers may also not support Hijacker. Handlers
    173 // should always test for this ability at runtime.
    174 type Hijacker interface {
    175 	// Hijack lets the caller take over the connection.
    176 	// After a call to Hijack the HTTP server library
    177 	// will not do anything else with the connection.
    178 	//
    179 	// It becomes the caller's responsibility to manage
    180 	// and close the connection.
    181 	//
    182 	// The returned net.Conn may have read or write deadlines
    183 	// already set, depending on the configuration of the
    184 	// Server. It is the caller's responsibility to set
    185 	// or clear those deadlines as needed.
    186 	//
    187 	// The returned bufio.Reader may contain unprocessed buffered
    188 	// data from the client.
    189 	//
    190 	// After a call to Hijack, the original Request.Body must
    191 	// not be used.
    192 	Hijack() (net.Conn, *bufio.ReadWriter, error)
    193 }
    194 
    195 // The CloseNotifier interface is implemented by ResponseWriters which
    196 // allow detecting when the underlying connection has gone away.
    197 //
    198 // This mechanism can be used to cancel long operations on the server
    199 // if the client has disconnected before the response is ready.
    200 type CloseNotifier interface {
    201 	// CloseNotify returns a channel that receives at most a
    202 	// single value (true) when the client connection has gone
    203 	// away.
    204 	//
    205 	// CloseNotify may wait to notify until Request.Body has been
    206 	// fully read.
    207 	//
    208 	// After the Handler has returned, there is no guarantee
    209 	// that the channel receives a value.
    210 	//
    211 	// If the protocol is HTTP/1.1 and CloseNotify is called while
    212 	// processing an idempotent request (such a GET) while
    213 	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
    214 	// pipelined request may cause a value to be sent on the
    215 	// returned channel. In practice HTTP/1.1 pipelining is not
    216 	// enabled in browsers and not seen often in the wild. If this
    217 	// is a problem, use HTTP/2 or only use CloseNotify on methods
    218 	// such as POST.
    219 	CloseNotify() <-chan bool
    220 }
    221 
    222 var (
    223 	// ServerContextKey is a context key. It can be used in HTTP
    224 	// handlers with context.WithValue to access the server that
    225 	// started the handler. The associated value will be of
    226 	// type *Server.
    227 	ServerContextKey = &contextKey{"http-server"}
    228 
    229 	// LocalAddrContextKey is a context key. It can be used in
    230 	// HTTP handlers with context.WithValue to access the address
    231 	// the local address the connection arrived on.
    232 	// The associated value will be of type net.Addr.
    233 	LocalAddrContextKey = &contextKey{"local-addr"}
    234 )
    235 
    236 // A conn represents the server side of an HTTP connection.
    237 type conn struct {
    238 	// server is the server on which the connection arrived.
    239 	// Immutable; never nil.
    240 	server *Server
    241 
    242 	// cancelCtx cancels the connection-level context.
    243 	cancelCtx context.CancelFunc
    244 
    245 	// rwc is the underlying network connection.
    246 	// This is never wrapped by other types and is the value given out
    247 	// to CloseNotifier callers. It is usually of type *net.TCPConn or
    248 	// *tls.Conn.
    249 	rwc net.Conn
    250 
    251 	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
    252 	// inside the Listener's Accept goroutine, as some implementations block.
    253 	// It is populated immediately inside the (*conn).serve goroutine.
    254 	// This is the value of a Handler's (*Request).RemoteAddr.
    255 	remoteAddr string
    256 
    257 	// tlsState is the TLS connection state when using TLS.
    258 	// nil means not TLS.
    259 	tlsState *tls.ConnectionState
    260 
    261 	// werr is set to the first write error to rwc.
    262 	// It is set via checkConnErrorWriter{w}, where bufw writes.
    263 	werr error
    264 
    265 	// r is bufr's read source. It's a wrapper around rwc that provides
    266 	// io.LimitedReader-style limiting (while reading request headers)
    267 	// and functionality to support CloseNotifier. See *connReader docs.
    268 	r *connReader
    269 
    270 	// bufr reads from r.
    271 	bufr *bufio.Reader
    272 
    273 	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
    274 	bufw *bufio.Writer
    275 
    276 	// lastMethod is the method of the most recent request
    277 	// on this connection, if any.
    278 	lastMethod string
    279 
    280 	curReq atomic.Value // of *response (which has a Request in it)
    281 
    282 	curState atomic.Value // of ConnState
    283 
    284 	// mu guards hijackedv
    285 	mu sync.Mutex
    286 
    287 	// hijackedv is whether this connection has been hijacked
    288 	// by a Handler with the Hijacker interface.
    289 	// It is guarded by mu.
    290 	hijackedv bool
    291 }
    292 
    293 func (c *conn) hijacked() bool {
    294 	c.mu.Lock()
    295 	defer c.mu.Unlock()
    296 	return c.hijackedv
    297 }
    298 
    299 // c.mu must be held.
    300 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
    301 	if c.hijackedv {
    302 		return nil, nil, ErrHijacked
    303 	}
    304 	c.r.abortPendingRead()
    305 
    306 	c.hijackedv = true
    307 	rwc = c.rwc
    308 	rwc.SetDeadline(time.Time{})
    309 
    310 	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
    311 	if c.r.hasByte {
    312 		if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil {
    313 			return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err)
    314 		}
    315 	}
    316 	c.setState(rwc, StateHijacked)
    317 	return
    318 }
    319 
    320 // This should be >= 512 bytes for DetectContentType,
    321 // but otherwise it's somewhat arbitrary.
    322 const bufferBeforeChunkingSize = 2048
    323 
    324 // chunkWriter writes to a response's conn buffer, and is the writer
    325 // wrapped by the response.bufw buffered writer.
    326 //
    327 // chunkWriter also is responsible for finalizing the Header, including
    328 // conditionally setting the Content-Type and setting a Content-Length
    329 // in cases where the handler's final output is smaller than the buffer
    330 // size. It also conditionally adds chunk headers, when in chunking mode.
    331 //
    332 // See the comment above (*response).Write for the entire write flow.
    333 type chunkWriter struct {
    334 	res *response
    335 
    336 	// header is either nil or a deep clone of res.handlerHeader
    337 	// at the time of res.WriteHeader, if res.WriteHeader is
    338 	// called and extra buffering is being done to calculate
    339 	// Content-Type and/or Content-Length.
    340 	header Header
    341 
    342 	// wroteHeader tells whether the header's been written to "the
    343 	// wire" (or rather: w.conn.buf). this is unlike
    344 	// (*response).wroteHeader, which tells only whether it was
    345 	// logically written.
    346 	wroteHeader bool
    347 
    348 	// set by the writeHeader method:
    349 	chunking bool // using chunked transfer encoding for reply body
    350 }
    351 
    352 var (
    353 	crlf       = []byte("\r\n")
    354 	colonSpace = []byte(": ")
    355 )
    356 
    357 func (cw *chunkWriter) Write(p []byte) (n int, err error) {
    358 	if !cw.wroteHeader {
    359 		cw.writeHeader(p)
    360 	}
    361 	if cw.res.req.Method == "HEAD" {
    362 		// Eat writes.
    363 		return len(p), nil
    364 	}
    365 	if cw.chunking {
    366 		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
    367 		if err != nil {
    368 			cw.res.conn.rwc.Close()
    369 			return
    370 		}
    371 	}
    372 	n, err = cw.res.conn.bufw.Write(p)
    373 	if cw.chunking && err == nil {
    374 		_, err = cw.res.conn.bufw.Write(crlf)
    375 	}
    376 	if err != nil {
    377 		cw.res.conn.rwc.Close()
    378 	}
    379 	return
    380 }
    381 
    382 func (cw *chunkWriter) flush() {
    383 	if !cw.wroteHeader {
    384 		cw.writeHeader(nil)
    385 	}
    386 	cw.res.conn.bufw.Flush()
    387 }
    388 
    389 func (cw *chunkWriter) close() {
    390 	if !cw.wroteHeader {
    391 		cw.writeHeader(nil)
    392 	}
    393 	if cw.chunking {
    394 		bw := cw.res.conn.bufw // conn's bufio writer
    395 		// zero chunk to mark EOF
    396 		bw.WriteString("0\r\n")
    397 		if trailers := cw.res.finalTrailers(); trailers != nil {
    398 			trailers.Write(bw) // the writer handles noting errors
    399 		}
    400 		// final blank line after the trailers (whether
    401 		// present or not)
    402 		bw.WriteString("\r\n")
    403 	}
    404 }
    405 
    406 // A response represents the server side of an HTTP response.
    407 type response struct {
    408 	conn             *conn
    409 	req              *Request // request for this response
    410 	reqBody          io.ReadCloser
    411 	cancelCtx        context.CancelFunc // when ServeHTTP exits
    412 	wroteHeader      bool               // reply header has been (logically) written
    413 	wroteContinue    bool               // 100 Continue response was written
    414 	wants10KeepAlive bool               // HTTP/1.0 w/ Connection "keep-alive"
    415 	wantsClose       bool               // HTTP request has Connection "close"
    416 
    417 	w  *bufio.Writer // buffers output in chunks to chunkWriter
    418 	cw chunkWriter
    419 
    420 	// handlerHeader is the Header that Handlers get access to,
    421 	// which may be retained and mutated even after WriteHeader.
    422 	// handlerHeader is copied into cw.header at WriteHeader
    423 	// time, and privately mutated thereafter.
    424 	handlerHeader Header
    425 	calledHeader  bool // handler accessed handlerHeader via Header
    426 
    427 	written       int64 // number of bytes written in body
    428 	contentLength int64 // explicitly-declared Content-Length; or -1
    429 	status        int   // status code passed to WriteHeader
    430 
    431 	// close connection after this reply.  set on request and
    432 	// updated after response from handler if there's a
    433 	// "Connection: keep-alive" response header and a
    434 	// Content-Length.
    435 	closeAfterReply bool
    436 
    437 	// requestBodyLimitHit is set by requestTooLarge when
    438 	// maxBytesReader hits its max size. It is checked in
    439 	// WriteHeader, to make sure we don't consume the
    440 	// remaining request body to try to advance to the next HTTP
    441 	// request. Instead, when this is set, we stop reading
    442 	// subsequent requests on this connection and stop reading
    443 	// input from it.
    444 	requestBodyLimitHit bool
    445 
    446 	// trailers are the headers to be sent after the handler
    447 	// finishes writing the body. This field is initialized from
    448 	// the Trailer response header when the response header is
    449 	// written.
    450 	trailers []string
    451 
    452 	handlerDone atomicBool // set true when the handler exits
    453 
    454 	// Buffers for Date, Content-Length, and status code
    455 	dateBuf   [len(TimeFormat)]byte
    456 	clenBuf   [10]byte
    457 	statusBuf [3]byte
    458 
    459 	// closeNotifyCh is the channel returned by CloseNotify.
    460 	// TODO(bradfitz): this is currently (for Go 1.8) always
    461 	// non-nil. Make this lazily-created again as it used to be?
    462 	closeNotifyCh  chan bool
    463 	didCloseNotify int32 // atomic (only 0->1 winner should send)
    464 }
    465 
    466 // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
    467 // that, if present, signals that the map entry is actually for
    468 // the response trailers, and not the response headers. The prefix
    469 // is stripped after the ServeHTTP call finishes and the values are
    470 // sent in the trailers.
    471 //
    472 // This mechanism is intended only for trailers that are not known
    473 // prior to the headers being written. If the set of trailers is fixed
    474 // or known before the header is written, the normal Go trailers mechanism
    475 // is preferred:
    476 //    https://golang.org/pkg/net/http/#ResponseWriter
    477 //    https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
    478 const TrailerPrefix = "Trailer:"
    479 
    480 // finalTrailers is called after the Handler exits and returns a non-nil
    481 // value if the Handler set any trailers.
    482 func (w *response) finalTrailers() Header {
    483 	var t Header
    484 	for k, vv := range w.handlerHeader {
    485 		if strings.HasPrefix(k, TrailerPrefix) {
    486 			if t == nil {
    487 				t = make(Header)
    488 			}
    489 			t[strings.TrimPrefix(k, TrailerPrefix)] = vv
    490 		}
    491 	}
    492 	for _, k := range w.trailers {
    493 		if t == nil {
    494 			t = make(Header)
    495 		}
    496 		for _, v := range w.handlerHeader[k] {
    497 			t.Add(k, v)
    498 		}
    499 	}
    500 	return t
    501 }
    502 
    503 type atomicBool int32
    504 
    505 func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
    506 func (b *atomicBool) setTrue()    { atomic.StoreInt32((*int32)(b), 1) }
    507 
    508 // declareTrailer is called for each Trailer header when the
    509 // response header is written. It notes that a header will need to be
    510 // written in the trailers at the end of the response.
    511 func (w *response) declareTrailer(k string) {
    512 	k = CanonicalHeaderKey(k)
    513 	switch k {
    514 	case "Transfer-Encoding", "Content-Length", "Trailer":
    515 		// Forbidden by RFC 2616 14.40.
    516 		return
    517 	}
    518 	w.trailers = append(w.trailers, k)
    519 }
    520 
    521 // requestTooLarge is called by maxBytesReader when too much input has
    522 // been read from the client.
    523 func (w *response) requestTooLarge() {
    524 	w.closeAfterReply = true
    525 	w.requestBodyLimitHit = true
    526 	if !w.wroteHeader {
    527 		w.Header().Set("Connection", "close")
    528 	}
    529 }
    530 
    531 // needsSniff reports whether a Content-Type still needs to be sniffed.
    532 func (w *response) needsSniff() bool {
    533 	_, haveType := w.handlerHeader["Content-Type"]
    534 	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
    535 }
    536 
    537 // writerOnly hides an io.Writer value's optional ReadFrom method
    538 // from io.Copy.
    539 type writerOnly struct {
    540 	io.Writer
    541 }
    542 
    543 func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
    544 	switch v := src.(type) {
    545 	case *os.File:
    546 		fi, err := v.Stat()
    547 		if err != nil {
    548 			return false, err
    549 		}
    550 		return fi.Mode().IsRegular(), nil
    551 	case *io.LimitedReader:
    552 		return srcIsRegularFile(v.R)
    553 	default:
    554 		return
    555 	}
    556 }
    557 
    558 // ReadFrom is here to optimize copying from an *os.File regular file
    559 // to a *net.TCPConn with sendfile.
    560 func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
    561 	// Our underlying w.conn.rwc is usually a *TCPConn (with its
    562 	// own ReadFrom method). If not, or if our src isn't a regular
    563 	// file, just fall back to the normal copy method.
    564 	rf, ok := w.conn.rwc.(io.ReaderFrom)
    565 	regFile, err := srcIsRegularFile(src)
    566 	if err != nil {
    567 		return 0, err
    568 	}
    569 	if !ok || !regFile {
    570 		bufp := copyBufPool.Get().(*[]byte)
    571 		defer copyBufPool.Put(bufp)
    572 		return io.CopyBuffer(writerOnly{w}, src, *bufp)
    573 	}
    574 
    575 	// sendfile path:
    576 
    577 	if !w.wroteHeader {
    578 		w.WriteHeader(StatusOK)
    579 	}
    580 
    581 	if w.needsSniff() {
    582 		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
    583 		n += n0
    584 		if err != nil {
    585 			return n, err
    586 		}
    587 	}
    588 
    589 	w.w.Flush()  // get rid of any previous writes
    590 	w.cw.flush() // make sure Header is written; flush data to rwc
    591 
    592 	// Now that cw has been flushed, its chunking field is guaranteed initialized.
    593 	if !w.cw.chunking && w.bodyAllowed() {
    594 		n0, err := rf.ReadFrom(src)
    595 		n += n0
    596 		w.written += n0
    597 		return n, err
    598 	}
    599 
    600 	n0, err := io.Copy(writerOnly{w}, src)
    601 	n += n0
    602 	return n, err
    603 }
    604 
    605 // debugServerConnections controls whether all server connections are wrapped
    606 // with a verbose logging wrapper.
    607 const debugServerConnections = false
    608 
    609 // Create new connection from rwc.
    610 func (srv *Server) newConn(rwc net.Conn) *conn {
    611 	c := &conn{
    612 		server: srv,
    613 		rwc:    rwc,
    614 	}
    615 	if debugServerConnections {
    616 		c.rwc = newLoggingConn("server", c.rwc)
    617 	}
    618 	return c
    619 }
    620 
    621 type readResult struct {
    622 	n   int
    623 	err error
    624 	b   byte // byte read, if n == 1
    625 }
    626 
    627 // connReader is the io.Reader wrapper used by *conn. It combines a
    628 // selectively-activated io.LimitedReader (to bound request header
    629 // read sizes) with support for selectively keeping an io.Reader.Read
    630 // call blocked in a background goroutine to wait for activity and
    631 // trigger a CloseNotifier channel.
    632 type connReader struct {
    633 	conn *conn
    634 
    635 	mu      sync.Mutex // guards following
    636 	hasByte bool
    637 	byteBuf [1]byte
    638 	cond    *sync.Cond
    639 	inRead  bool
    640 	aborted bool  // set true before conn.rwc deadline is set to past
    641 	remain  int64 // bytes remaining
    642 }
    643 
    644 func (cr *connReader) lock() {
    645 	cr.mu.Lock()
    646 	if cr.cond == nil {
    647 		cr.cond = sync.NewCond(&cr.mu)
    648 	}
    649 }
    650 
    651 func (cr *connReader) unlock() { cr.mu.Unlock() }
    652 
    653 func (cr *connReader) startBackgroundRead() {
    654 	cr.lock()
    655 	defer cr.unlock()
    656 	if cr.inRead {
    657 		panic("invalid concurrent Body.Read call")
    658 	}
    659 	if cr.hasByte {
    660 		return
    661 	}
    662 	cr.inRead = true
    663 	cr.conn.rwc.SetReadDeadline(time.Time{})
    664 	go cr.backgroundRead()
    665 }
    666 
    667 func (cr *connReader) backgroundRead() {
    668 	n, err := cr.conn.rwc.Read(cr.byteBuf[:])
    669 	cr.lock()
    670 	if n == 1 {
    671 		cr.hasByte = true
    672 		// We were at EOF already (since we wouldn't be in a
    673 		// background read otherwise), so this is a pipelined
    674 		// HTTP request.
    675 		cr.closeNotifyFromPipelinedRequest()
    676 	}
    677 	if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
    678 		// Ignore this error. It's the expected error from
    679 		// another goroutine calling abortPendingRead.
    680 	} else if err != nil {
    681 		cr.handleReadError(err)
    682 	}
    683 	cr.aborted = false
    684 	cr.inRead = false
    685 	cr.unlock()
    686 	cr.cond.Broadcast()
    687 }
    688 
    689 func (cr *connReader) abortPendingRead() {
    690 	cr.lock()
    691 	defer cr.unlock()
    692 	if !cr.inRead {
    693 		return
    694 	}
    695 	cr.aborted = true
    696 	cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
    697 	for cr.inRead {
    698 		cr.cond.Wait()
    699 	}
    700 	cr.conn.rwc.SetReadDeadline(time.Time{})
    701 }
    702 
    703 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
    704 func (cr *connReader) setInfiniteReadLimit()     { cr.remain = maxInt64 }
    705 func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
    706 
    707 // may be called from multiple goroutines.
    708 func (cr *connReader) handleReadError(err error) {
    709 	cr.conn.cancelCtx()
    710 	cr.closeNotify()
    711 }
    712 
    713 // closeNotifyFromPipelinedRequest simply calls closeNotify.
    714 //
    715 // This method wrapper is here for documentation. The callers are the
    716 // cases where we send on the closenotify channel because of a
    717 // pipelined HTTP request, per the previous Go behavior and
    718 // documentation (that this "MAY" happen).
    719 //
    720 // TODO: consider changing this behavior and making context
    721 // cancelation and closenotify work the same.
    722 func (cr *connReader) closeNotifyFromPipelinedRequest() {
    723 	cr.closeNotify()
    724 }
    725 
    726 // may be called from multiple goroutines.
    727 func (cr *connReader) closeNotify() {
    728 	res, _ := cr.conn.curReq.Load().(*response)
    729 	if res != nil {
    730 		if atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
    731 			res.closeNotifyCh <- true
    732 		}
    733 	}
    734 }
    735 
    736 func (cr *connReader) Read(p []byte) (n int, err error) {
    737 	cr.lock()
    738 	if cr.inRead {
    739 		cr.unlock()
    740 		if cr.conn.hijacked() {
    741 			panic("invalid Body.Read call. After hijacked, the original Request must not be used")
    742 		}
    743 		panic("invalid concurrent Body.Read call")
    744 	}
    745 	if cr.hitReadLimit() {
    746 		cr.unlock()
    747 		return 0, io.EOF
    748 	}
    749 	if len(p) == 0 {
    750 		cr.unlock()
    751 		return 0, nil
    752 	}
    753 	if int64(len(p)) > cr.remain {
    754 		p = p[:cr.remain]
    755 	}
    756 	if cr.hasByte {
    757 		p[0] = cr.byteBuf[0]
    758 		cr.hasByte = false
    759 		cr.unlock()
    760 		return 1, nil
    761 	}
    762 	cr.inRead = true
    763 	cr.unlock()
    764 	n, err = cr.conn.rwc.Read(p)
    765 
    766 	cr.lock()
    767 	cr.inRead = false
    768 	if err != nil {
    769 		cr.handleReadError(err)
    770 	}
    771 	cr.remain -= int64(n)
    772 	cr.unlock()
    773 
    774 	cr.cond.Broadcast()
    775 	return n, err
    776 }
    777 
    778 var (
    779 	bufioReaderPool   sync.Pool
    780 	bufioWriter2kPool sync.Pool
    781 	bufioWriter4kPool sync.Pool
    782 )
    783 
    784 var copyBufPool = sync.Pool{
    785 	New: func() interface{} {
    786 		b := make([]byte, 32*1024)
    787 		return &b
    788 	},
    789 }
    790 
    791 func bufioWriterPool(size int) *sync.Pool {
    792 	switch size {
    793 	case 2 << 10:
    794 		return &bufioWriter2kPool
    795 	case 4 << 10:
    796 		return &bufioWriter4kPool
    797 	}
    798 	return nil
    799 }
    800 
    801 func newBufioReader(r io.Reader) *bufio.Reader {
    802 	if v := bufioReaderPool.Get(); v != nil {
    803 		br := v.(*bufio.Reader)
    804 		br.Reset(r)
    805 		return br
    806 	}
    807 	// Note: if this reader size is ever changed, update
    808 	// TestHandlerBodyClose's assumptions.
    809 	return bufio.NewReader(r)
    810 }
    811 
    812 func putBufioReader(br *bufio.Reader) {
    813 	br.Reset(nil)
    814 	bufioReaderPool.Put(br)
    815 }
    816 
    817 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
    818 	pool := bufioWriterPool(size)
    819 	if pool != nil {
    820 		if v := pool.Get(); v != nil {
    821 			bw := v.(*bufio.Writer)
    822 			bw.Reset(w)
    823 			return bw
    824 		}
    825 	}
    826 	return bufio.NewWriterSize(w, size)
    827 }
    828 
    829 func putBufioWriter(bw *bufio.Writer) {
    830 	bw.Reset(nil)
    831 	if pool := bufioWriterPool(bw.Available()); pool != nil {
    832 		pool.Put(bw)
    833 	}
    834 }
    835 
    836 // DefaultMaxHeaderBytes is the maximum permitted size of the headers
    837 // in an HTTP request.
    838 // This can be overridden by setting Server.MaxHeaderBytes.
    839 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
    840 
    841 func (srv *Server) maxHeaderBytes() int {
    842 	if srv.MaxHeaderBytes > 0 {
    843 		return srv.MaxHeaderBytes
    844 	}
    845 	return DefaultMaxHeaderBytes
    846 }
    847 
    848 func (srv *Server) initialReadLimitSize() int64 {
    849 	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
    850 }
    851 
    852 // wrapper around io.ReadCloser which on first read, sends an
    853 // HTTP/1.1 100 Continue header
    854 type expectContinueReader struct {
    855 	resp       *response
    856 	readCloser io.ReadCloser
    857 	closed     bool
    858 	sawEOF     bool
    859 }
    860 
    861 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
    862 	if ecr.closed {
    863 		return 0, ErrBodyReadAfterClose
    864 	}
    865 	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
    866 		ecr.resp.wroteContinue = true
    867 		ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
    868 		ecr.resp.conn.bufw.Flush()
    869 	}
    870 	n, err = ecr.readCloser.Read(p)
    871 	if err == io.EOF {
    872 		ecr.sawEOF = true
    873 	}
    874 	return
    875 }
    876 
    877 func (ecr *expectContinueReader) Close() error {
    878 	ecr.closed = true
    879 	return ecr.readCloser.Close()
    880 }
    881 
    882 // TimeFormat is the time format to use when generating times in HTTP
    883 // headers. It is like time.RFC1123 but hard-codes GMT as the time
    884 // zone. The time being formatted must be in UTC for Format to
    885 // generate the correct format.
    886 //
    887 // For parsing this time format, see ParseTime.
    888 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
    889 
    890 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
    891 func appendTime(b []byte, t time.Time) []byte {
    892 	const days = "SunMonTueWedThuFriSat"
    893 	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
    894 
    895 	t = t.UTC()
    896 	yy, mm, dd := t.Date()
    897 	hh, mn, ss := t.Clock()
    898 	day := days[3*t.Weekday():]
    899 	mon := months[3*(mm-1):]
    900 
    901 	return append(b,
    902 		day[0], day[1], day[2], ',', ' ',
    903 		byte('0'+dd/10), byte('0'+dd%10), ' ',
    904 		mon[0], mon[1], mon[2], ' ',
    905 		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
    906 		byte('0'+hh/10), byte('0'+hh%10), ':',
    907 		byte('0'+mn/10), byte('0'+mn%10), ':',
    908 		byte('0'+ss/10), byte('0'+ss%10), ' ',
    909 		'G', 'M', 'T')
    910 }
    911 
    912 var errTooLarge = errors.New("http: request too large")
    913 
    914 // Read next request from connection.
    915 func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
    916 	if c.hijacked() {
    917 		return nil, ErrHijacked
    918 	}
    919 
    920 	var (
    921 		wholeReqDeadline time.Time // or zero if none
    922 		hdrDeadline      time.Time // or zero if none
    923 	)
    924 	t0 := time.Now()
    925 	if d := c.server.readHeaderTimeout(); d != 0 {
    926 		hdrDeadline = t0.Add(d)
    927 	}
    928 	if d := c.server.ReadTimeout; d != 0 {
    929 		wholeReqDeadline = t0.Add(d)
    930 	}
    931 	c.rwc.SetReadDeadline(hdrDeadline)
    932 	if d := c.server.WriteTimeout; d != 0 {
    933 		defer func() {
    934 			c.rwc.SetWriteDeadline(time.Now().Add(d))
    935 		}()
    936 	}
    937 
    938 	c.r.setReadLimit(c.server.initialReadLimitSize())
    939 	if c.lastMethod == "POST" {
    940 		// RFC 2616 section 4.1 tolerance for old buggy clients.
    941 		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
    942 		c.bufr.Discard(numLeadingCRorLF(peek))
    943 	}
    944 	req, err := readRequest(c.bufr, keepHostHeader)
    945 	if err != nil {
    946 		if c.r.hitReadLimit() {
    947 			return nil, errTooLarge
    948 		}
    949 		return nil, err
    950 	}
    951 
    952 	if !http1ServerSupportsRequest(req) {
    953 		return nil, badRequestError("unsupported protocol version")
    954 	}
    955 
    956 	c.lastMethod = req.Method
    957 	c.r.setInfiniteReadLimit()
    958 
    959 	hosts, haveHost := req.Header["Host"]
    960 	isH2Upgrade := req.isH2Upgrade()
    961 	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
    962 		return nil, badRequestError("missing required Host header")
    963 	}
    964 	if len(hosts) > 1 {
    965 		return nil, badRequestError("too many Host headers")
    966 	}
    967 	if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) {
    968 		return nil, badRequestError("malformed Host header")
    969 	}
    970 	for k, vv := range req.Header {
    971 		if !httplex.ValidHeaderFieldName(k) {
    972 			return nil, badRequestError("invalid header name")
    973 		}
    974 		for _, v := range vv {
    975 			if !httplex.ValidHeaderFieldValue(v) {
    976 				return nil, badRequestError("invalid header value")
    977 			}
    978 		}
    979 	}
    980 	delete(req.Header, "Host")
    981 
    982 	ctx, cancelCtx := context.WithCancel(ctx)
    983 	req.ctx = ctx
    984 	req.RemoteAddr = c.remoteAddr
    985 	req.TLS = c.tlsState
    986 	if body, ok := req.Body.(*body); ok {
    987 		body.doEarlyClose = true
    988 	}
    989 
    990 	// Adjust the read deadline if necessary.
    991 	if !hdrDeadline.Equal(wholeReqDeadline) {
    992 		c.rwc.SetReadDeadline(wholeReqDeadline)
    993 	}
    994 
    995 	w = &response{
    996 		conn:          c,
    997 		cancelCtx:     cancelCtx,
    998 		req:           req,
    999 		reqBody:       req.Body,
   1000 		handlerHeader: make(Header),
   1001 		contentLength: -1,
   1002 		closeNotifyCh: make(chan bool, 1),
   1003 
   1004 		// We populate these ahead of time so we're not
   1005 		// reading from req.Header after their Handler starts
   1006 		// and maybe mutates it (Issue 14940)
   1007 		wants10KeepAlive: req.wantsHttp10KeepAlive(),
   1008 		wantsClose:       req.wantsClose(),
   1009 	}
   1010 	if isH2Upgrade {
   1011 		w.closeAfterReply = true
   1012 	}
   1013 	w.cw.res = w
   1014 	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   1015 	return w, nil
   1016 }
   1017 
   1018 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server
   1019 // supports the given request.
   1020 func http1ServerSupportsRequest(req *Request) bool {
   1021 	if req.ProtoMajor == 1 {
   1022 		return true
   1023 	}
   1024 	// Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
   1025 	// wire up their own HTTP/2 upgrades.
   1026 	if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
   1027 		req.Method == "PRI" && req.RequestURI == "*" {
   1028 		return true
   1029 	}
   1030 	// Reject HTTP/0.x, and all other HTTP/2+ requests (which
   1031 	// aren't encoded in ASCII anyway).
   1032 	return false
   1033 }
   1034 
   1035 func (w *response) Header() Header {
   1036 	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   1037 		// Accessing the header between logically writing it
   1038 		// and physically writing it means we need to allocate
   1039 		// a clone to snapshot the logically written state.
   1040 		w.cw.header = w.handlerHeader.clone()
   1041 	}
   1042 	w.calledHeader = true
   1043 	return w.handlerHeader
   1044 }
   1045 
   1046 // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   1047 // consumed by a handler that the server will read from the client
   1048 // in order to keep a connection alive. If there are more bytes than
   1049 // this then the server to be paranoid instead sends a "Connection:
   1050 // close" response.
   1051 //
   1052 // This number is approximately what a typical machine's TCP buffer
   1053 // size is anyway.  (if we have the bytes on the machine, we might as
   1054 // well read them)
   1055 const maxPostHandlerReadBytes = 256 << 10
   1056 
   1057 func checkWriteHeaderCode(code int) {
   1058 	// Issue 22880: require valid WriteHeader status codes.
   1059 	// For now we only enforce that it's three digits.
   1060 	// In the future we might block things over 599 (600 and above aren't defined
   1061 	// at http://httpwg.org/specs/rfc7231.html#status.codes)
   1062 	// and we might block under 200 (once we have more mature 1xx support).
   1063 	// But for now any three digits.
   1064 	//
   1065 	// We used to send "HTTP/1.1 000 0" on the wire in responses but there's
   1066 	// no equivalent bogus thing we can realistically send in HTTP/2,
   1067 	// so we'll consistently panic instead and help people find their bugs
   1068 	// early. (We can't return an error from WriteHeader even if we wanted to.)
   1069 	if code < 100 || code > 999 {
   1070 		panic(fmt.Sprintf("invalid WriteHeader code %v", code))
   1071 	}
   1072 }
   1073 
   1074 func (w *response) WriteHeader(code int) {
   1075 	if w.conn.hijacked() {
   1076 		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   1077 		return
   1078 	}
   1079 	if w.wroteHeader {
   1080 		w.conn.server.logf("http: multiple response.WriteHeader calls")
   1081 		return
   1082 	}
   1083 	checkWriteHeaderCode(code)
   1084 	w.wroteHeader = true
   1085 	w.status = code
   1086 
   1087 	if w.calledHeader && w.cw.header == nil {
   1088 		w.cw.header = w.handlerHeader.clone()
   1089 	}
   1090 
   1091 	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   1092 		v, err := strconv.ParseInt(cl, 10, 64)
   1093 		if err == nil && v >= 0 {
   1094 			w.contentLength = v
   1095 		} else {
   1096 			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   1097 			w.handlerHeader.Del("Content-Length")
   1098 		}
   1099 	}
   1100 }
   1101 
   1102 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   1103 // This type is used to avoid extra allocations from cloning and/or populating
   1104 // the response Header map and all its 1-element slices.
   1105 type extraHeader struct {
   1106 	contentType      string
   1107 	connection       string
   1108 	transferEncoding string
   1109 	date             []byte // written if not nil
   1110 	contentLength    []byte // written if not nil
   1111 }
   1112 
   1113 // Sorted the same as extraHeader.Write's loop.
   1114 var extraHeaderKeys = [][]byte{
   1115 	[]byte("Content-Type"),
   1116 	[]byte("Connection"),
   1117 	[]byte("Transfer-Encoding"),
   1118 }
   1119 
   1120 var (
   1121 	headerContentLength = []byte("Content-Length: ")
   1122 	headerDate          = []byte("Date: ")
   1123 )
   1124 
   1125 // Write writes the headers described in h to w.
   1126 //
   1127 // This method has a value receiver, despite the somewhat large size
   1128 // of h, because it prevents an allocation. The escape analysis isn't
   1129 // smart enough to realize this function doesn't mutate h.
   1130 func (h extraHeader) Write(w *bufio.Writer) {
   1131 	if h.date != nil {
   1132 		w.Write(headerDate)
   1133 		w.Write(h.date)
   1134 		w.Write(crlf)
   1135 	}
   1136 	if h.contentLength != nil {
   1137 		w.Write(headerContentLength)
   1138 		w.Write(h.contentLength)
   1139 		w.Write(crlf)
   1140 	}
   1141 	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   1142 		if v != "" {
   1143 			w.Write(extraHeaderKeys[i])
   1144 			w.Write(colonSpace)
   1145 			w.WriteString(v)
   1146 			w.Write(crlf)
   1147 		}
   1148 	}
   1149 }
   1150 
   1151 // writeHeader finalizes the header sent to the client and writes it
   1152 // to cw.res.conn.bufw.
   1153 //
   1154 // p is not written by writeHeader, but is the first chunk of the body
   1155 // that will be written. It is sniffed for a Content-Type if none is
   1156 // set explicitly. It's also used to set the Content-Length, if the
   1157 // total body size was small and the handler has already finished
   1158 // running.
   1159 func (cw *chunkWriter) writeHeader(p []byte) {
   1160 	if cw.wroteHeader {
   1161 		return
   1162 	}
   1163 	cw.wroteHeader = true
   1164 
   1165 	w := cw.res
   1166 	keepAlivesEnabled := w.conn.server.doKeepAlives()
   1167 	isHEAD := w.req.Method == "HEAD"
   1168 
   1169 	// header is written out to w.conn.buf below. Depending on the
   1170 	// state of the handler, we either own the map or not. If we
   1171 	// don't own it, the exclude map is created lazily for
   1172 	// WriteSubset to remove headers. The setHeader struct holds
   1173 	// headers we need to add.
   1174 	header := cw.header
   1175 	owned := header != nil
   1176 	if !owned {
   1177 		header = w.handlerHeader
   1178 	}
   1179 	var excludeHeader map[string]bool
   1180 	delHeader := func(key string) {
   1181 		if owned {
   1182 			header.Del(key)
   1183 			return
   1184 		}
   1185 		if _, ok := header[key]; !ok {
   1186 			return
   1187 		}
   1188 		if excludeHeader == nil {
   1189 			excludeHeader = make(map[string]bool)
   1190 		}
   1191 		excludeHeader[key] = true
   1192 	}
   1193 	var setHeader extraHeader
   1194 
   1195 	// Don't write out the fake "Trailer:foo" keys. See TrailerPrefix.
   1196 	trailers := false
   1197 	for k := range cw.header {
   1198 		if strings.HasPrefix(k, TrailerPrefix) {
   1199 			if excludeHeader == nil {
   1200 				excludeHeader = make(map[string]bool)
   1201 			}
   1202 			excludeHeader[k] = true
   1203 			trailers = true
   1204 		}
   1205 	}
   1206 	for _, v := range cw.header["Trailer"] {
   1207 		trailers = true
   1208 		foreachHeaderElement(v, cw.res.declareTrailer)
   1209 	}
   1210 
   1211 	te := header.get("Transfer-Encoding")
   1212 	hasTE := te != ""
   1213 
   1214 	// If the handler is done but never sent a Content-Length
   1215 	// response header and this is our first (and last) write, set
   1216 	// it, even to zero. This helps HTTP/1.0 clients keep their
   1217 	// "keep-alive" connections alive.
   1218 	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   1219 	// it was a HEAD request, we don't know the difference between
   1220 	// 0 actual bytes and 0 bytes because the handler noticed it
   1221 	// was a HEAD request and chose not to write anything. So for
   1222 	// HEAD, the handler should either write the Content-Length or
   1223 	// write non-zero bytes. If it's actually 0 bytes and the
   1224 	// handler never looked at the Request.Method, we just don't
   1225 	// send a Content-Length header.
   1226 	// Further, we don't send an automatic Content-Length if they
   1227 	// set a Transfer-Encoding, because they're generally incompatible.
   1228 	if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   1229 		w.contentLength = int64(len(p))
   1230 		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   1231 	}
   1232 
   1233 	// If this was an HTTP/1.0 request with keep-alive and we sent a
   1234 	// Content-Length back, we can make this a keep-alive response ...
   1235 	if w.wants10KeepAlive && keepAlivesEnabled {
   1236 		sentLength := header.get("Content-Length") != ""
   1237 		if sentLength && header.get("Connection") == "keep-alive" {
   1238 			w.closeAfterReply = false
   1239 		}
   1240 	}
   1241 
   1242 	// Check for an explicit (and valid) Content-Length header.
   1243 	hasCL := w.contentLength != -1
   1244 
   1245 	if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
   1246 		_, connectionHeaderSet := header["Connection"]
   1247 		if !connectionHeaderSet {
   1248 			setHeader.connection = "keep-alive"
   1249 		}
   1250 	} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
   1251 		w.closeAfterReply = true
   1252 	}
   1253 
   1254 	if header.get("Connection") == "close" || !keepAlivesEnabled {
   1255 		w.closeAfterReply = true
   1256 	}
   1257 
   1258 	// If the client wanted a 100-continue but we never sent it to
   1259 	// them (or, more strictly: we never finished reading their
   1260 	// request body), don't reuse this connection because it's now
   1261 	// in an unknown state: we might be sending this response at
   1262 	// the same time the client is now sending its request body
   1263 	// after a timeout.  (Some HTTP clients send Expect:
   1264 	// 100-continue but knowing that some servers don't support
   1265 	// it, the clients set a timer and send the body later anyway)
   1266 	// If we haven't seen EOF, we can't skip over the unread body
   1267 	// because we don't know if the next bytes on the wire will be
   1268 	// the body-following-the-timer or the subsequent request.
   1269 	// See Issue 11549.
   1270 	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
   1271 		w.closeAfterReply = true
   1272 	}
   1273 
   1274 	// Per RFC 2616, we should consume the request body before
   1275 	// replying, if the handler hasn't already done so. But we
   1276 	// don't want to do an unbounded amount of reading here for
   1277 	// DoS reasons, so we only try up to a threshold.
   1278 	// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
   1279 	// about HTTP/1.x Handlers concurrently reading and writing, like
   1280 	// HTTP/2 handlers can do. Maybe this code should be relaxed?
   1281 	if w.req.ContentLength != 0 && !w.closeAfterReply {
   1282 		var discard, tooBig bool
   1283 
   1284 		switch bdy := w.req.Body.(type) {
   1285 		case *expectContinueReader:
   1286 			if bdy.resp.wroteContinue {
   1287 				discard = true
   1288 			}
   1289 		case *body:
   1290 			bdy.mu.Lock()
   1291 			switch {
   1292 			case bdy.closed:
   1293 				if !bdy.sawEOF {
   1294 					// Body was closed in handler with non-EOF error.
   1295 					w.closeAfterReply = true
   1296 				}
   1297 			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
   1298 				tooBig = true
   1299 			default:
   1300 				discard = true
   1301 			}
   1302 			bdy.mu.Unlock()
   1303 		default:
   1304 			discard = true
   1305 		}
   1306 
   1307 		if discard {
   1308 			_, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1)
   1309 			switch err {
   1310 			case nil:
   1311 				// There must be even more data left over.
   1312 				tooBig = true
   1313 			case ErrBodyReadAfterClose:
   1314 				// Body was already consumed and closed.
   1315 			case io.EOF:
   1316 				// The remaining body was just consumed, close it.
   1317 				err = w.reqBody.Close()
   1318 				if err != nil {
   1319 					w.closeAfterReply = true
   1320 				}
   1321 			default:
   1322 				// Some other kind of error occurred, like a read timeout, or
   1323 				// corrupt chunked encoding. In any case, whatever remains
   1324 				// on the wire must not be parsed as another HTTP request.
   1325 				w.closeAfterReply = true
   1326 			}
   1327 		}
   1328 
   1329 		if tooBig {
   1330 			w.requestTooLarge()
   1331 			delHeader("Connection")
   1332 			setHeader.connection = "close"
   1333 		}
   1334 	}
   1335 
   1336 	code := w.status
   1337 	if bodyAllowedForStatus(code) {
   1338 		// If no content type, apply sniffing algorithm to body.
   1339 		_, haveType := header["Content-Type"]
   1340 		if !haveType && !hasTE && len(p) > 0 {
   1341 			setHeader.contentType = DetectContentType(p)
   1342 		}
   1343 	} else {
   1344 		for _, k := range suppressedHeaders(code) {
   1345 			delHeader(k)
   1346 		}
   1347 	}
   1348 
   1349 	if _, ok := header["Date"]; !ok {
   1350 		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   1351 	}
   1352 
   1353 	if hasCL && hasTE && te != "identity" {
   1354 		// TODO: return an error if WriteHeader gets a return parameter
   1355 		// For now just ignore the Content-Length.
   1356 		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   1357 			te, w.contentLength)
   1358 		delHeader("Content-Length")
   1359 		hasCL = false
   1360 	}
   1361 
   1362 	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
   1363 		// do nothing
   1364 	} else if code == StatusNoContent {
   1365 		delHeader("Transfer-Encoding")
   1366 	} else if hasCL {
   1367 		delHeader("Transfer-Encoding")
   1368 	} else if w.req.ProtoAtLeast(1, 1) {
   1369 		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no
   1370 		// content-length has been provided. The connection must be closed after the
   1371 		// reply is written, and no chunking is to be done. This is the setup
   1372 		// recommended in the Server-Sent Events candidate recommendation 11,
   1373 		// section 8.
   1374 		if hasTE && te == "identity" {
   1375 			cw.chunking = false
   1376 			w.closeAfterReply = true
   1377 		} else {
   1378 			// HTTP/1.1 or greater: use chunked transfer encoding
   1379 			// to avoid closing the connection at EOF.
   1380 			cw.chunking = true
   1381 			setHeader.transferEncoding = "chunked"
   1382 			if hasTE && te == "chunked" {
   1383 				// We will send the chunked Transfer-Encoding header later.
   1384 				delHeader("Transfer-Encoding")
   1385 			}
   1386 		}
   1387 	} else {
   1388 		// HTTP version < 1.1: cannot do chunked transfer
   1389 		// encoding and we don't know the Content-Length so
   1390 		// signal EOF by closing connection.
   1391 		w.closeAfterReply = true
   1392 		delHeader("Transfer-Encoding") // in case already set
   1393 	}
   1394 
   1395 	// Cannot use Content-Length with non-identity Transfer-Encoding.
   1396 	if cw.chunking {
   1397 		delHeader("Content-Length")
   1398 	}
   1399 	if !w.req.ProtoAtLeast(1, 0) {
   1400 		return
   1401 	}
   1402 
   1403 	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
   1404 		delHeader("Connection")
   1405 		if w.req.ProtoAtLeast(1, 1) {
   1406 			setHeader.connection = "close"
   1407 		}
   1408 	}
   1409 
   1410 	writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:])
   1411 	cw.header.WriteSubset(w.conn.bufw, excludeHeader)
   1412 	setHeader.Write(w.conn.bufw)
   1413 	w.conn.bufw.Write(crlf)
   1414 }
   1415 
   1416 // foreachHeaderElement splits v according to the "#rule" construction
   1417 // in RFC 2616 section 2.1 and calls fn for each non-empty element.
   1418 func foreachHeaderElement(v string, fn func(string)) {
   1419 	v = textproto.TrimString(v)
   1420 	if v == "" {
   1421 		return
   1422 	}
   1423 	if !strings.Contains(v, ",") {
   1424 		fn(v)
   1425 		return
   1426 	}
   1427 	for _, f := range strings.Split(v, ",") {
   1428 		if f = textproto.TrimString(f); f != "" {
   1429 			fn(f)
   1430 		}
   1431 	}
   1432 }
   1433 
   1434 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 2616 Section 6.1)
   1435 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0.
   1436 // code is the response status code.
   1437 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used.
   1438 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) {
   1439 	if is11 {
   1440 		bw.WriteString("HTTP/1.1 ")
   1441 	} else {
   1442 		bw.WriteString("HTTP/1.0 ")
   1443 	}
   1444 	if text, ok := statusText[code]; ok {
   1445 		bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10))
   1446 		bw.WriteByte(' ')
   1447 		bw.WriteString(text)
   1448 		bw.WriteString("\r\n")
   1449 	} else {
   1450 		// don't worry about performance
   1451 		fmt.Fprintf(bw, "%03d status code %d\r\n", code, code)
   1452 	}
   1453 }
   1454 
   1455 // bodyAllowed reports whether a Write is allowed for this response type.
   1456 // It's illegal to call this before the header has been flushed.
   1457 func (w *response) bodyAllowed() bool {
   1458 	if !w.wroteHeader {
   1459 		panic("")
   1460 	}
   1461 	return bodyAllowedForStatus(w.status)
   1462 }
   1463 
   1464 // The Life Of A Write is like this:
   1465 //
   1466 // Handler starts. No header has been sent. The handler can either
   1467 // write a header, or just start writing. Writing before sending a header
   1468 // sends an implicitly empty 200 OK header.
   1469 //
   1470 // If the handler didn't declare a Content-Length up front, we either
   1471 // go into chunking mode or, if the handler finishes running before
   1472 // the chunking buffer size, we compute a Content-Length and send that
   1473 // in the header instead.
   1474 //
   1475 // Likewise, if the handler didn't set a Content-Type, we sniff that
   1476 // from the initial chunk of output.
   1477 //
   1478 // The Writers are wired together like:
   1479 //
   1480 // 1. *response (the ResponseWriter) ->
   1481 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
   1482 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
   1483 //    and which writes the chunk headers, if needed.
   1484 // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
   1485 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
   1486 //    and populates c.werr with it if so. but otherwise writes to:
   1487 // 6. the rwc, the net.Conn.
   1488 //
   1489 // TODO(bradfitz): short-circuit some of the buffering when the
   1490 // initial header contains both a Content-Type and Content-Length.
   1491 // Also short-circuit in (1) when the header's been sent and not in
   1492 // chunking mode, writing directly to (4) instead, if (2) has no
   1493 // buffered data. More generally, we could short-circuit from (1) to
   1494 // (3) even in chunking mode if the write size from (1) is over some
   1495 // threshold and nothing is in (2).  The answer might be mostly making
   1496 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
   1497 // with this instead.
   1498 func (w *response) Write(data []byte) (n int, err error) {
   1499 	return w.write(len(data), data, "")
   1500 }
   1501 
   1502 func (w *response) WriteString(data string) (n int, err error) {
   1503 	return w.write(len(data), nil, data)
   1504 }
   1505 
   1506 // either dataB or dataS is non-zero.
   1507 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
   1508 	if w.conn.hijacked() {
   1509 		if lenData > 0 {
   1510 			w.conn.server.logf("http: response.Write on hijacked connection")
   1511 		}
   1512 		return 0, ErrHijacked
   1513 	}
   1514 	if !w.wroteHeader {
   1515 		w.WriteHeader(StatusOK)
   1516 	}
   1517 	if lenData == 0 {
   1518 		return 0, nil
   1519 	}
   1520 	if !w.bodyAllowed() {
   1521 		return 0, ErrBodyNotAllowed
   1522 	}
   1523 
   1524 	w.written += int64(lenData) // ignoring errors, for errorKludge
   1525 	if w.contentLength != -1 && w.written > w.contentLength {
   1526 		return 0, ErrContentLength
   1527 	}
   1528 	if dataB != nil {
   1529 		return w.w.Write(dataB)
   1530 	} else {
   1531 		return w.w.WriteString(dataS)
   1532 	}
   1533 }
   1534 
   1535 func (w *response) finishRequest() {
   1536 	w.handlerDone.setTrue()
   1537 
   1538 	if !w.wroteHeader {
   1539 		w.WriteHeader(StatusOK)
   1540 	}
   1541 
   1542 	w.w.Flush()
   1543 	putBufioWriter(w.w)
   1544 	w.cw.close()
   1545 	w.conn.bufw.Flush()
   1546 
   1547 	w.conn.r.abortPendingRead()
   1548 
   1549 	// Close the body (regardless of w.closeAfterReply) so we can
   1550 	// re-use its bufio.Reader later safely.
   1551 	w.reqBody.Close()
   1552 
   1553 	if w.req.MultipartForm != nil {
   1554 		w.req.MultipartForm.RemoveAll()
   1555 	}
   1556 }
   1557 
   1558 // shouldReuseConnection reports whether the underlying TCP connection can be reused.
   1559 // It must only be called after the handler is done executing.
   1560 func (w *response) shouldReuseConnection() bool {
   1561 	if w.closeAfterReply {
   1562 		// The request or something set while executing the
   1563 		// handler indicated we shouldn't reuse this
   1564 		// connection.
   1565 		return false
   1566 	}
   1567 
   1568 	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
   1569 		// Did not write enough. Avoid getting out of sync.
   1570 		return false
   1571 	}
   1572 
   1573 	// There was some error writing to the underlying connection
   1574 	// during the request, so don't re-use this conn.
   1575 	if w.conn.werr != nil {
   1576 		return false
   1577 	}
   1578 
   1579 	if w.closedRequestBodyEarly() {
   1580 		return false
   1581 	}
   1582 
   1583 	return true
   1584 }
   1585 
   1586 func (w *response) closedRequestBodyEarly() bool {
   1587 	body, ok := w.req.Body.(*body)
   1588 	return ok && body.didEarlyClose()
   1589 }
   1590 
   1591 func (w *response) Flush() {
   1592 	if !w.wroteHeader {
   1593 		w.WriteHeader(StatusOK)
   1594 	}
   1595 	w.w.Flush()
   1596 	w.cw.flush()
   1597 }
   1598 
   1599 func (c *conn) finalFlush() {
   1600 	if c.bufr != nil {
   1601 		// Steal the bufio.Reader (~4KB worth of memory) and its associated
   1602 		// reader for a future connection.
   1603 		putBufioReader(c.bufr)
   1604 		c.bufr = nil
   1605 	}
   1606 
   1607 	if c.bufw != nil {
   1608 		c.bufw.Flush()
   1609 		// Steal the bufio.Writer (~4KB worth of memory) and its associated
   1610 		// writer for a future connection.
   1611 		putBufioWriter(c.bufw)
   1612 		c.bufw = nil
   1613 	}
   1614 }
   1615 
   1616 // Close the connection.
   1617 func (c *conn) close() {
   1618 	c.finalFlush()
   1619 	c.rwc.Close()
   1620 }
   1621 
   1622 // rstAvoidanceDelay is the amount of time we sleep after closing the
   1623 // write side of a TCP connection before closing the entire socket.
   1624 // By sleeping, we increase the chances that the client sees our FIN
   1625 // and processes its final data before they process the subsequent RST
   1626 // from closing a connection with known unread data.
   1627 // This RST seems to occur mostly on BSD systems. (And Windows?)
   1628 // This timeout is somewhat arbitrary (~latency around the planet).
   1629 const rstAvoidanceDelay = 500 * time.Millisecond
   1630 
   1631 type closeWriter interface {
   1632 	CloseWrite() error
   1633 }
   1634 
   1635 var _ closeWriter = (*net.TCPConn)(nil)
   1636 
   1637 // closeWrite flushes any outstanding data and sends a FIN packet (if
   1638 // client is connected via TCP), signalling that we're done. We then
   1639 // pause for a bit, hoping the client processes it before any
   1640 // subsequent RST.
   1641 //
   1642 // See https://golang.org/issue/3595
   1643 func (c *conn) closeWriteAndWait() {
   1644 	c.finalFlush()
   1645 	if tcp, ok := c.rwc.(closeWriter); ok {
   1646 		tcp.CloseWrite()
   1647 	}
   1648 	time.Sleep(rstAvoidanceDelay)
   1649 }
   1650 
   1651 // validNPN reports whether the proto is not a blacklisted Next
   1652 // Protocol Negotiation protocol. Empty and built-in protocol types
   1653 // are blacklisted and can't be overridden with alternate
   1654 // implementations.
   1655 func validNPN(proto string) bool {
   1656 	switch proto {
   1657 	case "", "http/1.1", "http/1.0":
   1658 		return false
   1659 	}
   1660 	return true
   1661 }
   1662 
   1663 func (c *conn) setState(nc net.Conn, state ConnState) {
   1664 	srv := c.server
   1665 	switch state {
   1666 	case StateNew:
   1667 		srv.trackConn(c, true)
   1668 	case StateHijacked, StateClosed:
   1669 		srv.trackConn(c, false)
   1670 	}
   1671 	c.curState.Store(connStateInterface[state])
   1672 	if hook := srv.ConnState; hook != nil {
   1673 		hook(nc, state)
   1674 	}
   1675 }
   1676 
   1677 // connStateInterface is an array of the interface{} versions of
   1678 // ConnState values, so we can use them in atomic.Values later without
   1679 // paying the cost of shoving their integers in an interface{}.
   1680 var connStateInterface = [...]interface{}{
   1681 	StateNew:      StateNew,
   1682 	StateActive:   StateActive,
   1683 	StateIdle:     StateIdle,
   1684 	StateHijacked: StateHijacked,
   1685 	StateClosed:   StateClosed,
   1686 }
   1687 
   1688 // badRequestError is a literal string (used by in the server in HTML,
   1689 // unescaped) to tell the user why their request was bad. It should
   1690 // be plain text without user info or other embedded errors.
   1691 type badRequestError string
   1692 
   1693 func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
   1694 
   1695 // ErrAbortHandler is a sentinel panic value to abort a handler.
   1696 // While any panic from ServeHTTP aborts the response to the client,
   1697 // panicking with ErrAbortHandler also suppresses logging of a stack
   1698 // trace to the server's error log.
   1699 var ErrAbortHandler = errors.New("net/http: abort Handler")
   1700 
   1701 // isCommonNetReadError reports whether err is a common error
   1702 // encountered during reading a request off the network when the
   1703 // client has gone away or had its read fail somehow. This is used to
   1704 // determine which logs are interesting enough to log about.
   1705 func isCommonNetReadError(err error) bool {
   1706 	if err == io.EOF {
   1707 		return true
   1708 	}
   1709 	if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
   1710 		return true
   1711 	}
   1712 	if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
   1713 		return true
   1714 	}
   1715 	return false
   1716 }
   1717 
   1718 // Serve a new connection.
   1719 func (c *conn) serve(ctx context.Context) {
   1720 	c.remoteAddr = c.rwc.RemoteAddr().String()
   1721 	ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
   1722 	defer func() {
   1723 		if err := recover(); err != nil && err != ErrAbortHandler {
   1724 			const size = 64 << 10
   1725 			buf := make([]byte, size)
   1726 			buf = buf[:runtime.Stack(buf, false)]
   1727 			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
   1728 		}
   1729 		if !c.hijacked() {
   1730 			c.close()
   1731 			c.setState(c.rwc, StateClosed)
   1732 		}
   1733 	}()
   1734 
   1735 	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
   1736 		if d := c.server.ReadTimeout; d != 0 {
   1737 			c.rwc.SetReadDeadline(time.Now().Add(d))
   1738 		}
   1739 		if d := c.server.WriteTimeout; d != 0 {
   1740 			c.rwc.SetWriteDeadline(time.Now().Add(d))
   1741 		}
   1742 		if err := tlsConn.Handshake(); err != nil {
   1743 			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
   1744 			return
   1745 		}
   1746 		c.tlsState = new(tls.ConnectionState)
   1747 		*c.tlsState = tlsConn.ConnectionState()
   1748 		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
   1749 			if fn := c.server.TLSNextProto[proto]; fn != nil {
   1750 				h := initNPNRequest{tlsConn, serverHandler{c.server}}
   1751 				fn(c.server, tlsConn, h)
   1752 			}
   1753 			return
   1754 		}
   1755 	}
   1756 
   1757 	// HTTP/1.x from here on.
   1758 
   1759 	ctx, cancelCtx := context.WithCancel(ctx)
   1760 	c.cancelCtx = cancelCtx
   1761 	defer cancelCtx()
   1762 
   1763 	c.r = &connReader{conn: c}
   1764 	c.bufr = newBufioReader(c.r)
   1765 	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
   1766 
   1767 	for {
   1768 		w, err := c.readRequest(ctx)
   1769 		if c.r.remain != c.server.initialReadLimitSize() {
   1770 			// If we read any bytes off the wire, we're active.
   1771 			c.setState(c.rwc, StateActive)
   1772 		}
   1773 		if err != nil {
   1774 			const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
   1775 
   1776 			if err == errTooLarge {
   1777 				// Their HTTP client may or may not be
   1778 				// able to read this if we're
   1779 				// responding to them and hanging up
   1780 				// while they're still writing their
   1781 				// request. Undefined behavior.
   1782 				const publicErr = "431 Request Header Fields Too Large"
   1783 				fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
   1784 				c.closeWriteAndWait()
   1785 				return
   1786 			}
   1787 			if isCommonNetReadError(err) {
   1788 				return // don't reply
   1789 			}
   1790 
   1791 			publicErr := "400 Bad Request"
   1792 			if v, ok := err.(badRequestError); ok {
   1793 				publicErr = publicErr + ": " + string(v)
   1794 			}
   1795 
   1796 			fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
   1797 			return
   1798 		}
   1799 
   1800 		// Expect 100 Continue support
   1801 		req := w.req
   1802 		if req.expectsContinue() {
   1803 			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
   1804 				// Wrap the Body reader with one that replies on the connection
   1805 				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
   1806 			}
   1807 		} else if req.Header.get("Expect") != "" {
   1808 			w.sendExpectationFailed()
   1809 			return
   1810 		}
   1811 
   1812 		c.curReq.Store(w)
   1813 
   1814 		if requestBodyRemains(req.Body) {
   1815 			registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
   1816 		} else {
   1817 			if w.conn.bufr.Buffered() > 0 {
   1818 				w.conn.r.closeNotifyFromPipelinedRequest()
   1819 			}
   1820 			w.conn.r.startBackgroundRead()
   1821 		}
   1822 
   1823 		// HTTP cannot have multiple simultaneous active requests.[*]
   1824 		// Until the server replies to this request, it can't read another,
   1825 		// so we might as well run the handler in this goroutine.
   1826 		// [*] Not strictly true: HTTP pipelining. We could let them all process
   1827 		// in parallel even if their responses need to be serialized.
   1828 		// But we're not going to implement HTTP pipelining because it
   1829 		// was never deployed in the wild and the answer is HTTP/2.
   1830 		serverHandler{c.server}.ServeHTTP(w, w.req)
   1831 		w.cancelCtx()
   1832 		if c.hijacked() {
   1833 			return
   1834 		}
   1835 		w.finishRequest()
   1836 		if !w.shouldReuseConnection() {
   1837 			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
   1838 				c.closeWriteAndWait()
   1839 			}
   1840 			return
   1841 		}
   1842 		c.setState(c.rwc, StateIdle)
   1843 		c.curReq.Store((*response)(nil))
   1844 
   1845 		if !w.conn.server.doKeepAlives() {
   1846 			// We're in shutdown mode. We might've replied
   1847 			// to the user without "Connection: close" and
   1848 			// they might think they can send another
   1849 			// request, but such is life with HTTP/1.1.
   1850 			return
   1851 		}
   1852 
   1853 		if d := c.server.idleTimeout(); d != 0 {
   1854 			c.rwc.SetReadDeadline(time.Now().Add(d))
   1855 			if _, err := c.bufr.Peek(4); err != nil {
   1856 				return
   1857 			}
   1858 		}
   1859 		c.rwc.SetReadDeadline(time.Time{})
   1860 	}
   1861 }
   1862 
   1863 func (w *response) sendExpectationFailed() {
   1864 	// TODO(bradfitz): let ServeHTTP handlers handle
   1865 	// requests with non-standard expectation[s]? Seems
   1866 	// theoretical at best, and doesn't fit into the
   1867 	// current ServeHTTP model anyway. We'd need to
   1868 	// make the ResponseWriter an optional
   1869 	// "ExpectReplier" interface or something.
   1870 	//
   1871 	// For now we'll just obey RFC 2616 14.20 which says
   1872 	// "If a server receives a request containing an
   1873 	// Expect field that includes an expectation-
   1874 	// extension that it does not support, it MUST
   1875 	// respond with a 417 (Expectation Failed) status."
   1876 	w.Header().Set("Connection", "close")
   1877 	w.WriteHeader(StatusExpectationFailed)
   1878 	w.finishRequest()
   1879 }
   1880 
   1881 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
   1882 // and a Hijacker.
   1883 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   1884 	if w.handlerDone.isSet() {
   1885 		panic("net/http: Hijack called after ServeHTTP finished")
   1886 	}
   1887 	if w.wroteHeader {
   1888 		w.cw.flush()
   1889 	}
   1890 
   1891 	c := w.conn
   1892 	c.mu.Lock()
   1893 	defer c.mu.Unlock()
   1894 
   1895 	// Release the bufioWriter that writes to the chunk writer, it is not
   1896 	// used after a connection has been hijacked.
   1897 	rwc, buf, err = c.hijackLocked()
   1898 	if err == nil {
   1899 		putBufioWriter(w.w)
   1900 		w.w = nil
   1901 	}
   1902 	return rwc, buf, err
   1903 }
   1904 
   1905 func (w *response) CloseNotify() <-chan bool {
   1906 	if w.handlerDone.isSet() {
   1907 		panic("net/http: CloseNotify called after ServeHTTP finished")
   1908 	}
   1909 	return w.closeNotifyCh
   1910 }
   1911 
   1912 func registerOnHitEOF(rc io.ReadCloser, fn func()) {
   1913 	switch v := rc.(type) {
   1914 	case *expectContinueReader:
   1915 		registerOnHitEOF(v.readCloser, fn)
   1916 	case *body:
   1917 		v.registerOnHitEOF(fn)
   1918 	default:
   1919 		panic("unexpected type " + fmt.Sprintf("%T", rc))
   1920 	}
   1921 }
   1922 
   1923 // requestBodyRemains reports whether future calls to Read
   1924 // on rc might yield more data.
   1925 func requestBodyRemains(rc io.ReadCloser) bool {
   1926 	if rc == NoBody {
   1927 		return false
   1928 	}
   1929 	switch v := rc.(type) {
   1930 	case *expectContinueReader:
   1931 		return requestBodyRemains(v.readCloser)
   1932 	case *body:
   1933 		return v.bodyRemains()
   1934 	default:
   1935 		panic("unexpected type " + fmt.Sprintf("%T", rc))
   1936 	}
   1937 }
   1938 
   1939 // The HandlerFunc type is an adapter to allow the use of
   1940 // ordinary functions as HTTP handlers. If f is a function
   1941 // with the appropriate signature, HandlerFunc(f) is a
   1942 // Handler that calls f.
   1943 type HandlerFunc func(ResponseWriter, *Request)
   1944 
   1945 // ServeHTTP calls f(w, r).
   1946 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
   1947 	f(w, r)
   1948 }
   1949 
   1950 // Helper handlers
   1951 
   1952 // Error replies to the request with the specified error message and HTTP code.
   1953 // It does not otherwise end the request; the caller should ensure no further
   1954 // writes are done to w.
   1955 // The error message should be plain text.
   1956 func Error(w ResponseWriter, error string, code int) {
   1957 	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
   1958 	w.Header().Set("X-Content-Type-Options", "nosniff")
   1959 	w.WriteHeader(code)
   1960 	fmt.Fprintln(w, error)
   1961 }
   1962 
   1963 // NotFound replies to the request with an HTTP 404 not found error.
   1964 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
   1965 
   1966 // NotFoundHandler returns a simple request handler
   1967 // that replies to each request with a ``404 page not found'' reply.
   1968 func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
   1969 
   1970 // StripPrefix returns a handler that serves HTTP requests
   1971 // by removing the given prefix from the request URL's Path
   1972 // and invoking the handler h. StripPrefix handles a
   1973 // request for a path that doesn't begin with prefix by
   1974 // replying with an HTTP 404 not found error.
   1975 func StripPrefix(prefix string, h Handler) Handler {
   1976 	if prefix == "" {
   1977 		return h
   1978 	}
   1979 	return HandlerFunc(func(w ResponseWriter, r *Request) {
   1980 		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
   1981 			r2 := new(Request)
   1982 			*r2 = *r
   1983 			r2.URL = new(url.URL)
   1984 			*r2.URL = *r.URL
   1985 			r2.URL.Path = p
   1986 			h.ServeHTTP(w, r2)
   1987 		} else {
   1988 			NotFound(w, r)
   1989 		}
   1990 	})
   1991 }
   1992 
   1993 // Redirect replies to the request with a redirect to url,
   1994 // which may be a path relative to the request path.
   1995 //
   1996 // The provided code should be in the 3xx range and is usually
   1997 // StatusMovedPermanently, StatusFound or StatusSeeOther.
   1998 func Redirect(w ResponseWriter, r *Request, url string, code int) {
   1999 	// parseURL is just url.Parse (url is shadowed for godoc).
   2000 	if u, err := parseURL(url); err == nil {
   2001 		// If url was relative, make absolute by
   2002 		// combining with request path.
   2003 		// The browser would probably do this for us,
   2004 		// but doing it ourselves is more reliable.
   2005 
   2006 		// NOTE(rsc): RFC 2616 says that the Location
   2007 		// line must be an absolute URI, like
   2008 		// "http://www.google.com/redirect/",
   2009 		// not a path like "/redirect/".
   2010 		// Unfortunately, we don't know what to
   2011 		// put in the host name section to get the
   2012 		// client to connect to us again, so we can't
   2013 		// know the right absolute URI to send back.
   2014 		// Because of this problem, no one pays attention
   2015 		// to the RFC; they all send back just a new path.
   2016 		// So do we.
   2017 		if u.Scheme == "" && u.Host == "" {
   2018 			oldpath := r.URL.Path
   2019 			if oldpath == "" { // should not happen, but avoid a crash if it does
   2020 				oldpath = "/"
   2021 			}
   2022 
   2023 			// no leading http://server
   2024 			if url == "" || url[0] != '/' {
   2025 				// make relative path absolute
   2026 				olddir, _ := path.Split(oldpath)
   2027 				url = olddir + url
   2028 			}
   2029 
   2030 			var query string
   2031 			if i := strings.Index(url, "?"); i != -1 {
   2032 				url, query = url[:i], url[i:]
   2033 			}
   2034 
   2035 			// clean up but preserve trailing slash
   2036 			trailing := strings.HasSuffix(url, "/")
   2037 			url = path.Clean(url)
   2038 			if trailing && !strings.HasSuffix(url, "/") {
   2039 				url += "/"
   2040 			}
   2041 			url += query
   2042 		}
   2043 	}
   2044 
   2045 	w.Header().Set("Location", hexEscapeNonASCII(url))
   2046 	if r.Method == "GET" || r.Method == "HEAD" {
   2047 		w.Header().Set("Content-Type", "text/html; charset=utf-8")
   2048 	}
   2049 	w.WriteHeader(code)
   2050 
   2051 	// RFC 2616 recommends that a short note "SHOULD" be included in the
   2052 	// response because older user agents may not understand 301/307.
   2053 	// Shouldn't send the response for POST or HEAD; that leaves GET.
   2054 	if r.Method == "GET" {
   2055 		note := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n"
   2056 		fmt.Fprintln(w, note)
   2057 	}
   2058 }
   2059 
   2060 // parseURL is just url.Parse. It exists only so that url.Parse can be called
   2061 // in places where url is shadowed for godoc. See https://golang.org/cl/49930.
   2062 var parseURL = url.Parse
   2063 
   2064 var htmlReplacer = strings.NewReplacer(
   2065 	"&", "&amp;",
   2066 	"<", "&lt;",
   2067 	">", "&gt;",
   2068 	// "&#34;" is shorter than "&quot;".
   2069 	`"`, "&#34;",
   2070 	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
   2071 	"'", "&#39;",
   2072 )
   2073 
   2074 func htmlEscape(s string) string {
   2075 	return htmlReplacer.Replace(s)
   2076 }
   2077 
   2078 // Redirect to a fixed URL
   2079 type redirectHandler struct {
   2080 	url  string
   2081 	code int
   2082 }
   2083 
   2084 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
   2085 	Redirect(w, r, rh.url, rh.code)
   2086 }
   2087 
   2088 // RedirectHandler returns a request handler that redirects
   2089 // each request it receives to the given url using the given
   2090 // status code.
   2091 //
   2092 // The provided code should be in the 3xx range and is usually
   2093 // StatusMovedPermanently, StatusFound or StatusSeeOther.
   2094 func RedirectHandler(url string, code int) Handler {
   2095 	return &redirectHandler{url, code}
   2096 }
   2097 
   2098 // ServeMux is an HTTP request multiplexer.
   2099 // It matches the URL of each incoming request against a list of registered
   2100 // patterns and calls the handler for the pattern that
   2101 // most closely matches the URL.
   2102 //
   2103 // Patterns name fixed, rooted paths, like "/favicon.ico",
   2104 // or rooted subtrees, like "/images/" (note the trailing slash).
   2105 // Longer patterns take precedence over shorter ones, so that
   2106 // if there are handlers registered for both "/images/"
   2107 // and "/images/thumbnails/", the latter handler will be
   2108 // called for paths beginning "/images/thumbnails/" and the
   2109 // former will receive requests for any other paths in the
   2110 // "/images/" subtree.
   2111 //
   2112 // Note that since a pattern ending in a slash names a rooted subtree,
   2113 // the pattern "/" matches all paths not matched by other registered
   2114 // patterns, not just the URL with Path == "/".
   2115 //
   2116 // If a subtree has been registered and a request is received naming the
   2117 // subtree root without its trailing slash, ServeMux redirects that
   2118 // request to the subtree root (adding the trailing slash). This behavior can
   2119 // be overridden with a separate registration for the path without
   2120 // the trailing slash. For example, registering "/images/" causes ServeMux
   2121 // to redirect a request for "/images" to "/images/", unless "/images" has
   2122 // been registered separately.
   2123 //
   2124 // Patterns may optionally begin with a host name, restricting matches to
   2125 // URLs on that host only. Host-specific patterns take precedence over
   2126 // general patterns, so that a handler might register for the two patterns
   2127 // "/codesearch" and "codesearch.google.com/" without also taking over
   2128 // requests for "http://www.google.com/".
   2129 //
   2130 // ServeMux also takes care of sanitizing the URL request path,
   2131 // redirecting any request containing . or .. elements or repeated slashes
   2132 // to an equivalent, cleaner URL.
   2133 type ServeMux struct {
   2134 	mu    sync.RWMutex
   2135 	m     map[string]muxEntry
   2136 	hosts bool // whether any patterns contain hostnames
   2137 }
   2138 
   2139 type muxEntry struct {
   2140 	h       Handler
   2141 	pattern string
   2142 }
   2143 
   2144 // NewServeMux allocates and returns a new ServeMux.
   2145 func NewServeMux() *ServeMux { return new(ServeMux) }
   2146 
   2147 // DefaultServeMux is the default ServeMux used by Serve.
   2148 var DefaultServeMux = &defaultServeMux
   2149 
   2150 var defaultServeMux ServeMux
   2151 
   2152 // Does path match pattern?
   2153 func pathMatch(pattern, path string) bool {
   2154 	if len(pattern) == 0 {
   2155 		// should not happen
   2156 		return false
   2157 	}
   2158 	n := len(pattern)
   2159 	if pattern[n-1] != '/' {
   2160 		return pattern == path
   2161 	}
   2162 	return len(path) >= n && path[0:n] == pattern
   2163 }
   2164 
   2165 // Return the canonical path for p, eliminating . and .. elements.
   2166 func cleanPath(p string) string {
   2167 	if p == "" {
   2168 		return "/"
   2169 	}
   2170 	if p[0] != '/' {
   2171 		p = "/" + p
   2172 	}
   2173 	np := path.Clean(p)
   2174 	// path.Clean removes trailing slash except for root;
   2175 	// put the trailing slash back if necessary.
   2176 	if p[len(p)-1] == '/' && np != "/" {
   2177 		np += "/"
   2178 	}
   2179 	return np
   2180 }
   2181 
   2182 // stripHostPort returns h without any trailing ":<port>".
   2183 func stripHostPort(h string) string {
   2184 	// If no port on host, return unchanged
   2185 	if strings.IndexByte(h, ':') == -1 {
   2186 		return h
   2187 	}
   2188 	host, _, err := net.SplitHostPort(h)
   2189 	if err != nil {
   2190 		return h // on error, return unchanged
   2191 	}
   2192 	return host
   2193 }
   2194 
   2195 // Find a handler on a handler map given a path string.
   2196 // Most-specific (longest) pattern wins.
   2197 func (mux *ServeMux) match(path string) (h Handler, pattern string) {
   2198 	// Check for exact match first.
   2199 	v, ok := mux.m[path]
   2200 	if ok {
   2201 		return v.h, v.pattern
   2202 	}
   2203 
   2204 	// Check for longest valid match.
   2205 	var n = 0
   2206 	for k, v := range mux.m {
   2207 		if !pathMatch(k, path) {
   2208 			continue
   2209 		}
   2210 		if h == nil || len(k) > n {
   2211 			n = len(k)
   2212 			h = v.h
   2213 			pattern = v.pattern
   2214 		}
   2215 	}
   2216 	return
   2217 }
   2218 
   2219 // redirectToPathSlash determines if the given path needs appending "/" to it.
   2220 // This occurs when a handler for path + "/" was already registered, but
   2221 // not for path itself. If the path needs appending to, it creates a new
   2222 // URL, setting the path to u.Path + "/" and returning true to indicate so.
   2223 func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) {
   2224 	if !mux.shouldRedirect(host, path) {
   2225 		return u, false
   2226 	}
   2227 	path = path + "/"
   2228 	u = &url.URL{Path: path, RawQuery: u.RawQuery}
   2229 	return u, true
   2230 }
   2231 
   2232 // shouldRedirect reports whether the given path and host should be redirected to
   2233 // path+"/". This should happen if a handler is registered for path+"/" but
   2234 // not path -- see comments at ServeMux.
   2235 func (mux *ServeMux) shouldRedirect(host, path string) bool {
   2236 	p := []string{path, host + path}
   2237 
   2238 	for _, c := range p {
   2239 		if _, exist := mux.m[c]; exist {
   2240 			return false
   2241 		}
   2242 	}
   2243 
   2244 	n := len(path)
   2245 	if n == 0 {
   2246 		return false
   2247 	}
   2248 	for _, c := range p {
   2249 		if _, exist := mux.m[c+"/"]; exist {
   2250 			return path[n-1] != '/'
   2251 		}
   2252 	}
   2253 
   2254 	return false
   2255 }
   2256 
   2257 // Handler returns the handler to use for the given request,
   2258 // consulting r.Method, r.Host, and r.URL.Path. It always returns
   2259 // a non-nil handler. If the path is not in its canonical form, the
   2260 // handler will be an internally-generated handler that redirects
   2261 // to the canonical path. If the host contains a port, it is ignored
   2262 // when matching handlers.
   2263 //
   2264 // The path and host are used unchanged for CONNECT requests.
   2265 //
   2266 // Handler also returns the registered pattern that matches the
   2267 // request or, in the case of internally-generated redirects,
   2268 // the pattern that will match after following the redirect.
   2269 //
   2270 // If there is no registered handler that applies to the request,
   2271 // Handler returns a ``page not found'' handler and an empty pattern.
   2272 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
   2273 
   2274 	// CONNECT requests are not canonicalized.
   2275 	if r.Method == "CONNECT" {
   2276 		// If r.URL.Path is /tree and its handler is not registered,
   2277 		// the /tree -> /tree/ redirect applies to CONNECT requests
   2278 		// but the path canonicalization does not.
   2279 		if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok {
   2280 			return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
   2281 		}
   2282 
   2283 		return mux.handler(r.Host, r.URL.Path)
   2284 	}
   2285 
   2286 	// All other requests have any port stripped and path cleaned
   2287 	// before passing to mux.handler.
   2288 	host := stripHostPort(r.Host)
   2289 	path := cleanPath(r.URL.Path)
   2290 
   2291 	// If the given path is /tree and its handler is not registered,
   2292 	// redirect for /tree/.
   2293 	if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok {
   2294 		return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
   2295 	}
   2296 
   2297 	if path != r.URL.Path {
   2298 		_, pattern = mux.handler(host, path)
   2299 		url := *r.URL
   2300 		url.Path = path
   2301 		return RedirectHandler(url.String(), StatusMovedPermanently), pattern
   2302 	}
   2303 
   2304 	return mux.handler(host, r.URL.Path)
   2305 }
   2306 
   2307 // handler is the main implementation of Handler.
   2308 // The path is known to be in canonical form, except for CONNECT methods.
   2309 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
   2310 	mux.mu.RLock()
   2311 	defer mux.mu.RUnlock()
   2312 
   2313 	// Host-specific pattern takes precedence over generic ones
   2314 	if mux.hosts {
   2315 		h, pattern = mux.match(host + path)
   2316 	}
   2317 	if h == nil {
   2318 		h, pattern = mux.match(path)
   2319 	}
   2320 	if h == nil {
   2321 		h, pattern = NotFoundHandler(), ""
   2322 	}
   2323 	return
   2324 }
   2325 
   2326 // ServeHTTP dispatches the request to the handler whose
   2327 // pattern most closely matches the request URL.
   2328 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
   2329 	if r.RequestURI == "*" {
   2330 		if r.ProtoAtLeast(1, 1) {
   2331 			w.Header().Set("Connection", "close")
   2332 		}
   2333 		w.WriteHeader(StatusBadRequest)
   2334 		return
   2335 	}
   2336 	h, _ := mux.Handler(r)
   2337 	h.ServeHTTP(w, r)
   2338 }
   2339 
   2340 // Handle registers the handler for the given pattern.
   2341 // If a handler already exists for pattern, Handle panics.
   2342 func (mux *ServeMux) Handle(pattern string, handler Handler) {
   2343 	mux.mu.Lock()
   2344 	defer mux.mu.Unlock()
   2345 
   2346 	if pattern == "" {
   2347 		panic("http: invalid pattern")
   2348 	}
   2349 	if handler == nil {
   2350 		panic("http: nil handler")
   2351 	}
   2352 	if _, exist := mux.m[pattern]; exist {
   2353 		panic("http: multiple registrations for " + pattern)
   2354 	}
   2355 
   2356 	if mux.m == nil {
   2357 		mux.m = make(map[string]muxEntry)
   2358 	}
   2359 	mux.m[pattern] = muxEntry{h: handler, pattern: pattern}
   2360 
   2361 	if pattern[0] != '/' {
   2362 		mux.hosts = true
   2363 	}
   2364 }
   2365 
   2366 // HandleFunc registers the handler function for the given pattern.
   2367 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
   2368 	mux.Handle(pattern, HandlerFunc(handler))
   2369 }
   2370 
   2371 // Handle registers the handler for the given pattern
   2372 // in the DefaultServeMux.
   2373 // The documentation for ServeMux explains how patterns are matched.
   2374 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
   2375 
   2376 // HandleFunc registers the handler function for the given pattern
   2377 // in the DefaultServeMux.
   2378 // The documentation for ServeMux explains how patterns are matched.
   2379 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
   2380 	DefaultServeMux.HandleFunc(pattern, handler)
   2381 }
   2382 
   2383 // Serve accepts incoming HTTP connections on the listener l,
   2384 // creating a new service goroutine for each. The service goroutines
   2385 // read requests and then call handler to reply to them.
   2386 // Handler is typically nil, in which case the DefaultServeMux is used.
   2387 func Serve(l net.Listener, handler Handler) error {
   2388 	srv := &Server{Handler: handler}
   2389 	return srv.Serve(l)
   2390 }
   2391 
   2392 // ServeTLS accepts incoming HTTPS connections on the listener l,
   2393 // creating a new service goroutine for each. The service goroutines
   2394 // read requests and then call handler to reply to them.
   2395 //
   2396 // Handler is typically nil, in which case the DefaultServeMux is used.
   2397 //
   2398 // Additionally, files containing a certificate and matching private key
   2399 // for the server must be provided. If the certificate is signed by a
   2400 // certificate authority, the certFile should be the concatenation
   2401 // of the server's certificate, any intermediates, and the CA's certificate.
   2402 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error {
   2403 	srv := &Server{Handler: handler}
   2404 	return srv.ServeTLS(l, certFile, keyFile)
   2405 }
   2406 
   2407 // A Server defines parameters for running an HTTP server.
   2408 // The zero value for Server is a valid configuration.
   2409 type Server struct {
   2410 	Addr    string  // TCP address to listen on, ":http" if empty
   2411 	Handler Handler // handler to invoke, http.DefaultServeMux if nil
   2412 
   2413 	// TLSConfig optionally provides a TLS configuration for use
   2414 	// by ServeTLS and ListenAndServeTLS. Note that this value is
   2415 	// cloned by ServeTLS and ListenAndServeTLS, so it's not
   2416 	// possible to modify the configuration with methods like
   2417 	// tls.Config.SetSessionTicketKeys. To use
   2418 	// SetSessionTicketKeys, use Server.Serve with a TLS Listener
   2419 	// instead.
   2420 	TLSConfig *tls.Config
   2421 
   2422 	// ReadTimeout is the maximum duration for reading the entire
   2423 	// request, including the body.
   2424 	//
   2425 	// Because ReadTimeout does not let Handlers make per-request
   2426 	// decisions on each request body's acceptable deadline or
   2427 	// upload rate, most users will prefer to use
   2428 	// ReadHeaderTimeout. It is valid to use them both.
   2429 	ReadTimeout time.Duration
   2430 
   2431 	// ReadHeaderTimeout is the amount of time allowed to read
   2432 	// request headers. The connection's read deadline is reset
   2433 	// after reading the headers and the Handler can decide what
   2434 	// is considered too slow for the body.
   2435 	ReadHeaderTimeout time.Duration
   2436 
   2437 	// WriteTimeout is the maximum duration before timing out
   2438 	// writes of the response. It is reset whenever a new
   2439 	// request's header is read. Like ReadTimeout, it does not
   2440 	// let Handlers make decisions on a per-request basis.
   2441 	WriteTimeout time.Duration
   2442 
   2443 	// IdleTimeout is the maximum amount of time to wait for the
   2444 	// next request when keep-alives are enabled. If IdleTimeout
   2445 	// is zero, the value of ReadTimeout is used. If both are
   2446 	// zero, ReadHeaderTimeout is used.
   2447 	IdleTimeout time.Duration
   2448 
   2449 	// MaxHeaderBytes controls the maximum number of bytes the
   2450 	// server will read parsing the request header's keys and
   2451 	// values, including the request line. It does not limit the
   2452 	// size of the request body.
   2453 	// If zero, DefaultMaxHeaderBytes is used.
   2454 	MaxHeaderBytes int
   2455 
   2456 	// TLSNextProto optionally specifies a function to take over
   2457 	// ownership of the provided TLS connection when an NPN/ALPN
   2458 	// protocol upgrade has occurred. The map key is the protocol
   2459 	// name negotiated. The Handler argument should be used to
   2460 	// handle HTTP requests and will initialize the Request's TLS
   2461 	// and RemoteAddr if not already set. The connection is
   2462 	// automatically closed when the function returns.
   2463 	// If TLSNextProto is not nil, HTTP/2 support is not enabled
   2464 	// automatically.
   2465 	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
   2466 
   2467 	// ConnState specifies an optional callback function that is
   2468 	// called when a client connection changes state. See the
   2469 	// ConnState type and associated constants for details.
   2470 	ConnState func(net.Conn, ConnState)
   2471 
   2472 	// ErrorLog specifies an optional logger for errors accepting
   2473 	// connections, unexpected behavior from handlers, and
   2474 	// underlying FileSystem errors.
   2475 	// If nil, logging is done via the log package's standard logger.
   2476 	ErrorLog *log.Logger
   2477 
   2478 	disableKeepAlives int32     // accessed atomically.
   2479 	inShutdown        int32     // accessed atomically (non-zero means we're in Shutdown)
   2480 	nextProtoOnce     sync.Once // guards setupHTTP2_* init
   2481 	nextProtoErr      error     // result of http2.ConfigureServer if used
   2482 
   2483 	mu         sync.Mutex
   2484 	listeners  map[net.Listener]struct{}
   2485 	activeConn map[*conn]struct{}
   2486 	doneChan   chan struct{}
   2487 	onShutdown []func()
   2488 }
   2489 
   2490 func (s *Server) getDoneChan() <-chan struct{} {
   2491 	s.mu.Lock()
   2492 	defer s.mu.Unlock()
   2493 	return s.getDoneChanLocked()
   2494 }
   2495 
   2496 func (s *Server) getDoneChanLocked() chan struct{} {
   2497 	if s.doneChan == nil {
   2498 		s.doneChan = make(chan struct{})
   2499 	}
   2500 	return s.doneChan
   2501 }
   2502 
   2503 func (s *Server) closeDoneChanLocked() {
   2504 	ch := s.getDoneChanLocked()
   2505 	select {
   2506 	case <-ch:
   2507 		// Already closed. Don't close again.
   2508 	default:
   2509 		// Safe to close here. We're the only closer, guarded
   2510 		// by s.mu.
   2511 		close(ch)
   2512 	}
   2513 }
   2514 
   2515 // Close immediately closes all active net.Listeners and any
   2516 // connections in state StateNew, StateActive, or StateIdle. For a
   2517 // graceful shutdown, use Shutdown.
   2518 //
   2519 // Close does not attempt to close (and does not even know about)
   2520 // any hijacked connections, such as WebSockets.
   2521 //
   2522 // Close returns any error returned from closing the Server's
   2523 // underlying Listener(s).
   2524 func (srv *Server) Close() error {
   2525 	srv.mu.Lock()
   2526 	defer srv.mu.Unlock()
   2527 	srv.closeDoneChanLocked()
   2528 	err := srv.closeListenersLocked()
   2529 	for c := range srv.activeConn {
   2530 		c.rwc.Close()
   2531 		delete(srv.activeConn, c)
   2532 	}
   2533 	return err
   2534 }
   2535 
   2536 // shutdownPollInterval is how often we poll for quiescence
   2537 // during Server.Shutdown. This is lower during tests, to
   2538 // speed up tests.
   2539 // Ideally we could find a solution that doesn't involve polling,
   2540 // but which also doesn't have a high runtime cost (and doesn't
   2541 // involve any contentious mutexes), but that is left as an
   2542 // exercise for the reader.
   2543 var shutdownPollInterval = 500 * time.Millisecond
   2544 
   2545 // Shutdown gracefully shuts down the server without interrupting any
   2546 // active connections. Shutdown works by first closing all open
   2547 // listeners, then closing all idle connections, and then waiting
   2548 // indefinitely for connections to return to idle and then shut down.
   2549 // If the provided context expires before the shutdown is complete,
   2550 // Shutdown returns the context's error, otherwise it returns any
   2551 // error returned from closing the Server's underlying Listener(s).
   2552 //
   2553 // When Shutdown is called, Serve, ListenAndServe, and
   2554 // ListenAndServeTLS immediately return ErrServerClosed. Make sure the
   2555 // program doesn't exit and waits instead for Shutdown to return.
   2556 //
   2557 // Shutdown does not attempt to close nor wait for hijacked
   2558 // connections such as WebSockets. The caller of Shutdown should
   2559 // separately notify such long-lived connections of shutdown and wait
   2560 // for them to close, if desired. See RegisterOnShutdown for a way to
   2561 // register shutdown notification functions.
   2562 func (srv *Server) Shutdown(ctx context.Context) error {
   2563 	atomic.AddInt32(&srv.inShutdown, 1)
   2564 	defer atomic.AddInt32(&srv.inShutdown, -1)
   2565 
   2566 	srv.mu.Lock()
   2567 	lnerr := srv.closeListenersLocked()
   2568 	srv.closeDoneChanLocked()
   2569 	for _, f := range srv.onShutdown {
   2570 		go f()
   2571 	}
   2572 	srv.mu.Unlock()
   2573 
   2574 	ticker := time.NewTicker(shutdownPollInterval)
   2575 	defer ticker.Stop()
   2576 	for {
   2577 		if srv.closeIdleConns() {
   2578 			return lnerr
   2579 		}
   2580 		select {
   2581 		case <-ctx.Done():
   2582 			return ctx.Err()
   2583 		case <-ticker.C:
   2584 		}
   2585 	}
   2586 }
   2587 
   2588 // RegisterOnShutdown registers a function to call on Shutdown.
   2589 // This can be used to gracefully shutdown connections that have
   2590 // undergone NPN/ALPN protocol upgrade or that have been hijacked.
   2591 // This function should start protocol-specific graceful shutdown,
   2592 // but should not wait for shutdown to complete.
   2593 func (srv *Server) RegisterOnShutdown(f func()) {
   2594 	srv.mu.Lock()
   2595 	srv.onShutdown = append(srv.onShutdown, f)
   2596 	srv.mu.Unlock()
   2597 }
   2598 
   2599 // closeIdleConns closes all idle connections and reports whether the
   2600 // server is quiescent.
   2601 func (s *Server) closeIdleConns() bool {
   2602 	s.mu.Lock()
   2603 	defer s.mu.Unlock()
   2604 	quiescent := true
   2605 	for c := range s.activeConn {
   2606 		st, ok := c.curState.Load().(ConnState)
   2607 		if !ok || st != StateIdle {
   2608 			quiescent = false
   2609 			continue
   2610 		}
   2611 		c.rwc.Close()
   2612 		delete(s.activeConn, c)
   2613 	}
   2614 	return quiescent
   2615 }
   2616 
   2617 func (s *Server) closeListenersLocked() error {
   2618 	var err error
   2619 	for ln := range s.listeners {
   2620 		if cerr := ln.Close(); cerr != nil && err == nil {
   2621 			err = cerr
   2622 		}
   2623 		delete(s.listeners, ln)
   2624 	}
   2625 	return err
   2626 }
   2627 
   2628 // A ConnState represents the state of a client connection to a server.
   2629 // It's used by the optional Server.ConnState hook.
   2630 type ConnState int
   2631 
   2632 const (
   2633 	// StateNew represents a new connection that is expected to
   2634 	// send a request immediately. Connections begin at this
   2635 	// state and then transition to either StateActive or
   2636 	// StateClosed.
   2637 	StateNew ConnState = iota
   2638 
   2639 	// StateActive represents a connection that has read 1 or more
   2640 	// bytes of a request. The Server.ConnState hook for
   2641 	// StateActive fires before the request has entered a handler
   2642 	// and doesn't fire again until the request has been
   2643 	// handled. After the request is handled, the state
   2644 	// transitions to StateClosed, StateHijacked, or StateIdle.
   2645 	// For HTTP/2, StateActive fires on the transition from zero
   2646 	// to one active request, and only transitions away once all
   2647 	// active requests are complete. That means that ConnState
   2648 	// cannot be used to do per-request work; ConnState only notes
   2649 	// the overall state of the connection.
   2650 	StateActive
   2651 
   2652 	// StateIdle represents a connection that has finished
   2653 	// handling a request and is in the keep-alive state, waiting
   2654 	// for a new request. Connections transition from StateIdle
   2655 	// to either StateActive or StateClosed.
   2656 	StateIdle
   2657 
   2658 	// StateHijacked represents a hijacked connection.
   2659 	// This is a terminal state. It does not transition to StateClosed.
   2660 	StateHijacked
   2661 
   2662 	// StateClosed represents a closed connection.
   2663 	// This is a terminal state. Hijacked connections do not
   2664 	// transition to StateClosed.
   2665 	StateClosed
   2666 )
   2667 
   2668 var stateName = map[ConnState]string{
   2669 	StateNew:      "new",
   2670 	StateActive:   "active",
   2671 	StateIdle:     "idle",
   2672 	StateHijacked: "hijacked",
   2673 	StateClosed:   "closed",
   2674 }
   2675 
   2676 func (c ConnState) String() string {
   2677 	return stateName[c]
   2678 }
   2679 
   2680 // serverHandler delegates to either the server's Handler or
   2681 // DefaultServeMux and also handles "OPTIONS *" requests.
   2682 type serverHandler struct {
   2683 	srv *Server
   2684 }
   2685 
   2686 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
   2687 	handler := sh.srv.Handler
   2688 	if handler == nil {
   2689 		handler = DefaultServeMux
   2690 	}
   2691 	if req.RequestURI == "*" && req.Method == "OPTIONS" {
   2692 		handler = globalOptionsHandler{}
   2693 	}
   2694 	handler.ServeHTTP(rw, req)
   2695 }
   2696 
   2697 // ListenAndServe listens on the TCP network address srv.Addr and then
   2698 // calls Serve to handle requests on incoming connections.
   2699 // Accepted connections are configured to enable TCP keep-alives.
   2700 // If srv.Addr is blank, ":http" is used.
   2701 // ListenAndServe always returns a non-nil error.
   2702 func (srv *Server) ListenAndServe() error {
   2703 	addr := srv.Addr
   2704 	if addr == "" {
   2705 		addr = ":http"
   2706 	}
   2707 	ln, err := net.Listen("tcp", addr)
   2708 	if err != nil {
   2709 		return err
   2710 	}
   2711 	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
   2712 }
   2713 
   2714 var testHookServerServe func(*Server, net.Listener) // used if non-nil
   2715 
   2716 // shouldDoServeHTTP2 reports whether Server.Serve should configure
   2717 // automatic HTTP/2. (which sets up the srv.TLSNextProto map)
   2718 func (srv *Server) shouldConfigureHTTP2ForServe() bool {
   2719 	if srv.TLSConfig == nil {
   2720 		// Compatibility with Go 1.6:
   2721 		// If there's no TLSConfig, it's possible that the user just
   2722 		// didn't set it on the http.Server, but did pass it to
   2723 		// tls.NewListener and passed that listener to Serve.
   2724 		// So we should configure HTTP/2 (to set up srv.TLSNextProto)
   2725 		// in case the listener returns an "h2" *tls.Conn.
   2726 		return true
   2727 	}
   2728 	// The user specified a TLSConfig on their http.Server.
   2729 	// In this, case, only configure HTTP/2 if their tls.Config
   2730 	// explicitly mentions "h2". Otherwise http2.ConfigureServer
   2731 	// would modify the tls.Config to add it, but they probably already
   2732 	// passed this tls.Config to tls.NewListener. And if they did,
   2733 	// it's too late anyway to fix it. It would only be potentially racy.
   2734 	// See Issue 15908.
   2735 	return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
   2736 }
   2737 
   2738 // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe,
   2739 // and ListenAndServeTLS methods after a call to Shutdown or Close.
   2740 var ErrServerClosed = errors.New("http: Server closed")
   2741 
   2742 // Serve accepts incoming connections on the Listener l, creating a
   2743 // new service goroutine for each. The service goroutines read requests and
   2744 // then call srv.Handler to reply to them.
   2745 //
   2746 // For HTTP/2 support, srv.TLSConfig should be initialized to the
   2747 // provided listener's TLS Config before calling Serve. If
   2748 // srv.TLSConfig is non-nil and doesn't include the string "h2" in
   2749 // Config.NextProtos, HTTP/2 support is not enabled.
   2750 //
   2751 // Serve always returns a non-nil error. After Shutdown or Close, the
   2752 // returned error is ErrServerClosed.
   2753 func (srv *Server) Serve(l net.Listener) error {
   2754 	defer l.Close()
   2755 	if fn := testHookServerServe; fn != nil {
   2756 		fn(srv, l)
   2757 	}
   2758 	var tempDelay time.Duration // how long to sleep on accept failure
   2759 
   2760 	if err := srv.setupHTTP2_Serve(); err != nil {
   2761 		return err
   2762 	}
   2763 
   2764 	srv.trackListener(l, true)
   2765 	defer srv.trackListener(l, false)
   2766 
   2767 	baseCtx := context.Background() // base is always background, per Issue 16220
   2768 	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
   2769 	for {
   2770 		rw, e := l.Accept()
   2771 		if e != nil {
   2772 			select {
   2773 			case <-srv.getDoneChan():
   2774 				return ErrServerClosed
   2775 			default:
   2776 			}
   2777 			if ne, ok := e.(net.Error); ok && ne.Temporary() {
   2778 				if tempDelay == 0 {
   2779 					tempDelay = 5 * time.Millisecond
   2780 				} else {
   2781 					tempDelay *= 2
   2782 				}
   2783 				if max := 1 * time.Second; tempDelay > max {
   2784 					tempDelay = max
   2785 				}
   2786 				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
   2787 				time.Sleep(tempDelay)
   2788 				continue
   2789 			}
   2790 			return e
   2791 		}
   2792 		tempDelay = 0
   2793 		c := srv.newConn(rw)
   2794 		c.setState(c.rwc, StateNew) // before Serve can return
   2795 		go c.serve(ctx)
   2796 	}
   2797 }
   2798 
   2799 // ServeTLS accepts incoming connections on the Listener l, creating a
   2800 // new service goroutine for each. The service goroutines read requests and
   2801 // then call srv.Handler to reply to them.
   2802 //
   2803 // Additionally, files containing a certificate and matching private key for
   2804 // the server must be provided if neither the Server's TLSConfig.Certificates
   2805 // nor TLSConfig.GetCertificate are populated.. If the certificate is signed by
   2806 // a certificate authority, the certFile should be the concatenation of the
   2807 // server's certificate, any intermediates, and the CA's certificate.
   2808 //
   2809 // For HTTP/2 support, srv.TLSConfig should be initialized to the
   2810 // provided listener's TLS Config before calling ServeTLS. If
   2811 // srv.TLSConfig is non-nil and doesn't include the string "h2" in
   2812 // Config.NextProtos, HTTP/2 support is not enabled.
   2813 //
   2814 // ServeTLS always returns a non-nil error. After Shutdown or Close, the
   2815 // returned error is ErrServerClosed.
   2816 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error {
   2817 	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
   2818 	// before we clone it and create the TLS Listener.
   2819 	if err := srv.setupHTTP2_ServeTLS(); err != nil {
   2820 		return err
   2821 	}
   2822 
   2823 	config := cloneTLSConfig(srv.TLSConfig)
   2824 	if !strSliceContains(config.NextProtos, "http/1.1") {
   2825 		config.NextProtos = append(config.NextProtos, "http/1.1")
   2826 	}
   2827 
   2828 	configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
   2829 	if !configHasCert || certFile != "" || keyFile != "" {
   2830 		var err error
   2831 		config.Certificates = make([]tls.Certificate, 1)
   2832 		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
   2833 		if err != nil {
   2834 			return err
   2835 		}
   2836 	}
   2837 
   2838 	tlsListener := tls.NewListener(l, config)
   2839 	return srv.Serve(tlsListener)
   2840 }
   2841 
   2842 func (s *Server) trackListener(ln net.Listener, add bool) {
   2843 	s.mu.Lock()
   2844 	defer s.mu.Unlock()
   2845 	if s.listeners == nil {
   2846 		s.listeners = make(map[net.Listener]struct{})
   2847 	}
   2848 	if add {
   2849 		// If the *Server is being reused after a previous
   2850 		// Close or Shutdown, reset its doneChan:
   2851 		if len(s.listeners) == 0 && len(s.activeConn) == 0 {
   2852 			s.doneChan = nil
   2853 		}
   2854 		s.listeners[ln] = struct{}{}
   2855 	} else {
   2856 		delete(s.listeners, ln)
   2857 	}
   2858 }
   2859 
   2860 func (s *Server) trackConn(c *conn, add bool) {
   2861 	s.mu.Lock()
   2862 	defer s.mu.Unlock()
   2863 	if s.activeConn == nil {
   2864 		s.activeConn = make(map[*conn]struct{})
   2865 	}
   2866 	if add {
   2867 		s.activeConn[c] = struct{}{}
   2868 	} else {
   2869 		delete(s.activeConn, c)
   2870 	}
   2871 }
   2872 
   2873 func (s *Server) idleTimeout() time.Duration {
   2874 	if s.IdleTimeout != 0 {
   2875 		return s.IdleTimeout
   2876 	}
   2877 	return s.ReadTimeout
   2878 }
   2879 
   2880 func (s *Server) readHeaderTimeout() time.Duration {
   2881 	if s.ReadHeaderTimeout != 0 {
   2882 		return s.ReadHeaderTimeout
   2883 	}
   2884 	return s.ReadTimeout
   2885 }
   2886 
   2887 func (s *Server) doKeepAlives() bool {
   2888 	return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown()
   2889 }
   2890 
   2891 func (s *Server) shuttingDown() bool {
   2892 	return atomic.LoadInt32(&s.inShutdown) != 0
   2893 }
   2894 
   2895 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
   2896 // By default, keep-alives are always enabled. Only very
   2897 // resource-constrained environments or servers in the process of
   2898 // shutting down should disable them.
   2899 func (srv *Server) SetKeepAlivesEnabled(v bool) {
   2900 	if v {
   2901 		atomic.StoreInt32(&srv.disableKeepAlives, 0)
   2902 		return
   2903 	}
   2904 	atomic.StoreInt32(&srv.disableKeepAlives, 1)
   2905 
   2906 	// Close idle HTTP/1 conns:
   2907 	srv.closeIdleConns()
   2908 
   2909 	// Close HTTP/2 conns, as soon as they become idle, but reset
   2910 	// the chan so future conns (if the listener is still active)
   2911 	// still work and don't get a GOAWAY immediately, before their
   2912 	// first request:
   2913 	srv.mu.Lock()
   2914 	defer srv.mu.Unlock()
   2915 	srv.closeDoneChanLocked() // closes http2 conns
   2916 	srv.doneChan = nil
   2917 }
   2918 
   2919 func (s *Server) logf(format string, args ...interface{}) {
   2920 	if s.ErrorLog != nil {
   2921 		s.ErrorLog.Printf(format, args...)
   2922 	} else {
   2923 		log.Printf(format, args...)
   2924 	}
   2925 }
   2926 
   2927 // logf prints to the ErrorLog of the *Server associated with request r
   2928 // via ServerContextKey. If there's no associated server, or if ErrorLog
   2929 // is nil, logging is done via the log package's standard logger.
   2930 func logf(r *Request, format string, args ...interface{}) {
   2931 	s, _ := r.Context().Value(ServerContextKey).(*Server)
   2932 	if s != nil && s.ErrorLog != nil {
   2933 		s.ErrorLog.Printf(format, args...)
   2934 	} else {
   2935 		log.Printf(format, args...)
   2936 	}
   2937 }
   2938 
   2939 // ListenAndServe listens on the TCP network address addr
   2940 // and then calls Serve with handler to handle requests
   2941 // on incoming connections.
   2942 // Accepted connections are configured to enable TCP keep-alives.
   2943 // Handler is typically nil, in which case the DefaultServeMux is
   2944 // used.
   2945 //
   2946 // A trivial example server is:
   2947 //
   2948 //	package main
   2949 //
   2950 //	import (
   2951 //		"io"
   2952 //		"net/http"
   2953 //		"log"
   2954 //	)
   2955 //
   2956 //	// hello world, the web server
   2957 //	func HelloServer(w http.ResponseWriter, req *http.Request) {
   2958 //		io.WriteString(w, "hello, world!\n")
   2959 //	}
   2960 //
   2961 //	func main() {
   2962 //		http.HandleFunc("/hello", HelloServer)
   2963 //		log.Fatal(http.ListenAndServe(":12345", nil))
   2964 //	}
   2965 //
   2966 // ListenAndServe always returns a non-nil error.
   2967 func ListenAndServe(addr string, handler Handler) error {
   2968 	server := &Server{Addr: addr, Handler: handler}
   2969 	return server.ListenAndServe()
   2970 }
   2971 
   2972 // ListenAndServeTLS acts identically to ListenAndServe, except that it
   2973 // expects HTTPS connections. Additionally, files containing a certificate and
   2974 // matching private key for the server must be provided. If the certificate
   2975 // is signed by a certificate authority, the certFile should be the concatenation
   2976 // of the server's certificate, any intermediates, and the CA's certificate.
   2977 //
   2978 // A trivial example server is:
   2979 //
   2980 //	import (
   2981 //		"log"
   2982 //		"net/http"
   2983 //	)
   2984 //
   2985 //	func handler(w http.ResponseWriter, req *http.Request) {
   2986 //		w.Header().Set("Content-Type", "text/plain")
   2987 //		w.Write([]byte("This is an example server.\n"))
   2988 //	}
   2989 //
   2990 //	func main() {
   2991 //		http.HandleFunc("/", handler)
   2992 //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
   2993 //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
   2994 //		log.Fatal(err)
   2995 //	}
   2996 //
   2997 // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
   2998 //
   2999 // ListenAndServeTLS always returns a non-nil error.
   3000 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
   3001 	server := &Server{Addr: addr, Handler: handler}
   3002 	return server.ListenAndServeTLS(certFile, keyFile)
   3003 }
   3004 
   3005 // ListenAndServeTLS listens on the TCP network address srv.Addr and
   3006 // then calls Serve to handle requests on incoming TLS connections.
   3007 // Accepted connections are configured to enable TCP keep-alives.
   3008 //
   3009 // Filenames containing a certificate and matching private key for the
   3010 // server must be provided if neither the Server's TLSConfig.Certificates
   3011 // nor TLSConfig.GetCertificate are populated. If the certificate is
   3012 // signed by a certificate authority, the certFile should be the
   3013 // concatenation of the server's certificate, any intermediates, and
   3014 // the CA's certificate.
   3015 //
   3016 // If srv.Addr is blank, ":https" is used.
   3017 //
   3018 // ListenAndServeTLS always returns a non-nil error.
   3019 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
   3020 	addr := srv.Addr
   3021 	if addr == "" {
   3022 		addr = ":https"
   3023 	}
   3024 
   3025 	ln, err := net.Listen("tcp", addr)
   3026 	if err != nil {
   3027 		return err
   3028 	}
   3029 
   3030 	defer ln.Close()
   3031 
   3032 	return srv.ServeTLS(tcpKeepAliveListener{ln.(*net.TCPListener)}, certFile, keyFile)
   3033 }
   3034 
   3035 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on
   3036 // srv and returns whether there was an error setting it up. If it is
   3037 // not configured for policy reasons, nil is returned.
   3038 func (srv *Server) setupHTTP2_ServeTLS() error {
   3039 	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
   3040 	return srv.nextProtoErr
   3041 }
   3042 
   3043 // setupHTTP2_Serve is called from (*Server).Serve and conditionally
   3044 // configures HTTP/2 on srv using a more conservative policy than
   3045 // setupHTTP2_ServeTLS because Serve may be called
   3046 // concurrently.
   3047 //
   3048 // The tests named TestTransportAutomaticHTTP2* and
   3049 // TestConcurrentServerServe in server_test.go demonstrate some
   3050 // of the supported use cases and motivations.
   3051 func (srv *Server) setupHTTP2_Serve() error {
   3052 	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
   3053 	return srv.nextProtoErr
   3054 }
   3055 
   3056 func (srv *Server) onceSetNextProtoDefaults_Serve() {
   3057 	if srv.shouldConfigureHTTP2ForServe() {
   3058 		srv.onceSetNextProtoDefaults()
   3059 	}
   3060 }
   3061 
   3062 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
   3063 // configured otherwise. (by setting srv.TLSNextProto non-nil)
   3064 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
   3065 func (srv *Server) onceSetNextProtoDefaults() {
   3066 	if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
   3067 		return
   3068 	}
   3069 	// Enable HTTP/2 by default if the user hasn't otherwise
   3070 	// configured their TLSNextProto map.
   3071 	if srv.TLSNextProto == nil {
   3072 		conf := &http2Server{
   3073 			NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) },
   3074 		}
   3075 		srv.nextProtoErr = http2ConfigureServer(srv, conf)
   3076 	}
   3077 }
   3078 
   3079 // TimeoutHandler returns a Handler that runs h with the given time limit.
   3080 //
   3081 // The new Handler calls h.ServeHTTP to handle each request, but if a
   3082 // call runs for longer than its time limit, the handler responds with
   3083 // a 503 Service Unavailable error and the given message in its body.
   3084 // (If msg is empty, a suitable default message will be sent.)
   3085 // After such a timeout, writes by h to its ResponseWriter will return
   3086 // ErrHandlerTimeout.
   3087 //
   3088 // TimeoutHandler buffers all Handler writes to memory and does not
   3089 // support the Hijacker or Flusher interfaces.
   3090 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
   3091 	return &timeoutHandler{
   3092 		handler: h,
   3093 		body:    msg,
   3094 		dt:      dt,
   3095 	}
   3096 }
   3097 
   3098 // ErrHandlerTimeout is returned on ResponseWriter Write calls
   3099 // in handlers which have timed out.
   3100 var ErrHandlerTimeout = errors.New("http: Handler timeout")
   3101 
   3102 type timeoutHandler struct {
   3103 	handler Handler
   3104 	body    string
   3105 	dt      time.Duration
   3106 
   3107 	// When set, no context will be created and this context will
   3108 	// be used instead.
   3109 	testContext context.Context
   3110 }
   3111 
   3112 func (h *timeoutHandler) errorBody() string {
   3113 	if h.body != "" {
   3114 		return h.body
   3115 	}
   3116 	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
   3117 }
   3118 
   3119 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
   3120 	ctx := h.testContext
   3121 	if ctx == nil {
   3122 		var cancelCtx context.CancelFunc
   3123 		ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt)
   3124 		defer cancelCtx()
   3125 	}
   3126 	r = r.WithContext(ctx)
   3127 	done := make(chan struct{})
   3128 	tw := &timeoutWriter{
   3129 		w: w,
   3130 		h: make(Header),
   3131 	}
   3132 	panicChan := make(chan interface{}, 1)
   3133 	go func() {
   3134 		defer func() {
   3135 			if p := recover(); p != nil {
   3136 				panicChan <- p
   3137 			}
   3138 		}()
   3139 		h.handler.ServeHTTP(tw, r)
   3140 		close(done)
   3141 	}()
   3142 	select {
   3143 	case p := <-panicChan:
   3144 		panic(p)
   3145 	case <-done:
   3146 		tw.mu.Lock()
   3147 		defer tw.mu.Unlock()
   3148 		dst := w.Header()
   3149 		for k, vv := range tw.h {
   3150 			dst[k] = vv
   3151 		}
   3152 		if !tw.wroteHeader {
   3153 			tw.code = StatusOK
   3154 		}
   3155 		w.WriteHeader(tw.code)
   3156 		w.Write(tw.wbuf.Bytes())
   3157 	case <-ctx.Done():
   3158 		tw.mu.Lock()
   3159 		defer tw.mu.Unlock()
   3160 		w.WriteHeader(StatusServiceUnavailable)
   3161 		io.WriteString(w, h.errorBody())
   3162 		tw.timedOut = true
   3163 		return
   3164 	}
   3165 }
   3166 
   3167 type timeoutWriter struct {
   3168 	w    ResponseWriter
   3169 	h    Header
   3170 	wbuf bytes.Buffer
   3171 
   3172 	mu          sync.Mutex
   3173 	timedOut    bool
   3174 	wroteHeader bool
   3175 	code        int
   3176 }
   3177 
   3178 func (tw *timeoutWriter) Header() Header { return tw.h }
   3179 
   3180 func (tw *timeoutWriter) Write(p []byte) (int, error) {
   3181 	tw.mu.Lock()
   3182 	defer tw.mu.Unlock()
   3183 	if tw.timedOut {
   3184 		return 0, ErrHandlerTimeout
   3185 	}
   3186 	if !tw.wroteHeader {
   3187 		tw.writeHeader(StatusOK)
   3188 	}
   3189 	return tw.wbuf.Write(p)
   3190 }
   3191 
   3192 func (tw *timeoutWriter) WriteHeader(code int) {
   3193 	checkWriteHeaderCode(code)
   3194 	tw.mu.Lock()
   3195 	defer tw.mu.Unlock()
   3196 	if tw.timedOut || tw.wroteHeader {
   3197 		return
   3198 	}
   3199 	tw.writeHeader(code)
   3200 }
   3201 
   3202 func (tw *timeoutWriter) writeHeader(code int) {
   3203 	tw.wroteHeader = true
   3204 	tw.code = code
   3205 }
   3206 
   3207 // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
   3208 // connections. It's used by ListenAndServe and ListenAndServeTLS so
   3209 // dead TCP connections (e.g. closing laptop mid-download) eventually
   3210 // go away.
   3211 type tcpKeepAliveListener struct {
   3212 	*net.TCPListener
   3213 }
   3214 
   3215 func (ln tcpKeepAliveListener) Accept() (net.Conn, error) {
   3216 	tc, err := ln.AcceptTCP()
   3217 	if err != nil {
   3218 		return nil, err
   3219 	}
   3220 	tc.SetKeepAlive(true)
   3221 	tc.SetKeepAlivePeriod(3 * time.Minute)
   3222 	return tc, nil
   3223 }
   3224 
   3225 // globalOptionsHandler responds to "OPTIONS *" requests.
   3226 type globalOptionsHandler struct{}
   3227 
   3228 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
   3229 	w.Header().Set("Content-Length", "0")
   3230 	if r.ContentLength != 0 {
   3231 		// Read up to 4KB of OPTIONS body (as mentioned in the
   3232 		// spec as being reserved for future use), but anything
   3233 		// over that is considered a waste of server resources
   3234 		// (or an attack) and we abort and close the connection,
   3235 		// courtesy of MaxBytesReader's EOF behavior.
   3236 		mb := MaxBytesReader(w, r.Body, 4<<10)
   3237 		io.Copy(ioutil.Discard, mb)
   3238 	}
   3239 }
   3240 
   3241 // initNPNRequest is an HTTP handler that initializes certain
   3242 // uninitialized fields in its *Request. Such partially-initialized
   3243 // Requests come from NPN protocol handlers.
   3244 type initNPNRequest struct {
   3245 	c *tls.Conn
   3246 	h serverHandler
   3247 }
   3248 
   3249 func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
   3250 	if req.TLS == nil {
   3251 		req.TLS = &tls.ConnectionState{}
   3252 		*req.TLS = h.c.ConnectionState()
   3253 	}
   3254 	if req.Body == nil {
   3255 		req.Body = NoBody
   3256 	}
   3257 	if req.RemoteAddr == "" {
   3258 		req.RemoteAddr = h.c.RemoteAddr().String()
   3259 	}
   3260 	h.h.ServeHTTP(rw, req)
   3261 }
   3262 
   3263 // loggingConn is used for debugging.
   3264 type loggingConn struct {
   3265 	name string
   3266 	net.Conn
   3267 }
   3268 
   3269 var (
   3270 	uniqNameMu   sync.Mutex
   3271 	uniqNameNext = make(map[string]int)
   3272 )
   3273 
   3274 func newLoggingConn(baseName string, c net.Conn) net.Conn {
   3275 	uniqNameMu.Lock()
   3276 	defer uniqNameMu.Unlock()
   3277 	uniqNameNext[baseName]++
   3278 	return &loggingConn{
   3279 		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
   3280 		Conn: c,
   3281 	}
   3282 }
   3283 
   3284 func (c *loggingConn) Write(p []byte) (n int, err error) {
   3285 	log.Printf("%s.Write(%d) = ....", c.name, len(p))
   3286 	n, err = c.Conn.Write(p)
   3287 	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
   3288 	return
   3289 }
   3290 
   3291 func (c *loggingConn) Read(p []byte) (n int, err error) {
   3292 	log.Printf("%s.Read(%d) = ....", c.name, len(p))
   3293 	n, err = c.Conn.Read(p)
   3294 	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
   3295 	return
   3296 }
   3297 
   3298 func (c *loggingConn) Close() (err error) {
   3299 	log.Printf("%s.Close() = ...", c.name)
   3300 	err = c.Conn.Close()
   3301 	log.Printf("%s.Close() = %v", c.name, err)
   3302 	return
   3303 }
   3304 
   3305 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
   3306 // It only contains one field (and a pointer field at that), so it
   3307 // fits in an interface value without an extra allocation.
   3308 type checkConnErrorWriter struct {
   3309 	c *conn
   3310 }
   3311 
   3312 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
   3313 	n, err = w.c.rwc.Write(p)
   3314 	if err != nil && w.c.werr == nil {
   3315 		w.c.werr = err
   3316 		w.c.cancelCtx()
   3317 	}
   3318 	return
   3319 }
   3320 
   3321 func numLeadingCRorLF(v []byte) (n int) {
   3322 	for _, b := range v {
   3323 		if b == '\r' || b == '\n' {
   3324 			n++
   3325 			continue
   3326 		}
   3327 		break
   3328 	}
   3329 	return
   3330 
   3331 }
   3332 
   3333 func strSliceContains(ss []string, s string) bool {
   3334 	for _, v := range ss {
   3335 		if v == s {
   3336 			return true
   3337 		}
   3338 	}
   3339 	return false
   3340 }
   3341