1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: type and heap bitmaps. 6 // 7 // Stack, data, and bss bitmaps 8 // 9 // Stack frames and global variables in the data and bss sections are described 10 // by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer 11 // to be visited during GC. The bits in each byte are consumed starting with 12 // the low bit: 1<<0, 1<<1, and so on. 13 // 14 // Heap bitmap 15 // 16 // The allocated heap comes from a subset of the memory in the range [start, used), 17 // where start == mheap_.arena_start and used == mheap_.arena_used. 18 // The heap bitmap comprises 2 bits for each pointer-sized word in that range, 19 // stored in bytes indexed backward in memory from start. 20 // That is, the byte at address start-1 holds the 2-bit entries for the four words 21 // start through start+3*ptrSize, the byte at start-2 holds the entries for 22 // start+4*ptrSize through start+7*ptrSize, and so on. 23 // 24 // In each 2-bit entry, the lower bit holds the same information as in the 1-bit 25 // bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC. 26 // The meaning of the high bit depends on the position of the word being described 27 // in its allocated object. In all words *except* the second word, the 28 // high bit indicates that the object is still being described. In 29 // these words, if a bit pair with a high bit 0 is encountered, the 30 // low bit can also be assumed to be 0, and the object description is 31 // over. This 00 is called the ``dead'' encoding: it signals that the 32 // rest of the words in the object are uninteresting to the garbage 33 // collector. 34 // 35 // In the second word, the high bit is the GC ``checkmarked'' bit (see below). 36 // 37 // The 2-bit entries are split when written into the byte, so that the top half 38 // of the byte contains 4 high bits and the bottom half contains 4 low (pointer) 39 // bits. 40 // This form allows a copy from the 1-bit to the 4-bit form to keep the 41 // pointer bits contiguous, instead of having to space them out. 42 // 43 // The code makes use of the fact that the zero value for a heap bitmap 44 // has no live pointer bit set and is (depending on position), not used, 45 // not checkmarked, and is the dead encoding. 46 // These properties must be preserved when modifying the encoding. 47 // 48 // The bitmap for noscan spans is not maintained. Code must ensure 49 // that an object is scannable before consulting its bitmap by 50 // checking either the noscan bit in the span or by consulting its 51 // type's information. 52 // 53 // Checkmarks 54 // 55 // In a concurrent garbage collector, one worries about failing to mark 56 // a live object due to mutations without write barriers or bugs in the 57 // collector implementation. As a sanity check, the GC has a 'checkmark' 58 // mode that retraverses the object graph with the world stopped, to make 59 // sure that everything that should be marked is marked. 60 // In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry 61 // for the second word of the object holds the checkmark bit. 62 // When not in checkmark mode, this bit is set to 1. 63 // 64 // The smallest possible allocation is 8 bytes. On a 32-bit machine, that 65 // means every allocated object has two words, so there is room for the 66 // checkmark bit. On a 64-bit machine, however, the 8-byte allocation is 67 // just one word, so the second bit pair is not available for encoding the 68 // checkmark. However, because non-pointer allocations are combined 69 // into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation 70 // must be a pointer, so the type bit in the first word is not actually needed. 71 // It is still used in general, except in checkmark the type bit is repurposed 72 // as the checkmark bit and then reinitialized (to 1) as the type bit when 73 // finished. 74 // 75 76 package runtime 77 78 import ( 79 "runtime/internal/atomic" 80 "runtime/internal/sys" 81 "unsafe" 82 ) 83 84 const ( 85 bitPointer = 1 << 0 86 bitScan = 1 << 4 87 88 heapBitsShift = 1 // shift offset between successive bitPointer or bitScan entries 89 heapBitmapScale = sys.PtrSize * (8 / 2) // number of data bytes described by one heap bitmap byte 90 91 // all scan/pointer bits in a byte 92 bitScanAll = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift) 93 bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift) 94 ) 95 96 // addb returns the byte pointer p+n. 97 //go:nowritebarrier 98 //go:nosplit 99 func addb(p *byte, n uintptr) *byte { 100 // Note: wrote out full expression instead of calling add(p, n) 101 // to reduce the number of temporaries generated by the 102 // compiler for this trivial expression during inlining. 103 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) 104 } 105 106 // subtractb returns the byte pointer p-n. 107 // subtractb is typically used when traversing the pointer tables referred to by hbits 108 // which are arranged in reverse order. 109 //go:nowritebarrier 110 //go:nosplit 111 func subtractb(p *byte, n uintptr) *byte { 112 // Note: wrote out full expression instead of calling add(p, -n) 113 // to reduce the number of temporaries generated by the 114 // compiler for this trivial expression during inlining. 115 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) 116 } 117 118 // add1 returns the byte pointer p+1. 119 //go:nowritebarrier 120 //go:nosplit 121 func add1(p *byte) *byte { 122 // Note: wrote out full expression instead of calling addb(p, 1) 123 // to reduce the number of temporaries generated by the 124 // compiler for this trivial expression during inlining. 125 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) 126 } 127 128 // subtract1 returns the byte pointer p-1. 129 // subtract1 is typically used when traversing the pointer tables referred to by hbits 130 // which are arranged in reverse order. 131 //go:nowritebarrier 132 // 133 // nosplit because it is used during write barriers and must not be preempted. 134 //go:nosplit 135 func subtract1(p *byte) *byte { 136 // Note: wrote out full expression instead of calling subtractb(p, 1) 137 // to reduce the number of temporaries generated by the 138 // compiler for this trivial expression during inlining. 139 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) 140 } 141 142 // mapBits maps any additional bitmap memory needed for the new arena memory. 143 // 144 // Don't call this directly. Call mheap.setArenaUsed. 145 // 146 //go:nowritebarrier 147 func (h *mheap) mapBits(arena_used uintptr) { 148 // Caller has added extra mappings to the arena. 149 // Add extra mappings of bitmap words as needed. 150 // We allocate extra bitmap pieces in chunks of bitmapChunk. 151 const bitmapChunk = 8192 152 153 n := (arena_used - mheap_.arena_start) / heapBitmapScale 154 n = round(n, bitmapChunk) 155 n = round(n, physPageSize) 156 if h.bitmap_mapped >= n { 157 return 158 } 159 160 sysMap(unsafe.Pointer(h.bitmap-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys) 161 h.bitmap_mapped = n 162 } 163 164 // heapBits provides access to the bitmap bits for a single heap word. 165 // The methods on heapBits take value receivers so that the compiler 166 // can more easily inline calls to those methods and registerize the 167 // struct fields independently. 168 type heapBits struct { 169 bitp *uint8 170 shift uint32 171 } 172 173 // markBits provides access to the mark bit for an object in the heap. 174 // bytep points to the byte holding the mark bit. 175 // mask is a byte with a single bit set that can be &ed with *bytep 176 // to see if the bit has been set. 177 // *m.byte&m.mask != 0 indicates the mark bit is set. 178 // index can be used along with span information to generate 179 // the address of the object in the heap. 180 // We maintain one set of mark bits for allocation and one for 181 // marking purposes. 182 type markBits struct { 183 bytep *uint8 184 mask uint8 185 index uintptr 186 } 187 188 //go:nosplit 189 func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { 190 bytep, mask := s.allocBits.bitp(allocBitIndex) 191 return markBits{bytep, mask, allocBitIndex} 192 } 193 194 // refillaCache takes 8 bytes s.allocBits starting at whichByte 195 // and negates them so that ctz (count trailing zeros) instructions 196 // can be used. It then places these 8 bytes into the cached 64 bit 197 // s.allocCache. 198 func (s *mspan) refillAllocCache(whichByte uintptr) { 199 bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte))) 200 aCache := uint64(0) 201 aCache |= uint64(bytes[0]) 202 aCache |= uint64(bytes[1]) << (1 * 8) 203 aCache |= uint64(bytes[2]) << (2 * 8) 204 aCache |= uint64(bytes[3]) << (3 * 8) 205 aCache |= uint64(bytes[4]) << (4 * 8) 206 aCache |= uint64(bytes[5]) << (5 * 8) 207 aCache |= uint64(bytes[6]) << (6 * 8) 208 aCache |= uint64(bytes[7]) << (7 * 8) 209 s.allocCache = ^aCache 210 } 211 212 // nextFreeIndex returns the index of the next free object in s at 213 // or after s.freeindex. 214 // There are hardware instructions that can be used to make this 215 // faster if profiling warrants it. 216 func (s *mspan) nextFreeIndex() uintptr { 217 sfreeindex := s.freeindex 218 snelems := s.nelems 219 if sfreeindex == snelems { 220 return sfreeindex 221 } 222 if sfreeindex > snelems { 223 throw("s.freeindex > s.nelems") 224 } 225 226 aCache := s.allocCache 227 228 bitIndex := sys.Ctz64(aCache) 229 for bitIndex == 64 { 230 // Move index to start of next cached bits. 231 sfreeindex = (sfreeindex + 64) &^ (64 - 1) 232 if sfreeindex >= snelems { 233 s.freeindex = snelems 234 return snelems 235 } 236 whichByte := sfreeindex / 8 237 // Refill s.allocCache with the next 64 alloc bits. 238 s.refillAllocCache(whichByte) 239 aCache = s.allocCache 240 bitIndex = sys.Ctz64(aCache) 241 // nothing available in cached bits 242 // grab the next 8 bytes and try again. 243 } 244 result := sfreeindex + uintptr(bitIndex) 245 if result >= snelems { 246 s.freeindex = snelems 247 return snelems 248 } 249 250 s.allocCache >>= uint(bitIndex + 1) 251 sfreeindex = result + 1 252 253 if sfreeindex%64 == 0 && sfreeindex != snelems { 254 // We just incremented s.freeindex so it isn't 0. 255 // As each 1 in s.allocCache was encountered and used for allocation 256 // it was shifted away. At this point s.allocCache contains all 0s. 257 // Refill s.allocCache so that it corresponds 258 // to the bits at s.allocBits starting at s.freeindex. 259 whichByte := sfreeindex / 8 260 s.refillAllocCache(whichByte) 261 } 262 s.freeindex = sfreeindex 263 return result 264 } 265 266 // isFree returns whether the index'th object in s is unallocated. 267 func (s *mspan) isFree(index uintptr) bool { 268 if index < s.freeindex { 269 return false 270 } 271 bytep, mask := s.allocBits.bitp(index) 272 return *bytep&mask == 0 273 } 274 275 func (s *mspan) objIndex(p uintptr) uintptr { 276 byteOffset := p - s.base() 277 if byteOffset == 0 { 278 return 0 279 } 280 if s.baseMask != 0 { 281 // s.baseMask is 0, elemsize is a power of two, so shift by s.divShift 282 return byteOffset >> s.divShift 283 } 284 return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2) 285 } 286 287 func markBitsForAddr(p uintptr) markBits { 288 s := spanOf(p) 289 objIndex := s.objIndex(p) 290 return s.markBitsForIndex(objIndex) 291 } 292 293 func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { 294 bytep, mask := s.gcmarkBits.bitp(objIndex) 295 return markBits{bytep, mask, objIndex} 296 } 297 298 func (s *mspan) markBitsForBase() markBits { 299 return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0} 300 } 301 302 // isMarked reports whether mark bit m is set. 303 func (m markBits) isMarked() bool { 304 return *m.bytep&m.mask != 0 305 } 306 307 // setMarked sets the marked bit in the markbits, atomically. Some compilers 308 // are not able to inline atomic.Or8 function so if it appears as a hot spot consider 309 // inlining it manually. 310 func (m markBits) setMarked() { 311 // Might be racing with other updates, so use atomic update always. 312 // We used to be clever here and use a non-atomic update in certain 313 // cases, but it's not worth the risk. 314 atomic.Or8(m.bytep, m.mask) 315 } 316 317 // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. 318 func (m markBits) setMarkedNonAtomic() { 319 *m.bytep |= m.mask 320 } 321 322 // clearMarked clears the marked bit in the markbits, atomically. 323 func (m markBits) clearMarked() { 324 // Might be racing with other updates, so use atomic update always. 325 // We used to be clever here and use a non-atomic update in certain 326 // cases, but it's not worth the risk. 327 atomic.And8(m.bytep, ^m.mask) 328 } 329 330 // markBitsForSpan returns the markBits for the span base address base. 331 func markBitsForSpan(base uintptr) (mbits markBits) { 332 if base < mheap_.arena_start || base >= mheap_.arena_used { 333 throw("markBitsForSpan: base out of range") 334 } 335 mbits = markBitsForAddr(base) 336 if mbits.mask != 1 { 337 throw("markBitsForSpan: unaligned start") 338 } 339 return mbits 340 } 341 342 // advance advances the markBits to the next object in the span. 343 func (m *markBits) advance() { 344 if m.mask == 1<<7 { 345 m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) 346 m.mask = 1 347 } else { 348 m.mask = m.mask << 1 349 } 350 m.index++ 351 } 352 353 // heapBitsForAddr returns the heapBits for the address addr. 354 // The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used). 355 // 356 // nosplit because it is used during write barriers and must not be preempted. 357 //go:nosplit 358 func heapBitsForAddr(addr uintptr) heapBits { 359 // 2 bits per work, 4 pairs per byte, and a mask is hard coded. 360 off := (addr - mheap_.arena_start) / sys.PtrSize 361 return heapBits{(*uint8)(unsafe.Pointer(mheap_.bitmap - off/4 - 1)), uint32(off & 3)} 362 } 363 364 // heapBitsForSpan returns the heapBits for the span base address base. 365 func heapBitsForSpan(base uintptr) (hbits heapBits) { 366 if base < mheap_.arena_start || base >= mheap_.arena_used { 367 print("runtime: base ", hex(base), " not in range [", hex(mheap_.arena_start), ",", hex(mheap_.arena_used), ")\n") 368 throw("heapBitsForSpan: base out of range") 369 } 370 return heapBitsForAddr(base) 371 } 372 373 // heapBitsForObject returns the base address for the heap object 374 // containing the address p, the heapBits for base, 375 // the object's span, and of the index of the object in s. 376 // If p does not point into a heap object, 377 // return base == 0 378 // otherwise return the base of the object. 379 // 380 // refBase and refOff optionally give the base address of the object 381 // in which the pointer p was found and the byte offset at which it 382 // was found. These are used for error reporting. 383 func heapBitsForObject(p, refBase, refOff uintptr) (base uintptr, hbits heapBits, s *mspan, objIndex uintptr) { 384 arenaStart := mheap_.arena_start 385 if p < arenaStart || p >= mheap_.arena_used { 386 return 387 } 388 off := p - arenaStart 389 idx := off >> _PageShift 390 // p points into the heap, but possibly to the middle of an object. 391 // Consult the span table to find the block beginning. 392 s = mheap_.spans[idx] 393 if s == nil || p < s.base() || p >= s.limit || s.state != mSpanInUse { 394 if s == nil || s.state == _MSpanManual { 395 // If s is nil, the virtual address has never been part of the heap. 396 // This pointer may be to some mmap'd region, so we allow it. 397 // Pointers into stacks are also ok, the runtime manages these explicitly. 398 return 399 } 400 401 // The following ensures that we are rigorous about what data 402 // structures hold valid pointers. 403 if debug.invalidptr != 0 { 404 // Typically this indicates an incorrect use 405 // of unsafe or cgo to store a bad pointer in 406 // the Go heap. It may also indicate a runtime 407 // bug. 408 // 409 // TODO(austin): We could be more aggressive 410 // and detect pointers to unallocated objects 411 // in allocated spans. 412 printlock() 413 print("runtime: pointer ", hex(p)) 414 if s.state != mSpanInUse { 415 print(" to unallocated span") 416 } else { 417 print(" to unused region of span") 418 } 419 print(" idx=", hex(idx), " span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", s.state, "\n") 420 if refBase != 0 { 421 print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") 422 gcDumpObject("object", refBase, refOff) 423 } 424 getg().m.traceback = 2 425 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") 426 } 427 return 428 } 429 // If this span holds object of a power of 2 size, just mask off the bits to 430 // the interior of the object. Otherwise use the size to get the base. 431 if s.baseMask != 0 { 432 // optimize for power of 2 sized objects. 433 base = s.base() 434 base = base + (p-base)&uintptr(s.baseMask) 435 objIndex = (base - s.base()) >> s.divShift 436 // base = p & s.baseMask is faster for small spans, 437 // but doesn't work for large spans. 438 // Overall, it's faster to use the more general computation above. 439 } else { 440 base = s.base() 441 if p-base >= s.elemsize { 442 // n := (p - base) / s.elemsize, using division by multiplication 443 objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2 444 base += objIndex * s.elemsize 445 } 446 } 447 // Now that we know the actual base, compute heapBits to return to caller. 448 hbits = heapBitsForAddr(base) 449 return 450 } 451 452 // next returns the heapBits describing the next pointer-sized word in memory. 453 // That is, if h describes address p, h.next() describes p+ptrSize. 454 // Note that next does not modify h. The caller must record the result. 455 // 456 // nosplit because it is used during write barriers and must not be preempted. 457 //go:nosplit 458 func (h heapBits) next() heapBits { 459 if h.shift < 3*heapBitsShift { 460 return heapBits{h.bitp, h.shift + heapBitsShift} 461 } 462 return heapBits{subtract1(h.bitp), 0} 463 } 464 465 // forward returns the heapBits describing n pointer-sized words ahead of h in memory. 466 // That is, if h describes address p, h.forward(n) describes p+n*ptrSize. 467 // h.forward(1) is equivalent to h.next(), just slower. 468 // Note that forward does not modify h. The caller must record the result. 469 // bits returns the heap bits for the current word. 470 func (h heapBits) forward(n uintptr) heapBits { 471 n += uintptr(h.shift) / heapBitsShift 472 return heapBits{subtractb(h.bitp, n/4), uint32(n%4) * heapBitsShift} 473 } 474 475 // The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer. 476 // The result includes in its higher bits the bits for subsequent words 477 // described by the same bitmap byte. 478 // 479 // nosplit because it is used during write barriers and must not be preempted. 480 //go:nosplit 481 func (h heapBits) bits() uint32 { 482 // The (shift & 31) eliminates a test and conditional branch 483 // from the generated code. 484 return uint32(*h.bitp) >> (h.shift & 31) 485 } 486 487 // morePointers returns true if this word and all remaining words in this object 488 // are scalars. 489 // h must not describe the second word of the object. 490 func (h heapBits) morePointers() bool { 491 return h.bits()&bitScan != 0 492 } 493 494 // isPointer reports whether the heap bits describe a pointer word. 495 // 496 // nosplit because it is used during write barriers and must not be preempted. 497 //go:nosplit 498 func (h heapBits) isPointer() bool { 499 return h.bits()&bitPointer != 0 500 } 501 502 // isCheckmarked reports whether the heap bits have the checkmarked bit set. 503 // It must be told how large the object at h is, because the encoding of the 504 // checkmark bit varies by size. 505 // h must describe the initial word of the object. 506 func (h heapBits) isCheckmarked(size uintptr) bool { 507 if size == sys.PtrSize { 508 return (*h.bitp>>h.shift)&bitPointer != 0 509 } 510 // All multiword objects are 2-word aligned, 511 // so we know that the initial word's 2-bit pair 512 // and the second word's 2-bit pair are in the 513 // same heap bitmap byte, *h.bitp. 514 return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0 515 } 516 517 // setCheckmarked sets the checkmarked bit. 518 // It must be told how large the object at h is, because the encoding of the 519 // checkmark bit varies by size. 520 // h must describe the initial word of the object. 521 func (h heapBits) setCheckmarked(size uintptr) { 522 if size == sys.PtrSize { 523 atomic.Or8(h.bitp, bitPointer<<h.shift) 524 return 525 } 526 atomic.Or8(h.bitp, bitScan<<(heapBitsShift+h.shift)) 527 } 528 529 // bulkBarrierPreWrite executes a write barrier 530 // for every pointer slot in the memory range [src, src+size), 531 // using pointer/scalar information from [dst, dst+size). 532 // This executes the write barriers necessary before a memmove. 533 // src, dst, and size must be pointer-aligned. 534 // The range [dst, dst+size) must lie within a single object. 535 // It does not perform the actual writes. 536 // 537 // As a special case, src == 0 indicates that this is being used for a 538 // memclr. bulkBarrierPreWrite will pass 0 for the src of each write 539 // barrier. 540 // 541 // Callers should call bulkBarrierPreWrite immediately before 542 // calling memmove(dst, src, size). This function is marked nosplit 543 // to avoid being preempted; the GC must not stop the goroutine 544 // between the memmove and the execution of the barriers. 545 // The caller is also responsible for cgo pointer checks if this 546 // may be writing Go pointers into non-Go memory. 547 // 548 // The pointer bitmap is not maintained for allocations containing 549 // no pointers at all; any caller of bulkBarrierPreWrite must first 550 // make sure the underlying allocation contains pointers, usually 551 // by checking typ.kind&kindNoPointers. 552 // 553 //go:nosplit 554 func bulkBarrierPreWrite(dst, src, size uintptr) { 555 if (dst|src|size)&(sys.PtrSize-1) != 0 { 556 throw("bulkBarrierPreWrite: unaligned arguments") 557 } 558 if !writeBarrier.needed { 559 return 560 } 561 if !inheap(dst) { 562 gp := getg().m.curg 563 if gp != nil && gp.stack.lo <= dst && dst < gp.stack.hi { 564 // Destination is our own stack. No need for barriers. 565 return 566 } 567 568 // If dst is a global, use the data or BSS bitmaps to 569 // execute write barriers. 570 for _, datap := range activeModules() { 571 if datap.data <= dst && dst < datap.edata { 572 bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) 573 return 574 } 575 } 576 for _, datap := range activeModules() { 577 if datap.bss <= dst && dst < datap.ebss { 578 bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) 579 return 580 } 581 } 582 return 583 } 584 585 buf := &getg().m.p.ptr().wbBuf 586 h := heapBitsForAddr(dst) 587 if src == 0 { 588 for i := uintptr(0); i < size; i += sys.PtrSize { 589 if h.isPointer() { 590 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 591 if !buf.putFast(*dstx, 0) { 592 wbBufFlush(nil, 0) 593 } 594 } 595 h = h.next() 596 } 597 } else { 598 for i := uintptr(0); i < size; i += sys.PtrSize { 599 if h.isPointer() { 600 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 601 srcx := (*uintptr)(unsafe.Pointer(src + i)) 602 if !buf.putFast(*dstx, *srcx) { 603 wbBufFlush(nil, 0) 604 } 605 } 606 h = h.next() 607 } 608 } 609 } 610 611 // bulkBarrierBitmap executes write barriers for copying from [src, 612 // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is 613 // assumed to start maskOffset bytes into the data covered by the 614 // bitmap in bits (which may not be a multiple of 8). 615 // 616 // This is used by bulkBarrierPreWrite for writes to data and BSS. 617 // 618 //go:nosplit 619 func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { 620 word := maskOffset / sys.PtrSize 621 bits = addb(bits, word/8) 622 mask := uint8(1) << (word % 8) 623 624 buf := &getg().m.p.ptr().wbBuf 625 for i := uintptr(0); i < size; i += sys.PtrSize { 626 if mask == 0 { 627 bits = addb(bits, 1) 628 if *bits == 0 { 629 // Skip 8 words. 630 i += 7 * sys.PtrSize 631 continue 632 } 633 mask = 1 634 } 635 if *bits&mask != 0 { 636 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 637 if src == 0 { 638 if !buf.putFast(*dstx, 0) { 639 wbBufFlush(nil, 0) 640 } 641 } else { 642 srcx := (*uintptr)(unsafe.Pointer(src + i)) 643 if !buf.putFast(*dstx, *srcx) { 644 wbBufFlush(nil, 0) 645 } 646 } 647 } 648 mask <<= 1 649 } 650 } 651 652 // typeBitsBulkBarrier executes writebarrierptr_prewrite for every 653 // pointer that would be copied from [src, src+size) to [dst, 654 // dst+size) by a memmove using the type bitmap to locate those 655 // pointer slots. 656 // 657 // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). 658 // dst, src, and size must be pointer-aligned. 659 // The type typ must have a plain bitmap, not a GC program. 660 // The only use of this function is in channel sends, and the 661 // 64 kB channel element limit takes care of this for us. 662 // 663 // Must not be preempted because it typically runs right before memmove, 664 // and the GC must observe them as an atomic action. 665 // 666 //go:nosplit 667 func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { 668 if typ == nil { 669 throw("runtime: typeBitsBulkBarrier without type") 670 } 671 if typ.size != size { 672 println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size) 673 throw("runtime: invalid typeBitsBulkBarrier") 674 } 675 if typ.kind&kindGCProg != 0 { 676 println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") 677 throw("runtime: invalid typeBitsBulkBarrier") 678 } 679 if !writeBarrier.needed { 680 return 681 } 682 ptrmask := typ.gcdata 683 var bits uint32 684 for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize { 685 if i&(sys.PtrSize*8-1) == 0 { 686 bits = uint32(*ptrmask) 687 ptrmask = addb(ptrmask, 1) 688 } else { 689 bits = bits >> 1 690 } 691 if bits&1 != 0 { 692 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 693 srcx := (*uintptr)(unsafe.Pointer(src + i)) 694 writebarrierptr_prewrite(dstx, *srcx) 695 } 696 } 697 } 698 699 // The methods operating on spans all require that h has been returned 700 // by heapBitsForSpan and that size, n, total are the span layout description 701 // returned by the mspan's layout method. 702 // If total > size*n, it means that there is extra leftover memory in the span, 703 // usually due to rounding. 704 // 705 // TODO(rsc): Perhaps introduce a different heapBitsSpan type. 706 707 // initSpan initializes the heap bitmap for a span. 708 // It clears all checkmark bits. 709 // If this is a span of pointer-sized objects, it initializes all 710 // words to pointer/scan. 711 // Otherwise, it initializes all words to scalar/dead. 712 func (h heapBits) initSpan(s *mspan) { 713 size, n, total := s.layout() 714 715 // Init the markbit structures 716 s.freeindex = 0 717 s.allocCache = ^uint64(0) // all 1s indicating all free. 718 s.nelems = n 719 s.allocBits = nil 720 s.gcmarkBits = nil 721 s.gcmarkBits = newMarkBits(s.nelems) 722 s.allocBits = newAllocBits(s.nelems) 723 724 // Clear bits corresponding to objects. 725 if total%heapBitmapScale != 0 { 726 throw("initSpan: unaligned length") 727 } 728 nbyte := total / heapBitmapScale 729 if sys.PtrSize == 8 && size == sys.PtrSize { 730 end := h.bitp 731 bitp := subtractb(end, nbyte-1) 732 for { 733 *bitp = bitPointerAll | bitScanAll 734 if bitp == end { 735 break 736 } 737 bitp = add1(bitp) 738 } 739 return 740 } 741 memclrNoHeapPointers(unsafe.Pointer(subtractb(h.bitp, nbyte-1)), nbyte) 742 } 743 744 // initCheckmarkSpan initializes a span for being checkmarked. 745 // It clears the checkmark bits, which are set to 1 in normal operation. 746 func (h heapBits) initCheckmarkSpan(size, n, total uintptr) { 747 // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. 748 if sys.PtrSize == 8 && size == sys.PtrSize { 749 // Checkmark bit is type bit, bottom bit of every 2-bit entry. 750 // Only possible on 64-bit system, since minimum size is 8. 751 // Must clear type bit (checkmark bit) of every word. 752 // The type bit is the lower of every two-bit pair. 753 bitp := h.bitp 754 for i := uintptr(0); i < n; i += 4 { 755 *bitp &^= bitPointerAll 756 bitp = subtract1(bitp) 757 } 758 return 759 } 760 for i := uintptr(0); i < n; i++ { 761 *h.bitp &^= bitScan << (heapBitsShift + h.shift) 762 h = h.forward(size / sys.PtrSize) 763 } 764 } 765 766 // clearCheckmarkSpan undoes all the checkmarking in a span. 767 // The actual checkmark bits are ignored, so the only work to do 768 // is to fix the pointer bits. (Pointer bits are ignored by scanobject 769 // but consulted by typedmemmove.) 770 func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) { 771 // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. 772 if sys.PtrSize == 8 && size == sys.PtrSize { 773 // Checkmark bit is type bit, bottom bit of every 2-bit entry. 774 // Only possible on 64-bit system, since minimum size is 8. 775 // Must clear type bit (checkmark bit) of every word. 776 // The type bit is the lower of every two-bit pair. 777 bitp := h.bitp 778 for i := uintptr(0); i < n; i += 4 { 779 *bitp |= bitPointerAll 780 bitp = subtract1(bitp) 781 } 782 } 783 } 784 785 // oneBitCount is indexed by byte and produces the 786 // number of 1 bits in that byte. For example 128 has 1 bit set 787 // and oneBitCount[128] will holds 1. 788 var oneBitCount = [256]uint8{ 789 0, 1, 1, 2, 1, 2, 2, 3, 790 1, 2, 2, 3, 2, 3, 3, 4, 791 1, 2, 2, 3, 2, 3, 3, 4, 792 2, 3, 3, 4, 3, 4, 4, 5, 793 1, 2, 2, 3, 2, 3, 3, 4, 794 2, 3, 3, 4, 3, 4, 4, 5, 795 2, 3, 3, 4, 3, 4, 4, 5, 796 3, 4, 4, 5, 4, 5, 5, 6, 797 1, 2, 2, 3, 2, 3, 3, 4, 798 2, 3, 3, 4, 3, 4, 4, 5, 799 2, 3, 3, 4, 3, 4, 4, 5, 800 3, 4, 4, 5, 4, 5, 5, 6, 801 2, 3, 3, 4, 3, 4, 4, 5, 802 3, 4, 4, 5, 4, 5, 5, 6, 803 3, 4, 4, 5, 4, 5, 5, 6, 804 4, 5, 5, 6, 5, 6, 6, 7, 805 1, 2, 2, 3, 2, 3, 3, 4, 806 2, 3, 3, 4, 3, 4, 4, 5, 807 2, 3, 3, 4, 3, 4, 4, 5, 808 3, 4, 4, 5, 4, 5, 5, 6, 809 2, 3, 3, 4, 3, 4, 4, 5, 810 3, 4, 4, 5, 4, 5, 5, 6, 811 3, 4, 4, 5, 4, 5, 5, 6, 812 4, 5, 5, 6, 5, 6, 6, 7, 813 2, 3, 3, 4, 3, 4, 4, 5, 814 3, 4, 4, 5, 4, 5, 5, 6, 815 3, 4, 4, 5, 4, 5, 5, 6, 816 4, 5, 5, 6, 5, 6, 6, 7, 817 3, 4, 4, 5, 4, 5, 5, 6, 818 4, 5, 5, 6, 5, 6, 6, 7, 819 4, 5, 5, 6, 5, 6, 6, 7, 820 5, 6, 6, 7, 6, 7, 7, 8} 821 822 // countAlloc returns the number of objects allocated in span s by 823 // scanning the allocation bitmap. 824 // TODO:(rlh) Use popcount intrinsic. 825 func (s *mspan) countAlloc() int { 826 count := 0 827 maxIndex := s.nelems / 8 828 for i := uintptr(0); i < maxIndex; i++ { 829 mrkBits := *s.gcmarkBits.bytep(i) 830 count += int(oneBitCount[mrkBits]) 831 } 832 if bitsInLastByte := s.nelems % 8; bitsInLastByte != 0 { 833 mrkBits := *s.gcmarkBits.bytep(maxIndex) 834 mask := uint8((1 << bitsInLastByte) - 1) 835 bits := mrkBits & mask 836 count += int(oneBitCount[bits]) 837 } 838 return count 839 } 840 841 // heapBitsSetType records that the new allocation [x, x+size) 842 // holds in [x, x+dataSize) one or more values of type typ. 843 // (The number of values is given by dataSize / typ.size.) 844 // If dataSize < size, the fragment [x+dataSize, x+size) is 845 // recorded as non-pointer data. 846 // It is known that the type has pointers somewhere; 847 // malloc does not call heapBitsSetType when there are no pointers, 848 // because all free objects are marked as noscan during 849 // heapBitsSweepSpan. 850 // 851 // There can only be one allocation from a given span active at a time, 852 // and the bitmap for a span always falls on byte boundaries, 853 // so there are no write-write races for access to the heap bitmap. 854 // Hence, heapBitsSetType can access the bitmap without atomics. 855 // 856 // There can be read-write races between heapBitsSetType and things 857 // that read the heap bitmap like scanobject. However, since 858 // heapBitsSetType is only used for objects that have not yet been 859 // made reachable, readers will ignore bits being modified by this 860 // function. This does mean this function cannot transiently modify 861 // bits that belong to neighboring objects. Also, on weakly-ordered 862 // machines, callers must execute a store/store (publication) barrier 863 // between calling this function and making the object reachable. 864 func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { 865 const doubleCheck = false // slow but helpful; enable to test modifications to this code 866 867 // dataSize is always size rounded up to the next malloc size class, 868 // except in the case of allocating a defer block, in which case 869 // size is sizeof(_defer{}) (at least 6 words) and dataSize may be 870 // arbitrarily larger. 871 // 872 // The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore 873 // assume that dataSize == size without checking it explicitly. 874 875 if sys.PtrSize == 8 && size == sys.PtrSize { 876 // It's one word and it has pointers, it must be a pointer. 877 // Since all allocated one-word objects are pointers 878 // (non-pointers are aggregated into tinySize allocations), 879 // initSpan sets the pointer bits for us. Nothing to do here. 880 if doubleCheck { 881 h := heapBitsForAddr(x) 882 if !h.isPointer() { 883 throw("heapBitsSetType: pointer bit missing") 884 } 885 if !h.morePointers() { 886 throw("heapBitsSetType: scan bit missing") 887 } 888 } 889 return 890 } 891 892 h := heapBitsForAddr(x) 893 ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below) 894 895 // Heap bitmap bits for 2-word object are only 4 bits, 896 // so also shared with objects next to it. 897 // This is called out as a special case primarily for 32-bit systems, 898 // so that on 32-bit systems the code below can assume all objects 899 // are 4-word aligned (because they're all 16-byte aligned). 900 if size == 2*sys.PtrSize { 901 if typ.size == sys.PtrSize { 902 // We're allocating a block big enough to hold two pointers. 903 // On 64-bit, that means the actual object must be two pointers, 904 // or else we'd have used the one-pointer-sized block. 905 // On 32-bit, however, this is the 8-byte block, the smallest one. 906 // So it could be that we're allocating one pointer and this was 907 // just the smallest block available. Distinguish by checking dataSize. 908 // (In general the number of instances of typ being allocated is 909 // dataSize/typ.size.) 910 if sys.PtrSize == 4 && dataSize == sys.PtrSize { 911 // 1 pointer object. On 32-bit machines clear the bit for the 912 // unused second word. 913 *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift 914 *h.bitp |= (bitPointer | bitScan) << h.shift 915 } else { 916 // 2-element slice of pointer. 917 *h.bitp |= (bitPointer | bitScan | bitPointer<<heapBitsShift) << h.shift 918 } 919 return 920 } 921 // Otherwise typ.size must be 2*sys.PtrSize, 922 // and typ.kind&kindGCProg == 0. 923 if doubleCheck { 924 if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 { 925 print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n") 926 throw("heapBitsSetType") 927 } 928 } 929 b := uint32(*ptrmask) 930 hb := (b & 3) | bitScan 931 // bitPointer == 1, bitScan is 1 << 4, heapBitsShift is 1. 932 // 110011 is shifted h.shift and complemented. 933 // This clears out the bits that are about to be 934 // ored into *h.hbitp in the next instructions. 935 *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift 936 *h.bitp |= uint8(hb << h.shift) 937 return 938 } 939 940 // Copy from 1-bit ptrmask into 2-bit bitmap. 941 // The basic approach is to use a single uintptr as a bit buffer, 942 // alternating between reloading the buffer and writing bitmap bytes. 943 // In general, one load can supply two bitmap byte writes. 944 // This is a lot of lines of code, but it compiles into relatively few 945 // machine instructions. 946 947 var ( 948 // Ptrmask input. 949 p *byte // last ptrmask byte read 950 b uintptr // ptrmask bits already loaded 951 nb uintptr // number of bits in b at next read 952 endp *byte // final ptrmask byte to read (then repeat) 953 endnb uintptr // number of valid bits in *endp 954 pbits uintptr // alternate source of bits 955 956 // Heap bitmap output. 957 w uintptr // words processed 958 nw uintptr // number of words to process 959 hbitp *byte // next heap bitmap byte to write 960 hb uintptr // bits being prepared for *hbitp 961 ) 962 963 hbitp = h.bitp 964 965 // Handle GC program. Delayed until this part of the code 966 // so that we can use the same double-checking mechanism 967 // as the 1-bit case. Nothing above could have encountered 968 // GC programs: the cases were all too small. 969 if typ.kind&kindGCProg != 0 { 970 heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4)) 971 if doubleCheck { 972 // Double-check the heap bits written by GC program 973 // by running the GC program to create a 1-bit pointer mask 974 // and then jumping to the double-check code below. 975 // This doesn't catch bugs shared between the 1-bit and 4-bit 976 // GC program execution, but it does catch mistakes specific 977 // to just one of those and bugs in heapBitsSetTypeGCProg's 978 // implementation of arrays. 979 lock(&debugPtrmask.lock) 980 if debugPtrmask.data == nil { 981 debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys)) 982 } 983 ptrmask = debugPtrmask.data 984 runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1) 985 goto Phase4 986 } 987 return 988 } 989 990 // Note about sizes: 991 // 992 // typ.size is the number of words in the object, 993 // and typ.ptrdata is the number of words in the prefix 994 // of the object that contains pointers. That is, the final 995 // typ.size - typ.ptrdata words contain no pointers. 996 // This allows optimization of a common pattern where 997 // an object has a small header followed by a large scalar 998 // buffer. If we know the pointers are over, we don't have 999 // to scan the buffer's heap bitmap at all. 1000 // The 1-bit ptrmasks are sized to contain only bits for 1001 // the typ.ptrdata prefix, zero padded out to a full byte 1002 // of bitmap. This code sets nw (below) so that heap bitmap 1003 // bits are only written for the typ.ptrdata prefix; if there is 1004 // more room in the allocated object, the next heap bitmap 1005 // entry is a 00, indicating that there are no more pointers 1006 // to scan. So only the ptrmask for the ptrdata bytes is needed. 1007 // 1008 // Replicated copies are not as nice: if there is an array of 1009 // objects with scalar tails, all but the last tail does have to 1010 // be initialized, because there is no way to say "skip forward". 1011 // However, because of the possibility of a repeated type with 1012 // size not a multiple of 4 pointers (one heap bitmap byte), 1013 // the code already must handle the last ptrmask byte specially 1014 // by treating it as containing only the bits for endnb pointers, 1015 // where endnb <= 4. We represent large scalar tails that must 1016 // be expanded in the replication by setting endnb larger than 4. 1017 // This will have the effect of reading many bits out of b, 1018 // but once the real bits are shifted out, b will supply as many 1019 // zero bits as we try to read, which is exactly what we need. 1020 1021 p = ptrmask 1022 if typ.size < dataSize { 1023 // Filling in bits for an array of typ. 1024 // Set up for repetition of ptrmask during main loop. 1025 // Note that ptrmask describes only a prefix of 1026 const maxBits = sys.PtrSize*8 - 7 1027 if typ.ptrdata/sys.PtrSize <= maxBits { 1028 // Entire ptrmask fits in uintptr with room for a byte fragment. 1029 // Load into pbits and never read from ptrmask again. 1030 // This is especially important when the ptrmask has 1031 // fewer than 8 bits in it; otherwise the reload in the middle 1032 // of the Phase 2 loop would itself need to loop to gather 1033 // at least 8 bits. 1034 1035 // Accumulate ptrmask into b. 1036 // ptrmask is sized to describe only typ.ptrdata, but we record 1037 // it as describing typ.size bytes, since all the high bits are zero. 1038 nb = typ.ptrdata / sys.PtrSize 1039 for i := uintptr(0); i < nb; i += 8 { 1040 b |= uintptr(*p) << i 1041 p = add1(p) 1042 } 1043 nb = typ.size / sys.PtrSize 1044 1045 // Replicate ptrmask to fill entire pbits uintptr. 1046 // Doubling and truncating is fewer steps than 1047 // iterating by nb each time. (nb could be 1.) 1048 // Since we loaded typ.ptrdata/sys.PtrSize bits 1049 // but are pretending to have typ.size/sys.PtrSize, 1050 // there might be no replication necessary/possible. 1051 pbits = b 1052 endnb = nb 1053 if nb+nb <= maxBits { 1054 for endnb <= sys.PtrSize*8 { 1055 pbits |= pbits << endnb 1056 endnb += endnb 1057 } 1058 // Truncate to a multiple of original ptrmask. 1059 // Because nb+nb <= maxBits, nb fits in a byte. 1060 // Byte division is cheaper than uintptr division. 1061 endnb = uintptr(maxBits/byte(nb)) * nb 1062 pbits &= 1<<endnb - 1 1063 b = pbits 1064 nb = endnb 1065 } 1066 1067 // Clear p and endp as sentinel for using pbits. 1068 // Checked during Phase 2 loop. 1069 p = nil 1070 endp = nil 1071 } else { 1072 // Ptrmask is larger. Read it multiple times. 1073 n := (typ.ptrdata/sys.PtrSize+7)/8 - 1 1074 endp = addb(ptrmask, n) 1075 endnb = typ.size/sys.PtrSize - n*8 1076 } 1077 } 1078 if p != nil { 1079 b = uintptr(*p) 1080 p = add1(p) 1081 nb = 8 1082 } 1083 1084 if typ.size == dataSize { 1085 // Single entry: can stop once we reach the non-pointer data. 1086 nw = typ.ptrdata / sys.PtrSize 1087 } else { 1088 // Repeated instances of typ in an array. 1089 // Have to process first N-1 entries in full, but can stop 1090 // once we reach the non-pointer data in the final entry. 1091 nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize 1092 } 1093 if nw == 0 { 1094 // No pointers! Caller was supposed to check. 1095 println("runtime: invalid type ", typ.string()) 1096 throw("heapBitsSetType: called with non-pointer type") 1097 return 1098 } 1099 if nw < 2 { 1100 // Must write at least 2 words, because the "no scan" 1101 // encoding doesn't take effect until the third word. 1102 nw = 2 1103 } 1104 1105 // Phase 1: Special case for leading byte (shift==0) or half-byte (shift==4). 1106 // The leading byte is special because it contains the bits for word 1, 1107 // which does not have the scan bit set. 1108 // The leading half-byte is special because it's a half a byte, 1109 // so we have to be careful with the bits already there. 1110 switch { 1111 default: 1112 throw("heapBitsSetType: unexpected shift") 1113 1114 case h.shift == 0: 1115 // Ptrmask and heap bitmap are aligned. 1116 // Handle first byte of bitmap specially. 1117 // 1118 // The first byte we write out covers the first four 1119 // words of the object. The scan/dead bit on the first 1120 // word must be set to scan since there are pointers 1121 // somewhere in the object. The scan/dead bit on the 1122 // second word is the checkmark, so we don't set it. 1123 // In all following words, we set the scan/dead 1124 // appropriately to indicate that the object contains 1125 // to the next 2-bit entry in the bitmap. 1126 // 1127 // TODO: It doesn't matter if we set the checkmark, so 1128 // maybe this case isn't needed any more. 1129 hb = b & bitPointerAll 1130 hb |= bitScan | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift) 1131 if w += 4; w >= nw { 1132 goto Phase3 1133 } 1134 *hbitp = uint8(hb) 1135 hbitp = subtract1(hbitp) 1136 b >>= 4 1137 nb -= 4 1138 1139 case sys.PtrSize == 8 && h.shift == 2: 1140 // Ptrmask and heap bitmap are misaligned. 1141 // The bits for the first two words are in a byte shared 1142 // with another object, so we must be careful with the bits 1143 // already there. 1144 // We took care of 1-word and 2-word objects above, 1145 // so this is at least a 6-word object. 1146 hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift) 1147 // This is not noscan, so set the scan bit in the 1148 // first word. 1149 hb |= bitScan << (2 * heapBitsShift) 1150 b >>= 2 1151 nb -= 2 1152 // Note: no bitScan for second word because that's 1153 // the checkmark. 1154 *hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift)) 1155 *hbitp |= uint8(hb) 1156 hbitp = subtract1(hbitp) 1157 if w += 2; w >= nw { 1158 // We know that there is more data, because we handled 2-word objects above. 1159 // This must be at least a 6-word object. If we're out of pointer words, 1160 // mark no scan in next bitmap byte and finish. 1161 hb = 0 1162 w += 4 1163 goto Phase3 1164 } 1165 } 1166 1167 // Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap. 1168 // The loop computes the bits for that last write but does not execute the write; 1169 // it leaves the bits in hb for processing by phase 3. 1170 // To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to 1171 // use in the first half of the loop right now, and then we only adjust nb explicitly 1172 // if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop. 1173 nb -= 4 1174 for { 1175 // Emit bitmap byte. 1176 // b has at least nb+4 bits, with one exception: 1177 // if w+4 >= nw, then b has only nw-w bits, 1178 // but we'll stop at the break and then truncate 1179 // appropriately in Phase 3. 1180 hb = b & bitPointerAll 1181 hb |= bitScanAll 1182 if w += 4; w >= nw { 1183 break 1184 } 1185 *hbitp = uint8(hb) 1186 hbitp = subtract1(hbitp) 1187 b >>= 4 1188 1189 // Load more bits. b has nb right now. 1190 if p != endp { 1191 // Fast path: keep reading from ptrmask. 1192 // nb unmodified: we just loaded 8 bits, 1193 // and the next iteration will consume 8 bits, 1194 // leaving us with the same nb the next time we're here. 1195 if nb < 8 { 1196 b |= uintptr(*p) << nb 1197 p = add1(p) 1198 } else { 1199 // Reduce the number of bits in b. 1200 // This is important if we skipped 1201 // over a scalar tail, since nb could 1202 // be larger than the bit width of b. 1203 nb -= 8 1204 } 1205 } else if p == nil { 1206 // Almost as fast path: track bit count and refill from pbits. 1207 // For short repetitions. 1208 if nb < 8 { 1209 b |= pbits << nb 1210 nb += endnb 1211 } 1212 nb -= 8 // for next iteration 1213 } else { 1214 // Slow path: reached end of ptrmask. 1215 // Process final partial byte and rewind to start. 1216 b |= uintptr(*p) << nb 1217 nb += endnb 1218 if nb < 8 { 1219 b |= uintptr(*ptrmask) << nb 1220 p = add1(ptrmask) 1221 } else { 1222 nb -= 8 1223 p = ptrmask 1224 } 1225 } 1226 1227 // Emit bitmap byte. 1228 hb = b & bitPointerAll 1229 hb |= bitScanAll 1230 if w += 4; w >= nw { 1231 break 1232 } 1233 *hbitp = uint8(hb) 1234 hbitp = subtract1(hbitp) 1235 b >>= 4 1236 } 1237 1238 Phase3: 1239 // Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries. 1240 if w > nw { 1241 // Counting the 4 entries in hb not yet written to memory, 1242 // there are more entries than possible pointer slots. 1243 // Discard the excess entries (can't be more than 3). 1244 mask := uintptr(1)<<(4-(w-nw)) - 1 1245 hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits 1246 } 1247 1248 // Change nw from counting possibly-pointer words to total words in allocation. 1249 nw = size / sys.PtrSize 1250 1251 // Write whole bitmap bytes. 1252 // The first is hb, the rest are zero. 1253 if w <= nw { 1254 *hbitp = uint8(hb) 1255 hbitp = subtract1(hbitp) 1256 hb = 0 // for possible final half-byte below 1257 for w += 4; w <= nw; w += 4 { 1258 *hbitp = 0 1259 hbitp = subtract1(hbitp) 1260 } 1261 } 1262 1263 // Write final partial bitmap byte if any. 1264 // We know w > nw, or else we'd still be in the loop above. 1265 // It can be bigger only due to the 4 entries in hb that it counts. 1266 // If w == nw+4 then there's nothing left to do: we wrote all nw entries 1267 // and can discard the 4 sitting in hb. 1268 // But if w == nw+2, we need to write first two in hb. 1269 // The byte is shared with the next object, so be careful with 1270 // existing bits. 1271 if w == nw+2 { 1272 *hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb) 1273 } 1274 1275 Phase4: 1276 // Phase 4: all done, but perhaps double check. 1277 if doubleCheck { 1278 end := heapBitsForAddr(x + size) 1279 if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) { 1280 println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size) 1281 print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") 1282 print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") 1283 h0 := heapBitsForAddr(x) 1284 print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") 1285 print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n") 1286 throw("bad heapBitsSetType") 1287 } 1288 1289 // Double-check that bits to be written were written correctly. 1290 // Does not check that other bits were not written, unfortunately. 1291 h := heapBitsForAddr(x) 1292 nptr := typ.ptrdata / sys.PtrSize 1293 ndata := typ.size / sys.PtrSize 1294 count := dataSize / typ.size 1295 totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize 1296 for i := uintptr(0); i < size/sys.PtrSize; i++ { 1297 j := i % ndata 1298 var have, want uint8 1299 have = (*h.bitp >> h.shift) & (bitPointer | bitScan) 1300 if i >= totalptr { 1301 want = 0 // deadmarker 1302 if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 { 1303 want = bitScan 1304 } 1305 } else { 1306 if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 { 1307 want |= bitPointer 1308 } 1309 if i != 1 { 1310 want |= bitScan 1311 } else { 1312 have &^= bitScan 1313 } 1314 } 1315 if have != want { 1316 println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size) 1317 print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") 1318 print("kindGCProg=", typ.kind&kindGCProg != 0, "\n") 1319 print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") 1320 h0 := heapBitsForAddr(x) 1321 print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") 1322 print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n") 1323 print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n") 1324 println("at word", i, "offset", i*sys.PtrSize, "have", have, "want", want) 1325 if typ.kind&kindGCProg != 0 { 1326 println("GC program:") 1327 dumpGCProg(addb(typ.gcdata, 4)) 1328 } 1329 throw("bad heapBitsSetType") 1330 } 1331 h = h.next() 1332 } 1333 if ptrmask == debugPtrmask.data { 1334 unlock(&debugPtrmask.lock) 1335 } 1336 } 1337 } 1338 1339 var debugPtrmask struct { 1340 lock mutex 1341 data *byte 1342 } 1343 1344 // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program. 1345 // progSize is the size of the memory described by the program. 1346 // elemSize is the size of the element that the GC program describes (a prefix of). 1347 // dataSize is the total size of the intended data, a multiple of elemSize. 1348 // allocSize is the total size of the allocated memory. 1349 // 1350 // GC programs are only used for large allocations. 1351 // heapBitsSetType requires that allocSize is a multiple of 4 words, 1352 // so that the relevant bitmap bytes are not shared with surrounding 1353 // objects. 1354 func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) { 1355 if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 { 1356 // Alignment will be wrong. 1357 throw("heapBitsSetTypeGCProg: small allocation") 1358 } 1359 var totalBits uintptr 1360 if elemSize == dataSize { 1361 totalBits = runGCProg(prog, nil, h.bitp, 2) 1362 if totalBits*sys.PtrSize != progSize { 1363 println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize) 1364 throw("heapBitsSetTypeGCProg: unexpected bit count") 1365 } 1366 } else { 1367 count := dataSize / elemSize 1368 1369 // Piece together program trailer to run after prog that does: 1370 // literal(0) 1371 // repeat(1, elemSize-progSize-1) // zeros to fill element size 1372 // repeat(elemSize, count-1) // repeat that element for count 1373 // This zero-pads the data remaining in the first element and then 1374 // repeats that first element to fill the array. 1375 var trailer [40]byte // 3 varints (max 10 each) + some bytes 1376 i := 0 1377 if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 { 1378 // literal(0) 1379 trailer[i] = 0x01 1380 i++ 1381 trailer[i] = 0 1382 i++ 1383 if n > 1 { 1384 // repeat(1, n-1) 1385 trailer[i] = 0x81 1386 i++ 1387 n-- 1388 for ; n >= 0x80; n >>= 7 { 1389 trailer[i] = byte(n | 0x80) 1390 i++ 1391 } 1392 trailer[i] = byte(n) 1393 i++ 1394 } 1395 } 1396 // repeat(elemSize/ptrSize, count-1) 1397 trailer[i] = 0x80 1398 i++ 1399 n := elemSize / sys.PtrSize 1400 for ; n >= 0x80; n >>= 7 { 1401 trailer[i] = byte(n | 0x80) 1402 i++ 1403 } 1404 trailer[i] = byte(n) 1405 i++ 1406 n = count - 1 1407 for ; n >= 0x80; n >>= 7 { 1408 trailer[i] = byte(n | 0x80) 1409 i++ 1410 } 1411 trailer[i] = byte(n) 1412 i++ 1413 trailer[i] = 0 1414 i++ 1415 1416 runGCProg(prog, &trailer[0], h.bitp, 2) 1417 1418 // Even though we filled in the full array just now, 1419 // record that we only filled in up to the ptrdata of the 1420 // last element. This will cause the code below to 1421 // memclr the dead section of the final array element, 1422 // so that scanobject can stop early in the final element. 1423 totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize 1424 } 1425 endProg := unsafe.Pointer(subtractb(h.bitp, (totalBits+3)/4)) 1426 endAlloc := unsafe.Pointer(subtractb(h.bitp, allocSize/heapBitmapScale)) 1427 memclrNoHeapPointers(add(endAlloc, 1), uintptr(endProg)-uintptr(endAlloc)) 1428 } 1429 1430 // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. 1431 // size the size of the region described by prog, in bytes. 1432 // The resulting bitvector will have no more than size/sys.PtrSize bits. 1433 func progToPointerMask(prog *byte, size uintptr) bitvector { 1434 n := (size/sys.PtrSize + 7) / 8 1435 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] 1436 x[len(x)-1] = 0xa1 // overflow check sentinel 1437 n = runGCProg(prog, nil, &x[0], 1) 1438 if x[len(x)-1] != 0xa1 { 1439 throw("progToPointerMask: overflow") 1440 } 1441 return bitvector{int32(n), &x[0]} 1442 } 1443 1444 // Packed GC pointer bitmaps, aka GC programs. 1445 // 1446 // For large types containing arrays, the type information has a 1447 // natural repetition that can be encoded to save space in the 1448 // binary and in the memory representation of the type information. 1449 // 1450 // The encoding is a simple Lempel-Ziv style bytecode machine 1451 // with the following instructions: 1452 // 1453 // 00000000: stop 1454 // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes 1455 // 10000000 n c: repeat the previous n bits c times; n, c are varints 1456 // 1nnnnnnn c: repeat the previous n bits c times; c is a varint 1457 1458 // runGCProg executes the GC program prog, and then trailer if non-nil, 1459 // writing to dst with entries of the given size. 1460 // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst. 1461 // If size == 2, dst is the 2-bit heap bitmap, and writes move backward 1462 // starting at dst (because the heap bitmap does). In this case, the caller guarantees 1463 // that only whole bytes in dst need to be written. 1464 // 1465 // runGCProg returns the number of 1- or 2-bit entries written to memory. 1466 func runGCProg(prog, trailer, dst *byte, size int) uintptr { 1467 dstStart := dst 1468 1469 // Bits waiting to be written to memory. 1470 var bits uintptr 1471 var nbits uintptr 1472 1473 p := prog 1474 Run: 1475 for { 1476 // Flush accumulated full bytes. 1477 // The rest of the loop assumes that nbits <= 7. 1478 for ; nbits >= 8; nbits -= 8 { 1479 if size == 1 { 1480 *dst = uint8(bits) 1481 dst = add1(dst) 1482 bits >>= 8 1483 } else { 1484 v := bits&bitPointerAll | bitScanAll 1485 *dst = uint8(v) 1486 dst = subtract1(dst) 1487 bits >>= 4 1488 v = bits&bitPointerAll | bitScanAll 1489 *dst = uint8(v) 1490 dst = subtract1(dst) 1491 bits >>= 4 1492 } 1493 } 1494 1495 // Process one instruction. 1496 inst := uintptr(*p) 1497 p = add1(p) 1498 n := inst & 0x7F 1499 if inst&0x80 == 0 { 1500 // Literal bits; n == 0 means end of program. 1501 if n == 0 { 1502 // Program is over; continue in trailer if present. 1503 if trailer != nil { 1504 //println("trailer") 1505 p = trailer 1506 trailer = nil 1507 continue 1508 } 1509 //println("done") 1510 break Run 1511 } 1512 //println("lit", n, dst) 1513 nbyte := n / 8 1514 for i := uintptr(0); i < nbyte; i++ { 1515 bits |= uintptr(*p) << nbits 1516 p = add1(p) 1517 if size == 1 { 1518 *dst = uint8(bits) 1519 dst = add1(dst) 1520 bits >>= 8 1521 } else { 1522 v := bits&0xf | bitScanAll 1523 *dst = uint8(v) 1524 dst = subtract1(dst) 1525 bits >>= 4 1526 v = bits&0xf | bitScanAll 1527 *dst = uint8(v) 1528 dst = subtract1(dst) 1529 bits >>= 4 1530 } 1531 } 1532 if n %= 8; n > 0 { 1533 bits |= uintptr(*p) << nbits 1534 p = add1(p) 1535 nbits += n 1536 } 1537 continue Run 1538 } 1539 1540 // Repeat. If n == 0, it is encoded in a varint in the next bytes. 1541 if n == 0 { 1542 for off := uint(0); ; off += 7 { 1543 x := uintptr(*p) 1544 p = add1(p) 1545 n |= (x & 0x7F) << off 1546 if x&0x80 == 0 { 1547 break 1548 } 1549 } 1550 } 1551 1552 // Count is encoded in a varint in the next bytes. 1553 c := uintptr(0) 1554 for off := uint(0); ; off += 7 { 1555 x := uintptr(*p) 1556 p = add1(p) 1557 c |= (x & 0x7F) << off 1558 if x&0x80 == 0 { 1559 break 1560 } 1561 } 1562 c *= n // now total number of bits to copy 1563 1564 // If the number of bits being repeated is small, load them 1565 // into a register and use that register for the entire loop 1566 // instead of repeatedly reading from memory. 1567 // Handling fewer than 8 bits here makes the general loop simpler. 1568 // The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add 1569 // the pattern to a bit buffer holding at most 7 bits (a partial byte) 1570 // it will not overflow. 1571 src := dst 1572 const maxBits = sys.PtrSize*8 - 7 1573 if n <= maxBits { 1574 // Start with bits in output buffer. 1575 pattern := bits 1576 npattern := nbits 1577 1578 // If we need more bits, fetch them from memory. 1579 if size == 1 { 1580 src = subtract1(src) 1581 for npattern < n { 1582 pattern <<= 8 1583 pattern |= uintptr(*src) 1584 src = subtract1(src) 1585 npattern += 8 1586 } 1587 } else { 1588 src = add1(src) 1589 for npattern < n { 1590 pattern <<= 4 1591 pattern |= uintptr(*src) & 0xf 1592 src = add1(src) 1593 npattern += 4 1594 } 1595 } 1596 1597 // We started with the whole bit output buffer, 1598 // and then we loaded bits from whole bytes. 1599 // Either way, we might now have too many instead of too few. 1600 // Discard the extra. 1601 if npattern > n { 1602 pattern >>= npattern - n 1603 npattern = n 1604 } 1605 1606 // Replicate pattern to at most maxBits. 1607 if npattern == 1 { 1608 // One bit being repeated. 1609 // If the bit is 1, make the pattern all 1s. 1610 // If the bit is 0, the pattern is already all 0s, 1611 // but we can claim that the number of bits 1612 // in the word is equal to the number we need (c), 1613 // because right shift of bits will zero fill. 1614 if pattern == 1 { 1615 pattern = 1<<maxBits - 1 1616 npattern = maxBits 1617 } else { 1618 npattern = c 1619 } 1620 } else { 1621 b := pattern 1622 nb := npattern 1623 if nb+nb <= maxBits { 1624 // Double pattern until the whole uintptr is filled. 1625 for nb <= sys.PtrSize*8 { 1626 b |= b << nb 1627 nb += nb 1628 } 1629 // Trim away incomplete copy of original pattern in high bits. 1630 // TODO(rsc): Replace with table lookup or loop on systems without divide? 1631 nb = maxBits / npattern * npattern 1632 b &= 1<<nb - 1 1633 pattern = b 1634 npattern = nb 1635 } 1636 } 1637 1638 // Add pattern to bit buffer and flush bit buffer, c/npattern times. 1639 // Since pattern contains >8 bits, there will be full bytes to flush 1640 // on each iteration. 1641 for ; c >= npattern; c -= npattern { 1642 bits |= pattern << nbits 1643 nbits += npattern 1644 if size == 1 { 1645 for nbits >= 8 { 1646 *dst = uint8(bits) 1647 dst = add1(dst) 1648 bits >>= 8 1649 nbits -= 8 1650 } 1651 } else { 1652 for nbits >= 4 { 1653 *dst = uint8(bits&0xf | bitScanAll) 1654 dst = subtract1(dst) 1655 bits >>= 4 1656 nbits -= 4 1657 } 1658 } 1659 } 1660 1661 // Add final fragment to bit buffer. 1662 if c > 0 { 1663 pattern &= 1<<c - 1 1664 bits |= pattern << nbits 1665 nbits += c 1666 } 1667 continue Run 1668 } 1669 1670 // Repeat; n too large to fit in a register. 1671 // Since nbits <= 7, we know the first few bytes of repeated data 1672 // are already written to memory. 1673 off := n - nbits // n > nbits because n > maxBits and nbits <= 7 1674 if size == 1 { 1675 // Leading src fragment. 1676 src = subtractb(src, (off+7)/8) 1677 if frag := off & 7; frag != 0 { 1678 bits |= uintptr(*src) >> (8 - frag) << nbits 1679 src = add1(src) 1680 nbits += frag 1681 c -= frag 1682 } 1683 // Main loop: load one byte, write another. 1684 // The bits are rotating through the bit buffer. 1685 for i := c / 8; i > 0; i-- { 1686 bits |= uintptr(*src) << nbits 1687 src = add1(src) 1688 *dst = uint8(bits) 1689 dst = add1(dst) 1690 bits >>= 8 1691 } 1692 // Final src fragment. 1693 if c %= 8; c > 0 { 1694 bits |= (uintptr(*src) & (1<<c - 1)) << nbits 1695 nbits += c 1696 } 1697 } else { 1698 // Leading src fragment. 1699 src = addb(src, (off+3)/4) 1700 if frag := off & 3; frag != 0 { 1701 bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits 1702 src = subtract1(src) 1703 nbits += frag 1704 c -= frag 1705 } 1706 // Main loop: load one byte, write another. 1707 // The bits are rotating through the bit buffer. 1708 for i := c / 4; i > 0; i-- { 1709 bits |= (uintptr(*src) & 0xf) << nbits 1710 src = subtract1(src) 1711 *dst = uint8(bits&0xf | bitScanAll) 1712 dst = subtract1(dst) 1713 bits >>= 4 1714 } 1715 // Final src fragment. 1716 if c %= 4; c > 0 { 1717 bits |= (uintptr(*src) & (1<<c - 1)) << nbits 1718 nbits += c 1719 } 1720 } 1721 } 1722 1723 // Write any final bits out, using full-byte writes, even for the final byte. 1724 var totalBits uintptr 1725 if size == 1 { 1726 totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits 1727 nbits += -nbits & 7 1728 for ; nbits > 0; nbits -= 8 { 1729 *dst = uint8(bits) 1730 dst = add1(dst) 1731 bits >>= 8 1732 } 1733 } else { 1734 totalBits = (uintptr(unsafe.Pointer(dstStart))-uintptr(unsafe.Pointer(dst)))*4 + nbits 1735 nbits += -nbits & 3 1736 for ; nbits > 0; nbits -= 4 { 1737 v := bits&0xf | bitScanAll 1738 *dst = uint8(v) 1739 dst = subtract1(dst) 1740 bits >>= 4 1741 } 1742 } 1743 return totalBits 1744 } 1745 1746 func dumpGCProg(p *byte) { 1747 nptr := 0 1748 for { 1749 x := *p 1750 p = add1(p) 1751 if x == 0 { 1752 print("\t", nptr, " end\n") 1753 break 1754 } 1755 if x&0x80 == 0 { 1756 print("\t", nptr, " lit ", x, ":") 1757 n := int(x+7) / 8 1758 for i := 0; i < n; i++ { 1759 print(" ", hex(*p)) 1760 p = add1(p) 1761 } 1762 print("\n") 1763 nptr += int(x) 1764 } else { 1765 nbit := int(x &^ 0x80) 1766 if nbit == 0 { 1767 for nb := uint(0); ; nb += 7 { 1768 x := *p 1769 p = add1(p) 1770 nbit |= int(x&0x7f) << nb 1771 if x&0x80 == 0 { 1772 break 1773 } 1774 } 1775 } 1776 count := 0 1777 for nb := uint(0); ; nb += 7 { 1778 x := *p 1779 p = add1(p) 1780 count |= int(x&0x7f) << nb 1781 if x&0x80 == 0 { 1782 break 1783 } 1784 } 1785 print("\t", nptr, " repeat ", nbit, " ", count, "\n") 1786 nptr += nbit * count 1787 } 1788 } 1789 } 1790 1791 // Testing. 1792 1793 func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { 1794 target := (*stkframe)(ctxt) 1795 if frame.sp <= target.sp && target.sp < frame.varp { 1796 *target = *frame 1797 return false 1798 } 1799 return true 1800 } 1801 1802 // gcbits returns the GC type info for x, for testing. 1803 // The result is the bitmap entries (0 or 1), one entry per byte. 1804 //go:linkname reflect_gcbits reflect.gcbits 1805 func reflect_gcbits(x interface{}) []byte { 1806 ret := getgcmask(x) 1807 typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem 1808 nptr := typ.ptrdata / sys.PtrSize 1809 for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 { 1810 ret = ret[:len(ret)-1] 1811 } 1812 return ret 1813 } 1814 1815 // Returns GC type info for object p for testing. 1816 func getgcmask(ep interface{}) (mask []byte) { 1817 e := *efaceOf(&ep) 1818 p := e.data 1819 t := e._type 1820 // data or bss 1821 for _, datap := range activeModules() { 1822 // data 1823 if datap.data <= uintptr(p) && uintptr(p) < datap.edata { 1824 bitmap := datap.gcdatamask.bytedata 1825 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 1826 mask = make([]byte, n/sys.PtrSize) 1827 for i := uintptr(0); i < n; i += sys.PtrSize { 1828 off := (uintptr(p) + i - datap.data) / sys.PtrSize 1829 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 1830 } 1831 return 1832 } 1833 1834 // bss 1835 if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { 1836 bitmap := datap.gcbssmask.bytedata 1837 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 1838 mask = make([]byte, n/sys.PtrSize) 1839 for i := uintptr(0); i < n; i += sys.PtrSize { 1840 off := (uintptr(p) + i - datap.bss) / sys.PtrSize 1841 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 1842 } 1843 return 1844 } 1845 } 1846 1847 // heap 1848 var n uintptr 1849 var base uintptr 1850 if mlookup(uintptr(p), &base, &n, nil) != 0 { 1851 mask = make([]byte, n/sys.PtrSize) 1852 for i := uintptr(0); i < n; i += sys.PtrSize { 1853 hbits := heapBitsForAddr(base + i) 1854 if hbits.isPointer() { 1855 mask[i/sys.PtrSize] = 1 1856 } 1857 if i != 1*sys.PtrSize && !hbits.morePointers() { 1858 mask = mask[:i/sys.PtrSize] 1859 break 1860 } 1861 } 1862 return 1863 } 1864 1865 // stack 1866 if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi { 1867 var frame stkframe 1868 frame.sp = uintptr(p) 1869 _g_ := getg() 1870 gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) 1871 if frame.fn.valid() { 1872 f := frame.fn 1873 targetpc := frame.continpc 1874 if targetpc == 0 { 1875 return 1876 } 1877 if targetpc != f.entry { 1878 targetpc-- 1879 } 1880 pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, nil) 1881 if pcdata == -1 { 1882 return 1883 } 1884 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps)) 1885 if stkmap == nil || stkmap.n <= 0 { 1886 return 1887 } 1888 bv := stackmapdata(stkmap, pcdata) 1889 size := uintptr(bv.n) * sys.PtrSize 1890 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 1891 mask = make([]byte, n/sys.PtrSize) 1892 for i := uintptr(0); i < n; i += sys.PtrSize { 1893 bitmap := bv.bytedata 1894 off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize 1895 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 1896 } 1897 } 1898 return 1899 } 1900 1901 // otherwise, not something the GC knows about. 1902 // possibly read-only data, like malloc(0). 1903 // must not have pointers 1904 return 1905 } 1906