Home | History | Annotate | Download | only in gen
      1 // Copyright 2015 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Simplifications that apply to all backend architectures. As an example, this
      6 // Go source code
      7 //
      8 // y := 0 * x
      9 //
     10 // can be translated into y := 0 without losing any information, which saves a
     11 // pointless multiplication instruction. Other .rules files in this directory
     12 // (for example AMD64.rules) contain rules specific to the architecture in the
     13 // filename. The rules here apply to every architecture.
     14 //
     15 // The code for parsing this file lives in rulegen.go; this file generates
     16 // ssa/rewritegeneric.go.
     17 
     18 // values are specified using the following format:
     19 // (op <type> [auxint] {aux} arg0 arg1 ...)
     20 // the type, aux, and auxint fields are optional
     21 // on the matching side
     22 //  - the type, aux, and auxint fields must match if they are specified.
     23 //  - the first occurrence of a variable defines that variable.  Subsequent
     24 //    uses must match (be == to) the first use.
     25 //  - v is defined to be the value matched.
     26 //  - an additional conditional can be provided after the match pattern with "&&".
     27 // on the generated side
     28 //  - the type of the top-level expression is the same as the one on the left-hand side.
     29 //  - the type of any subexpressions must be specified explicitly (or
     30 //    be specified in the op's type field).
     31 //  - auxint will be 0 if not specified.
     32 //  - aux will be nil if not specified.
     33 
     34 // blocks are specified using the following format:
     35 // (kind controlvalue succ0 succ1 ...)
     36 // controlvalue must be "nil" or a value expression
     37 // succ* fields must be variables
     38 // For now, the generated successors must be a permutation of the matched successors.
     39 
     40 // constant folding
     41 (Trunc16to8  (Const16  [c])) -> (Const8   [int64(int8(c))])
     42 (Trunc32to8  (Const32  [c])) -> (Const8   [int64(int8(c))])
     43 (Trunc32to16 (Const32  [c])) -> (Const16  [int64(int16(c))])
     44 (Trunc64to8  (Const64  [c])) -> (Const8   [int64(int8(c))])
     45 (Trunc64to16 (Const64  [c])) -> (Const16  [int64(int16(c))])
     46 (Trunc64to32 (Const64  [c])) -> (Const32  [int64(int32(c))])
     47 (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))])
     48 (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float
     49 (Cvt32to32F  (Const32  [c])) -> (Const32F [f2i(float64(float32(int32(c))))])
     50 (Cvt32to64F  (Const32  [c])) -> (Const64F [f2i(float64(int32(c)))])
     51 (Cvt64to32F  (Const64  [c])) -> (Const32F [f2i(float64(float32(c)))])
     52 (Cvt64to64F  (Const64  [c])) -> (Const64F [f2i(float64(c))])
     53 (Cvt32Fto32  (Const32F [c])) -> (Const32  [int64(int32(i2f(c)))])
     54 (Cvt32Fto64  (Const32F [c])) -> (Const64  [int64(i2f(c))])
     55 (Cvt64Fto32  (Const64F [c])) -> (Const32  [int64(int32(i2f(c)))])
     56 (Cvt64Fto64  (Const64F [c])) -> (Const64  [int64(i2f(c))])
     57 (Round32F x:(Const32F)) -> x
     58 (Round64F x:(Const64F)) -> x
     59 
     60 (Trunc16to8  (ZeroExt8to16  x)) -> x
     61 (Trunc32to8  (ZeroExt8to32  x)) -> x
     62 (Trunc32to16 (ZeroExt8to32  x)) -> (ZeroExt8to16  x)
     63 (Trunc32to16 (ZeroExt16to32 x)) -> x
     64 (Trunc64to8  (ZeroExt8to64  x)) -> x
     65 (Trunc64to16 (ZeroExt8to64  x)) -> (ZeroExt8to16  x)
     66 (Trunc64to16 (ZeroExt16to64 x)) -> x
     67 (Trunc64to32 (ZeroExt8to64  x)) -> (ZeroExt8to32  x)
     68 (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x)
     69 (Trunc64to32 (ZeroExt32to64 x)) -> x
     70 (Trunc16to8  (SignExt8to16  x)) -> x
     71 (Trunc32to8  (SignExt8to32  x)) -> x
     72 (Trunc32to16 (SignExt8to32  x)) -> (SignExt8to16  x)
     73 (Trunc32to16 (SignExt16to32 x)) -> x
     74 (Trunc64to8  (SignExt8to64  x)) -> x
     75 (Trunc64to16 (SignExt8to64  x)) -> (SignExt8to16  x)
     76 (Trunc64to16 (SignExt16to64 x)) -> x
     77 (Trunc64to32 (SignExt8to64  x)) -> (SignExt8to32  x)
     78 (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x)
     79 (Trunc64to32 (SignExt32to64 x)) -> x
     80 
     81 (ZeroExt8to16  (Const8  [c])) -> (Const16 [int64( uint8(c))])
     82 (ZeroExt8to32  (Const8  [c])) -> (Const32 [int64( uint8(c))])
     83 (ZeroExt8to64  (Const8  [c])) -> (Const64 [int64( uint8(c))])
     84 (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))])
     85 (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))])
     86 (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))])
     87 (SignExt8to16  (Const8  [c])) -> (Const16 [int64(  int8(c))])
     88 (SignExt8to32  (Const8  [c])) -> (Const32 [int64(  int8(c))])
     89 (SignExt8to64  (Const8  [c])) -> (Const64 [int64(  int8(c))])
     90 (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))])
     91 (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))])
     92 (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))])
     93 
     94 (Neg8   (Const8   [c])) -> (Const8   [int64( -int8(c))])
     95 (Neg16  (Const16  [c])) -> (Const16  [int64(-int16(c))])
     96 (Neg32  (Const32  [c])) -> (Const32  [int64(-int32(c))])
     97 (Neg64  (Const64  [c])) -> (Const64  [-c])
     98 (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))])
     99 (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))])
    100 
    101 (Add8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c+d))])
    102 (Add16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c+d))])
    103 (Add32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c+d))])
    104 (Add64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c+d])
    105 (Add32F (Const32F [c]) (Const32F [d])) ->
    106         (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision
    107 (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))])
    108 (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c])
    109 (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c])
    110 
    111 (Sub8   (Const8 [c]) (Const8 [d]))     -> (Const8 [int64(int8(c-d))])
    112 (Sub16  (Const16 [c]) (Const16 [d]))   -> (Const16 [int64(int16(c-d))])
    113 (Sub32  (Const32 [c]) (Const32 [d]))   -> (Const32 [int64(int32(c-d))])
    114 (Sub64  (Const64 [c]) (Const64 [d]))   -> (Const64 [c-d])
    115 (Sub32F (Const32F [c]) (Const32F [d])) ->
    116         (Const32F [f2i(float64(i2f32(c) - i2f32(d)))])
    117 (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))])
    118 
    119 (Mul8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c*d))])
    120 (Mul16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c*d))])
    121 (Mul32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c*d))])
    122 (Mul64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c*d])
    123 (Mul32F (Const32F [c]) (Const32F [d])) ->
    124         (Const32F [f2i(float64(i2f32(c) * i2f32(d)))])
    125 (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))])
    126 
    127 (And8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c&d))])
    128 (And16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c&d))])
    129 (And32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c&d))])
    130 (And64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c&d])
    131 
    132 (Or8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c|d))])
    133 (Or16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c|d))])
    134 (Or32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c|d))])
    135 (Or64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c|d])
    136 
    137 (Xor8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c^d))])
    138 (Xor16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c^d))])
    139 (Xor32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c^d))])
    140 (Xor64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c^d])
    141 
    142 (Div8   (Const8  [c])  (Const8  [d])) && d != 0 -> (Const8  [int64(int8(c)/int8(d))])
    143 (Div16  (Const16 [c])  (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))])
    144 (Div32  (Const32 [c])  (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))])
    145 (Div64  (Const64 [c])  (Const64 [d])) && d != 0 -> (Const64 [c/d])
    146 (Div8u  (Const8  [c])  (Const8  [d])) && d != 0 -> (Const8  [int64(int8(uint8(c)/uint8(d)))])
    147 (Div16u (Const16 [c])  (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))])
    148 (Div32u (Const32 [c])  (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))])
    149 (Div64u (Const64 [c])  (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))])
    150 (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))])
    151 (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))])
    152 
    153 // Convert x * 1 to x.
    154 (Mul8  (Const8  [1]) x) -> x
    155 (Mul16 (Const16 [1]) x) -> x
    156 (Mul32 (Const32 [1]) x) -> x
    157 (Mul64 (Const64 [1]) x) -> x
    158 
    159 // Convert x * -1 to -x.
    160 (Mul8  (Const8  [-1]) x) -> (Neg8  x)
    161 (Mul16 (Const16 [-1]) x) -> (Neg16 x)
    162 (Mul32 (Const32 [-1]) x) -> (Neg32 x)
    163 (Mul64 (Const64 [-1]) x) -> (Neg64 x)
    164 
    165 // Convert multiplication by a power of two to a shift.
    166 (Mul8  <t> n (Const8  [c])) && isPowerOfTwo(c) -> (Lsh8x64  <t> n (Const64 <typ.UInt64> [log2(c)]))
    167 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)]))
    168 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)]))
    169 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)]))
    170 (Mul8  <t> n (Const8  [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8  (Lsh8x64  <t> n (Const64 <typ.UInt64> [log2(-c)])))
    171 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)])))
    172 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)])))
    173 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)])))
    174 
    175 (Mod8  (Const8  [c]) (Const8  [d])) && d != 0 -> (Const8  [int64(int8(c % d))])
    176 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))])
    177 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))])
    178 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d])
    179 
    180 (Mod8u  (Const8 [c])  (Const8  [d])) && d != 0 -> (Const8  [int64(uint8(c) % uint8(d))])
    181 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))])
    182 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))])
    183 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))])
    184 
    185 (Lsh64x64  (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)])
    186 (Rsh64x64  (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)])
    187 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))])
    188 (Lsh32x64  (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))])
    189 (Rsh32x64  (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))])
    190 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))])
    191 (Lsh16x64  (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))])
    192 (Rsh16x64  (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))])
    193 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))])
    194 (Lsh8x64   (Const8  [c]) (Const64 [d])) -> (Const8  [int64(int8(c) << uint64(d))])
    195 (Rsh8x64   (Const8  [c]) (Const64 [d])) -> (Const8  [int64(int8(c) >> uint64(d))])
    196 (Rsh8Ux64  (Const8  [c]) (Const64 [d])) -> (Const8  [int64(int8(uint8(c) >> uint64(d)))])
    197 
    198 // Fold IsInBounds when the range of the index cannot exceed the limit.
    199 (IsInBounds (ZeroExt8to32  _) (Const32 [c])) && (1 << 8)  <= c -> (ConstBool [1])
    200 (IsInBounds (ZeroExt8to64  _) (Const64 [c])) && (1 << 8)  <= c -> (ConstBool [1])
    201 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1])
    202 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1])
    203 (IsInBounds x x) -> (ConstBool [0])
    204 (IsInBounds                (And8  (Const8  [c]) _)  (Const8  [d])) && 0 <= c && c < d -> (ConstBool [1])
    205 (IsInBounds (ZeroExt8to16  (And8  (Const8  [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1])
    206 (IsInBounds (ZeroExt8to32  (And8  (Const8  [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1])
    207 (IsInBounds (ZeroExt8to64  (And8  (Const8  [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
    208 (IsInBounds                (And16 (Const16 [c]) _)  (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1])
    209 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1])
    210 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
    211 (IsInBounds                (And32 (Const32 [c]) _)  (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1])
    212 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
    213 (IsInBounds                (And64 (Const64 [c]) _)  (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
    214 (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)])
    215 (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)])
    216 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
    217 (IsInBounds (Mod32u _ y) y) -> (ConstBool [1])
    218 (IsInBounds (Mod64u _ y) y) -> (ConstBool [1])
    219 // Right shifting a unsigned number limits its value.
    220 (IsInBounds (ZeroExt8to64  (Rsh8Ux64  _ (Const64 [c]))) (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
    221 (IsInBounds (ZeroExt8to32  (Rsh8Ux64  _ (Const64 [c]))) (Const32 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
    222 (IsInBounds (ZeroExt8to16  (Rsh8Ux64  _ (Const64 [c]))) (Const16 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
    223 (IsInBounds                (Rsh8Ux64  _ (Const64 [c]))  (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
    224 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1])
    225 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1])
    226 (IsInBounds                (Rsh16Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1])
    227 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1])
    228 (IsInBounds                (Rsh32Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1])
    229 (IsInBounds                (Rsh64Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d -> (ConstBool [1])
    230 
    231 (IsSliceInBounds x x) -> (ConstBool [1])
    232 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1])
    233 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1])
    234 (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1])
    235 (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1])
    236 (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)])
    237 (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)])
    238 (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1])
    239 
    240 (Eq64 x x) -> (ConstBool [1])
    241 (Eq32 x x) -> (ConstBool [1])
    242 (Eq16 x x) -> (ConstBool [1])
    243 (Eq8  x x) -> (ConstBool [1])
    244 (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)])
    245 (EqB (ConstBool [0]) x) -> (Not x)
    246 (EqB (ConstBool [1]) x) -> x
    247 
    248 (Neq64 x x) -> (ConstBool [0])
    249 (Neq32 x x) -> (ConstBool [0])
    250 (Neq16 x x) -> (ConstBool [0])
    251 (Neq8  x x) -> (ConstBool [0])
    252 (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)])
    253 (NeqB (ConstBool [0]) x) -> x
    254 (NeqB (ConstBool [1]) x) -> (Not x)
    255 (NeqB (Not x) (Not y)) -> (NeqB x y)
    256 
    257 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x)
    258 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x)
    259 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x)
    260 (Eq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) -> (Eq8  (Const8 <t> [int64(int8(c-d))]) x)
    261 
    262 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x)
    263 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x)
    264 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x)
    265 (Neq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x)
    266 
    267 // Canonicalize x-const to x+(-const)
    268 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x)
    269 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x)
    270 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x)
    271 (Sub8  x (Const8  <t> [c])) && x.Op != OpConst8  -> (Add8  (Const8  <t> [int64(int8(-c))]) x)
    272 
    273 // fold negation into comparison operators
    274 (Not (Eq64 x y)) -> (Neq64 x y)
    275 (Not (Eq32 x y)) -> (Neq32 x y)
    276 (Not (Eq16 x y)) -> (Neq16 x y)
    277 (Not (Eq8  x y)) -> (Neq8  x y)
    278 (Not (EqB  x y)) -> (NeqB  x y)
    279 
    280 (Not (Neq64 x y)) -> (Eq64 x y)
    281 (Not (Neq32 x y)) -> (Eq32 x y)
    282 (Not (Neq16 x y)) -> (Eq16 x y)
    283 (Not (Neq8  x y)) -> (Eq8  x y)
    284 (Not (NeqB  x y)) -> (EqB  x y)
    285 
    286 (Not (Greater64 x y)) -> (Leq64 x y)
    287 (Not (Greater32 x y)) -> (Leq32 x y)
    288 (Not (Greater16 x y)) -> (Leq16 x y)
    289 (Not (Greater8  x y)) -> (Leq8  x y)
    290 
    291 (Not (Greater64U x y)) -> (Leq64U x y)
    292 (Not (Greater32U x y)) -> (Leq32U x y)
    293 (Not (Greater16U x y)) -> (Leq16U x y)
    294 (Not (Greater8U  x y)) -> (Leq8U  x y)
    295 
    296 (Not (Geq64 x y)) -> (Less64 x y)
    297 (Not (Geq32 x y)) -> (Less32 x y)
    298 (Not (Geq16 x y)) -> (Less16 x y)
    299 (Not (Geq8  x y)) -> (Less8  x y)
    300 
    301 (Not (Geq64U x y)) -> (Less64U x y)
    302 (Not (Geq32U x y)) -> (Less32U x y)
    303 (Not (Geq16U x y)) -> (Less16U x y)
    304 (Not (Geq8U  x y)) -> (Less8U  x y)
    305 
    306 (Not (Less64 x y)) -> (Geq64 x y)
    307 (Not (Less32 x y)) -> (Geq32 x y)
    308 (Not (Less16 x y)) -> (Geq16 x y)
    309 (Not (Less8  x y)) -> (Geq8  x y)
    310 
    311 (Not (Less64U x y)) -> (Geq64U x y)
    312 (Not (Less32U x y)) -> (Geq32U x y)
    313 (Not (Less16U x y)) -> (Geq16U x y)
    314 (Not (Less8U  x y)) -> (Geq8U  x y)
    315 
    316 (Not (Leq64 x y)) -> (Greater64 x y)
    317 (Not (Leq32 x y)) -> (Greater32 x y)
    318 (Not (Leq16 x y)) -> (Greater16 x y)
    319 (Not (Leq8  x y)) -> (Greater8 x y)
    320 
    321 (Not (Leq64U x y)) -> (Greater64U x y)
    322 (Not (Leq32U x y)) -> (Greater32U x y)
    323 (Not (Leq16U x y)) -> (Greater16U x y)
    324 (Not (Leq8U  x y)) -> (Greater8U  x y)
    325 
    326 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
    327 // a[i].b = ...; a[i+1].b = ...
    328 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) ->
    329   (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
    330 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) ->
    331   (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x))
    332 
    333 // Rewrite x*y + x*z  to  x*(y+z)
    334 (Add64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Add64 <t> y z))
    335 (Add32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Add32 <t> y z))
    336 (Add16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Add16 <t> y z))
    337 (Add8  <t> (Mul8  x y) (Mul8  x z)) -> (Mul8  x (Add8  <t> y z))
    338 
    339 // Rewrite x*y - x*z  to  x*(y-z)
    340 (Sub64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Sub64 <t> y z))
    341 (Sub32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Sub32 <t> y z))
    342 (Sub16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Sub16 <t> y z))
    343 (Sub8  <t> (Mul8  x y) (Mul8  x z)) -> (Mul8  x (Sub8  <t> y z))
    344 
    345 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
    346 // the number of the other rewrite rules for const shifts
    347 (Lsh64x32  <t> x (Const32 [c])) -> (Lsh64x64  x (Const64 <t> [int64(uint32(c))]))
    348 (Lsh64x16  <t> x (Const16 [c])) -> (Lsh64x64  x (Const64 <t> [int64(uint16(c))]))
    349 (Lsh64x8   <t> x (Const8  [c])) -> (Lsh64x64  x (Const64 <t> [int64(uint8(c))]))
    350 (Rsh64x32  <t> x (Const32 [c])) -> (Rsh64x64  x (Const64 <t> [int64(uint32(c))]))
    351 (Rsh64x16  <t> x (Const16 [c])) -> (Rsh64x64  x (Const64 <t> [int64(uint16(c))]))
    352 (Rsh64x8   <t> x (Const8  [c])) -> (Rsh64x64  x (Const64 <t> [int64(uint8(c))]))
    353 (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
    354 (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
    355 (Rsh64Ux8  <t> x (Const8  [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
    356 
    357 (Lsh32x32  <t> x (Const32 [c])) -> (Lsh32x64  x (Const64 <t> [int64(uint32(c))]))
    358 (Lsh32x16  <t> x (Const16 [c])) -> (Lsh32x64  x (Const64 <t> [int64(uint16(c))]))
    359 (Lsh32x8   <t> x (Const8  [c])) -> (Lsh32x64  x (Const64 <t> [int64(uint8(c))]))
    360 (Rsh32x32  <t> x (Const32 [c])) -> (Rsh32x64  x (Const64 <t> [int64(uint32(c))]))
    361 (Rsh32x16  <t> x (Const16 [c])) -> (Rsh32x64  x (Const64 <t> [int64(uint16(c))]))
    362 (Rsh32x8   <t> x (Const8  [c])) -> (Rsh32x64  x (Const64 <t> [int64(uint8(c))]))
    363 (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
    364 (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
    365 (Rsh32Ux8  <t> x (Const8  [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
    366 
    367 (Lsh16x32  <t> x (Const32 [c])) -> (Lsh16x64  x (Const64 <t> [int64(uint32(c))]))
    368 (Lsh16x16  <t> x (Const16 [c])) -> (Lsh16x64  x (Const64 <t> [int64(uint16(c))]))
    369 (Lsh16x8   <t> x (Const8  [c])) -> (Lsh16x64  x (Const64 <t> [int64(uint8(c))]))
    370 (Rsh16x32  <t> x (Const32 [c])) -> (Rsh16x64  x (Const64 <t> [int64(uint32(c))]))
    371 (Rsh16x16  <t> x (Const16 [c])) -> (Rsh16x64  x (Const64 <t> [int64(uint16(c))]))
    372 (Rsh16x8   <t> x (Const8  [c])) -> (Rsh16x64  x (Const64 <t> [int64(uint8(c))]))
    373 (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
    374 (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
    375 (Rsh16Ux8  <t> x (Const8  [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
    376 
    377 (Lsh8x32  <t> x (Const32 [c])) -> (Lsh8x64  x (Const64 <t> [int64(uint32(c))]))
    378 (Lsh8x16  <t> x (Const16 [c])) -> (Lsh8x64  x (Const64 <t> [int64(uint16(c))]))
    379 (Lsh8x8   <t> x (Const8  [c])) -> (Lsh8x64  x (Const64 <t> [int64(uint8(c))]))
    380 (Rsh8x32  <t> x (Const32 [c])) -> (Rsh8x64  x (Const64 <t> [int64(uint32(c))]))
    381 (Rsh8x16  <t> x (Const16 [c])) -> (Rsh8x64  x (Const64 <t> [int64(uint16(c))]))
    382 (Rsh8x8   <t> x (Const8  [c])) -> (Rsh8x64  x (Const64 <t> [int64(uint8(c))]))
    383 (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
    384 (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
    385 (Rsh8Ux8  <t> x (Const8  [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
    386 
    387 // shifts by zero
    388 (Lsh64x64  x (Const64 [0])) -> x
    389 (Rsh64x64  x (Const64 [0])) -> x
    390 (Rsh64Ux64 x (Const64 [0])) -> x
    391 (Lsh32x64  x (Const64 [0])) -> x
    392 (Rsh32x64  x (Const64 [0])) -> x
    393 (Rsh32Ux64 x (Const64 [0])) -> x
    394 (Lsh16x64  x (Const64 [0])) -> x
    395 (Rsh16x64  x (Const64 [0])) -> x
    396 (Rsh16Ux64 x (Const64 [0])) -> x
    397 (Lsh8x64   x (Const64 [0])) -> x
    398 (Rsh8x64   x (Const64 [0])) -> x
    399 (Rsh8Ux64  x (Const64 [0])) -> x
    400 
    401 // zero shifted.
    402 (Lsh64x64  (Const64 [0]) _) -> (Const64 [0])
    403 (Lsh64x32  (Const64 [0]) _) -> (Const64 [0])
    404 (Lsh64x16  (Const64 [0]) _) -> (Const64 [0])
    405 (Lsh64x8  (Const64 [0]) _) -> (Const64 [0])
    406 (Rsh64x64  (Const64 [0]) _) -> (Const64 [0])
    407 (Rsh64x32  (Const64 [0]) _) -> (Const64 [0])
    408 (Rsh64x16  (Const64 [0]) _) -> (Const64 [0])
    409 (Rsh64x8  (Const64 [0]) _) -> (Const64 [0])
    410 (Rsh64Ux64 (Const64 [0]) _) -> (Const64 [0])
    411 (Rsh64Ux32 (Const64 [0]) _) -> (Const64 [0])
    412 (Rsh64Ux16 (Const64 [0]) _) -> (Const64 [0])
    413 (Rsh64Ux8 (Const64 [0]) _) -> (Const64 [0])
    414 (Lsh32x64  (Const32 [0]) _) -> (Const32 [0])
    415 (Lsh32x32  (Const32 [0]) _) -> (Const32 [0])
    416 (Lsh32x16  (Const32 [0]) _) -> (Const32 [0])
    417 (Lsh32x8  (Const32 [0]) _) -> (Const32 [0])
    418 (Rsh32x64  (Const32 [0]) _) -> (Const32 [0])
    419 (Rsh32x32  (Const32 [0]) _) -> (Const32 [0])
    420 (Rsh32x16  (Const32 [0]) _) -> (Const32 [0])
    421 (Rsh32x8  (Const32 [0]) _) -> (Const32 [0])
    422 (Rsh32Ux64 (Const32 [0]) _) -> (Const32 [0])
    423 (Rsh32Ux32 (Const32 [0]) _) -> (Const32 [0])
    424 (Rsh32Ux16 (Const32 [0]) _) -> (Const32 [0])
    425 (Rsh32Ux8 (Const32 [0]) _) -> (Const32 [0])
    426 (Lsh16x64  (Const16 [0]) _) -> (Const16 [0])
    427 (Lsh16x32  (Const16 [0]) _) -> (Const16 [0])
    428 (Lsh16x16  (Const16 [0]) _) -> (Const16 [0])
    429 (Lsh16x8  (Const16 [0]) _) -> (Const16 [0])
    430 (Rsh16x64  (Const16 [0]) _) -> (Const16 [0])
    431 (Rsh16x32  (Const16 [0]) _) -> (Const16 [0])
    432 (Rsh16x16  (Const16 [0]) _) -> (Const16 [0])
    433 (Rsh16x8  (Const16 [0]) _) -> (Const16 [0])
    434 (Rsh16Ux64 (Const16 [0]) _) -> (Const16 [0])
    435 (Rsh16Ux32 (Const16 [0]) _) -> (Const16 [0])
    436 (Rsh16Ux16 (Const16 [0]) _) -> (Const16 [0])
    437 (Rsh16Ux8 (Const16 [0]) _) -> (Const16 [0])
    438 (Lsh8x64   (Const8 [0]) _) -> (Const8  [0])
    439 (Lsh8x32   (Const8 [0]) _) -> (Const8  [0])
    440 (Lsh8x16   (Const8 [0]) _) -> (Const8  [0])
    441 (Lsh8x8   (Const8 [0]) _) -> (Const8  [0])
    442 (Rsh8x64   (Const8 [0]) _) -> (Const8  [0])
    443 (Rsh8x32   (Const8 [0]) _) -> (Const8  [0])
    444 (Rsh8x16   (Const8 [0]) _) -> (Const8  [0])
    445 (Rsh8x8   (Const8 [0]) _) -> (Const8  [0])
    446 (Rsh8Ux64  (Const8 [0]) _) -> (Const8  [0])
    447 (Rsh8Ux32  (Const8 [0]) _) -> (Const8  [0])
    448 (Rsh8Ux16  (Const8 [0]) _) -> (Const8  [0])
    449 (Rsh8Ux8  (Const8 [0]) _) -> (Const8  [0])
    450 
    451 // large left shifts of all values, and right shifts of unsigned values
    452 (Lsh64x64  _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0])
    453 (Rsh64Ux64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0])
    454 (Lsh32x64  _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0])
    455 (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0])
    456 (Lsh16x64  _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0])
    457 (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0])
    458 (Lsh8x64   _ (Const64 [c])) && uint64(c) >= 8  -> (Const8  [0])
    459 (Rsh8Ux64  _ (Const64 [c])) && uint64(c) >= 8  -> (Const8  [0])
    460 
    461 // combine const shifts
    462 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d]))
    463 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d]))
    464 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d]))
    465 (Lsh8x64  <t> (Lsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64  x (Const64 <t> [c+d]))
    466 
    467 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d]))
    468 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d]))
    469 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d]))
    470 (Rsh8x64  <t> (Rsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64  x (Const64 <t> [c+d]))
    471 
    472 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d]))
    473 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d]))
    474 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d]))
    475 (Rsh8Ux64  <t> (Rsh8Ux64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64  x (Const64 <t> [c+d]))
    476 
    477 // ((x >> c1) << c2) >> c3
    478 (Rsh64Ux64 (Lsh64x64 (Rsh64Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    479   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    480   -> (Rsh64Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    481 (Rsh32Ux64 (Lsh32x64 (Rsh32Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    482   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    483   -> (Rsh32Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    484 (Rsh16Ux64 (Lsh16x64 (Rsh16Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    485   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    486   -> (Rsh16Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    487 (Rsh8Ux64 (Lsh8x64 (Rsh8Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    488   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    489   -> (Rsh8Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    490 
    491 // ((x << c1) >> c2) << c3
    492 (Lsh64x64 (Rsh64Ux64 (Lsh64x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    493   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    494   -> (Lsh64x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    495 (Lsh32x64 (Rsh32Ux64 (Lsh32x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    496   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    497   -> (Lsh32x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    498 (Lsh16x64 (Rsh16Ux64 (Lsh16x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    499   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    500   -> (Lsh16x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    501 (Lsh8x64 (Rsh8Ux64 (Lsh8x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
    502   && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
    503   -> (Lsh8x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
    504 
    505 // replace shifts with zero extensions
    506 (Rsh16Ux64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) -> (ZeroExt8to16  (Trunc16to8  <typ.UInt8>  x))
    507 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32  (Trunc32to8  <typ.UInt8>  x))
    508 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64  (Trunc64to8  <typ.UInt8>  x))
    509 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
    510 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
    511 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
    512 
    513 // replace shifts with sign extensions
    514 (Rsh16x64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) -> (SignExt8to16  (Trunc16to8  <typ.Int8>  x))
    515 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32  (Trunc32to8  <typ.Int8>  x))
    516 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64  (Trunc64to8  <typ.Int8>  x))
    517 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x))
    518 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x))
    519 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x))
    520 
    521 // constant comparisons
    522 (Eq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c == d)])
    523 (Eq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c == d)])
    524 (Eq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c == d)])
    525 (Eq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c == d)])
    526 
    527 (Neq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c != d)])
    528 (Neq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c != d)])
    529 (Neq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c != d)])
    530 (Neq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c != d)])
    531 
    532 (Greater64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c > d)])
    533 (Greater32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c > d)])
    534 (Greater16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c > d)])
    535 (Greater8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c > d)])
    536 
    537 (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))])
    538 (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))])
    539 (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))])
    540 (Greater8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  > uint8(d))])
    541 
    542 (Geq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c >= d)])
    543 (Geq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c >= d)])
    544 (Geq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c >= d)])
    545 (Geq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c >= d)])
    546 
    547 (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))])
    548 (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))])
    549 (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))])
    550 (Geq8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  >= uint8(d))])
    551 
    552 (Less64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c < d)])
    553 (Less32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c < d)])
    554 (Less16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c < d)])
    555 (Less8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c < d)])
    556 
    557 (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))])
    558 (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))])
    559 (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))])
    560 (Less8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  < uint8(d))])
    561 
    562 (Leq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c <= d)])
    563 (Leq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c <= d)])
    564 (Leq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c <= d)])
    565 (Leq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c <= d)])
    566 
    567 (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))])
    568 (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))])
    569 (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))])
    570 (Leq8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  <= uint8(d))])
    571 
    572 // constant floating point comparisons
    573 (Eq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))])
    574 (Eq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))])
    575 
    576 (Neq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))])
    577 (Neq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))])
    578 
    579 (Greater64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))])
    580 (Greater32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))])
    581 
    582 (Geq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))])
    583 (Geq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))])
    584 
    585 (Less64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))])
    586 (Less32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))])
    587 
    588 (Leq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))])
    589 (Leq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))])
    590 
    591 // simplifications
    592 (Or64 x x) -> x
    593 (Or32 x x) -> x
    594 (Or16 x x) -> x
    595 (Or8  x x) -> x
    596 (Or64 (Const64 [0]) x) -> x
    597 (Or32 (Const32 [0]) x) -> x
    598 (Or16 (Const16 [0]) x) -> x
    599 (Or8  (Const8  [0]) x) -> x
    600 (Or64 (Const64 [-1]) _) -> (Const64 [-1])
    601 (Or32 (Const32 [-1]) _) -> (Const32 [-1])
    602 (Or16 (Const16 [-1]) _) -> (Const16 [-1])
    603 (Or8  (Const8  [-1]) _) -> (Const8  [-1])
    604 (And64 x x) -> x
    605 (And32 x x) -> x
    606 (And16 x x) -> x
    607 (And8  x x) -> x
    608 (And64 (Const64 [-1]) x) -> x
    609 (And32 (Const32 [-1]) x) -> x
    610 (And16 (Const16 [-1]) x) -> x
    611 (And8  (Const8  [-1]) x) -> x
    612 (And64 (Const64 [0]) _) -> (Const64 [0])
    613 (And32 (Const32 [0]) _) -> (Const32 [0])
    614 (And16 (Const16 [0]) _) -> (Const16 [0])
    615 (And8  (Const8  [0]) _) -> (Const8  [0])
    616 (Xor64 x x) -> (Const64 [0])
    617 (Xor32 x x) -> (Const32 [0])
    618 (Xor16 x x) -> (Const16 [0])
    619 (Xor8  x x) -> (Const8  [0])
    620 (Xor64 (Const64 [0]) x) -> x
    621 (Xor32 (Const32 [0]) x) -> x
    622 (Xor16 (Const16 [0]) x) -> x
    623 (Xor8  (Const8  [0]) x) -> x
    624 (Add64 (Const64 [0]) x) -> x
    625 (Add32 (Const32 [0]) x) -> x
    626 (Add16 (Const16 [0]) x) -> x
    627 (Add8  (Const8  [0]) x) -> x
    628 (Sub64 x x) -> (Const64 [0])
    629 (Sub32 x x) -> (Const32 [0])
    630 (Sub16 x x) -> (Const16 [0])
    631 (Sub8  x x) -> (Const8  [0])
    632 (Mul64 (Const64 [0]) _) -> (Const64 [0])
    633 (Mul32 (Const32 [0]) _) -> (Const32 [0])
    634 (Mul16 (Const16 [0]) _) -> (Const16 [0])
    635 (Mul8  (Const8  [0]) _) -> (Const8  [0])
    636 (Com8  (Com8  x)) -> x
    637 (Com16 (Com16 x)) -> x
    638 (Com32 (Com32 x)) -> x
    639 (Com64 (Com64 x)) -> x
    640 (Com8  (Const8  [c])) -> (Const8  [^c])
    641 (Com16 (Const16 [c])) -> (Const16 [^c])
    642 (Com32 (Const32 [c])) -> (Const32 [^c])
    643 (Com64 (Const64 [c])) -> (Const64 [^c])
    644 (Neg8  (Sub8  x y)) -> (Sub8  y x)
    645 (Neg16 (Sub16 x y)) -> (Sub16 y x)
    646 (Neg32 (Sub32 x y)) -> (Sub32 y x)
    647 (Neg64 (Sub64 x y)) -> (Sub64 y x)
    648 (Add8  (Const8  [1]) (Com8  x)) -> (Neg8  x)
    649 (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x)
    650 (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x)
    651 (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x)
    652 
    653 (And64 x (And64 x y)) -> (And64 x y)
    654 (And32 x (And32 x y)) -> (And32 x y)
    655 (And16 x (And16 x y)) -> (And16 x y)
    656 (And8  x (And8  x y)) -> (And8  x y)
    657 (Or64 x (Or64 x y)) -> (Or64 x y)
    658 (Or32 x (Or32 x y)) -> (Or32 x y)
    659 (Or16 x (Or16 x y)) -> (Or16 x y)
    660 (Or8  x (Or8  x y)) -> (Or8  x y)
    661 (Xor64 x (Xor64 x y)) -> y
    662 (Xor32 x (Xor32 x y)) -> y
    663 (Xor16 x (Xor16 x y)) -> y
    664 (Xor8  x (Xor8  x y)) -> y
    665 
    666 // Ands clear bits. Ors set bits.
    667 // If a subsequent Or will set all the bits
    668 // that an And cleared, we can skip the And.
    669 // This happens in bitmasking code like:
    670 //   x &^= 3 << shift // clear two old bits
    671 //   x  |= v << shift // set two new bits
    672 // when shift is a small constant and v ends up a constant 3.
    673 (Or8  (And8  x (Const8  [c2])) (Const8  <t> [c1])) && ^(c1 | c2) == 0 -> (Or8  (Const8  <t> [c1]) x)
    674 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x)
    675 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x)
    676 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x)
    677 
    678 (Trunc64to8  (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x)
    679 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x)
    680 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x)
    681 (Trunc32to8  (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x)
    682 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x)
    683 (Trunc16to8  (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x)
    684 
    685 (ZeroExt8to64  (Trunc64to8  x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x
    686 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x
    687 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x
    688 (ZeroExt8to32  (Trunc32to8  x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x
    689 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x
    690 (ZeroExt8to16  (Trunc16to8  x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x
    691 
    692 (SignExt8to64  (Trunc64to8  x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x
    693 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x
    694 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x
    695 (SignExt8to32  (Trunc32to8  x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x
    696 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x
    697 (SignExt8to16  (Trunc16to8  x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x
    698 
    699 (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1])
    700 (Slicemask (Const32 [0]))          -> (Const32 [0])
    701 (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1])
    702 (Slicemask (Const64 [0]))          -> (Const64 [0])
    703 
    704 // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands
    705 // leading zeros can be shifted left, then right
    706 (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32
    707   -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)]))
    708 // trailing zeros can be shifted right, then left
    709 (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32
    710   -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)]))
    711 
    712 // simplifications often used for lengths.  e.g. len(s[i:i+5])==5
    713 (Sub64 (Add64 x y) x) -> y
    714 (Sub64 (Add64 x y) y) -> x
    715 (Sub32 (Add32 x y) x) -> y
    716 (Sub32 (Add32 x y) y) -> x
    717 (Sub16 (Add16 x y) x) -> y
    718 (Sub16 (Add16 x y) y) -> x
    719 (Sub8  (Add8  x y) x) -> y
    720 (Sub8  (Add8  x y) y) -> x
    721 
    722 // basic phi simplifications
    723 (Phi (Const8  [c]) (Const8  [c])) -> (Const8  [c])
    724 (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c])
    725 (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c])
    726 (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c])
    727 
    728 // user nil checks
    729 (NeqPtr p (ConstNil)) -> (IsNonNil p)
    730 (EqPtr p (ConstNil)) -> (Not (IsNonNil p))
    731 (IsNonNil (ConstNil)) -> (ConstBool [0])
    732 
    733 // slice and interface comparisons
    734 // The frontend ensures that we can only compare against nil,
    735 // so we need only compare the first word (interface type or slice ptr).
    736 (EqInter x y)  -> (EqPtr  (ITab x) (ITab y))
    737 (NeqInter x y) -> (NeqPtr (ITab x) (ITab y))
    738 (EqSlice x y)  -> (EqPtr  (SlicePtr x) (SlicePtr y))
    739 (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y))
    740 
    741 // Load of store of same address, with compatibly typed value and same size
    742 (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.(*types.Type).Size() -> x
    743 
    744 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
    745 (Load <t1> p1 (Store {t2} p2 (Const64  [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitFloat(t1) -> (Const64F [x])
    746 (Load <t1> p1 (Store {t2} p2 (Const32  [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitFloat(t1) -> (Const32F [f2i(float64(math.Float32frombits(uint32(x))))])
    747 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitInt(t1)   -> (Const64  [x])
    748 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitInt(t1)   -> (Const32  [int64(int32(math.Float32bits(float32(i2f(x)))))])
    749 
    750 // Eliminate stores of values that have just been loaded from the same location.
    751 // We also handle the common case where there are some intermediate stores to non-overlapping struct fields.
    752 (Store {t1} p1 (Load <t2> p2 mem) mem) &&
    753 	isSamePtr(p1, p2) &&
    754 	t2.Size() == t1.(*types.Type).Size() -> mem
    755 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ oldmem)) &&
    756 	isSamePtr(p1, p2) &&
    757 	isSamePtr(p1, p3) &&
    758 	t2.Size() == t1.(*types.Type).Size() &&
    759 	!overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) -> mem
    760 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ oldmem))) &&
    761 	isSamePtr(p1, p2) &&
    762 	isSamePtr(p1, p3) &&
    763 	isSamePtr(p1, p4) &&
    764 	t2.Size() == t1.(*types.Type).Size() &&
    765 	!overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) &&
    766 	!overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) -> mem
    767 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ (Store {t5} (OffPtr [o5] p5) _ oldmem)))) &&
    768 	isSamePtr(p1, p2) &&
    769 	isSamePtr(p1, p3) &&
    770 	isSamePtr(p1, p4) &&
    771 	isSamePtr(p1, p5) &&
    772 	t2.Size() == t1.(*types.Type).Size() &&
    773 	!overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) &&
    774 	!overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) &&
    775 	!overlap(o1, t2.Size(), o5, t5.(*types.Type).Size()) -> mem
    776 
    777 // Collapse OffPtr
    778 (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b])
    779 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p
    780 
    781 // indexing operations
    782 // Note: bounds check has already been done
    783 (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.ElemType().Size()])))
    784 (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.ElemType().Size()])))
    785 
    786 // struct operations
    787 (StructSelect (StructMake1 x)) -> x
    788 (StructSelect [0] (StructMake2 x _)) -> x
    789 (StructSelect [1] (StructMake2 _ x)) -> x
    790 (StructSelect [0] (StructMake3 x _ _)) -> x
    791 (StructSelect [1] (StructMake3 _ x _)) -> x
    792 (StructSelect [2] (StructMake3 _ _ x)) -> x
    793 (StructSelect [0] (StructMake4 x _ _ _)) -> x
    794 (StructSelect [1] (StructMake4 _ x _ _)) -> x
    795 (StructSelect [2] (StructMake4 _ _ x _)) -> x
    796 (StructSelect [3] (StructMake4 _ _ _ x)) -> x
    797 
    798 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) ->
    799   (StructMake0)
    800 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) ->
    801   (StructMake1
    802     (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem))
    803 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) ->
    804   (StructMake2
    805     (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
    806     (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem))
    807 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) ->
    808   (StructMake3
    809     (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
    810     (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
    811     (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem))
    812 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) ->
    813   (StructMake4
    814     (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
    815     (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
    816     (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)
    817     (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem))
    818 
    819 (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) ->
    820   @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
    821 
    822 (Store _ (StructMake0) mem) -> mem
    823 (Store dst (StructMake1 <t> f0) mem) ->
    824   (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)
    825 (Store dst (StructMake2 <t> f0 f1) mem) ->
    826   (Store {t.FieldType(1)}
    827     (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
    828     f1
    829     (Store {t.FieldType(0)}
    830       (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
    831         f0 mem))
    832 (Store dst (StructMake3 <t> f0 f1 f2) mem) ->
    833   (Store {t.FieldType(2)}
    834     (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
    835     f2
    836     (Store {t.FieldType(1)}
    837       (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
    838       f1
    839       (Store {t.FieldType(0)}
    840         (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
    841           f0 mem)))
    842 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) ->
    843   (Store {t.FieldType(3)}
    844     (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst)
    845     f3
    846     (Store {t.FieldType(2)}
    847       (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
    848       f2
    849       (Store {t.FieldType(1)}
    850         (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
    851         f1
    852         (Store {t.FieldType(0)}
    853           (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
    854             f0 mem))))
    855 
    856 // Putting struct{*byte} and similar into direct interfaces.
    857 (IMake typ (StructMake1 val)) -> (IMake typ val)
    858 (StructSelect [0] x:(IData _)) -> x
    859 
    860 // un-SSAable values use mem->mem copies
    861 (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) ->
    862 	(Move {t} [t.(*types.Type).Size()] dst src mem)
    863 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) ->
    864 	(Move {t} [t.(*types.Type).Size()] dst src (VarDef {x} mem))
    865 
    866 // array ops
    867 (ArraySelect (ArrayMake1 x)) -> x
    868 
    869 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 ->
    870   (ArrayMake0)
    871 
    872 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) ->
    873   (ArrayMake1 (Load <t.ElemType()> ptr mem))
    874 
    875 (Store _ (ArrayMake0) mem) -> mem
    876 (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem)
    877 
    878 // Putting [1]{*byte} and similar into direct interfaces.
    879 (IMake typ (ArrayMake1 val)) -> (IMake typ val)
    880 (ArraySelect [0] x:(IData _)) -> x
    881 
    882 // string ops
    883 // Decomposing StringMake and lowering of StringPtr and StringLen
    884 // happens in a later pass, dec, so that these operations are available
    885 // to other passes for optimizations.
    886 (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c])
    887 (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c])
    888 (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" ->
    889   (StringMake (ConstNil) (Const32 <typ.Int> [0]))
    890 (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" ->
    891   (StringMake (ConstNil) (Const64 <typ.Int> [0]))
    892 (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" ->
    893   (StringMake
    894     (Addr <typ.BytePtr> {fe.StringData(s.(string))}
    895       (SB))
    896     (Const32 <typ.Int> [int64(len(s.(string)))]))
    897 (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" ->
    898   (StringMake
    899     (Addr <typ.BytePtr> {fe.StringData(s.(string))}
    900       (SB))
    901     (Const64 <typ.Int> [int64(len(s.(string)))]))
    902 
    903 // slice ops
    904 // Only a few slice rules are provided here.  See dec.rules for
    905 // a more comprehensive set.
    906 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c])
    907 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c])
    908 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c])
    909 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c])
    910 (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x)
    911 (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x)
    912 (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x)
    913 (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x)
    914 (ConstSlice) && config.PtrSize == 4 ->
    915   (SliceMake
    916     (ConstNil <v.Type.ElemType().PtrTo()>)
    917     (Const32 <typ.Int> [0])
    918     (Const32 <typ.Int> [0]))
    919 (ConstSlice) && config.PtrSize == 8 ->
    920   (SliceMake
    921     (ConstNil <v.Type.ElemType().PtrTo()>)
    922     (Const64 <typ.Int> [0])
    923     (Const64 <typ.Int> [0]))
    924 
    925 // interface ops
    926 (ConstInterface) ->
    927   (IMake
    928     (ConstNil <typ.BytePtr>)
    929     (ConstNil <typ.BytePtr>))
    930 
    931 (NilCheck (GetG mem) mem) -> mem
    932 
    933 (If (Not cond) yes no) -> (If cond no yes)
    934 (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no)
    935 (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes)
    936 
    937 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
    938 (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off)
    939 (Convert (Convert ptr mem) mem) -> ptr
    940 
    941 // Decompose compound argument values
    942 (Arg {n} [off]) && v.Type.IsString() ->
    943   (StringMake
    944     (Arg <typ.BytePtr> {n} [off])
    945     (Arg <typ.Int> {n} [off+config.PtrSize]))
    946 
    947 (Arg {n} [off]) && v.Type.IsSlice() ->
    948   (SliceMake
    949     (Arg <v.Type.ElemType().PtrTo()> {n} [off])
    950     (Arg <typ.Int> {n} [off+config.PtrSize])
    951     (Arg <typ.Int> {n} [off+2*config.PtrSize]))
    952 
    953 (Arg {n} [off]) && v.Type.IsInterface() ->
    954   (IMake
    955     (Arg <typ.BytePtr> {n} [off])
    956     (Arg <typ.BytePtr> {n} [off+config.PtrSize]))
    957 
    958 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 ->
    959   (ComplexMake
    960     (Arg <typ.Float64> {n} [off])
    961     (Arg <typ.Float64> {n} [off+8]))
    962 
    963 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 ->
    964   (ComplexMake
    965     (Arg <typ.Float32> {n} [off])
    966     (Arg <typ.Float32> {n} [off+4]))
    967 
    968 (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) ->
    969   (StructMake0)
    970 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) ->
    971   (StructMake1
    972     (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]))
    973 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) ->
    974   (StructMake2
    975     (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])
    976     (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]))
    977 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) ->
    978   (StructMake3
    979     (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])
    980     (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])
    981     (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]))
    982 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) ->
    983   (StructMake4
    984     (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])
    985     (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])
    986     (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])
    987     (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)]))
    988 
    989 (Arg <t>) && t.IsArray() && t.NumElem() == 0 ->
    990   (ArrayMake0)
    991 (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) ->
    992   (ArrayMake1 (Arg <t.ElemType()> {n} [off]))
    993 
    994 // strength reduction of divide by a constant.
    995 // See ../magic.go for a detailed description of these algorithms.
    996 
    997 // Unsigned divide by power of 2.  Strength reduce to a shift.
    998 (Div8u  n (Const8  [c])) && isPowerOfTwo(c&0xff)       -> (Rsh8Ux64 n  (Const64 <typ.UInt64> [log2(c&0xff)]))
    999 (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff)     -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)]))
   1000 (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)]))
   1001 (Div64u n (Const64 [c])) && isPowerOfTwo(c)            -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)]))
   1002 (Div64u n (Const64 [-1<<63]))                          -> (Rsh64Ux64 n (Const64 <typ.UInt64> [63]))
   1003 
   1004 // Signed non-negative divide by power of 2.
   1005 (Div8  n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff)       -> (Rsh8Ux64 n  (Const64 <typ.UInt64> [log2(c&0xff)]))
   1006 (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff)     -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)]))
   1007 (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)]))
   1008 (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c)            -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)]))
   1009 (Div64 n (Const64 [-1<<63])) && isNonNegative(n)                          -> (Const64 [0])
   1010 
   1011 // Unsigned divide, not a power of 2.  Strength reduce to a multiply.
   1012 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
   1013 (Div8u x (Const8 [c])) && umagicOK(8, c) ->
   1014   (Trunc32to8
   1015     (Rsh32Ux64 <typ.UInt32>
   1016       (Mul32 <typ.UInt32>
   1017         (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)])
   1018         (ZeroExt8to32 x))
   1019       (Const64 <typ.UInt64> [8+umagic(8,c).s])))
   1020 
   1021 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
   1022 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 ->
   1023   (Trunc64to16
   1024     (Rsh64Ux64 <typ.UInt64>
   1025       (Mul64 <typ.UInt64>
   1026         (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)])
   1027         (ZeroExt16to64 x))
   1028       (Const64 <typ.UInt64> [16+umagic(16,c).s])))
   1029 
   1030 // For 16-bit divides on 32-bit machines
   1031 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 ->
   1032   (Trunc32to16
   1033     (Rsh32Ux64 <typ.UInt32>
   1034       (Mul32 <typ.UInt32>
   1035         (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)])
   1036         (ZeroExt16to32 x))
   1037       (Const64 <typ.UInt64> [16+umagic(16,c).s-1])))
   1038 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 ->
   1039   (Trunc32to16
   1040     (Rsh32Ux64 <typ.UInt32>
   1041       (Mul32 <typ.UInt32>
   1042         (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)])
   1043         (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
   1044       (Const64 <typ.UInt64> [16+umagic(16,c).s-2])))
   1045 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 ->
   1046   (Trunc32to16
   1047     (Rsh32Ux64 <typ.UInt32>
   1048       (Avg32u
   1049         (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
   1050         (Mul32 <typ.UInt32>
   1051           (Const32 <typ.UInt32> [int64(umagic(16,c).m)])
   1052           (ZeroExt16to32 x)))
   1053       (Const64 <typ.UInt64> [16+umagic(16,c).s-1])))
   1054 
   1055 // For 32-bit divides on 32-bit machines
   1056 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 ->
   1057   (Rsh32Ux64 <typ.UInt32>
   1058     (Hmul32u <typ.UInt32>
   1059       (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))])
   1060       x)
   1061     (Const64 <typ.UInt64> [umagic(32,c).s-1]))
   1062 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 ->
   1063   (Rsh32Ux64 <typ.UInt32>
   1064     (Hmul32u <typ.UInt32>
   1065       (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))])
   1066       (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
   1067     (Const64 <typ.UInt64> [umagic(32,c).s-2]))
   1068 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 ->
   1069   (Rsh32Ux64 <typ.UInt32>
   1070     (Avg32u
   1071       x
   1072       (Hmul32u <typ.UInt32>
   1073         (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))])
   1074         x))
   1075     (Const64 <typ.UInt64> [umagic(32,c).s-1]))
   1076 
   1077 // For 32-bit divides on 64-bit machines
   1078 // We'll use a regular (non-hi) multiply for this case.
   1079 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 ->
   1080   (Trunc64to32
   1081     (Rsh64Ux64 <typ.UInt64>
   1082       (Mul64 <typ.UInt64>
   1083         (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)])
   1084         (ZeroExt32to64 x))
   1085       (Const64 <typ.UInt64> [32+umagic(32,c).s-1])))
   1086 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 ->
   1087   (Trunc64to32
   1088     (Rsh64Ux64 <typ.UInt64>
   1089       (Mul64 <typ.UInt64>
   1090         (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)])
   1091         (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
   1092       (Const64 <typ.UInt64> [32+umagic(32,c).s-2])))
   1093 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 ->
   1094   (Trunc64to32
   1095     (Rsh64Ux64 <typ.UInt64>
   1096       (Avg64u
   1097         (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
   1098         (Mul64 <typ.UInt64>
   1099           (Const64 <typ.UInt32> [int64(umagic(32,c).m)])
   1100           (ZeroExt32to64 x)))
   1101       (Const64 <typ.UInt64> [32+umagic(32,c).s-1])))
   1102 
   1103 // For 64-bit divides on 64-bit machines
   1104 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
   1105 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 ->
   1106   (Rsh64Ux64 <typ.UInt64>
   1107     (Hmul64u <typ.UInt64>
   1108       (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)])
   1109       x)
   1110     (Const64 <typ.UInt64> [umagic(64,c).s-1]))
   1111 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 ->
   1112   (Rsh64Ux64 <typ.UInt64>
   1113     (Hmul64u <typ.UInt64>
   1114       (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)])
   1115       (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
   1116     (Const64 <typ.UInt64> [umagic(64,c).s-2]))
   1117 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 ->
   1118   (Rsh64Ux64 <typ.UInt64>
   1119     (Avg64u
   1120       x
   1121       (Hmul64u <typ.UInt64>
   1122         (Const64 <typ.UInt64> [int64(umagic(64,c).m)])
   1123         x))
   1124     (Const64 <typ.UInt64> [umagic(64,c).s-1]))
   1125 
   1126 // Signed divide by a negative constant.  Rewrite to divide by a positive constant.
   1127 (Div8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  -> (Neg8  (Div8  <t> n (Const8  <t> [-c])))
   1128 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c])))
   1129 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c])))
   1130 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c])))
   1131 
   1132 // Dividing by the most-negative number.  Result is always 0 except
   1133 // if the input is also the most-negative number.
   1134 // We can detect that using the sign bit of x & -x.
   1135 (Div8  <t> x (Const8  [-1<<7 ])) -> (Rsh8Ux64  (And8  <t> x (Neg8  <t> x)) (Const64 <typ.UInt64> [7 ]))
   1136 (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
   1137 (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
   1138 (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
   1139 
   1140 // Signed divide by power of 2.
   1141 // n / c =       n >> log(c) if n >= 0
   1142 //       = (n+c-1) >> log(c) if n < 0
   1143 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
   1144 (Div8  <t> n (Const8  [c])) && isPowerOfTwo(c) ->
   1145   (Rsh8x64
   1146     (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)])))
   1147     (Const64 <typ.UInt64> [log2(c)]))
   1148 (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) ->
   1149   (Rsh16x64
   1150     (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)])))
   1151     (Const64 <typ.UInt64> [log2(c)]))
   1152 (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) ->
   1153   (Rsh32x64
   1154     (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)])))
   1155     (Const64 <typ.UInt64> [log2(c)]))
   1156 (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) ->
   1157   (Rsh64x64
   1158     (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)])))
   1159     (Const64 <typ.UInt64> [log2(c)]))
   1160 
   1161 // Signed divide, not a power of 2.  Strength reduce to a multiply.
   1162 (Div8 <t> x (Const8 [c])) && smagicOK(8,c) ->
   1163   (Sub8 <t>
   1164     (Rsh32x64 <t>
   1165       (Mul32 <typ.UInt32>
   1166         (Const32 <typ.UInt32> [int64(smagic(8,c).m)])
   1167         (SignExt8to32 x))
   1168       (Const64 <typ.UInt64> [8+smagic(8,c).s]))
   1169     (Rsh32x64 <t>
   1170       (SignExt8to32 x)
   1171       (Const64 <typ.UInt64> [31])))
   1172 (Div16 <t> x (Const16 [c])) && smagicOK(16,c) ->
   1173   (Sub16 <t>
   1174     (Rsh32x64 <t>
   1175       (Mul32 <typ.UInt32>
   1176         (Const32 <typ.UInt32> [int64(smagic(16,c).m)])
   1177         (SignExt16to32 x))
   1178       (Const64 <typ.UInt64> [16+smagic(16,c).s]))
   1179     (Rsh32x64 <t>
   1180       (SignExt16to32 x)
   1181       (Const64 <typ.UInt64> [31])))
   1182 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 ->
   1183   (Sub32 <t>
   1184     (Rsh64x64 <t>
   1185       (Mul64 <typ.UInt64>
   1186         (Const64 <typ.UInt64> [int64(smagic(32,c).m)])
   1187         (SignExt32to64 x))
   1188       (Const64 <typ.UInt64> [32+smagic(32,c).s]))
   1189     (Rsh64x64 <t>
   1190       (SignExt32to64 x)
   1191       (Const64 <typ.UInt64> [63])))
   1192 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 ->
   1193   (Sub32 <t>
   1194     (Rsh32x64 <t>
   1195       (Hmul32 <t>
   1196         (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))])
   1197         x)
   1198       (Const64 <typ.UInt64> [smagic(32,c).s-1]))
   1199     (Rsh32x64 <t>
   1200       x
   1201       (Const64 <typ.UInt64> [31])))
   1202 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 ->
   1203   (Sub32 <t>
   1204     (Rsh32x64 <t>
   1205       (Add32 <t>
   1206         (Hmul32 <t>
   1207           (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))])
   1208           x)
   1209         x)
   1210       (Const64 <typ.UInt64> [smagic(32,c).s]))
   1211     (Rsh32x64 <t>
   1212       x
   1213       (Const64 <typ.UInt64> [31])))
   1214 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 ->
   1215   (Sub64 <t>
   1216     (Rsh64x64 <t>
   1217       (Hmul64 <t>
   1218         (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)])
   1219         x)
   1220       (Const64 <typ.UInt64> [smagic(64,c).s-1]))
   1221     (Rsh64x64 <t>
   1222       x
   1223       (Const64 <typ.UInt64> [63])))
   1224 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 ->
   1225   (Sub64 <t>
   1226     (Rsh64x64 <t>
   1227       (Add64 <t>
   1228         (Hmul64 <t>
   1229           (Const64 <typ.UInt64> [int64(smagic(64,c).m)])
   1230           x)
   1231         x)
   1232       (Const64 <typ.UInt64> [smagic(64,c).s]))
   1233     (Rsh64x64 <t>
   1234       x
   1235       (Const64 <typ.UInt64> [63])))
   1236 
   1237 // Unsigned mod by power of 2 constant.
   1238 (Mod8u  <t> n (Const8  [c])) && isPowerOfTwo(c&0xff)       -> (And8 n (Const8 <t> [(c&0xff)-1]))
   1239 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff)     -> (And16 n (Const16 <t> [(c&0xffff)-1]))
   1240 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1]))
   1241 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c)            -> (And64 n (Const64 <t> [c-1]))
   1242 (Mod64u <t> n (Const64 [-1<<63]))                          -> (And64 n (Const64 <t> [1<<63-1]))
   1243 
   1244 // Signed non-negative mod by power of 2 constant.
   1245 (Mod8  <t> n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff)       -> (And8 n (Const8 <t> [(c&0xff)-1]))
   1246 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff)     -> (And16 n (Const16 <t> [(c&0xffff)-1]))
   1247 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1]))
   1248 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c)            -> (And64 n (Const64 <t> [c-1]))
   1249 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n)                              -> n
   1250 
   1251 // Signed mod by negative constant.
   1252 (Mod8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  -> (Mod8  <t> n (Const8  <t> [-c]))
   1253 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c]))
   1254 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c]))
   1255 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c]))
   1256 
   1257 // All other mods by constants, do A%B = A-(A/B*B).
   1258 // This implements % with two * and a bunch of ancillary ops.
   1259 // One of the * is free if the user's code also computes A/B.
   1260 (Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
   1261   -> (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
   1262 (Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
   1263   -> (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
   1264 (Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
   1265   -> (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
   1266 (Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
   1267   -> (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
   1268 (Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK(8 ,c)
   1269   -> (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
   1270 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c)
   1271   -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
   1272 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c)
   1273   -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
   1274 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c)
   1275   -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
   1276 
   1277 // Reassociate expressions involving
   1278 // constants such that constants come first,
   1279 // exposing obvious constant-folding opportunities.
   1280 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
   1281 // is constant, which pushes constants to the outside
   1282 // of the expression. At that point, any constant-folding
   1283 // opportunities should be obvious.
   1284 
   1285 // x + (C + z) -> C + (x + z)
   1286 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x))
   1287 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x))
   1288 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x))
   1289 (Add8  (Add8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Add8  <t> z x))
   1290 
   1291 // x + (C - z) -> C + (x - z)
   1292 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z))
   1293 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z))
   1294 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z))
   1295 (Add8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Sub8  <t> x z))
   1296 (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z))
   1297 (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z))
   1298 (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z))
   1299 (Add8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Sub8  <t> x z))
   1300 
   1301 // x + (z - C) -> (x + z) - C
   1302 (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i)
   1303 (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i)
   1304 (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i)
   1305 (Add8  (Sub8  z i:(Const8  <t>)) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Sub8  (Add8  <t> x z) i)
   1306 (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i)
   1307 (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i)
   1308 (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i)
   1309 (Add8  x (Sub8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Sub8  (Add8  <t> x z) i)
   1310 
   1311 // x - (C - z) -> x + (z - C) -> (x + z) - C
   1312 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i)
   1313 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i)
   1314 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i)
   1315 (Sub8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Sub8  (Add8  <t> x z) i)
   1316 
   1317 // x - (z - C) -> x + (C - z) -> (x - z) + C
   1318 (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z))
   1319 (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z))
   1320 (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z))
   1321 (Sub8  x (Sub8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Sub8  <t> x z))
   1322 
   1323 // x & (C & z) -> C & (x & z)
   1324 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x))
   1325 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x))
   1326 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x))
   1327 (And8  (And8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (And8  i (And8  <t> z x))
   1328 
   1329 // x | (C | z) -> C | (x | z)
   1330 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x))
   1331 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x))
   1332 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x))
   1333 (Or8  (Or8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Or8  i (Or8  <t> z x))
   1334 
   1335 // x ^ (C ^ z) -> C ^ (x ^ z)
   1336 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x))
   1337 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x))
   1338 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x))
   1339 (Xor8  (Xor8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Xor8  i (Xor8  <t> z x))
   1340 
   1341 // C + (D + x) -> (C + D) + x
   1342 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x)
   1343 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x)
   1344 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x)
   1345 (Add8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) -> (Add8  (Const8  <t> [int64(int8(c+d))]) x)
   1346 
   1347 // C + (D - x) -> (C + D) - x
   1348 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x)
   1349 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x)
   1350 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x)
   1351 (Add8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) -> (Sub8  (Const8  <t> [int64(int8(c+d))]) x)
   1352 
   1353 // C + (x - D) -> (C - D) + x
   1354 (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x)
   1355 (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x)
   1356 (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x)
   1357 (Add8  (Const8  <t> [c]) (Sub8  x (Const8  <t> [d]))) -> (Add8  (Const8  <t> [int64(int8(c-d))]) x)
   1358 
   1359 // C - (x - D) -> (C + D) - x
   1360 (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x)
   1361 (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x)
   1362 (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x)
   1363 (Sub8  (Const8  <t> [c]) (Sub8  x (Const8  <t> [d]))) -> (Sub8  (Const8  <t> [int64(int8(c+d))]) x)
   1364 
   1365 // C - (D - x) -> (C - D) + x
   1366 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x)
   1367 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x)
   1368 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x)
   1369 (Sub8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) -> (Add8  (Const8  <t> [int64(int8(c-d))]) x)
   1370 
   1371 // C & (D & x) -> (C & D) & x
   1372 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x)
   1373 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x)
   1374 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x)
   1375 (And8  (Const8  <t> [c]) (And8  (Const8  <t> [d]) x)) -> (And8  (Const8  <t> [int64(int8(c&d))]) x)
   1376 
   1377 // C | (D | x) -> (C | D) | x
   1378 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x)
   1379 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x)
   1380 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x)
   1381 (Or8  (Const8  <t> [c]) (Or8  (Const8  <t> [d]) x)) -> (Or8  (Const8  <t> [int64(int8(c|d))]) x)
   1382 
   1383 // C ^ (D ^ x) -> (C ^ D) ^ x
   1384 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x)
   1385 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x)
   1386 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x)
   1387 (Xor8  (Const8  <t> [c]) (Xor8  (Const8  <t> [d]) x)) -> (Xor8  (Const8  <t> [int64(int8(c^d))]) x)
   1388 
   1389 // C * (D * x) = (C * D) * x
   1390 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x)
   1391 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x)
   1392 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x)
   1393 (Mul8  (Const8  <t> [c]) (Mul8  (Const8  <t> [d]) x)) -> (Mul8  (Const8  <t> [int64(int8(c*d))]) x)
   1394 
   1395 // floating point optimizations
   1396 (Add32F x (Const32F [0])) -> x
   1397 (Add64F x (Const64F [0])) -> x
   1398 (Sub32F x (Const32F [0])) -> x
   1399 (Sub64F x (Const64F [0])) -> x
   1400 (Mul32F x (Const32F [f2i(1)])) -> x
   1401 (Mul64F x (Const64F [f2i(1)])) -> x
   1402 (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x)
   1403 (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x)
   1404 (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x)
   1405 (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x)
   1406 (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))]))
   1407 (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c))          -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))]))
   1408 
   1409 (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))])
   1410 
   1411 // recognize runtime.newobject and don't Zero/Nilcheck it
   1412 (Zero (Load (OffPtr [c] (SP)) mem) mem)
   1413 	&& mem.Op == OpStaticCall
   1414 	&& isSameSym(mem.Aux, "runtime.newobject")
   1415 	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
   1416 	-> mem
   1417 (Store (Load (OffPtr [c] (SP)) mem) x mem)
   1418 	&& isConstZero(x)
   1419 	&& mem.Op == OpStaticCall
   1420 	&& isSameSym(mem.Aux, "runtime.newobject")
   1421 	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
   1422 	-> mem
   1423 (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem)
   1424 	&& isConstZero(x)
   1425 	&& mem.Op == OpStaticCall
   1426 	&& isSameSym(mem.Aux, "runtime.newobject")
   1427 	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
   1428 	-> mem
   1429 // nil checks just need to rewrite to something useless.
   1430 // they will be deadcode eliminated soon afterwards.
   1431 (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _)
   1432 	&& isSameSym(sym, "runtime.newobject")
   1433 	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
   1434 	&& warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check")
   1435 	-> (Invalid)
   1436 (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _)
   1437 	&& isSameSym(sym, "runtime.newobject")
   1438 	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
   1439 	&& warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check")
   1440 	-> (Invalid)
   1441 
   1442 // Address comparison shows up in type assertions.
   1443 (EqPtr x x) -> (ConstBool [1])
   1444 (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)])
   1445 
   1446 // Inline small runtime.memmove calls with constant length.
   1447 (StaticCall {sym} s1:(Store _ (Const64 [sz]) s2:(Store  _ src s3:(Store {t} _ dst mem))))
   1448      && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config)
   1449      -> (Move {t.(*types.Type).Elem()} [sz] dst src mem)
   1450 (StaticCall {sym} s1:(Store _ (Const32 [sz]) s2:(Store  _ src s3:(Store {t} _ dst mem))))
   1451      && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config)
   1452      -> (Move {t.(*types.Type).Elem()} [sz] dst src mem)
   1453 
   1454 // De-virtualize interface calls into static calls.
   1455 // Note that (ITab (IMake)) doesn't get
   1456 // rewritten until after the first opt pass,
   1457 // so this rule should trigger reliably.
   1458 (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil ->
   1459 	(StaticCall [argsize] {devirt(v, itab, off)} mem)
   1460