Home | History | Annotate | Download | only in bzip2
      1 // Copyright 2011 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package bzip2 implements bzip2 decompression.
      6 package bzip2
      7 
      8 import "io"
      9 
     10 // There's no RFC for bzip2. I used the Wikipedia page for reference and a lot
     11 // of guessing: http://en.wikipedia.org/wiki/Bzip2
     12 // The source code to pyflate was useful for debugging:
     13 // http://www.paul.sladen.org/projects/pyflate
     14 
     15 // A StructuralError is returned when the bzip2 data is found to be
     16 // syntactically invalid.
     17 type StructuralError string
     18 
     19 func (s StructuralError) Error() string {
     20 	return "bzip2 data invalid: " + string(s)
     21 }
     22 
     23 // A reader decompresses bzip2 compressed data.
     24 type reader struct {
     25 	br           bitReader
     26 	fileCRC      uint32
     27 	blockCRC     uint32
     28 	wantBlockCRC uint32
     29 	setupDone    bool // true if we have parsed the bzip2 header.
     30 	blockSize    int  // blockSize in bytes, i.e. 900 * 1000.
     31 	eof          bool
     32 	c            [256]uint // the `C' array for the inverse BWT.
     33 	tt           []uint32  // mirrors the `tt' array in the bzip2 source and contains the P array in the upper 24 bits.
     34 	tPos         uint32    // Index of the next output byte in tt.
     35 
     36 	preRLE      []uint32 // contains the RLE data still to be processed.
     37 	preRLEUsed  int      // number of entries of preRLE used.
     38 	lastByte    int      // the last byte value seen.
     39 	byteRepeats uint     // the number of repeats of lastByte seen.
     40 	repeats     uint     // the number of copies of lastByte to output.
     41 }
     42 
     43 // NewReader returns an io.Reader which decompresses bzip2 data from r.
     44 // If r does not also implement io.ByteReader,
     45 // the decompressor may read more data than necessary from r.
     46 func NewReader(r io.Reader) io.Reader {
     47 	bz2 := new(reader)
     48 	bz2.br = newBitReader(r)
     49 	return bz2
     50 }
     51 
     52 const bzip2FileMagic = 0x425a // "BZ"
     53 const bzip2BlockMagic = 0x314159265359
     54 const bzip2FinalMagic = 0x177245385090
     55 
     56 // setup parses the bzip2 header.
     57 func (bz2 *reader) setup(needMagic bool) error {
     58 	br := &bz2.br
     59 
     60 	if needMagic {
     61 		magic := br.ReadBits(16)
     62 		if magic != bzip2FileMagic {
     63 			return StructuralError("bad magic value")
     64 		}
     65 	}
     66 
     67 	t := br.ReadBits(8)
     68 	if t != 'h' {
     69 		return StructuralError("non-Huffman entropy encoding")
     70 	}
     71 
     72 	level := br.ReadBits(8)
     73 	if level < '1' || level > '9' {
     74 		return StructuralError("invalid compression level")
     75 	}
     76 
     77 	bz2.fileCRC = 0
     78 	bz2.blockSize = 100 * 1000 * (level - '0')
     79 	if bz2.blockSize > len(bz2.tt) {
     80 		bz2.tt = make([]uint32, bz2.blockSize)
     81 	}
     82 	return nil
     83 }
     84 
     85 func (bz2 *reader) Read(buf []byte) (n int, err error) {
     86 	if bz2.eof {
     87 		return 0, io.EOF
     88 	}
     89 
     90 	if !bz2.setupDone {
     91 		err = bz2.setup(true)
     92 		brErr := bz2.br.Err()
     93 		if brErr != nil {
     94 			err = brErr
     95 		}
     96 		if err != nil {
     97 			return 0, err
     98 		}
     99 		bz2.setupDone = true
    100 	}
    101 
    102 	n, err = bz2.read(buf)
    103 	brErr := bz2.br.Err()
    104 	if brErr != nil {
    105 		err = brErr
    106 	}
    107 	return
    108 }
    109 
    110 func (bz2 *reader) readFromBlock(buf []byte) int {
    111 	// bzip2 is a block based compressor, except that it has a run-length
    112 	// preprocessing step. The block based nature means that we can
    113 	// preallocate fixed-size buffers and reuse them. However, the RLE
    114 	// preprocessing would require allocating huge buffers to store the
    115 	// maximum expansion. Thus we process blocks all at once, except for
    116 	// the RLE which we decompress as required.
    117 	n := 0
    118 	for (bz2.repeats > 0 || bz2.preRLEUsed < len(bz2.preRLE)) && n < len(buf) {
    119 		// We have RLE data pending.
    120 
    121 		// The run-length encoding works like this:
    122 		// Any sequence of four equal bytes is followed by a length
    123 		// byte which contains the number of repeats of that byte to
    124 		// include. (The number of repeats can be zero.) Because we are
    125 		// decompressing on-demand our state is kept in the reader
    126 		// object.
    127 
    128 		if bz2.repeats > 0 {
    129 			buf[n] = byte(bz2.lastByte)
    130 			n++
    131 			bz2.repeats--
    132 			if bz2.repeats == 0 {
    133 				bz2.lastByte = -1
    134 			}
    135 			continue
    136 		}
    137 
    138 		bz2.tPos = bz2.preRLE[bz2.tPos]
    139 		b := byte(bz2.tPos)
    140 		bz2.tPos >>= 8
    141 		bz2.preRLEUsed++
    142 
    143 		if bz2.byteRepeats == 3 {
    144 			bz2.repeats = uint(b)
    145 			bz2.byteRepeats = 0
    146 			continue
    147 		}
    148 
    149 		if bz2.lastByte == int(b) {
    150 			bz2.byteRepeats++
    151 		} else {
    152 			bz2.byteRepeats = 0
    153 		}
    154 		bz2.lastByte = int(b)
    155 
    156 		buf[n] = b
    157 		n++
    158 	}
    159 
    160 	return n
    161 }
    162 
    163 func (bz2 *reader) read(buf []byte) (int, error) {
    164 	for {
    165 		n := bz2.readFromBlock(buf)
    166 		if n > 0 || len(buf) == 0 {
    167 			bz2.blockCRC = updateCRC(bz2.blockCRC, buf[:n])
    168 			return n, nil
    169 		}
    170 
    171 		// End of block. Check CRC.
    172 		if bz2.blockCRC != bz2.wantBlockCRC {
    173 			bz2.br.err = StructuralError("block checksum mismatch")
    174 			return 0, bz2.br.err
    175 		}
    176 
    177 		// Find next block.
    178 		br := &bz2.br
    179 		switch br.ReadBits64(48) {
    180 		default:
    181 			return 0, StructuralError("bad magic value found")
    182 
    183 		case bzip2BlockMagic:
    184 			// Start of block.
    185 			err := bz2.readBlock()
    186 			if err != nil {
    187 				return 0, err
    188 			}
    189 
    190 		case bzip2FinalMagic:
    191 			// Check end-of-file CRC.
    192 			wantFileCRC := uint32(br.ReadBits64(32))
    193 			if br.err != nil {
    194 				return 0, br.err
    195 			}
    196 			if bz2.fileCRC != wantFileCRC {
    197 				br.err = StructuralError("file checksum mismatch")
    198 				return 0, br.err
    199 			}
    200 
    201 			// Skip ahead to byte boundary.
    202 			// Is there a file concatenated to this one?
    203 			// It would start with BZ.
    204 			if br.bits%8 != 0 {
    205 				br.ReadBits(br.bits % 8)
    206 			}
    207 			b, err := br.r.ReadByte()
    208 			if err == io.EOF {
    209 				br.err = io.EOF
    210 				bz2.eof = true
    211 				return 0, io.EOF
    212 			}
    213 			if err != nil {
    214 				br.err = err
    215 				return 0, err
    216 			}
    217 			z, err := br.r.ReadByte()
    218 			if err != nil {
    219 				if err == io.EOF {
    220 					err = io.ErrUnexpectedEOF
    221 				}
    222 				br.err = err
    223 				return 0, err
    224 			}
    225 			if b != 'B' || z != 'Z' {
    226 				return 0, StructuralError("bad magic value in continuation file")
    227 			}
    228 			if err := bz2.setup(false); err != nil {
    229 				return 0, err
    230 			}
    231 		}
    232 	}
    233 }
    234 
    235 // readBlock reads a bzip2 block. The magic number should already have been consumed.
    236 func (bz2 *reader) readBlock() (err error) {
    237 	br := &bz2.br
    238 	bz2.wantBlockCRC = uint32(br.ReadBits64(32)) // skip checksum. TODO: check it if we can figure out what it is.
    239 	bz2.blockCRC = 0
    240 	bz2.fileCRC = (bz2.fileCRC<<1 | bz2.fileCRC>>31) ^ bz2.wantBlockCRC
    241 	randomized := br.ReadBits(1)
    242 	if randomized != 0 {
    243 		return StructuralError("deprecated randomized files")
    244 	}
    245 	origPtr := uint(br.ReadBits(24))
    246 
    247 	// If not every byte value is used in the block (i.e., it's text) then
    248 	// the symbol set is reduced. The symbols used are stored as a
    249 	// two-level, 16x16 bitmap.
    250 	symbolRangeUsedBitmap := br.ReadBits(16)
    251 	symbolPresent := make([]bool, 256)
    252 	numSymbols := 0
    253 	for symRange := uint(0); symRange < 16; symRange++ {
    254 		if symbolRangeUsedBitmap&(1<<(15-symRange)) != 0 {
    255 			bits := br.ReadBits(16)
    256 			for symbol := uint(0); symbol < 16; symbol++ {
    257 				if bits&(1<<(15-symbol)) != 0 {
    258 					symbolPresent[16*symRange+symbol] = true
    259 					numSymbols++
    260 				}
    261 			}
    262 		}
    263 	}
    264 
    265 	if numSymbols == 0 {
    266 		// There must be an EOF symbol.
    267 		return StructuralError("no symbols in input")
    268 	}
    269 
    270 	// A block uses between two and six different Huffman trees.
    271 	numHuffmanTrees := br.ReadBits(3)
    272 	if numHuffmanTrees < 2 || numHuffmanTrees > 6 {
    273 		return StructuralError("invalid number of Huffman trees")
    274 	}
    275 
    276 	// The Huffman tree can switch every 50 symbols so there's a list of
    277 	// tree indexes telling us which tree to use for each 50 symbol block.
    278 	numSelectors := br.ReadBits(15)
    279 	treeIndexes := make([]uint8, numSelectors)
    280 
    281 	// The tree indexes are move-to-front transformed and stored as unary
    282 	// numbers.
    283 	mtfTreeDecoder := newMTFDecoderWithRange(numHuffmanTrees)
    284 	for i := range treeIndexes {
    285 		c := 0
    286 		for {
    287 			inc := br.ReadBits(1)
    288 			if inc == 0 {
    289 				break
    290 			}
    291 			c++
    292 		}
    293 		if c >= numHuffmanTrees {
    294 			return StructuralError("tree index too large")
    295 		}
    296 		treeIndexes[i] = mtfTreeDecoder.Decode(c)
    297 	}
    298 
    299 	// The list of symbols for the move-to-front transform is taken from
    300 	// the previously decoded symbol bitmap.
    301 	symbols := make([]byte, numSymbols)
    302 	nextSymbol := 0
    303 	for i := 0; i < 256; i++ {
    304 		if symbolPresent[i] {
    305 			symbols[nextSymbol] = byte(i)
    306 			nextSymbol++
    307 		}
    308 	}
    309 	mtf := newMTFDecoder(symbols)
    310 
    311 	numSymbols += 2 // to account for RUNA and RUNB symbols
    312 	huffmanTrees := make([]huffmanTree, numHuffmanTrees)
    313 
    314 	// Now we decode the arrays of code-lengths for each tree.
    315 	lengths := make([]uint8, numSymbols)
    316 	for i := range huffmanTrees {
    317 		// The code lengths are delta encoded from a 5-bit base value.
    318 		length := br.ReadBits(5)
    319 		for j := range lengths {
    320 			for {
    321 				if length < 1 || length > 20 {
    322 					return StructuralError("Huffman length out of range")
    323 				}
    324 				if !br.ReadBit() {
    325 					break
    326 				}
    327 				if br.ReadBit() {
    328 					length--
    329 				} else {
    330 					length++
    331 				}
    332 			}
    333 			lengths[j] = uint8(length)
    334 		}
    335 		huffmanTrees[i], err = newHuffmanTree(lengths)
    336 		if err != nil {
    337 			return err
    338 		}
    339 	}
    340 
    341 	selectorIndex := 1 // the next tree index to use
    342 	if len(treeIndexes) == 0 {
    343 		return StructuralError("no tree selectors given")
    344 	}
    345 	if int(treeIndexes[0]) >= len(huffmanTrees) {
    346 		return StructuralError("tree selector out of range")
    347 	}
    348 	currentHuffmanTree := huffmanTrees[treeIndexes[0]]
    349 	bufIndex := 0 // indexes bz2.buf, the output buffer.
    350 	// The output of the move-to-front transform is run-length encoded and
    351 	// we merge the decoding into the Huffman parsing loop. These two
    352 	// variables accumulate the repeat count. See the Wikipedia page for
    353 	// details.
    354 	repeat := 0
    355 	repeatPower := 0
    356 
    357 	// The `C' array (used by the inverse BWT) needs to be zero initialized.
    358 	for i := range bz2.c {
    359 		bz2.c[i] = 0
    360 	}
    361 
    362 	decoded := 0 // counts the number of symbols decoded by the current tree.
    363 	for {
    364 		if decoded == 50 {
    365 			if selectorIndex >= numSelectors {
    366 				return StructuralError("insufficient selector indices for number of symbols")
    367 			}
    368 			if int(treeIndexes[selectorIndex]) >= len(huffmanTrees) {
    369 				return StructuralError("tree selector out of range")
    370 			}
    371 			currentHuffmanTree = huffmanTrees[treeIndexes[selectorIndex]]
    372 			selectorIndex++
    373 			decoded = 0
    374 		}
    375 
    376 		v := currentHuffmanTree.Decode(br)
    377 		decoded++
    378 
    379 		if v < 2 {
    380 			// This is either the RUNA or RUNB symbol.
    381 			if repeat == 0 {
    382 				repeatPower = 1
    383 			}
    384 			repeat += repeatPower << v
    385 			repeatPower <<= 1
    386 
    387 			// This limit of 2 million comes from the bzip2 source
    388 			// code. It prevents repeat from overflowing.
    389 			if repeat > 2*1024*1024 {
    390 				return StructuralError("repeat count too large")
    391 			}
    392 			continue
    393 		}
    394 
    395 		if repeat > 0 {
    396 			// We have decoded a complete run-length so we need to
    397 			// replicate the last output symbol.
    398 			if repeat > bz2.blockSize-bufIndex {
    399 				return StructuralError("repeats past end of block")
    400 			}
    401 			for i := 0; i < repeat; i++ {
    402 				b := mtf.First()
    403 				bz2.tt[bufIndex] = uint32(b)
    404 				bz2.c[b]++
    405 				bufIndex++
    406 			}
    407 			repeat = 0
    408 		}
    409 
    410 		if int(v) == numSymbols-1 {
    411 			// This is the EOF symbol. Because it's always at the
    412 			// end of the move-to-front list, and never gets moved
    413 			// to the front, it has this unique value.
    414 			break
    415 		}
    416 
    417 		// Since two metasymbols (RUNA and RUNB) have values 0 and 1,
    418 		// one would expect |v-2| to be passed to the MTF decoder.
    419 		// However, the front of the MTF list is never referenced as 0,
    420 		// it's always referenced with a run-length of 1. Thus 0
    421 		// doesn't need to be encoded and we have |v-1| in the next
    422 		// line.
    423 		b := mtf.Decode(int(v - 1))
    424 		if bufIndex >= bz2.blockSize {
    425 			return StructuralError("data exceeds block size")
    426 		}
    427 		bz2.tt[bufIndex] = uint32(b)
    428 		bz2.c[b]++
    429 		bufIndex++
    430 	}
    431 
    432 	if origPtr >= uint(bufIndex) {
    433 		return StructuralError("origPtr out of bounds")
    434 	}
    435 
    436 	// We have completed the entropy decoding. Now we can perform the
    437 	// inverse BWT and setup the RLE buffer.
    438 	bz2.preRLE = bz2.tt[:bufIndex]
    439 	bz2.preRLEUsed = 0
    440 	bz2.tPos = inverseBWT(bz2.preRLE, origPtr, bz2.c[:])
    441 	bz2.lastByte = -1
    442 	bz2.byteRepeats = 0
    443 	bz2.repeats = 0
    444 
    445 	return nil
    446 }
    447 
    448 // inverseBWT implements the inverse Burrows-Wheeler transform as described in
    449 // http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf, section 4.2.
    450 // In that document, origPtr is called `I' and c is the `C' array after the
    451 // first pass over the data. It's an argument here because we merge the first
    452 // pass with the Huffman decoding.
    453 //
    454 // This also implements the `single array' method from the bzip2 source code
    455 // which leaves the output, still shuffled, in the bottom 8 bits of tt with the
    456 // index of the next byte in the top 24-bits. The index of the first byte is
    457 // returned.
    458 func inverseBWT(tt []uint32, origPtr uint, c []uint) uint32 {
    459 	sum := uint(0)
    460 	for i := 0; i < 256; i++ {
    461 		sum += c[i]
    462 		c[i] = sum - c[i]
    463 	}
    464 
    465 	for i := range tt {
    466 		b := tt[i] & 0xff
    467 		tt[c[b]] |= uint32(i) << 8
    468 		c[b]++
    469 	}
    470 
    471 	return tt[origPtr] >> 8
    472 }
    473 
    474 // This is a standard CRC32 like in hash/crc32 except that all the shifts are reversed,
    475 // causing the bits in the input to be processed in the reverse of the usual order.
    476 
    477 var crctab [256]uint32
    478 
    479 func init() {
    480 	const poly = 0x04C11DB7
    481 	for i := range crctab {
    482 		crc := uint32(i) << 24
    483 		for j := 0; j < 8; j++ {
    484 			if crc&0x80000000 != 0 {
    485 				crc = (crc << 1) ^ poly
    486 			} else {
    487 				crc <<= 1
    488 			}
    489 		}
    490 		crctab[i] = crc
    491 	}
    492 }
    493 
    494 // updateCRC updates the crc value to incorporate the data in b.
    495 // The initial value is 0.
    496 func updateCRC(val uint32, b []byte) uint32 {
    497 	crc := ^val
    498 	for _, v := range b {
    499 		crc = crctab[byte(crc>>24)^v] ^ (crc << 8)
    500 	}
    501 	return ^crc
    502 }
    503