Home | History | Annotate | Download | only in types
      1 // Copyright 2013 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This file implements various field and method lookup functions.
      6 
      7 package types
      8 
      9 // LookupFieldOrMethod looks up a field or method with given package and name
     10 // in T and returns the corresponding *Var or *Func, an index sequence, and a
     11 // bool indicating if there were any pointer indirections on the path to the
     12 // field or method. If addressable is set, T is the type of an addressable
     13 // variable (only matters for method lookups).
     14 //
     15 // The last index entry is the field or method index in the (possibly embedded)
     16 // type where the entry was found, either:
     17 //
     18 //	1) the list of declared methods of a named type; or
     19 //	2) the list of all methods (method set) of an interface type; or
     20 //	3) the list of fields of a struct type.
     21 //
     22 // The earlier index entries are the indices of the anonymous struct fields
     23 // traversed to get to the found entry, starting at depth 0.
     24 //
     25 // If no entry is found, a nil object is returned. In this case, the returned
     26 // index and indirect values have the following meaning:
     27 //
     28 //	- If index != nil, the index sequence points to an ambiguous entry
     29 //	(the same name appeared more than once at the same embedding level).
     30 //
     31 //	- If indirect is set, a method with a pointer receiver type was found
     32 //      but there was no pointer on the path from the actual receiver type to
     33 //	the method's formal receiver base type, nor was the receiver addressable.
     34 //
     35 func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
     36 	// Methods cannot be associated to a named pointer type
     37 	// (spec: "The type denoted by T is called the receiver base type;
     38 	// it must not be a pointer or interface type and it must be declared
     39 	// in the same package as the method.").
     40 	// Thus, if we have a named pointer type, proceed with the underlying
     41 	// pointer type but discard the result if it is a method since we would
     42 	// not have found it for T (see also issue 8590).
     43 	if t, _ := T.(*Named); t != nil {
     44 		if p, _ := t.underlying.(*Pointer); p != nil {
     45 			obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name)
     46 			if _, ok := obj.(*Func); ok {
     47 				return nil, nil, false
     48 			}
     49 			return
     50 		}
     51 	}
     52 
     53 	return lookupFieldOrMethod(T, addressable, pkg, name)
     54 }
     55 
     56 // TODO(gri) The named type consolidation and seen maps below must be
     57 //           indexed by unique keys for a given type. Verify that named
     58 //           types always have only one representation (even when imported
     59 //           indirectly via different packages.)
     60 
     61 func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
     62 	// WARNING: The code in this function is extremely subtle - do not modify casually!
     63 	//          This function and NewMethodSet should be kept in sync.
     64 
     65 	if name == "_" {
     66 		return // blank fields/methods are never found
     67 	}
     68 
     69 	typ, isPtr := deref(T)
     70 
     71 	// *typ where typ is an interface has no methods.
     72 	if isPtr && IsInterface(typ) {
     73 		return
     74 	}
     75 
     76 	// Start with typ as single entry at shallowest depth.
     77 	current := []embeddedType{{typ, nil, isPtr, false}}
     78 
     79 	// Named types that we have seen already, allocated lazily.
     80 	// Used to avoid endless searches in case of recursive types.
     81 	// Since only Named types can be used for recursive types, we
     82 	// only need to track those.
     83 	// (If we ever allow type aliases to construct recursive types,
     84 	// we must use type identity rather than pointer equality for
     85 	// the map key comparison, as we do in consolidateMultiples.)
     86 	var seen map[*Named]bool
     87 
     88 	// search current depth
     89 	for len(current) > 0 {
     90 		var next []embeddedType // embedded types found at current depth
     91 
     92 		// look for (pkg, name) in all types at current depth
     93 		for _, e := range current {
     94 			typ := e.typ
     95 
     96 			// If we have a named type, we may have associated methods.
     97 			// Look for those first.
     98 			if named, _ := typ.(*Named); named != nil {
     99 				if seen[named] {
    100 					// We have seen this type before, at a more shallow depth
    101 					// (note that multiples of this type at the current depth
    102 					// were consolidated before). The type at that depth shadows
    103 					// this same type at the current depth, so we can ignore
    104 					// this one.
    105 					continue
    106 				}
    107 				if seen == nil {
    108 					seen = make(map[*Named]bool)
    109 				}
    110 				seen[named] = true
    111 
    112 				// look for a matching attached method
    113 				if i, m := lookupMethod(named.methods, pkg, name); m != nil {
    114 					// potential match
    115 					assert(m.typ != nil)
    116 					index = concat(e.index, i)
    117 					if obj != nil || e.multiples {
    118 						return nil, index, false // collision
    119 					}
    120 					obj = m
    121 					indirect = e.indirect
    122 					continue // we can't have a matching field or interface method
    123 				}
    124 
    125 				// continue with underlying type
    126 				typ = named.underlying
    127 			}
    128 
    129 			switch t := typ.(type) {
    130 			case *Struct:
    131 				// look for a matching field and collect embedded types
    132 				for i, f := range t.fields {
    133 					if f.sameId(pkg, name) {
    134 						assert(f.typ != nil)
    135 						index = concat(e.index, i)
    136 						if obj != nil || e.multiples {
    137 							return nil, index, false // collision
    138 						}
    139 						obj = f
    140 						indirect = e.indirect
    141 						continue // we can't have a matching interface method
    142 					}
    143 					// Collect embedded struct fields for searching the next
    144 					// lower depth, but only if we have not seen a match yet
    145 					// (if we have a match it is either the desired field or
    146 					// we have a name collision on the same depth; in either
    147 					// case we don't need to look further).
    148 					// Embedded fields are always of the form T or *T where
    149 					// T is a type name. If e.typ appeared multiple times at
    150 					// this depth, f.typ appears multiple times at the next
    151 					// depth.
    152 					if obj == nil && f.anonymous {
    153 						typ, isPtr := deref(f.typ)
    154 						// TODO(gri) optimization: ignore types that can't
    155 						// have fields or methods (only Named, Struct, and
    156 						// Interface types need to be considered).
    157 						next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
    158 					}
    159 				}
    160 
    161 			case *Interface:
    162 				// look for a matching method
    163 				// TODO(gri) t.allMethods is sorted - use binary search
    164 				if i, m := lookupMethod(t.allMethods, pkg, name); m != nil {
    165 					assert(m.typ != nil)
    166 					index = concat(e.index, i)
    167 					if obj != nil || e.multiples {
    168 						return nil, index, false // collision
    169 					}
    170 					obj = m
    171 					indirect = e.indirect
    172 				}
    173 			}
    174 		}
    175 
    176 		if obj != nil {
    177 			// found a potential match
    178 			// spec: "A method call x.m() is valid if the method set of (the type of) x
    179 			//        contains m and the argument list can be assigned to the parameter
    180 			//        list of m. If x is addressable and &x's method set contains m, x.m()
    181 			//        is shorthand for (&x).m()".
    182 			if f, _ := obj.(*Func); f != nil && ptrRecv(f) && !indirect && !addressable {
    183 				return nil, nil, true // pointer/addressable receiver required
    184 			}
    185 			return
    186 		}
    187 
    188 		current = consolidateMultiples(next)
    189 	}
    190 
    191 	return nil, nil, false // not found
    192 }
    193 
    194 // embeddedType represents an embedded type
    195 type embeddedType struct {
    196 	typ       Type
    197 	index     []int // embedded field indices, starting with index at depth 0
    198 	indirect  bool  // if set, there was a pointer indirection on the path to this field
    199 	multiples bool  // if set, typ appears multiple times at this depth
    200 }
    201 
    202 // consolidateMultiples collects multiple list entries with the same type
    203 // into a single entry marked as containing multiples. The result is the
    204 // consolidated list.
    205 func consolidateMultiples(list []embeddedType) []embeddedType {
    206 	if len(list) <= 1 {
    207 		return list // at most one entry - nothing to do
    208 	}
    209 
    210 	n := 0                     // number of entries w/ unique type
    211 	prev := make(map[Type]int) // index at which type was previously seen
    212 	for _, e := range list {
    213 		if i, found := lookupType(prev, e.typ); found {
    214 			list[i].multiples = true
    215 			// ignore this entry
    216 		} else {
    217 			prev[e.typ] = n
    218 			list[n] = e
    219 			n++
    220 		}
    221 	}
    222 	return list[:n]
    223 }
    224 
    225 func lookupType(m map[Type]int, typ Type) (int, bool) {
    226 	// fast path: maybe the types are equal
    227 	if i, found := m[typ]; found {
    228 		return i, true
    229 	}
    230 
    231 	for t, i := range m {
    232 		if Identical(t, typ) {
    233 			return i, true
    234 		}
    235 	}
    236 
    237 	return 0, false
    238 }
    239 
    240 // MissingMethod returns (nil, false) if V implements T, otherwise it
    241 // returns a missing method required by T and whether it is missing or
    242 // just has the wrong type.
    243 //
    244 // For non-interface types V, or if static is set, V implements T if all
    245 // methods of T are present in V. Otherwise (V is an interface and static
    246 // is not set), MissingMethod only checks that methods of T which are also
    247 // present in V have matching types (e.g., for a type assertion x.(T) where
    248 // x is of interface type V).
    249 //
    250 func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
    251 	// fast path for common case
    252 	if T.Empty() {
    253 		return
    254 	}
    255 
    256 	// TODO(gri) Consider using method sets here. Might be more efficient.
    257 
    258 	if ityp, _ := V.Underlying().(*Interface); ityp != nil {
    259 		// TODO(gri) allMethods is sorted - can do this more efficiently
    260 		for _, m := range T.allMethods {
    261 			_, obj := lookupMethod(ityp.allMethods, m.pkg, m.name)
    262 			switch {
    263 			case obj == nil:
    264 				if static {
    265 					return m, false
    266 				}
    267 			case !Identical(obj.Type(), m.typ):
    268 				return m, true
    269 			}
    270 		}
    271 		return
    272 	}
    273 
    274 	// A concrete type implements T if it implements all methods of T.
    275 	for _, m := range T.allMethods {
    276 		obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name)
    277 
    278 		f, _ := obj.(*Func)
    279 		if f == nil {
    280 			return m, false
    281 		}
    282 
    283 		if !Identical(f.typ, m.typ) {
    284 			return m, true
    285 		}
    286 	}
    287 
    288 	return
    289 }
    290 
    291 // assertableTo reports whether a value of type V can be asserted to have type T.
    292 // It returns (nil, false) as affirmative answer. Otherwise it returns a missing
    293 // method required by V and whether it is missing or just has the wrong type.
    294 func assertableTo(V *Interface, T Type) (method *Func, wrongType bool) {
    295 	// no static check is required if T is an interface
    296 	// spec: "If T is an interface type, x.(T) asserts that the
    297 	//        dynamic type of x implements the interface T."
    298 	if _, ok := T.Underlying().(*Interface); ok && !strict {
    299 		return
    300 	}
    301 	return MissingMethod(T, V, false)
    302 }
    303 
    304 // deref dereferences typ if it is a *Pointer and returns its base and true.
    305 // Otherwise it returns (typ, false).
    306 func deref(typ Type) (Type, bool) {
    307 	if p, _ := typ.(*Pointer); p != nil {
    308 		return p.base, true
    309 	}
    310 	return typ, false
    311 }
    312 
    313 // derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
    314 // (named or unnamed) struct and returns its base. Otherwise it returns typ.
    315 func derefStructPtr(typ Type) Type {
    316 	if p, _ := typ.Underlying().(*Pointer); p != nil {
    317 		if _, ok := p.base.Underlying().(*Struct); ok {
    318 			return p.base
    319 		}
    320 	}
    321 	return typ
    322 }
    323 
    324 // concat returns the result of concatenating list and i.
    325 // The result does not share its underlying array with list.
    326 func concat(list []int, i int) []int {
    327 	var t []int
    328 	t = append(t, list...)
    329 	return append(t, i)
    330 }
    331 
    332 // fieldIndex returns the index for the field with matching package and name, or a value < 0.
    333 func fieldIndex(fields []*Var, pkg *Package, name string) int {
    334 	if name != "_" {
    335 		for i, f := range fields {
    336 			if f.sameId(pkg, name) {
    337 				return i
    338 			}
    339 		}
    340 	}
    341 	return -1
    342 }
    343 
    344 // lookupMethod returns the index of and method with matching package and name, or (-1, nil).
    345 func lookupMethod(methods []*Func, pkg *Package, name string) (int, *Func) {
    346 	if name != "_" {
    347 		for i, m := range methods {
    348 			if m.sameId(pkg, name) {
    349 				return i, m
    350 			}
    351 		}
    352 	}
    353 	return -1, nil
    354 }
    355