Home | History | Annotate | Download | only in big
      1 // Copyright 2015 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package big_test
      6 
      7 import (
      8 	"fmt"
      9 	"math/big"
     10 )
     11 
     12 // Use the classic continued fraction for e
     13 //     e = [1; 0, 1, 1, 2, 1, 1, ... 2n, 1, 1, ...]
     14 // i.e., for the nth term, use
     15 //     1          if   n mod 3 != 1
     16 //  (n-1)/3 * 2   if   n mod 3 == 1
     17 func recur(n, lim int64) *big.Rat {
     18 	term := new(big.Rat)
     19 	if n%3 != 1 {
     20 		term.SetInt64(1)
     21 	} else {
     22 		term.SetInt64((n - 1) / 3 * 2)
     23 	}
     24 
     25 	if n > lim {
     26 		return term
     27 	}
     28 
     29 	// Directly initialize frac as the fractional
     30 	// inverse of the result of recur.
     31 	frac := new(big.Rat).Inv(recur(n+1, lim))
     32 
     33 	return term.Add(term, frac)
     34 }
     35 
     36 // This example demonstrates how to use big.Rat to compute the
     37 // first 15 terms in the sequence of rational convergents for
     38 // the constant e (base of natural logarithm).
     39 func Example_eConvergents() {
     40 	for i := 1; i <= 15; i++ {
     41 		r := recur(0, int64(i))
     42 
     43 		// Print r both as a fraction and as a floating-point number.
     44 		// Since big.Rat implements fmt.Formatter, we can use %-13s to
     45 		// get a left-aligned string representation of the fraction.
     46 		fmt.Printf("%-13s = %s\n", r, r.FloatString(8))
     47 	}
     48 
     49 	// Output:
     50 	// 2/1           = 2.00000000
     51 	// 3/1           = 3.00000000
     52 	// 8/3           = 2.66666667
     53 	// 11/4          = 2.75000000
     54 	// 19/7          = 2.71428571
     55 	// 87/32         = 2.71875000
     56 	// 106/39        = 2.71794872
     57 	// 193/71        = 2.71830986
     58 	// 1264/465      = 2.71827957
     59 	// 1457/536      = 2.71828358
     60 	// 2721/1001     = 2.71828172
     61 	// 23225/8544    = 2.71828184
     62 	// 25946/9545    = 2.71828182
     63 	// 49171/18089   = 2.71828183
     64 	// 517656/190435 = 2.71828183
     65 }
     66