Home | History | Annotate | Download | only in big
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This file implements unsigned multi-precision integers (natural
      6 // numbers). They are the building blocks for the implementation
      7 // of signed integers, rationals, and floating-point numbers.
      8 
      9 package big
     10 
     11 import (
     12 	"math/bits"
     13 	"math/rand"
     14 	"sync"
     15 )
     16 
     17 // An unsigned integer x of the form
     18 //
     19 //   x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
     20 //
     21 // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
     22 // with the digits x[i] as the slice elements.
     23 //
     24 // A number is normalized if the slice contains no leading 0 digits.
     25 // During arithmetic operations, denormalized values may occur but are
     26 // always normalized before returning the final result. The normalized
     27 // representation of 0 is the empty or nil slice (length = 0).
     28 //
     29 type nat []Word
     30 
     31 var (
     32 	natOne = nat{1}
     33 	natTwo = nat{2}
     34 	natTen = nat{10}
     35 )
     36 
     37 func (z nat) clear() {
     38 	for i := range z {
     39 		z[i] = 0
     40 	}
     41 }
     42 
     43 func (z nat) norm() nat {
     44 	i := len(z)
     45 	for i > 0 && z[i-1] == 0 {
     46 		i--
     47 	}
     48 	return z[0:i]
     49 }
     50 
     51 func (z nat) make(n int) nat {
     52 	if n <= cap(z) {
     53 		return z[:n] // reuse z
     54 	}
     55 	// Choosing a good value for e has significant performance impact
     56 	// because it increases the chance that a value can be reused.
     57 	const e = 4 // extra capacity
     58 	return make(nat, n, n+e)
     59 }
     60 
     61 func (z nat) setWord(x Word) nat {
     62 	if x == 0 {
     63 		return z[:0]
     64 	}
     65 	z = z.make(1)
     66 	z[0] = x
     67 	return z
     68 }
     69 
     70 func (z nat) setUint64(x uint64) nat {
     71 	// single-word value
     72 	if w := Word(x); uint64(w) == x {
     73 		return z.setWord(w)
     74 	}
     75 	// 2-word value
     76 	z = z.make(2)
     77 	z[1] = Word(x >> 32)
     78 	z[0] = Word(x)
     79 	return z
     80 }
     81 
     82 func (z nat) set(x nat) nat {
     83 	z = z.make(len(x))
     84 	copy(z, x)
     85 	return z
     86 }
     87 
     88 func (z nat) add(x, y nat) nat {
     89 	m := len(x)
     90 	n := len(y)
     91 
     92 	switch {
     93 	case m < n:
     94 		return z.add(y, x)
     95 	case m == 0:
     96 		// n == 0 because m >= n; result is 0
     97 		return z[:0]
     98 	case n == 0:
     99 		// result is x
    100 		return z.set(x)
    101 	}
    102 	// m > 0
    103 
    104 	z = z.make(m + 1)
    105 	c := addVV(z[0:n], x, y)
    106 	if m > n {
    107 		c = addVW(z[n:m], x[n:], c)
    108 	}
    109 	z[m] = c
    110 
    111 	return z.norm()
    112 }
    113 
    114 func (z nat) sub(x, y nat) nat {
    115 	m := len(x)
    116 	n := len(y)
    117 
    118 	switch {
    119 	case m < n:
    120 		panic("underflow")
    121 	case m == 0:
    122 		// n == 0 because m >= n; result is 0
    123 		return z[:0]
    124 	case n == 0:
    125 		// result is x
    126 		return z.set(x)
    127 	}
    128 	// m > 0
    129 
    130 	z = z.make(m)
    131 	c := subVV(z[0:n], x, y)
    132 	if m > n {
    133 		c = subVW(z[n:], x[n:], c)
    134 	}
    135 	if c != 0 {
    136 		panic("underflow")
    137 	}
    138 
    139 	return z.norm()
    140 }
    141 
    142 func (x nat) cmp(y nat) (r int) {
    143 	m := len(x)
    144 	n := len(y)
    145 	if m != n || m == 0 {
    146 		switch {
    147 		case m < n:
    148 			r = -1
    149 		case m > n:
    150 			r = 1
    151 		}
    152 		return
    153 	}
    154 
    155 	i := m - 1
    156 	for i > 0 && x[i] == y[i] {
    157 		i--
    158 	}
    159 
    160 	switch {
    161 	case x[i] < y[i]:
    162 		r = -1
    163 	case x[i] > y[i]:
    164 		r = 1
    165 	}
    166 	return
    167 }
    168 
    169 func (z nat) mulAddWW(x nat, y, r Word) nat {
    170 	m := len(x)
    171 	if m == 0 || y == 0 {
    172 		return z.setWord(r) // result is r
    173 	}
    174 	// m > 0
    175 
    176 	z = z.make(m + 1)
    177 	z[m] = mulAddVWW(z[0:m], x, y, r)
    178 
    179 	return z.norm()
    180 }
    181 
    182 // basicMul multiplies x and y and leaves the result in z.
    183 // The (non-normalized) result is placed in z[0 : len(x) + len(y)].
    184 func basicMul(z, x, y nat) {
    185 	z[0 : len(x)+len(y)].clear() // initialize z
    186 	for i, d := range y {
    187 		if d != 0 {
    188 			z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
    189 		}
    190 	}
    191 }
    192 
    193 // montgomery computes z mod m = x*y*2**(-n*_W) mod m,
    194 // assuming k = -1/m mod 2**_W.
    195 // z is used for storing the result which is returned;
    196 // z must not alias x, y or m.
    197 // See Gueron, "Efficient Software Implementations of Modular Exponentiation".
    198 // https://eprint.iacr.org/2011/239.pdf
    199 // In the terminology of that paper, this is an "Almost Montgomery Multiplication":
    200 // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
    201 // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
    202 func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
    203 	// This code assumes x, y, m are all the same length, n.
    204 	// (required by addMulVVW and the for loop).
    205 	// It also assumes that x, y are already reduced mod m,
    206 	// or else the result will not be properly reduced.
    207 	if len(x) != n || len(y) != n || len(m) != n {
    208 		panic("math/big: mismatched montgomery number lengths")
    209 	}
    210 	z = z.make(n)
    211 	z.clear()
    212 	var c Word
    213 	for i := 0; i < n; i++ {
    214 		d := y[i]
    215 		c2 := addMulVVW(z, x, d)
    216 		t := z[0] * k
    217 		c3 := addMulVVW(z, m, t)
    218 		copy(z, z[1:])
    219 		cx := c + c2
    220 		cy := cx + c3
    221 		z[n-1] = cy
    222 		if cx < c2 || cy < c3 {
    223 			c = 1
    224 		} else {
    225 			c = 0
    226 		}
    227 	}
    228 	if c != 0 {
    229 		subVV(z, z, m)
    230 	}
    231 	return z
    232 }
    233 
    234 // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
    235 // Factored out for readability - do not use outside karatsuba.
    236 func karatsubaAdd(z, x nat, n int) {
    237 	if c := addVV(z[0:n], z, x); c != 0 {
    238 		addVW(z[n:n+n>>1], z[n:], c)
    239 	}
    240 }
    241 
    242 // Like karatsubaAdd, but does subtract.
    243 func karatsubaSub(z, x nat, n int) {
    244 	if c := subVV(z[0:n], z, x); c != 0 {
    245 		subVW(z[n:n+n>>1], z[n:], c)
    246 	}
    247 }
    248 
    249 // Operands that are shorter than karatsubaThreshold are multiplied using
    250 // "grade school" multiplication; for longer operands the Karatsuba algorithm
    251 // is used.
    252 var karatsubaThreshold = 40 // computed by calibrate_test.go
    253 
    254 // karatsuba multiplies x and y and leaves the result in z.
    255 // Both x and y must have the same length n and n must be a
    256 // power of 2. The result vector z must have len(z) >= 6*n.
    257 // The (non-normalized) result is placed in z[0 : 2*n].
    258 func karatsuba(z, x, y nat) {
    259 	n := len(y)
    260 
    261 	// Switch to basic multiplication if numbers are odd or small.
    262 	// (n is always even if karatsubaThreshold is even, but be
    263 	// conservative)
    264 	if n&1 != 0 || n < karatsubaThreshold || n < 2 {
    265 		basicMul(z, x, y)
    266 		return
    267 	}
    268 	// n&1 == 0 && n >= karatsubaThreshold && n >= 2
    269 
    270 	// Karatsuba multiplication is based on the observation that
    271 	// for two numbers x and y with:
    272 	//
    273 	//   x = x1*b + x0
    274 	//   y = y1*b + y0
    275 	//
    276 	// the product x*y can be obtained with 3 products z2, z1, z0
    277 	// instead of 4:
    278 	//
    279 	//   x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
    280 	//       =    z2*b*b +              z1*b +    z0
    281 	//
    282 	// with:
    283 	//
    284 	//   xd = x1 - x0
    285 	//   yd = y0 - y1
    286 	//
    287 	//   z1 =      xd*yd                    + z2 + z0
    288 	//      = (x1-x0)*(y0 - y1)             + z2 + z0
    289 	//      = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
    290 	//      = x1*y0 -    z2 -    z0 + x0*y1 + z2 + z0
    291 	//      = x1*y0                 + x0*y1
    292 
    293 	// split x, y into "digits"
    294 	n2 := n >> 1              // n2 >= 1
    295 	x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
    296 	y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
    297 
    298 	// z is used for the result and temporary storage:
    299 	//
    300 	//   6*n     5*n     4*n     3*n     2*n     1*n     0*n
    301 	// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
    302 	//
    303 	// For each recursive call of karatsuba, an unused slice of
    304 	// z is passed in that has (at least) half the length of the
    305 	// caller's z.
    306 
    307 	// compute z0 and z2 with the result "in place" in z
    308 	karatsuba(z, x0, y0)     // z0 = x0*y0
    309 	karatsuba(z[n:], x1, y1) // z2 = x1*y1
    310 
    311 	// compute xd (or the negative value if underflow occurs)
    312 	s := 1 // sign of product xd*yd
    313 	xd := z[2*n : 2*n+n2]
    314 	if subVV(xd, x1, x0) != 0 { // x1-x0
    315 		s = -s
    316 		subVV(xd, x0, x1) // x0-x1
    317 	}
    318 
    319 	// compute yd (or the negative value if underflow occurs)
    320 	yd := z[2*n+n2 : 3*n]
    321 	if subVV(yd, y0, y1) != 0 { // y0-y1
    322 		s = -s
    323 		subVV(yd, y1, y0) // y1-y0
    324 	}
    325 
    326 	// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
    327 	// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
    328 	p := z[n*3:]
    329 	karatsuba(p, xd, yd)
    330 
    331 	// save original z2:z0
    332 	// (ok to use upper half of z since we're done recursing)
    333 	r := z[n*4:]
    334 	copy(r, z[:n*2])
    335 
    336 	// add up all partial products
    337 	//
    338 	//   2*n     n     0
    339 	// z = [ z2  | z0  ]
    340 	//   +    [ z0  ]
    341 	//   +    [ z2  ]
    342 	//   +    [  p  ]
    343 	//
    344 	karatsubaAdd(z[n2:], r, n)
    345 	karatsubaAdd(z[n2:], r[n:], n)
    346 	if s > 0 {
    347 		karatsubaAdd(z[n2:], p, n)
    348 	} else {
    349 		karatsubaSub(z[n2:], p, n)
    350 	}
    351 }
    352 
    353 // alias reports whether x and y share the same base array.
    354 func alias(x, y nat) bool {
    355 	return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
    356 }
    357 
    358 // addAt implements z += x<<(_W*i); z must be long enough.
    359 // (we don't use nat.add because we need z to stay the same
    360 // slice, and we don't need to normalize z after each addition)
    361 func addAt(z, x nat, i int) {
    362 	if n := len(x); n > 0 {
    363 		if c := addVV(z[i:i+n], z[i:], x); c != 0 {
    364 			j := i + n
    365 			if j < len(z) {
    366 				addVW(z[j:], z[j:], c)
    367 			}
    368 		}
    369 	}
    370 }
    371 
    372 func max(x, y int) int {
    373 	if x > y {
    374 		return x
    375 	}
    376 	return y
    377 }
    378 
    379 // karatsubaLen computes an approximation to the maximum k <= n such that
    380 // k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
    381 // result is the largest number that can be divided repeatedly by 2 before
    382 // becoming about the value of karatsubaThreshold.
    383 func karatsubaLen(n int) int {
    384 	i := uint(0)
    385 	for n > karatsubaThreshold {
    386 		n >>= 1
    387 		i++
    388 	}
    389 	return n << i
    390 }
    391 
    392 func (z nat) mul(x, y nat) nat {
    393 	m := len(x)
    394 	n := len(y)
    395 
    396 	switch {
    397 	case m < n:
    398 		return z.mul(y, x)
    399 	case m == 0 || n == 0:
    400 		return z[:0]
    401 	case n == 1:
    402 		return z.mulAddWW(x, y[0], 0)
    403 	}
    404 	// m >= n > 1
    405 
    406 	// determine if z can be reused
    407 	if alias(z, x) || alias(z, y) {
    408 		z = nil // z is an alias for x or y - cannot reuse
    409 	}
    410 
    411 	// use basic multiplication if the numbers are small
    412 	if n < karatsubaThreshold {
    413 		z = z.make(m + n)
    414 		basicMul(z, x, y)
    415 		return z.norm()
    416 	}
    417 	// m >= n && n >= karatsubaThreshold && n >= 2
    418 
    419 	// determine Karatsuba length k such that
    420 	//
    421 	//   x = xh*b + x0  (0 <= x0 < b)
    422 	//   y = yh*b + y0  (0 <= y0 < b)
    423 	//   b = 1<<(_W*k)  ("base" of digits xi, yi)
    424 	//
    425 	k := karatsubaLen(n)
    426 	// k <= n
    427 
    428 	// multiply x0 and y0 via Karatsuba
    429 	x0 := x[0:k]              // x0 is not normalized
    430 	y0 := y[0:k]              // y0 is not normalized
    431 	z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
    432 	karatsuba(z, x0, y0)
    433 	z = z[0 : m+n]  // z has final length but may be incomplete
    434 	z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
    435 
    436 	// If xh != 0 or yh != 0, add the missing terms to z. For
    437 	//
    438 	//   xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
    439 	//   yh =                         y1*b (0 <= y1 < b)
    440 	//
    441 	// the missing terms are
    442 	//
    443 	//   x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
    444 	//
    445 	// since all the yi for i > 1 are 0 by choice of k: If any of them
    446 	// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
    447 	// be a larger valid threshold contradicting the assumption about k.
    448 	//
    449 	if k < n || m != n {
    450 		var t nat
    451 
    452 		// add x0*y1*b
    453 		x0 := x0.norm()
    454 		y1 := y[k:]       // y1 is normalized because y is
    455 		t = t.mul(x0, y1) // update t so we don't lose t's underlying array
    456 		addAt(z, t, k)
    457 
    458 		// add xi*y0<<i, xi*y1*b<<(i+k)
    459 		y0 := y0.norm()
    460 		for i := k; i < len(x); i += k {
    461 			xi := x[i:]
    462 			if len(xi) > k {
    463 				xi = xi[:k]
    464 			}
    465 			xi = xi.norm()
    466 			t = t.mul(xi, y0)
    467 			addAt(z, t, i)
    468 			t = t.mul(xi, y1)
    469 			addAt(z, t, i+k)
    470 		}
    471 	}
    472 
    473 	return z.norm()
    474 }
    475 
    476 // basicSqr sets z = x*x and is asymptotically faster than basicMul
    477 // by about a factor of 2, but slower for small arguments due to overhead.
    478 // Requirements: len(x) > 0, len(z) >= 2*len(x)
    479 // The (non-normalized) result is placed in z[0 : 2 * len(x)].
    480 func basicSqr(z, x nat) {
    481 	n := len(x)
    482 	t := make(nat, 2*n)            // temporary variable to hold the products
    483 	z[1], z[0] = mulWW(x[0], x[0]) // the initial square
    484 	for i := 1; i < n; i++ {
    485 		d := x[i]
    486 		// z collects the squares x[i] * x[i]
    487 		z[2*i+1], z[2*i] = mulWW(d, d)
    488 		// t collects the products x[i] * x[j] where j < i
    489 		t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
    490 	}
    491 	t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
    492 	addVV(z, z, t)                              // combine the result
    493 }
    494 
    495 // Operands that are shorter than basicSqrThreshold are squared using
    496 // "grade school" multiplication; for operands longer than karatsubaSqrThreshold
    497 // the Karatsuba algorithm is used.
    498 var basicSqrThreshold = 20      // computed by calibrate_test.go
    499 var karatsubaSqrThreshold = 400 // computed by calibrate_test.go
    500 
    501 // z = x*x
    502 func (z nat) sqr(x nat) nat {
    503 	n := len(x)
    504 	switch {
    505 	case n == 0:
    506 		return z[:0]
    507 	case n == 1:
    508 		d := x[0]
    509 		z = z.make(2)
    510 		z[1], z[0] = mulWW(d, d)
    511 		return z.norm()
    512 	}
    513 
    514 	if alias(z, x) {
    515 		z = nil // z is an alias for x - cannot reuse
    516 	}
    517 	z = z.make(2 * n)
    518 
    519 	if n < basicSqrThreshold {
    520 		basicMul(z, x, x)
    521 		return z.norm()
    522 	}
    523 	if n < karatsubaSqrThreshold {
    524 		basicSqr(z, x)
    525 		return z.norm()
    526 	}
    527 
    528 	return z.mul(x, x)
    529 }
    530 
    531 // mulRange computes the product of all the unsigned integers in the
    532 // range [a, b] inclusively. If a > b (empty range), the result is 1.
    533 func (z nat) mulRange(a, b uint64) nat {
    534 	switch {
    535 	case a == 0:
    536 		// cut long ranges short (optimization)
    537 		return z.setUint64(0)
    538 	case a > b:
    539 		return z.setUint64(1)
    540 	case a == b:
    541 		return z.setUint64(a)
    542 	case a+1 == b:
    543 		return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
    544 	}
    545 	m := (a + b) / 2
    546 	return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
    547 }
    548 
    549 // q = (x-r)/y, with 0 <= r < y
    550 func (z nat) divW(x nat, y Word) (q nat, r Word) {
    551 	m := len(x)
    552 	switch {
    553 	case y == 0:
    554 		panic("division by zero")
    555 	case y == 1:
    556 		q = z.set(x) // result is x
    557 		return
    558 	case m == 0:
    559 		q = z[:0] // result is 0
    560 		return
    561 	}
    562 	// m > 0
    563 	z = z.make(m)
    564 	r = divWVW(z, 0, x, y)
    565 	q = z.norm()
    566 	return
    567 }
    568 
    569 func (z nat) div(z2, u, v nat) (q, r nat) {
    570 	if len(v) == 0 {
    571 		panic("division by zero")
    572 	}
    573 
    574 	if u.cmp(v) < 0 {
    575 		q = z[:0]
    576 		r = z2.set(u)
    577 		return
    578 	}
    579 
    580 	if len(v) == 1 {
    581 		var r2 Word
    582 		q, r2 = z.divW(u, v[0])
    583 		r = z2.setWord(r2)
    584 		return
    585 	}
    586 
    587 	q, r = z.divLarge(z2, u, v)
    588 	return
    589 }
    590 
    591 // getNat returns a *nat of len n. The contents may not be zero.
    592 // The pool holds *nat to avoid allocation when converting to interface{}.
    593 func getNat(n int) *nat {
    594 	var z *nat
    595 	if v := natPool.Get(); v != nil {
    596 		z = v.(*nat)
    597 	}
    598 	if z == nil {
    599 		z = new(nat)
    600 	}
    601 	*z = z.make(n)
    602 	return z
    603 }
    604 
    605 func putNat(x *nat) {
    606 	natPool.Put(x)
    607 }
    608 
    609 var natPool sync.Pool
    610 
    611 // q = (uIn-r)/v, with 0 <= r < y
    612 // Uses z as storage for q, and u as storage for r if possible.
    613 // See Knuth, Volume 2, section 4.3.1, Algorithm D.
    614 // Preconditions:
    615 //    len(v) >= 2
    616 //    len(uIn) >= len(v)
    617 func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
    618 	n := len(v)
    619 	m := len(uIn) - n
    620 
    621 	// determine if z can be reused
    622 	// TODO(gri) should find a better solution - this if statement
    623 	//           is very costly (see e.g. time pidigits -s -n 10000)
    624 	if alias(z, u) || alias(z, uIn) || alias(z, v) {
    625 		z = nil // z is an alias for u or uIn or v - cannot reuse
    626 	}
    627 	q = z.make(m + 1)
    628 
    629 	qhatvp := getNat(n + 1)
    630 	qhatv := *qhatvp
    631 	if alias(u, uIn) || alias(u, v) {
    632 		u = nil // u is an alias for uIn or v - cannot reuse
    633 	}
    634 	u = u.make(len(uIn) + 1)
    635 	u.clear() // TODO(gri) no need to clear if we allocated a new u
    636 
    637 	// D1.
    638 	var v1p *nat
    639 	shift := nlz(v[n-1])
    640 	if shift > 0 {
    641 		// do not modify v, it may be used by another goroutine simultaneously
    642 		v1p = getNat(n)
    643 		v1 := *v1p
    644 		shlVU(v1, v, shift)
    645 		v = v1
    646 	}
    647 	u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
    648 
    649 	// D2.
    650 	vn1 := v[n-1]
    651 	for j := m; j >= 0; j-- {
    652 		// D3.
    653 		qhat := Word(_M)
    654 		if ujn := u[j+n]; ujn != vn1 {
    655 			var rhat Word
    656 			qhat, rhat = divWW(ujn, u[j+n-1], vn1)
    657 
    658 			// x1 | x2 = qv_{n-2}
    659 			vn2 := v[n-2]
    660 			x1, x2 := mulWW(qhat, vn2)
    661 			// test if qv_{n-2} > br + u_{j+n-2}
    662 			ujn2 := u[j+n-2]
    663 			for greaterThan(x1, x2, rhat, ujn2) {
    664 				qhat--
    665 				prevRhat := rhat
    666 				rhat += vn1
    667 				// v[n-1] >= 0, so this tests for overflow.
    668 				if rhat < prevRhat {
    669 					break
    670 				}
    671 				x1, x2 = mulWW(qhat, vn2)
    672 			}
    673 		}
    674 
    675 		// D4.
    676 		qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
    677 
    678 		c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
    679 		if c != 0 {
    680 			c := addVV(u[j:j+n], u[j:], v)
    681 			u[j+n] += c
    682 			qhat--
    683 		}
    684 
    685 		q[j] = qhat
    686 	}
    687 	if v1p != nil {
    688 		putNat(v1p)
    689 	}
    690 	putNat(qhatvp)
    691 
    692 	q = q.norm()
    693 	shrVU(u, u, shift)
    694 	r = u.norm()
    695 
    696 	return q, r
    697 }
    698 
    699 // Length of x in bits. x must be normalized.
    700 func (x nat) bitLen() int {
    701 	if i := len(x) - 1; i >= 0 {
    702 		return i*_W + bits.Len(uint(x[i]))
    703 	}
    704 	return 0
    705 }
    706 
    707 // trailingZeroBits returns the number of consecutive least significant zero
    708 // bits of x.
    709 func (x nat) trailingZeroBits() uint {
    710 	if len(x) == 0 {
    711 		return 0
    712 	}
    713 	var i uint
    714 	for x[i] == 0 {
    715 		i++
    716 	}
    717 	// x[i] != 0
    718 	return i*_W + uint(bits.TrailingZeros(uint(x[i])))
    719 }
    720 
    721 // z = x << s
    722 func (z nat) shl(x nat, s uint) nat {
    723 	m := len(x)
    724 	if m == 0 {
    725 		return z[:0]
    726 	}
    727 	// m > 0
    728 
    729 	n := m + int(s/_W)
    730 	z = z.make(n + 1)
    731 	z[n] = shlVU(z[n-m:n], x, s%_W)
    732 	z[0 : n-m].clear()
    733 
    734 	return z.norm()
    735 }
    736 
    737 // z = x >> s
    738 func (z nat) shr(x nat, s uint) nat {
    739 	m := len(x)
    740 	n := m - int(s/_W)
    741 	if n <= 0 {
    742 		return z[:0]
    743 	}
    744 	// n > 0
    745 
    746 	z = z.make(n)
    747 	shrVU(z, x[m-n:], s%_W)
    748 
    749 	return z.norm()
    750 }
    751 
    752 func (z nat) setBit(x nat, i uint, b uint) nat {
    753 	j := int(i / _W)
    754 	m := Word(1) << (i % _W)
    755 	n := len(x)
    756 	switch b {
    757 	case 0:
    758 		z = z.make(n)
    759 		copy(z, x)
    760 		if j >= n {
    761 			// no need to grow
    762 			return z
    763 		}
    764 		z[j] &^= m
    765 		return z.norm()
    766 	case 1:
    767 		if j >= n {
    768 			z = z.make(j + 1)
    769 			z[n:].clear()
    770 		} else {
    771 			z = z.make(n)
    772 		}
    773 		copy(z, x)
    774 		z[j] |= m
    775 		// no need to normalize
    776 		return z
    777 	}
    778 	panic("set bit is not 0 or 1")
    779 }
    780 
    781 // bit returns the value of the i'th bit, with lsb == bit 0.
    782 func (x nat) bit(i uint) uint {
    783 	j := i / _W
    784 	if j >= uint(len(x)) {
    785 		return 0
    786 	}
    787 	// 0 <= j < len(x)
    788 	return uint(x[j] >> (i % _W) & 1)
    789 }
    790 
    791 // sticky returns 1 if there's a 1 bit within the
    792 // i least significant bits, otherwise it returns 0.
    793 func (x nat) sticky(i uint) uint {
    794 	j := i / _W
    795 	if j >= uint(len(x)) {
    796 		if len(x) == 0 {
    797 			return 0
    798 		}
    799 		return 1
    800 	}
    801 	// 0 <= j < len(x)
    802 	for _, x := range x[:j] {
    803 		if x != 0 {
    804 			return 1
    805 		}
    806 	}
    807 	if x[j]<<(_W-i%_W) != 0 {
    808 		return 1
    809 	}
    810 	return 0
    811 }
    812 
    813 func (z nat) and(x, y nat) nat {
    814 	m := len(x)
    815 	n := len(y)
    816 	if m > n {
    817 		m = n
    818 	}
    819 	// m <= n
    820 
    821 	z = z.make(m)
    822 	for i := 0; i < m; i++ {
    823 		z[i] = x[i] & y[i]
    824 	}
    825 
    826 	return z.norm()
    827 }
    828 
    829 func (z nat) andNot(x, y nat) nat {
    830 	m := len(x)
    831 	n := len(y)
    832 	if n > m {
    833 		n = m
    834 	}
    835 	// m >= n
    836 
    837 	z = z.make(m)
    838 	for i := 0; i < n; i++ {
    839 		z[i] = x[i] &^ y[i]
    840 	}
    841 	copy(z[n:m], x[n:m])
    842 
    843 	return z.norm()
    844 }
    845 
    846 func (z nat) or(x, y nat) nat {
    847 	m := len(x)
    848 	n := len(y)
    849 	s := x
    850 	if m < n {
    851 		n, m = m, n
    852 		s = y
    853 	}
    854 	// m >= n
    855 
    856 	z = z.make(m)
    857 	for i := 0; i < n; i++ {
    858 		z[i] = x[i] | y[i]
    859 	}
    860 	copy(z[n:m], s[n:m])
    861 
    862 	return z.norm()
    863 }
    864 
    865 func (z nat) xor(x, y nat) nat {
    866 	m := len(x)
    867 	n := len(y)
    868 	s := x
    869 	if m < n {
    870 		n, m = m, n
    871 		s = y
    872 	}
    873 	// m >= n
    874 
    875 	z = z.make(m)
    876 	for i := 0; i < n; i++ {
    877 		z[i] = x[i] ^ y[i]
    878 	}
    879 	copy(z[n:m], s[n:m])
    880 
    881 	return z.norm()
    882 }
    883 
    884 // greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
    885 func greaterThan(x1, x2, y1, y2 Word) bool {
    886 	return x1 > y1 || x1 == y1 && x2 > y2
    887 }
    888 
    889 // modW returns x % d.
    890 func (x nat) modW(d Word) (r Word) {
    891 	// TODO(agl): we don't actually need to store the q value.
    892 	var q nat
    893 	q = q.make(len(x))
    894 	return divWVW(q, 0, x, d)
    895 }
    896 
    897 // random creates a random integer in [0..limit), using the space in z if
    898 // possible. n is the bit length of limit.
    899 func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
    900 	if alias(z, limit) {
    901 		z = nil // z is an alias for limit - cannot reuse
    902 	}
    903 	z = z.make(len(limit))
    904 
    905 	bitLengthOfMSW := uint(n % _W)
    906 	if bitLengthOfMSW == 0 {
    907 		bitLengthOfMSW = _W
    908 	}
    909 	mask := Word((1 << bitLengthOfMSW) - 1)
    910 
    911 	for {
    912 		switch _W {
    913 		case 32:
    914 			for i := range z {
    915 				z[i] = Word(rand.Uint32())
    916 			}
    917 		case 64:
    918 			for i := range z {
    919 				z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
    920 			}
    921 		default:
    922 			panic("unknown word size")
    923 		}
    924 		z[len(limit)-1] &= mask
    925 		if z.cmp(limit) < 0 {
    926 			break
    927 		}
    928 	}
    929 
    930 	return z.norm()
    931 }
    932 
    933 // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
    934 // otherwise it sets z to x**y. The result is the value of z.
    935 func (z nat) expNN(x, y, m nat) nat {
    936 	if alias(z, x) || alias(z, y) {
    937 		// We cannot allow in-place modification of x or y.
    938 		z = nil
    939 	}
    940 
    941 	// x**y mod 1 == 0
    942 	if len(m) == 1 && m[0] == 1 {
    943 		return z.setWord(0)
    944 	}
    945 	// m == 0 || m > 1
    946 
    947 	// x**0 == 1
    948 	if len(y) == 0 {
    949 		return z.setWord(1)
    950 	}
    951 	// y > 0
    952 
    953 	// x**1 mod m == x mod m
    954 	if len(y) == 1 && y[0] == 1 && len(m) != 0 {
    955 		_, z = z.div(z, x, m)
    956 		return z
    957 	}
    958 	// y > 1
    959 
    960 	if len(m) != 0 {
    961 		// We likely end up being as long as the modulus.
    962 		z = z.make(len(m))
    963 	}
    964 	z = z.set(x)
    965 
    966 	// If the base is non-trivial and the exponent is large, we use
    967 	// 4-bit, windowed exponentiation. This involves precomputing 14 values
    968 	// (x^2...x^15) but then reduces the number of multiply-reduces by a
    969 	// third. Even for a 32-bit exponent, this reduces the number of
    970 	// operations. Uses Montgomery method for odd moduli.
    971 	if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 {
    972 		if m[0]&1 == 1 {
    973 			return z.expNNMontgomery(x, y, m)
    974 		}
    975 		return z.expNNWindowed(x, y, m)
    976 	}
    977 
    978 	v := y[len(y)-1] // v > 0 because y is normalized and y > 0
    979 	shift := nlz(v) + 1
    980 	v <<= shift
    981 	var q nat
    982 
    983 	const mask = 1 << (_W - 1)
    984 
    985 	// We walk through the bits of the exponent one by one. Each time we
    986 	// see a bit, we square, thus doubling the power. If the bit is a one,
    987 	// we also multiply by x, thus adding one to the power.
    988 
    989 	w := _W - int(shift)
    990 	// zz and r are used to avoid allocating in mul and div as
    991 	// otherwise the arguments would alias.
    992 	var zz, r nat
    993 	for j := 0; j < w; j++ {
    994 		zz = zz.sqr(z)
    995 		zz, z = z, zz
    996 
    997 		if v&mask != 0 {
    998 			zz = zz.mul(z, x)
    999 			zz, z = z, zz
   1000 		}
   1001 
   1002 		if len(m) != 0 {
   1003 			zz, r = zz.div(r, z, m)
   1004 			zz, r, q, z = q, z, zz, r
   1005 		}
   1006 
   1007 		v <<= 1
   1008 	}
   1009 
   1010 	for i := len(y) - 2; i >= 0; i-- {
   1011 		v = y[i]
   1012 
   1013 		for j := 0; j < _W; j++ {
   1014 			zz = zz.sqr(z)
   1015 			zz, z = z, zz
   1016 
   1017 			if v&mask != 0 {
   1018 				zz = zz.mul(z, x)
   1019 				zz, z = z, zz
   1020 			}
   1021 
   1022 			if len(m) != 0 {
   1023 				zz, r = zz.div(r, z, m)
   1024 				zz, r, q, z = q, z, zz, r
   1025 			}
   1026 
   1027 			v <<= 1
   1028 		}
   1029 	}
   1030 
   1031 	return z.norm()
   1032 }
   1033 
   1034 // expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
   1035 func (z nat) expNNWindowed(x, y, m nat) nat {
   1036 	// zz and r are used to avoid allocating in mul and div as otherwise
   1037 	// the arguments would alias.
   1038 	var zz, r nat
   1039 
   1040 	const n = 4
   1041 	// powers[i] contains x^i.
   1042 	var powers [1 << n]nat
   1043 	powers[0] = natOne
   1044 	powers[1] = x
   1045 	for i := 2; i < 1<<n; i += 2 {
   1046 		p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
   1047 		*p = p.sqr(*p2)
   1048 		zz, r = zz.div(r, *p, m)
   1049 		*p, r = r, *p
   1050 		*p1 = p1.mul(*p, x)
   1051 		zz, r = zz.div(r, *p1, m)
   1052 		*p1, r = r, *p1
   1053 	}
   1054 
   1055 	z = z.setWord(1)
   1056 
   1057 	for i := len(y) - 1; i >= 0; i-- {
   1058 		yi := y[i]
   1059 		for j := 0; j < _W; j += n {
   1060 			if i != len(y)-1 || j != 0 {
   1061 				// Unrolled loop for significant performance
   1062 				// gain. Use go test -bench=".*" in crypto/rsa
   1063 				// to check performance before making changes.
   1064 				zz = zz.sqr(z)
   1065 				zz, z = z, zz
   1066 				zz, r = zz.div(r, z, m)
   1067 				z, r = r, z
   1068 
   1069 				zz = zz.sqr(z)
   1070 				zz, z = z, zz
   1071 				zz, r = zz.div(r, z, m)
   1072 				z, r = r, z
   1073 
   1074 				zz = zz.sqr(z)
   1075 				zz, z = z, zz
   1076 				zz, r = zz.div(r, z, m)
   1077 				z, r = r, z
   1078 
   1079 				zz = zz.sqr(z)
   1080 				zz, z = z, zz
   1081 				zz, r = zz.div(r, z, m)
   1082 				z, r = r, z
   1083 			}
   1084 
   1085 			zz = zz.mul(z, powers[yi>>(_W-n)])
   1086 			zz, z = z, zz
   1087 			zz, r = zz.div(r, z, m)
   1088 			z, r = r, z
   1089 
   1090 			yi <<= n
   1091 		}
   1092 	}
   1093 
   1094 	return z.norm()
   1095 }
   1096 
   1097 // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
   1098 // Uses Montgomery representation.
   1099 func (z nat) expNNMontgomery(x, y, m nat) nat {
   1100 	numWords := len(m)
   1101 
   1102 	// We want the lengths of x and m to be equal.
   1103 	// It is OK if x >= m as long as len(x) == len(m).
   1104 	if len(x) > numWords {
   1105 		_, x = nat(nil).div(nil, x, m)
   1106 		// Note: now len(x) <= numWords, not guaranteed ==.
   1107 	}
   1108 	if len(x) < numWords {
   1109 		rr := make(nat, numWords)
   1110 		copy(rr, x)
   1111 		x = rr
   1112 	}
   1113 
   1114 	// Ideally the precomputations would be performed outside, and reused
   1115 	// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On NewtonRaphson
   1116 	// Iteration for Multiplicative Inverses Modulo Prime Powers".
   1117 	k0 := 2 - m[0]
   1118 	t := m[0] - 1
   1119 	for i := 1; i < _W; i <<= 1 {
   1120 		t *= t
   1121 		k0 *= (t + 1)
   1122 	}
   1123 	k0 = -k0
   1124 
   1125 	// RR = 2**(2*_W*len(m)) mod m
   1126 	RR := nat(nil).setWord(1)
   1127 	zz := nat(nil).shl(RR, uint(2*numWords*_W))
   1128 	_, RR = RR.div(RR, zz, m)
   1129 	if len(RR) < numWords {
   1130 		zz = zz.make(numWords)
   1131 		copy(zz, RR)
   1132 		RR = zz
   1133 	}
   1134 	// one = 1, with equal length to that of m
   1135 	one := make(nat, numWords)
   1136 	one[0] = 1
   1137 
   1138 	const n = 4
   1139 	// powers[i] contains x^i
   1140 	var powers [1 << n]nat
   1141 	powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
   1142 	powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
   1143 	for i := 2; i < 1<<n; i++ {
   1144 		powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
   1145 	}
   1146 
   1147 	// initialize z = 1 (Montgomery 1)
   1148 	z = z.make(numWords)
   1149 	copy(z, powers[0])
   1150 
   1151 	zz = zz.make(numWords)
   1152 
   1153 	// same windowed exponent, but with Montgomery multiplications
   1154 	for i := len(y) - 1; i >= 0; i-- {
   1155 		yi := y[i]
   1156 		for j := 0; j < _W; j += n {
   1157 			if i != len(y)-1 || j != 0 {
   1158 				zz = zz.montgomery(z, z, m, k0, numWords)
   1159 				z = z.montgomery(zz, zz, m, k0, numWords)
   1160 				zz = zz.montgomery(z, z, m, k0, numWords)
   1161 				z = z.montgomery(zz, zz, m, k0, numWords)
   1162 			}
   1163 			zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
   1164 			z, zz = zz, z
   1165 			yi <<= n
   1166 		}
   1167 	}
   1168 	// convert to regular number
   1169 	zz = zz.montgomery(z, one, m, k0, numWords)
   1170 
   1171 	// One last reduction, just in case.
   1172 	// See golang.org/issue/13907.
   1173 	if zz.cmp(m) >= 0 {
   1174 		// Common case is m has high bit set; in that case,
   1175 		// since zz is the same length as m, there can be just
   1176 		// one multiple of m to remove. Just subtract.
   1177 		// We think that the subtract should be sufficient in general,
   1178 		// so do that unconditionally, but double-check,
   1179 		// in case our beliefs are wrong.
   1180 		// The div is not expected to be reached.
   1181 		zz = zz.sub(zz, m)
   1182 		if zz.cmp(m) >= 0 {
   1183 			_, zz = nat(nil).div(nil, zz, m)
   1184 		}
   1185 	}
   1186 
   1187 	return zz.norm()
   1188 }
   1189 
   1190 // bytes writes the value of z into buf using big-endian encoding.
   1191 // len(buf) must be >= len(z)*_S. The value of z is encoded in the
   1192 // slice buf[i:]. The number i of unused bytes at the beginning of
   1193 // buf is returned as result.
   1194 func (z nat) bytes(buf []byte) (i int) {
   1195 	i = len(buf)
   1196 	for _, d := range z {
   1197 		for j := 0; j < _S; j++ {
   1198 			i--
   1199 			buf[i] = byte(d)
   1200 			d >>= 8
   1201 		}
   1202 	}
   1203 
   1204 	for i < len(buf) && buf[i] == 0 {
   1205 		i++
   1206 	}
   1207 
   1208 	return
   1209 }
   1210 
   1211 // setBytes interprets buf as the bytes of a big-endian unsigned
   1212 // integer, sets z to that value, and returns z.
   1213 func (z nat) setBytes(buf []byte) nat {
   1214 	z = z.make((len(buf) + _S - 1) / _S)
   1215 
   1216 	k := 0
   1217 	s := uint(0)
   1218 	var d Word
   1219 	for i := len(buf); i > 0; i-- {
   1220 		d |= Word(buf[i-1]) << s
   1221 		if s += 8; s == _S*8 {
   1222 			z[k] = d
   1223 			k++
   1224 			s = 0
   1225 			d = 0
   1226 		}
   1227 	}
   1228 	if k < len(z) {
   1229 		z[k] = d
   1230 	}
   1231 
   1232 	return z.norm()
   1233 }
   1234 
   1235 // sqrt sets z = x
   1236 func (z nat) sqrt(x nat) nat {
   1237 	if x.cmp(natOne) <= 0 {
   1238 		return z.set(x)
   1239 	}
   1240 	if alias(z, x) {
   1241 		z = nil
   1242 	}
   1243 
   1244 	// Start with value known to be too large and repeat "z = (z + x/z)/2" until it stops getting smaller.
   1245 	// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
   1246 	// https://members.loria.fr/PZimmermann/mca/pub226.html
   1247 	// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
   1248 	// otherwise it converges to the correct z and stays there.
   1249 	var z1, z2 nat
   1250 	z1 = z
   1251 	z1 = z1.setUint64(1)
   1252 	z1 = z1.shl(z1, uint(x.bitLen()/2+1)) // must be  x
   1253 	for n := 0; ; n++ {
   1254 		z2, _ = z2.div(nil, x, z1)
   1255 		z2 = z2.add(z2, z1)
   1256 		z2 = z2.shr(z2, 1)
   1257 		if z2.cmp(z1) >= 0 {
   1258 			// z1 is answer.
   1259 			// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
   1260 			if n&1 == 0 {
   1261 				return z1
   1262 			}
   1263 			return z.set(z1)
   1264 		}
   1265 		z1, z2 = z2, z1
   1266 	}
   1267 }
   1268