Home | History | Annotate | Download | only in math
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 func isOddInt(x float64) bool {
      8 	xi, xf := Modf(x)
      9 	return xf == 0 && int64(xi)&1 == 1
     10 }
     11 
     12 // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
     13 // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
     14 
     15 // Pow returns x**y, the base-x exponential of y.
     16 //
     17 // Special cases are (in order):
     18 //	Pow(x, 0) = 1 for any x
     19 //	Pow(1, y) = 1 for any y
     20 //	Pow(x, 1) = x for any x
     21 //	Pow(NaN, y) = NaN
     22 //	Pow(x, NaN) = NaN
     23 //	Pow(0, y) = Inf for y an odd integer < 0
     24 //	Pow(0, -Inf) = +Inf
     25 //	Pow(0, +Inf) = +0
     26 //	Pow(0, y) = +Inf for finite y < 0 and not an odd integer
     27 //	Pow(0, y) = 0 for y an odd integer > 0
     28 //	Pow(0, y) = +0 for finite y > 0 and not an odd integer
     29 //	Pow(-1, Inf) = 1
     30 //	Pow(x, +Inf) = +Inf for |x| > 1
     31 //	Pow(x, -Inf) = +0 for |x| > 1
     32 //	Pow(x, +Inf) = +0 for |x| < 1
     33 //	Pow(x, -Inf) = +Inf for |x| < 1
     34 //	Pow(+Inf, y) = +Inf for y > 0
     35 //	Pow(+Inf, y) = +0 for y < 0
     36 //	Pow(-Inf, y) = Pow(-0, -y)
     37 //	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
     38 func Pow(x, y float64) float64
     39 
     40 func pow(x, y float64) float64 {
     41 	switch {
     42 	case y == 0 || x == 1:
     43 		return 1
     44 	case y == 1:
     45 		return x
     46 	case IsNaN(x) || IsNaN(y):
     47 		return NaN()
     48 	case x == 0:
     49 		switch {
     50 		case y < 0:
     51 			if isOddInt(y) {
     52 				return Copysign(Inf(1), x)
     53 			}
     54 			return Inf(1)
     55 		case y > 0:
     56 			if isOddInt(y) {
     57 				return x
     58 			}
     59 			return 0
     60 		}
     61 	case IsInf(y, 0):
     62 		switch {
     63 		case x == -1:
     64 			return 1
     65 		case (Abs(x) < 1) == IsInf(y, 1):
     66 			return 0
     67 		default:
     68 			return Inf(1)
     69 		}
     70 	case IsInf(x, 0):
     71 		if IsInf(x, -1) {
     72 			return Pow(1/x, -y) // Pow(-0, -y)
     73 		}
     74 		switch {
     75 		case y < 0:
     76 			return 0
     77 		case y > 0:
     78 			return Inf(1)
     79 		}
     80 	case y == 0.5:
     81 		return Sqrt(x)
     82 	case y == -0.5:
     83 		return 1 / Sqrt(x)
     84 	}
     85 
     86 	absy := y
     87 	flip := false
     88 	if absy < 0 {
     89 		absy = -absy
     90 		flip = true
     91 	}
     92 	yi, yf := Modf(absy)
     93 	if yf != 0 && x < 0 {
     94 		return NaN()
     95 	}
     96 	if yi >= 1<<63 {
     97 		// yi is a large even int that will lead to overflow (or underflow to 0)
     98 		// for all x except -1 (x == 1 was handled earlier)
     99 		switch {
    100 		case x == -1:
    101 			return 1
    102 		case (Abs(x) < 1) == (y > 0):
    103 			return 0
    104 		default:
    105 			return Inf(1)
    106 		}
    107 	}
    108 
    109 	// ans = a1 * 2**ae (= 1 for now).
    110 	a1 := 1.0
    111 	ae := 0
    112 
    113 	// ans *= x**yf
    114 	if yf != 0 {
    115 		if yf > 0.5 {
    116 			yf--
    117 			yi++
    118 		}
    119 		a1 = Exp(yf * Log(x))
    120 	}
    121 
    122 	// ans *= x**yi
    123 	// by multiplying in successive squarings
    124 	// of x according to bits of yi.
    125 	// accumulate powers of two into exp.
    126 	x1, xe := Frexp(x)
    127 	for i := int64(yi); i != 0; i >>= 1 {
    128 		if xe < -1<<12 || 1<<12 < xe {
    129 			// catch xe before it overflows the left shift below
    130 			// Since i !=0 it has at least one bit still set, so ae will accumulate xe
    131 			// on at least one more iteration, ae += xe is a lower bound on ae
    132 			// the lower bound on ae exceeds the size of a float64 exp
    133 			// so the final call to Ldexp will produce under/overflow (0/Inf)
    134 			ae += xe
    135 			break
    136 		}
    137 		if i&1 == 1 {
    138 			a1 *= x1
    139 			ae += xe
    140 		}
    141 		x1 *= x1
    142 		xe <<= 1
    143 		if x1 < .5 {
    144 			x1 += x1
    145 			xe--
    146 		}
    147 	}
    148 
    149 	// ans = a1*2**ae
    150 	// if flip { ans = 1 / ans }
    151 	// but in the opposite order
    152 	if flip {
    153 		a1 = 1 / a1
    154 		ae = -ae
    155 	}
    156 	return Ldexp(a1, ae)
    157 }
    158