Home | History | Annotate | Download | only in runtime
      1 // Copyright 2017 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This implements the write barrier buffer. The write barrier itself
      6 // is gcWriteBarrier and is implemented in assembly.
      7 //
      8 // The write barrier has a fast path and a slow path. The fast path
      9 // simply enqueues to a per-P write barrier buffer. It's written in
     10 // assembly and doesn't clobber any general purpose registers, so it
     11 // doesn't have the usual overheads of a Go call.
     12 //
     13 // When the buffer fills up, the write barrier invokes the slow path
     14 // (wbBufFlush) to flush the buffer to the GC work queues. In this
     15 // path, since the compiler didn't spill registers, we spill *all*
     16 // registers and disallow any GC safe points that could observe the
     17 // stack frame (since we don't know the types of the spilled
     18 // registers).
     19 
     20 package runtime
     21 
     22 import (
     23 	"runtime/internal/sys"
     24 	"unsafe"
     25 )
     26 
     27 // testSmallBuf forces a small write barrier buffer to stress write
     28 // barrier flushing.
     29 const testSmallBuf = false
     30 
     31 // wbBuf is a per-P buffer of pointers queued by the write barrier.
     32 // This buffer is flushed to the GC workbufs when it fills up and on
     33 // various GC transitions.
     34 //
     35 // This is closely related to a "sequential store buffer" (SSB),
     36 // except that SSBs are usually used for maintaining remembered sets,
     37 // while this is used for marking.
     38 type wbBuf struct {
     39 	// next points to the next slot in buf. It must not be a
     40 	// pointer type because it can point past the end of buf and
     41 	// must be updated without write barriers.
     42 	//
     43 	// This is a pointer rather than an index to optimize the
     44 	// write barrier assembly.
     45 	next uintptr
     46 
     47 	// end points to just past the end of buf. It must not be a
     48 	// pointer type because it points past the end of buf and must
     49 	// be updated without write barriers.
     50 	end uintptr
     51 
     52 	// buf stores a series of pointers to execute write barriers
     53 	// on. This must be a multiple of wbBufEntryPointers because
     54 	// the write barrier only checks for overflow once per entry.
     55 	buf [wbBufEntryPointers * wbBufEntries]uintptr
     56 }
     57 
     58 const (
     59 	// wbBufEntries is the number of write barriers between
     60 	// flushes of the write barrier buffer.
     61 	//
     62 	// This trades latency for throughput amortization. Higher
     63 	// values amortize flushing overhead more, but increase the
     64 	// latency of flushing. Higher values also increase the cache
     65 	// footprint of the buffer.
     66 	//
     67 	// TODO: What is the latency cost of this? Tune this value.
     68 	wbBufEntries = 256
     69 
     70 	// wbBufEntryPointers is the number of pointers added to the
     71 	// buffer by each write barrier.
     72 	wbBufEntryPointers = 2
     73 )
     74 
     75 // reset empties b by resetting its next and end pointers.
     76 func (b *wbBuf) reset() {
     77 	start := uintptr(unsafe.Pointer(&b.buf[0]))
     78 	b.next = start
     79 	if gcBlackenPromptly || writeBarrier.cgo {
     80 		// Effectively disable the buffer by forcing a flush
     81 		// on every barrier.
     82 		b.end = uintptr(unsafe.Pointer(&b.buf[wbBufEntryPointers]))
     83 	} else if testSmallBuf {
     84 		// For testing, allow two barriers in the buffer. If
     85 		// we only did one, then barriers of non-heap pointers
     86 		// would be no-ops. This lets us combine a buffered
     87 		// barrier with a flush at a later time.
     88 		b.end = uintptr(unsafe.Pointer(&b.buf[2*wbBufEntryPointers]))
     89 	} else {
     90 		b.end = start + uintptr(len(b.buf))*unsafe.Sizeof(b.buf[0])
     91 	}
     92 
     93 	if (b.end-b.next)%(wbBufEntryPointers*unsafe.Sizeof(b.buf[0])) != 0 {
     94 		throw("bad write barrier buffer bounds")
     95 	}
     96 }
     97 
     98 // discard resets b's next pointer, but not its end pointer.
     99 //
    100 // This must be nosplit because it's called by wbBufFlush.
    101 //
    102 //go:nosplit
    103 func (b *wbBuf) discard() {
    104 	b.next = uintptr(unsafe.Pointer(&b.buf[0]))
    105 }
    106 
    107 // putFast adds old and new to the write barrier buffer and returns
    108 // false if a flush is necessary. Callers should use this as:
    109 //
    110 //     buf := &getg().m.p.ptr().wbBuf
    111 //     if !buf.putFast(old, new) {
    112 //         wbBufFlush(...)
    113 //     }
    114 //
    115 // The arguments to wbBufFlush depend on whether the caller is doing
    116 // its own cgo pointer checks. If it is, then this can be
    117 // wbBufFlush(nil, 0). Otherwise, it must pass the slot address and
    118 // new.
    119 //
    120 // Since buf is a per-P resource, the caller must ensure there are no
    121 // preemption points while buf is in use.
    122 //
    123 // It must be nowritebarrierrec to because write barriers here would
    124 // corrupt the write barrier buffer. It (and everything it calls, if
    125 // it called anything) has to be nosplit to avoid scheduling on to a
    126 // different P and a different buffer.
    127 //
    128 //go:nowritebarrierrec
    129 //go:nosplit
    130 func (b *wbBuf) putFast(old, new uintptr) bool {
    131 	p := (*[2]uintptr)(unsafe.Pointer(b.next))
    132 	p[0] = old
    133 	p[1] = new
    134 	b.next += 2 * sys.PtrSize
    135 	return b.next != b.end
    136 }
    137 
    138 // wbBufFlush flushes the current P's write barrier buffer to the GC
    139 // workbufs. It is passed the slot and value of the write barrier that
    140 // caused the flush so that it can implement cgocheck.
    141 //
    142 // This must not have write barriers because it is part of the write
    143 // barrier implementation.
    144 //
    145 // This and everything it calls must be nosplit because 1) the stack
    146 // contains untyped slots from gcWriteBarrier and 2) there must not be
    147 // a GC safe point between the write barrier test in the caller and
    148 // flushing the buffer.
    149 //
    150 // TODO: A "go:nosplitrec" annotation would be perfect for this.
    151 //
    152 //go:nowritebarrierrec
    153 //go:nosplit
    154 func wbBufFlush(dst *uintptr, src uintptr) {
    155 	// Note: Every possible return from this function must reset
    156 	// the buffer's next pointer to prevent buffer overflow.
    157 
    158 	if getg().m.dying > 0 {
    159 		// We're going down. Not much point in write barriers
    160 		// and this way we can allow write barriers in the
    161 		// panic path.
    162 		getg().m.p.ptr().wbBuf.discard()
    163 		return
    164 	}
    165 
    166 	if writeBarrier.cgo && dst != nil {
    167 		// This must be called from the stack that did the
    168 		// write. It's nosplit all the way down.
    169 		cgoCheckWriteBarrier(dst, src)
    170 		if !writeBarrier.needed {
    171 			// We were only called for cgocheck.
    172 			getg().m.p.ptr().wbBuf.discard()
    173 			return
    174 		}
    175 	}
    176 
    177 	// Switch to the system stack so we don't have to worry about
    178 	// the untyped stack slots or safe points.
    179 	systemstack(func() {
    180 		wbBufFlush1(getg().m.p.ptr())
    181 	})
    182 }
    183 
    184 // wbBufFlush1 flushes p's write barrier buffer to the GC work queue.
    185 //
    186 // This must not have write barriers because it is part of the write
    187 // barrier implementation, so this may lead to infinite loops or
    188 // buffer corruption.
    189 //
    190 // This must be non-preemptible because it uses the P's workbuf.
    191 //
    192 //go:nowritebarrierrec
    193 //go:systemstack
    194 func wbBufFlush1(_p_ *p) {
    195 	// Get the buffered pointers.
    196 	start := uintptr(unsafe.Pointer(&_p_.wbBuf.buf[0]))
    197 	n := (_p_.wbBuf.next - start) / unsafe.Sizeof(_p_.wbBuf.buf[0])
    198 	ptrs := _p_.wbBuf.buf[:n]
    199 
    200 	// Reset the buffer.
    201 	_p_.wbBuf.reset()
    202 
    203 	if useCheckmark {
    204 		// Slow path for checkmark mode.
    205 		for _, ptr := range ptrs {
    206 			shade(ptr)
    207 		}
    208 		return
    209 	}
    210 
    211 	// Mark all of the pointers in the buffer and record only the
    212 	// pointers we greyed. We use the buffer itself to temporarily
    213 	// record greyed pointers.
    214 	//
    215 	// TODO: Should scanobject/scanblock just stuff pointers into
    216 	// the wbBuf? Then this would become the sole greying path.
    217 	gcw := &_p_.gcw
    218 	pos := 0
    219 	arenaStart := mheap_.arena_start
    220 	for _, ptr := range ptrs {
    221 		if ptr < arenaStart {
    222 			// nil pointers are very common, especially
    223 			// for the "old" values. Filter out these and
    224 			// other "obvious" non-heap pointers ASAP.
    225 			//
    226 			// TODO: Should we filter out nils in the fast
    227 			// path to reduce the rate of flushes?
    228 			continue
    229 		}
    230 		// TODO: This doesn't use hbits, so calling
    231 		// heapBitsForObject seems a little silly. We could
    232 		// easily separate this out since heapBitsForObject
    233 		// just calls heapBitsForAddr(obj) to get hbits.
    234 		obj, _, span, objIndex := heapBitsForObject(ptr, 0, 0)
    235 		if obj == 0 {
    236 			continue
    237 		}
    238 		// TODO: Consider making two passes where the first
    239 		// just prefetches the mark bits.
    240 		mbits := span.markBitsForIndex(objIndex)
    241 		if mbits.isMarked() {
    242 			continue
    243 		}
    244 		mbits.setMarked()
    245 		if span.spanclass.noscan() {
    246 			gcw.bytesMarked += uint64(span.elemsize)
    247 			continue
    248 		}
    249 		ptrs[pos] = obj
    250 		pos++
    251 	}
    252 
    253 	// Enqueue the greyed objects.
    254 	gcw.putBatch(ptrs[:pos])
    255 	if gcphase == _GCmarktermination || gcBlackenPromptly {
    256 		// Ps aren't allowed to cache work during mark
    257 		// termination.
    258 		gcw.dispose()
    259 	}
    260 }
    261