Home | History | Annotate | Download | only in protobuf
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // http://code.google.com/p/protobuf/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda)
     32 //  Based on original Protocol Buffers design by
     33 //  Sanjay Ghemawat, Jeff Dean, and others.
     34 //
     35 // Defines Message, the abstract interface implemented by non-lite
     36 // protocol message objects.  Although it's possible to implement this
     37 // interface manually, most users will use the protocol compiler to
     38 // generate implementations.
     39 //
     40 // Example usage:
     41 //
     42 // Say you have a message defined as:
     43 //
     44 //   message Foo {
     45 //     optional string text = 1;
     46 //     repeated int32 numbers = 2;
     47 //   }
     48 //
     49 // Then, if you used the protocol compiler to generate a class from the above
     50 // definition, you could use it like so:
     51 //
     52 //   string data;  // Will store a serialized version of the message.
     53 //
     54 //   {
     55 //     // Create a message and serialize it.
     56 //     Foo foo;
     57 //     foo.set_text("Hello World!");
     58 //     foo.add_numbers(1);
     59 //     foo.add_numbers(5);
     60 //     foo.add_numbers(42);
     61 //
     62 //     foo.SerializeToString(&data);
     63 //   }
     64 //
     65 //   {
     66 //     // Parse the serialized message and check that it contains the
     67 //     // correct data.
     68 //     Foo foo;
     69 //     foo.ParseFromString(data);
     70 //
     71 //     assert(foo.text() == "Hello World!");
     72 //     assert(foo.numbers_size() == 3);
     73 //     assert(foo.numbers(0) == 1);
     74 //     assert(foo.numbers(1) == 5);
     75 //     assert(foo.numbers(2) == 42);
     76 //   }
     77 //
     78 //   {
     79 //     // Same as the last block, but do it dynamically via the Message
     80 //     // reflection interface.
     81 //     Message* foo = new Foo;
     82 //     const Descriptor* descriptor = foo->GetDescriptor();
     83 //
     84 //     // Get the descriptors for the fields we're interested in and verify
     85 //     // their types.
     86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
     87 //     assert(text_field != NULL);
     88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
     89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
     90 //     const FieldDescriptor* numbers_field = descriptor->
     91 //                                            FindFieldByName("numbers");
     92 //     assert(numbers_field != NULL);
     93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
     94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
     95 //
     96 //     // Parse the message.
     97 //     foo->ParseFromString(data);
     98 //
     99 //     // Use the reflection interface to examine the contents.
    100 //     const Reflection* reflection = foo->GetReflection();
    101 //     assert(reflection->GetString(foo, text_field) == "Hello World!");
    102 //     assert(reflection->FieldSize(foo, numbers_field) == 3);
    103 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
    104 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
    105 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
    106 //
    107 //     delete foo;
    108 //   }
    109 
    110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
    111 #define GOOGLE_PROTOBUF_MESSAGE_H__
    112 
    113 #include <vector>
    114 #include <string>
    115 
    116 #ifdef __DECCXX
    117 // HP C++'s iosfwd doesn't work.
    118 #include <iostream>
    119 #else
    120 #include <iosfwd>
    121 #endif
    122 
    123 #include <google/protobuf/message_lite.h>
    124 
    125 #include <google/protobuf/stubs/common.h>
    126 #include <google/protobuf/descriptor.h>
    127 
    128 
    129 namespace google {
    130 namespace protobuf {
    131 
    132 // Defined in this file.
    133 class Message;
    134 class Reflection;
    135 class MessageFactory;
    136 
    137 // Defined in other files.
    138 class UnknownFieldSet;         // unknown_field_set.h
    139 namespace io {
    140   class ZeroCopyInputStream;   // zero_copy_stream.h
    141   class ZeroCopyOutputStream;  // zero_copy_stream.h
    142   class CodedInputStream;      // coded_stream.h
    143   class CodedOutputStream;     // coded_stream.h
    144 }
    145 
    146 
    147 template<typename T>
    148 class RepeatedField;     // repeated_field.h
    149 
    150 template<typename T>
    151 class RepeatedPtrField;  // repeated_field.h
    152 
    153 // A container to hold message metadata.
    154 struct Metadata {
    155   const Descriptor* descriptor;
    156   const Reflection* reflection;
    157 };
    158 
    159 // Abstract interface for protocol messages.
    160 //
    161 // See also MessageLite, which contains most every-day operations.  Message
    162 // adds descriptors and reflection on top of that.
    163 //
    164 // The methods of this class that are virtual but not pure-virtual have
    165 // default implementations based on reflection.  Message classes which are
    166 // optimized for speed will want to override these with faster implementations,
    167 // but classes optimized for code size may be happy with keeping them.  See
    168 // the optimize_for option in descriptor.proto.
    169 class LIBPROTOBUF_EXPORT Message : public MessageLite {
    170  public:
    171   inline Message() {}
    172   virtual ~Message();
    173 
    174   // Basic Operations ------------------------------------------------
    175 
    176   // Construct a new instance of the same type.  Ownership is passed to the
    177   // caller.  (This is also defined in MessageLite, but is defined again here
    178   // for return-type covariance.)
    179   virtual Message* New() const = 0;
    180 
    181   // Make this message into a copy of the given message.  The given message
    182   // must have the same descriptor, but need not necessarily be the same class.
    183   // By default this is just implemented as "Clear(); MergeFrom(from);".
    184   virtual void CopyFrom(const Message& from);
    185 
    186   // Merge the fields from the given message into this message.  Singular
    187   // fields will be overwritten, except for embedded messages which will
    188   // be merged.  Repeated fields will be concatenated.  The given message
    189   // must be of the same type as this message (i.e. the exact same class).
    190   virtual void MergeFrom(const Message& from);
    191 
    192   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
    193   // a nice error message.
    194   void CheckInitialized() const;
    195 
    196   // Slowly build a list of all required fields that are not set.
    197   // This is much, much slower than IsInitialized() as it is implemented
    198   // purely via reflection.  Generally, you should not call this unless you
    199   // have already determined that an error exists by calling IsInitialized().
    200   void FindInitializationErrors(vector<string>* errors) const;
    201 
    202   // Like FindInitializationErrors, but joins all the strings, delimited by
    203   // commas, and returns them.
    204   string InitializationErrorString() const;
    205 
    206   // Clears all unknown fields from this message and all embedded messages.
    207   // Normally, if unknown tag numbers are encountered when parsing a message,
    208   // the tag and value are stored in the message's UnknownFieldSet and
    209   // then written back out when the message is serialized.  This allows servers
    210   // which simply route messages to other servers to pass through messages
    211   // that have new field definitions which they don't yet know about.  However,
    212   // this behavior can have security implications.  To avoid it, call this
    213   // method after parsing.
    214   //
    215   // See Reflection::GetUnknownFields() for more on unknown fields.
    216   virtual void DiscardUnknownFields();
    217 
    218   // Computes (an estimate of) the total number of bytes currently used for
    219   // storing the message in memory.  The default implementation calls the
    220   // Reflection object's SpaceUsed() method.
    221   virtual int SpaceUsed() const;
    222 
    223   // Debugging & Testing----------------------------------------------
    224 
    225   // Generates a human readable form of this message, useful for debugging
    226   // and other purposes.
    227   string DebugString() const;
    228   // Like DebugString(), but with less whitespace.
    229   string ShortDebugString() const;
    230   // Like DebugString(), but do not escape UTF-8 byte sequences.
    231   string Utf8DebugString() const;
    232   // Convenience function useful in GDB.  Prints DebugString() to stdout.
    233   void PrintDebugString() const;
    234 
    235   // Heavy I/O -------------------------------------------------------
    236   // Additional parsing and serialization methods not implemented by
    237   // MessageLite because they are not supported by the lite library.
    238 
    239   // Parse a protocol buffer from a file descriptor.  If successful, the entire
    240   // input will be consumed.
    241   bool ParseFromFileDescriptor(int file_descriptor);
    242   // Like ParseFromFileDescriptor(), but accepts messages that are missing
    243   // required fields.
    244   bool ParsePartialFromFileDescriptor(int file_descriptor);
    245   // Parse a protocol buffer from a C++ istream.  If successful, the entire
    246   // input will be consumed.
    247   bool ParseFromIstream(istream* input);
    248   // Like ParseFromIstream(), but accepts messages that are missing
    249   // required fields.
    250   bool ParsePartialFromIstream(istream* input);
    251 
    252   // Serialize the message and write it to the given file descriptor.  All
    253   // required fields must be set.
    254   bool SerializeToFileDescriptor(int file_descriptor) const;
    255   // Like SerializeToFileDescriptor(), but allows missing required fields.
    256   bool SerializePartialToFileDescriptor(int file_descriptor) const;
    257   // Serialize the message and write it to the given C++ ostream.  All
    258   // required fields must be set.
    259   bool SerializeToOstream(ostream* output) const;
    260   // Like SerializeToOstream(), but allows missing required fields.
    261   bool SerializePartialToOstream(ostream* output) const;
    262 
    263 
    264   // Reflection-based methods ----------------------------------------
    265   // These methods are pure-virtual in MessageLite, but Message provides
    266   // reflection-based default implementations.
    267 
    268   virtual string GetTypeName() const;
    269   virtual void Clear();
    270   virtual bool IsInitialized() const;
    271   virtual void CheckTypeAndMergeFrom(const MessageLite& other);
    272   virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
    273   virtual int ByteSize() const;
    274   virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
    275 
    276  private:
    277   // This is called only by the default implementation of ByteSize(), to
    278   // update the cached size.  If you override ByteSize(), you do not need
    279   // to override this.  If you do not override ByteSize(), you MUST override
    280   // this; the default implementation will crash.
    281   //
    282   // The method is private because subclasses should never call it; only
    283   // override it.  Yes, C++ lets you do that.  Crazy, huh?
    284   virtual void SetCachedSize(int size) const;
    285 
    286  public:
    287 
    288   // Introspection ---------------------------------------------------
    289 
    290   // Typedef for backwards-compatibility.
    291   typedef google::protobuf::Reflection Reflection;
    292 
    293   // Get a Descriptor for this message's type.  This describes what
    294   // fields the message contains, the types of those fields, etc.
    295   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
    296 
    297   // Get the Reflection interface for this Message, which can be used to
    298   // read and modify the fields of the Message dynamically (in other words,
    299   // without knowing the message type at compile time).  This object remains
    300   // property of the Message.
    301   //
    302   // This method remains virtual in case a subclass does not implement
    303   // reflection and wants to override the default behavior.
    304   virtual const Reflection* GetReflection() const {
    305     return GetMetadata().reflection;
    306   }
    307 
    308  protected:
    309   // Get a struct containing the metadata for the Message. Most subclasses only
    310   // need to implement this method, rather than the GetDescriptor() and
    311   // GetReflection() wrappers.
    312   virtual Metadata GetMetadata() const  = 0;
    313 
    314 
    315  private:
    316   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
    317 };
    318 
    319 // This interface contains methods that can be used to dynamically access
    320 // and modify the fields of a protocol message.  Their semantics are
    321 // similar to the accessors the protocol compiler generates.
    322 //
    323 // To get the Reflection for a given Message, call Message::GetReflection().
    324 //
    325 // This interface is separate from Message only for efficiency reasons;
    326 // the vast majority of implementations of Message will share the same
    327 // implementation of Reflection (GeneratedMessageReflection,
    328 // defined in generated_message.h), and all Messages of a particular class
    329 // should share the same Reflection object (though you should not rely on
    330 // the latter fact).
    331 //
    332 // There are several ways that these methods can be used incorrectly.  For
    333 // example, any of the following conditions will lead to undefined
    334 // results (probably assertion failures):
    335 // - The FieldDescriptor is not a field of this message type.
    336 // - The method called is not appropriate for the field's type.  For
    337 //   each field type in FieldDescriptor::TYPE_*, there is only one
    338 //   Get*() method, one Set*() method, and one Add*() method that is
    339 //   valid for that type.  It should be obvious which (except maybe
    340 //   for TYPE_BYTES, which are represented using strings in C++).
    341 // - A Get*() or Set*() method for singular fields is called on a repeated
    342 //   field.
    343 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
    344 //   field.
    345 // - The Message object passed to any method is not of the right type for
    346 //   this Reflection object (i.e. message.GetReflection() != reflection).
    347 //
    348 // You might wonder why there is not any abstract representation for a field
    349 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
    350 // returns "const Field&", where "Field" is some class with accessors like
    351 // "GetInt32Value()".  The problem is that someone would have to deal with
    352 // allocating these Field objects.  For generated message classes, having to
    353 // allocate space for an additional object to wrap every field would at least
    354 // double the message's memory footprint, probably worse.  Allocating the
    355 // objects on-demand, on the other hand, would be expensive and prone to
    356 // memory leaks.  So, instead we ended up with this flat interface.
    357 //
    358 // TODO(kenton):  Create a utility class which callers can use to read and
    359 //   write fields from a Reflection without paying attention to the type.
    360 class LIBPROTOBUF_EXPORT Reflection {
    361  public:
    362   inline Reflection() {}
    363   virtual ~Reflection();
    364 
    365   // Get the UnknownFieldSet for the message.  This contains fields which
    366   // were seen when the Message was parsed but were not recognized according
    367   // to the Message's definition.
    368   virtual const UnknownFieldSet& GetUnknownFields(
    369       const Message& message) const = 0;
    370   // Get a mutable pointer to the UnknownFieldSet for the message.  This
    371   // contains fields which were seen when the Message was parsed but were not
    372   // recognized according to the Message's definition.
    373   virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
    374 
    375   // Estimate the amount of memory used by the message object.
    376   virtual int SpaceUsed(const Message& message) const = 0;
    377 
    378   // Check if the given non-repeated field is set.
    379   virtual bool HasField(const Message& message,
    380                         const FieldDescriptor* field) const = 0;
    381 
    382   // Get the number of elements of a repeated field.
    383   virtual int FieldSize(const Message& message,
    384                         const FieldDescriptor* field) const = 0;
    385 
    386   // Clear the value of a field, so that HasField() returns false or
    387   // FieldSize() returns zero.
    388   virtual void ClearField(Message* message,
    389                           const FieldDescriptor* field) const = 0;
    390 
    391   // Removes the last element of a repeated field.
    392   // We don't provide a way to remove any element other than the last
    393   // because it invites inefficient use, such as O(n^2) filtering loops
    394   // that should have been O(n).  If you want to remove an element other
    395   // than the last, the best way to do it is to re-arrange the elements
    396   // (using Swap()) so that the one you want removed is at the end, then
    397   // call RemoveLast().
    398   virtual void RemoveLast(Message* message,
    399                           const FieldDescriptor* field) const = 0;
    400   // Removes the last element of a repeated message field, and returns the
    401   // pointer to the caller.  Caller takes ownership of the returned pointer.
    402   virtual Message* ReleaseLast(Message* message,
    403                                const FieldDescriptor* field) const = 0;
    404 
    405   // Swap the complete contents of two messages.
    406   virtual void Swap(Message* message1, Message* message2) const = 0;
    407 
    408   // Swap two elements of a repeated field.
    409   virtual void SwapElements(Message* message,
    410                     const FieldDescriptor* field,
    411                     int index1,
    412                     int index2) const = 0;
    413 
    414   // List all fields of the message which are currently set.  This includes
    415   // extensions.  Singular fields will only be listed if HasField(field) would
    416   // return true and repeated fields will only be listed if FieldSize(field)
    417   // would return non-zero.  Fields (both normal fields and extension fields)
    418   // will be listed ordered by field number.
    419   virtual void ListFields(const Message& message,
    420                           vector<const FieldDescriptor*>* output) const = 0;
    421 
    422   // Singular field getters ------------------------------------------
    423   // These get the value of a non-repeated field.  They return the default
    424   // value for fields that aren't set.
    425 
    426   virtual int32  GetInt32 (const Message& message,
    427                            const FieldDescriptor* field) const = 0;
    428   virtual int64  GetInt64 (const Message& message,
    429                            const FieldDescriptor* field) const = 0;
    430   virtual uint32 GetUInt32(const Message& message,
    431                            const FieldDescriptor* field) const = 0;
    432   virtual uint64 GetUInt64(const Message& message,
    433                            const FieldDescriptor* field) const = 0;
    434   virtual float  GetFloat (const Message& message,
    435                            const FieldDescriptor* field) const = 0;
    436   virtual double GetDouble(const Message& message,
    437                            const FieldDescriptor* field) const = 0;
    438   virtual bool   GetBool  (const Message& message,
    439                            const FieldDescriptor* field) const = 0;
    440   virtual string GetString(const Message& message,
    441                            const FieldDescriptor* field) const = 0;
    442   virtual const EnumValueDescriptor* GetEnum(
    443       const Message& message, const FieldDescriptor* field) const = 0;
    444   // See MutableMessage() for the meaning of the "factory" parameter.
    445   virtual const Message& GetMessage(const Message& message,
    446                                     const FieldDescriptor* field,
    447                                     MessageFactory* factory = NULL) const = 0;
    448 
    449   // Get a string value without copying, if possible.
    450   //
    451   // GetString() necessarily returns a copy of the string.  This can be
    452   // inefficient when the string is already stored in a string object in the
    453   // underlying message.  GetStringReference() will return a reference to the
    454   // underlying string in this case.  Otherwise, it will copy the string into
    455   // *scratch and return that.
    456   //
    457   // Note:  It is perfectly reasonable and useful to write code like:
    458   //     str = reflection->GetStringReference(field, &str);
    459   //   This line would ensure that only one copy of the string is made
    460   //   regardless of the field's underlying representation.  When initializing
    461   //   a newly-constructed string, though, it's just as fast and more readable
    462   //   to use code like:
    463   //     string str = reflection->GetString(field);
    464   virtual const string& GetStringReference(const Message& message,
    465                                            const FieldDescriptor* field,
    466                                            string* scratch) const = 0;
    467 
    468 
    469   // Singular field mutators -----------------------------------------
    470   // These mutate the value of a non-repeated field.
    471 
    472   virtual void SetInt32 (Message* message,
    473                          const FieldDescriptor* field, int32  value) const = 0;
    474   virtual void SetInt64 (Message* message,
    475                          const FieldDescriptor* field, int64  value) const = 0;
    476   virtual void SetUInt32(Message* message,
    477                          const FieldDescriptor* field, uint32 value) const = 0;
    478   virtual void SetUInt64(Message* message,
    479                          const FieldDescriptor* field, uint64 value) const = 0;
    480   virtual void SetFloat (Message* message,
    481                          const FieldDescriptor* field, float  value) const = 0;
    482   virtual void SetDouble(Message* message,
    483                          const FieldDescriptor* field, double value) const = 0;
    484   virtual void SetBool  (Message* message,
    485                          const FieldDescriptor* field, bool   value) const = 0;
    486   virtual void SetString(Message* message,
    487                          const FieldDescriptor* field,
    488                          const string& value) const = 0;
    489   virtual void SetEnum  (Message* message,
    490                          const FieldDescriptor* field,
    491                          const EnumValueDescriptor* value) const = 0;
    492   // Get a mutable pointer to a field with a message type.  If a MessageFactory
    493   // is provided, it will be used to construct instances of the sub-message;
    494   // otherwise, the default factory is used.  If the field is an extension that
    495   // does not live in the same pool as the containing message's descriptor (e.g.
    496   // it lives in an overlay pool), then a MessageFactory must be provided.
    497   // If you have no idea what that meant, then you probably don't need to worry
    498   // about it (don't provide a MessageFactory).  WARNING:  If the
    499   // FieldDescriptor is for a compiled-in extension, then
    500   // factory->GetPrototype(field->message_type() MUST return an instance of the
    501   // compiled-in class for this type, NOT DynamicMessage.
    502   virtual Message* MutableMessage(Message* message,
    503                                   const FieldDescriptor* field,
    504                                   MessageFactory* factory = NULL) const = 0;
    505   // Releases the message specified by 'field' and returns the pointer,
    506   // ReleaseMessage() will return the message the message object if it exists.
    507   // Otherwise, it may or may not return NULL.  In any case, if the return value
    508   // is non-NULL, the caller takes ownership of the pointer.
    509   // If the field existed (HasField() is true), then the returned pointer will
    510   // be the same as the pointer returned by MutableMessage().
    511   // This function has the same effect as ClearField().
    512   virtual Message* ReleaseMessage(Message* message,
    513                                   const FieldDescriptor* field,
    514                                   MessageFactory* factory = NULL) const = 0;
    515 
    516 
    517   // Repeated field getters ------------------------------------------
    518   // These get the value of one element of a repeated field.
    519 
    520   virtual int32  GetRepeatedInt32 (const Message& message,
    521                                    const FieldDescriptor* field,
    522                                    int index) const = 0;
    523   virtual int64  GetRepeatedInt64 (const Message& message,
    524                                    const FieldDescriptor* field,
    525                                    int index) const = 0;
    526   virtual uint32 GetRepeatedUInt32(const Message& message,
    527                                    const FieldDescriptor* field,
    528                                    int index) const = 0;
    529   virtual uint64 GetRepeatedUInt64(const Message& message,
    530                                    const FieldDescriptor* field,
    531                                    int index) const = 0;
    532   virtual float  GetRepeatedFloat (const Message& message,
    533                                    const FieldDescriptor* field,
    534                                    int index) const = 0;
    535   virtual double GetRepeatedDouble(const Message& message,
    536                                    const FieldDescriptor* field,
    537                                    int index) const = 0;
    538   virtual bool   GetRepeatedBool  (const Message& message,
    539                                    const FieldDescriptor* field,
    540                                    int index) const = 0;
    541   virtual string GetRepeatedString(const Message& message,
    542                                    const FieldDescriptor* field,
    543                                    int index) const = 0;
    544   virtual const EnumValueDescriptor* GetRepeatedEnum(
    545       const Message& message,
    546       const FieldDescriptor* field, int index) const = 0;
    547   virtual const Message& GetRepeatedMessage(
    548       const Message& message,
    549       const FieldDescriptor* field, int index) const = 0;
    550 
    551   // See GetStringReference(), above.
    552   virtual const string& GetRepeatedStringReference(
    553       const Message& message, const FieldDescriptor* field,
    554       int index, string* scratch) const = 0;
    555 
    556 
    557   // Repeated field mutators -----------------------------------------
    558   // These mutate the value of one element of a repeated field.
    559 
    560   virtual void SetRepeatedInt32 (Message* message,
    561                                  const FieldDescriptor* field,
    562                                  int index, int32  value) const = 0;
    563   virtual void SetRepeatedInt64 (Message* message,
    564                                  const FieldDescriptor* field,
    565                                  int index, int64  value) const = 0;
    566   virtual void SetRepeatedUInt32(Message* message,
    567                                  const FieldDescriptor* field,
    568                                  int index, uint32 value) const = 0;
    569   virtual void SetRepeatedUInt64(Message* message,
    570                                  const FieldDescriptor* field,
    571                                  int index, uint64 value) const = 0;
    572   virtual void SetRepeatedFloat (Message* message,
    573                                  const FieldDescriptor* field,
    574                                  int index, float  value) const = 0;
    575   virtual void SetRepeatedDouble(Message* message,
    576                                  const FieldDescriptor* field,
    577                                  int index, double value) const = 0;
    578   virtual void SetRepeatedBool  (Message* message,
    579                                  const FieldDescriptor* field,
    580                                  int index, bool   value) const = 0;
    581   virtual void SetRepeatedString(Message* message,
    582                                  const FieldDescriptor* field,
    583                                  int index, const string& value) const = 0;
    584   virtual void SetRepeatedEnum(Message* message,
    585                                const FieldDescriptor* field, int index,
    586                                const EnumValueDescriptor* value) const = 0;
    587   // Get a mutable pointer to an element of a repeated field with a message
    588   // type.
    589   virtual Message* MutableRepeatedMessage(
    590       Message* message, const FieldDescriptor* field, int index) const = 0;
    591 
    592 
    593   // Repeated field adders -------------------------------------------
    594   // These add an element to a repeated field.
    595 
    596   virtual void AddInt32 (Message* message,
    597                          const FieldDescriptor* field, int32  value) const = 0;
    598   virtual void AddInt64 (Message* message,
    599                          const FieldDescriptor* field, int64  value) const = 0;
    600   virtual void AddUInt32(Message* message,
    601                          const FieldDescriptor* field, uint32 value) const = 0;
    602   virtual void AddUInt64(Message* message,
    603                          const FieldDescriptor* field, uint64 value) const = 0;
    604   virtual void AddFloat (Message* message,
    605                          const FieldDescriptor* field, float  value) const = 0;
    606   virtual void AddDouble(Message* message,
    607                          const FieldDescriptor* field, double value) const = 0;
    608   virtual void AddBool  (Message* message,
    609                          const FieldDescriptor* field, bool   value) const = 0;
    610   virtual void AddString(Message* message,
    611                          const FieldDescriptor* field,
    612                          const string& value) const = 0;
    613   virtual void AddEnum  (Message* message,
    614                          const FieldDescriptor* field,
    615                          const EnumValueDescriptor* value) const = 0;
    616   // See MutableMessage() for comments on the "factory" parameter.
    617   virtual Message* AddMessage(Message* message,
    618                               const FieldDescriptor* field,
    619                               MessageFactory* factory = NULL) const = 0;
    620 
    621 
    622   // Repeated field accessors  -------------------------------------------------
    623   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
    624   // access to the data in a RepeatedField.  The methods below provide aggregate
    625   // access by exposing the RepeatedField object itself with the Message.
    626   // Applying these templates to inappropriate types will lead to an undefined
    627   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
    628   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
    629   //
    630   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
    631 
    632   // for T = Cord and all protobuf scalar types except enums.
    633   template<typename T>
    634   const RepeatedField<T>& GetRepeatedField(
    635       const Message&, const FieldDescriptor*) const;
    636 
    637   // for T = Cord and all protobuf scalar types except enums.
    638   template<typename T>
    639   RepeatedField<T>* MutableRepeatedField(
    640       Message*, const FieldDescriptor*) const;
    641 
    642   // for T = string, google::protobuf::internal::StringPieceField
    643   //         google::protobuf::Message & descendants.
    644   template<typename T>
    645   const RepeatedPtrField<T>& GetRepeatedPtrField(
    646       const Message&, const FieldDescriptor*) const;
    647 
    648   // for T = string, google::protobuf::internal::StringPieceField
    649   //         google::protobuf::Message & descendants.
    650   template<typename T>
    651   RepeatedPtrField<T>* MutableRepeatedPtrField(
    652       Message*, const FieldDescriptor*) const;
    653 
    654   // Extensions ----------------------------------------------------------------
    655 
    656   // Try to find an extension of this message type by fully-qualified field
    657   // name.  Returns NULL if no extension is known for this name or number.
    658   virtual const FieldDescriptor* FindKnownExtensionByName(
    659       const string& name) const = 0;
    660 
    661   // Try to find an extension of this message type by field number.
    662   // Returns NULL if no extension is known for this name or number.
    663   virtual const FieldDescriptor* FindKnownExtensionByNumber(
    664       int number) const = 0;
    665 
    666   // ---------------------------------------------------------------------------
    667 
    668  protected:
    669   // Obtain a pointer to a Repeated Field Structure and do some type checking:
    670   //   on field->cpp_type(),
    671   //   on field->field_option().ctype() (if ctype >= 0)
    672   //   of field->message_type() (if message_type != NULL).
    673   // We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
    674   virtual void* MutableRawRepeatedField(
    675       Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
    676       int ctype, const Descriptor* message_type) const = 0;
    677 
    678  private:
    679   // Special version for specialized implementations of string.  We can't call
    680   // MutableRawRepeatedField directly here because we don't have access to
    681   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
    682   // file here is not possible because it would cause a circular include cycle.
    683   void* MutableRawRepeatedString(
    684       Message* message, const FieldDescriptor* field, bool is_string) const;
    685 
    686   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
    687 };
    688 
    689 // Abstract interface for a factory for message objects.
    690 class LIBPROTOBUF_EXPORT MessageFactory {
    691  public:
    692   inline MessageFactory() {}
    693   virtual ~MessageFactory();
    694 
    695   // Given a Descriptor, gets or constructs the default (prototype) Message
    696   // of that type.  You can then call that message's New() method to construct
    697   // a mutable message of that type.
    698   //
    699   // Calling this method twice with the same Descriptor returns the same
    700   // object.  The returned object remains property of the factory.  Also, any
    701   // objects created by calling the prototype's New() method share some data
    702   // with the prototype, so these must be destoyed before the MessageFactory
    703   // is destroyed.
    704   //
    705   // The given descriptor must outlive the returned message, and hence must
    706   // outlive the MessageFactory.
    707   //
    708   // Some implementations do not support all types.  GetPrototype() will
    709   // return NULL if the descriptor passed in is not supported.
    710   //
    711   // This method may or may not be thread-safe depending on the implementation.
    712   // Each implementation should document its own degree thread-safety.
    713   virtual const Message* GetPrototype(const Descriptor* type) = 0;
    714 
    715   // Gets a MessageFactory which supports all generated, compiled-in messages.
    716   // In other words, for any compiled-in type FooMessage, the following is true:
    717   //   MessageFactory::generated_factory()->GetPrototype(
    718   //     FooMessage::descriptor()) == FooMessage::default_instance()
    719   // This factory supports all types which are found in
    720   // DescriptorPool::generated_pool().  If given a descriptor from any other
    721   // pool, GetPrototype() will return NULL.  (You can also check if a
    722   // descriptor is for a generated message by checking if
    723   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
    724   //
    725   // This factory is 100% thread-safe; calling GetPrototype() does not modify
    726   // any shared data.
    727   //
    728   // This factory is a singleton.  The caller must not delete the object.
    729   static MessageFactory* generated_factory();
    730 
    731   // For internal use only:  Registers a .proto file at static initialization
    732   // time, to be placed in generated_factory.  The first time GetPrototype()
    733   // is called with a descriptor from this file, |register_messages| will be
    734   // called, with the file name as the parameter.  It must call
    735   // InternalRegisterGeneratedMessage() (below) to register each message type
    736   // in the file.  This strange mechanism is necessary because descriptors are
    737   // built lazily, so we can't register types by their descriptor until we
    738   // know that the descriptor exists.  |filename| must be a permanent string.
    739   static void InternalRegisterGeneratedFile(
    740       const char* filename, void (*register_messages)(const string&));
    741 
    742   // For internal use only:  Registers a message type.  Called only by the
    743   // functions which are registered with InternalRegisterGeneratedFile(),
    744   // above.
    745   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
    746                                                const Message* prototype);
    747 
    748 
    749  private:
    750   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
    751 };
    752 
    753 #define DECLARE_GET_REPEATED_FIELD(TYPE)                         \
    754 template<>                                                       \
    755 LIBPROTOBUF_EXPORT                                               \
    756 const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>(   \
    757     const Message& message, const FieldDescriptor* field) const; \
    758                                                                  \
    759 template<>                                                       \
    760 LIBPROTOBUF_EXPORT                                               \
    761 RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>(     \
    762     Message* message, const FieldDescriptor* field) const;
    763 
    764 DECLARE_GET_REPEATED_FIELD(int32)
    765 DECLARE_GET_REPEATED_FIELD(int64)
    766 DECLARE_GET_REPEATED_FIELD(uint32)
    767 DECLARE_GET_REPEATED_FIELD(uint64)
    768 DECLARE_GET_REPEATED_FIELD(float)
    769 DECLARE_GET_REPEATED_FIELD(double)
    770 DECLARE_GET_REPEATED_FIELD(bool)
    771 
    772 #undef DECLARE_GET_REPEATED_FIELD
    773 
    774 // =============================================================================
    775 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
    776 // specializations for <string>, <StringPieceField> and <Message> and handle
    777 // everything else with the default template which will match any type having
    778 // a method with signature "static const google::protobuf::Descriptor* descriptor()".
    779 // Such a type presumably is a descendant of google::protobuf::Message.
    780 
    781 template<>
    782 inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
    783     const Message& message, const FieldDescriptor* field) const {
    784   return *static_cast<RepeatedPtrField<string>* >(
    785       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
    786 }
    787 
    788 template<>
    789 inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
    790     Message* message, const FieldDescriptor* field) const {
    791   return static_cast<RepeatedPtrField<string>* >(
    792       MutableRawRepeatedString(message, field, true));
    793 }
    794 
    795 
    796 // -----
    797 
    798 template<>
    799 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
    800     const Message& message, const FieldDescriptor* field) const {
    801   return *static_cast<RepeatedPtrField<Message>* >(
    802       MutableRawRepeatedField(const_cast<Message*>(&message), field,
    803           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    804           NULL));
    805 }
    806 
    807 template<>
    808 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
    809     Message* message, const FieldDescriptor* field) const {
    810   return static_cast<RepeatedPtrField<Message>* >(
    811       MutableRawRepeatedField(message, field,
    812           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    813           NULL));
    814 }
    815 
    816 template<typename PB>
    817 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
    818     const Message& message, const FieldDescriptor* field) const {
    819   return *static_cast<RepeatedPtrField<PB>* >(
    820       MutableRawRepeatedField(const_cast<Message*>(&message), field,
    821           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    822           PB::default_instance().GetDescriptor()));
    823 }
    824 
    825 template<typename PB>
    826 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
    827     Message* message, const FieldDescriptor* field) const {
    828   return static_cast<RepeatedPtrField<PB>* >(
    829       MutableRawRepeatedField(message, field,
    830           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    831           PB::default_instance().GetDescriptor()));
    832 }
    833 
    834 }  // namespace protobuf
    835 
    836 }  // namespace google
    837 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
    838