1 # benchmark 2 [![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark) 3 [![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master) 4 [![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark) 5 6 A library to support the benchmarking of functions, similar to unit-tests. 7 8 Discussion group: https://groups.google.com/d/forum/benchmark-discuss 9 10 IRC channel: https://freenode.net #googlebenchmark 11 12 [Known issues and common problems](#known-issues) 13 14 [Additional Tooling Documentation](docs/tools.md) 15 16 ## Example usage 17 ### Basic usage 18 Define a function that executes the code to be measured. 19 20 ```c++ 21 static void BM_StringCreation(benchmark::State& state) { 22 while (state.KeepRunning()) 23 std::string empty_string; 24 } 25 // Register the function as a benchmark 26 BENCHMARK(BM_StringCreation); 27 28 // Define another benchmark 29 static void BM_StringCopy(benchmark::State& state) { 30 std::string x = "hello"; 31 while (state.KeepRunning()) 32 std::string copy(x); 33 } 34 BENCHMARK(BM_StringCopy); 35 36 BENCHMARK_MAIN(); 37 ``` 38 39 ### Passing arguments 40 Sometimes a family of benchmarks can be implemented with just one routine that 41 takes an extra argument to specify which one of the family of benchmarks to 42 run. For example, the following code defines a family of benchmarks for 43 measuring the speed of `memcpy()` calls of different lengths: 44 45 ```c++ 46 static void BM_memcpy(benchmark::State& state) { 47 char* src = new char[state.range(0)]; 48 char* dst = new char[state.range(0)]; 49 memset(src, 'x', state.range(0)); 50 while (state.KeepRunning()) 51 memcpy(dst, src, state.range(0)); 52 state.SetBytesProcessed(int64_t(state.iterations()) * 53 int64_t(state.range(0))); 54 delete[] src; 55 delete[] dst; 56 } 57 BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 58 ``` 59 60 The preceding code is quite repetitive, and can be replaced with the following 61 short-hand. The following invocation will pick a few appropriate arguments in 62 the specified range and will generate a benchmark for each such argument. 63 64 ```c++ 65 BENCHMARK(BM_memcpy)->Range(8, 8<<10); 66 ``` 67 68 By default the arguments in the range are generated in multiples of eight and 69 the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the 70 range multiplier is changed to multiples of two. 71 72 ```c++ 73 BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10); 74 ``` 75 Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ]. 76 77 You might have a benchmark that depends on two or more inputs. For example, the 78 following code defines a family of benchmarks for measuring the speed of set 79 insertion. 80 81 ```c++ 82 static void BM_SetInsert(benchmark::State& state) { 83 while (state.KeepRunning()) { 84 state.PauseTiming(); 85 std::set<int> data = ConstructRandomSet(state.range(0)); 86 state.ResumeTiming(); 87 for (int j = 0; j < state.range(1); ++j) 88 data.insert(RandomNumber()); 89 } 90 } 91 BENCHMARK(BM_SetInsert) 92 ->Args({1<<10, 1}) 93 ->Args({1<<10, 8}) 94 ->Args({1<<10, 64}) 95 ->Args({1<<10, 512}) 96 ->Args({8<<10, 1}) 97 ->Args({8<<10, 8}) 98 ->Args({8<<10, 64}) 99 ->Args({8<<10, 512}); 100 ``` 101 102 The preceding code is quite repetitive, and can be replaced with the following 103 short-hand. The following macro will pick a few appropriate arguments in the 104 product of the two specified ranges and will generate a benchmark for each such 105 pair. 106 107 ```c++ 108 BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}}); 109 ``` 110 111 For more complex patterns of inputs, passing a custom function to `Apply` allows 112 programmatic specification of an arbitrary set of arguments on which to run the 113 benchmark. The following example enumerates a dense range on one parameter, 114 and a sparse range on the second. 115 116 ```c++ 117 static void CustomArguments(benchmark::internal::Benchmark* b) { 118 for (int i = 0; i <= 10; ++i) 119 for (int j = 32; j <= 1024*1024; j *= 8) 120 b->Args({i, j}); 121 } 122 BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 123 ``` 124 125 ### Calculate asymptotic complexity (Big O) 126 Asymptotic complexity might be calculated for a family of benchmarks. The 127 following code will calculate the coefficient for the high-order term in the 128 running time and the normalized root-mean square error of string comparison. 129 130 ```c++ 131 static void BM_StringCompare(benchmark::State& state) { 132 std::string s1(state.range(0), '-'); 133 std::string s2(state.range(0), '-'); 134 while (state.KeepRunning()) { 135 benchmark::DoNotOptimize(s1.compare(s2)); 136 } 137 state.SetComplexityN(state.range(0)); 138 } 139 BENCHMARK(BM_StringCompare) 140 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN); 141 ``` 142 143 As shown in the following invocation, asymptotic complexity might also be 144 calculated automatically. 145 146 ```c++ 147 BENCHMARK(BM_StringCompare) 148 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(); 149 ``` 150 151 The following code will specify asymptotic complexity with a lambda function, 152 that might be used to customize high-order term calculation. 153 154 ```c++ 155 BENCHMARK(BM_StringCompare)->RangeMultiplier(2) 156 ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; }); 157 ``` 158 159 ### Templated benchmarks 160 Templated benchmarks work the same way: This example produces and consumes 161 messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the 162 absence of multiprogramming. 163 164 ```c++ 165 template <class Q> int BM_Sequential(benchmark::State& state) { 166 Q q; 167 typename Q::value_type v; 168 while (state.KeepRunning()) { 169 for (int i = state.range(0); i--; ) 170 q.push(v); 171 for (int e = state.range(0); e--; ) 172 q.Wait(&v); 173 } 174 // actually messages, not bytes: 175 state.SetBytesProcessed( 176 static_cast<int64_t>(state.iterations())*state.range(0)); 177 } 178 BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 179 ``` 180 181 Three macros are provided for adding benchmark templates. 182 183 ```c++ 184 #if __cplusplus >= 201103L // C++11 and greater. 185 #define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. 186 #else // C++ < C++11 187 #define BENCHMARK_TEMPLATE(func, arg1) 188 #endif 189 #define BENCHMARK_TEMPLATE1(func, arg1) 190 #define BENCHMARK_TEMPLATE2(func, arg1, arg2) 191 ``` 192 193 ## Passing arbitrary arguments to a benchmark 194 In C++11 it is possible to define a benchmark that takes an arbitrary number 195 of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)` 196 macro creates a benchmark that invokes `func` with the `benchmark::State` as 197 the first argument followed by the specified `args...`. 198 The `test_case_name` is appended to the name of the benchmark and 199 should describe the values passed. 200 201 ```c++ 202 template <class ...ExtraArgs>` 203 void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) { 204 [...] 205 } 206 // Registers a benchmark named "BM_takes_args/int_string_test` that passes 207 // the specified values to `extra_args`. 208 BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc")); 209 ``` 210 Note that elements of `...args` may refer to global variables. Users should 211 avoid modifying global state inside of a benchmark. 212 213 ## Using RegisterBenchmark(name, fn, args...) 214 215 The `RegisterBenchmark(name, func, args...)` function provides an alternative 216 way to create and register benchmarks. 217 `RegisterBenchmark(name, func, args...)` creates, registers, and returns a 218 pointer to a new benchmark with the specified `name` that invokes 219 `func(st, args...)` where `st` is a `benchmark::State` object. 220 221 Unlike the `BENCHMARK` registration macros, which can only be used at the global 222 scope, the `RegisterBenchmark` can be called anywhere. This allows for 223 benchmark tests to be registered programmatically. 224 225 Additionally `RegisterBenchmark` allows any callable object to be registered 226 as a benchmark. Including capturing lambdas and function objects. This 227 allows the creation 228 229 For Example: 230 ```c++ 231 auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ }; 232 233 int main(int argc, char** argv) { 234 for (auto& test_input : { /* ... */ }) 235 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input); 236 benchmark::Initialize(&argc, argv); 237 benchmark::RunSpecifiedBenchmarks(); 238 } 239 ``` 240 241 ### Multithreaded benchmarks 242 In a multithreaded test (benchmark invoked by multiple threads simultaneously), 243 it is guaranteed that none of the threads will start until all have called 244 `KeepRunning`, and all will have finished before KeepRunning returns false. As 245 such, any global setup or teardown can be wrapped in a check against the thread 246 index: 247 248 ```c++ 249 static void BM_MultiThreaded(benchmark::State& state) { 250 if (state.thread_index == 0) { 251 // Setup code here. 252 } 253 while (state.KeepRunning()) { 254 // Run the test as normal. 255 } 256 if (state.thread_index == 0) { 257 // Teardown code here. 258 } 259 } 260 BENCHMARK(BM_MultiThreaded)->Threads(2); 261 ``` 262 263 If the benchmarked code itself uses threads and you want to compare it to 264 single-threaded code, you may want to use real-time ("wallclock") measurements 265 for latency comparisons: 266 267 ```c++ 268 BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime(); 269 ``` 270 271 Without `UseRealTime`, CPU time is used by default. 272 273 274 ## Manual timing 275 For benchmarking something for which neither CPU time nor real-time are 276 correct or accurate enough, completely manual timing is supported using 277 the `UseManualTime` function. 278 279 When `UseManualTime` is used, the benchmarked code must call 280 `SetIterationTime` once per iteration of the `KeepRunning` loop to 281 report the manually measured time. 282 283 An example use case for this is benchmarking GPU execution (e.g. OpenCL 284 or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot 285 be accurately measured using CPU time or real-time. Instead, they can be 286 measured accurately using a dedicated API, and these measurement results 287 can be reported back with `SetIterationTime`. 288 289 ```c++ 290 static void BM_ManualTiming(benchmark::State& state) { 291 int microseconds = state.range(0); 292 std::chrono::duration<double, std::micro> sleep_duration { 293 static_cast<double>(microseconds) 294 }; 295 296 while (state.KeepRunning()) { 297 auto start = std::chrono::high_resolution_clock::now(); 298 // Simulate some useful workload with a sleep 299 std::this_thread::sleep_for(sleep_duration); 300 auto end = std::chrono::high_resolution_clock::now(); 301 302 auto elapsed_seconds = 303 std::chrono::duration_cast<std::chrono::duration<double>>( 304 end - start); 305 306 state.SetIterationTime(elapsed_seconds.count()); 307 } 308 } 309 BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime(); 310 ``` 311 312 ### Preventing optimisation 313 To prevent a value or expression from being optimized away by the compiler 314 the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()` 315 functions can be used. 316 317 ```c++ 318 static void BM_test(benchmark::State& state) { 319 while (state.KeepRunning()) { 320 int x = 0; 321 for (int i=0; i < 64; ++i) { 322 benchmark::DoNotOptimize(x += i); 323 } 324 } 325 } 326 ``` 327 328 `DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either 329 memory or a register. For GNU based compilers it acts as read/write barrier 330 for global memory. More specifically it forces the compiler to flush pending 331 writes to memory and reload any other values as necessary. 332 333 Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>` 334 in any way. `<expr>` may even be removed entirely when the result is already 335 known. For example: 336 337 ```c++ 338 /* Example 1: `<expr>` is removed entirely. */ 339 int foo(int x) { return x + 42; } 340 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42); 341 342 /* Example 2: Result of '<expr>' is only reused */ 343 int bar(int) __attribute__((const)); 344 while (...) DoNotOptimize(bar(0)); // Optimized to: 345 // int __result__ = bar(0); 346 // while (...) DoNotOptimize(__result__); 347 ``` 348 349 The second tool for preventing optimizations is `ClobberMemory()`. In essence 350 `ClobberMemory()` forces the compiler to perform all pending writes to global 351 memory. Memory managed by block scope objects must be "escaped" using 352 `DoNotOptimize(...)` before it can be clobbered. In the below example 353 `ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized 354 away. 355 356 ```c++ 357 static void BM_vector_push_back(benchmark::State& state) { 358 while (state.KeepRunning()) { 359 std::vector<int> v; 360 v.reserve(1); 361 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered. 362 v.push_back(42); 363 benchmark::ClobberMemory(); // Force 42 to be written to memory. 364 } 365 } 366 ``` 367 368 Note that `ClobberMemory()` is only available for GNU or MSVC based compilers. 369 370 ### Set time unit manually 371 If a benchmark runs a few milliseconds it may be hard to visually compare the 372 measured times, since the output data is given in nanoseconds per default. In 373 order to manually set the time unit, you can specify it manually: 374 375 ```c++ 376 BENCHMARK(BM_test)->Unit(benchmark::kMillisecond); 377 ``` 378 379 ## Controlling number of iterations 380 In all cases, the number of iterations for which the benchmark is run is 381 governed by the amount of time the benchmark takes. Concretely, the number of 382 iterations is at least one, not more than 1e9, until CPU time is greater than 383 the minimum time, or the wallclock time is 5x minimum time. The minimum time is 384 set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on 385 the registered benchmark object. 386 387 ## Reporting the mean and standard devation by repeated benchmarks 388 By default each benchmark is run once and that single result is reported. 389 However benchmarks are often noisy and a single result may not be representative 390 of the overall behavior. For this reason it's possible to repeatedly rerun the 391 benchmark. 392 393 The number of runs of each benchmark is specified globally by the 394 `--benchmark_repetitions` flag or on a per benchmark basis by calling 395 `Repetitions` on the registered benchmark object. When a benchmark is run 396 more than once the mean and standard deviation of the runs will be reported. 397 398 Additionally the `--benchmark_report_aggregates_only={true|false}` flag or 399 `ReportAggregatesOnly(bool)` function can be used to change how repeated tests 400 are reported. By default the result of each repeated run is reported. When this 401 option is 'true' only the mean and standard deviation of the runs is reported. 402 Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides 403 the value of the flag for that benchmark. 404 405 ## Fixtures 406 Fixture tests are created by 407 first defining a type that derives from ::benchmark::Fixture and then 408 creating/registering the tests using the following macros: 409 410 * `BENCHMARK_F(ClassName, Method)` 411 * `BENCHMARK_DEFINE_F(ClassName, Method)` 412 * `BENCHMARK_REGISTER_F(ClassName, Method)` 413 414 For Example: 415 416 ```c++ 417 class MyFixture : public benchmark::Fixture {}; 418 419 BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { 420 while (st.KeepRunning()) { 421 ... 422 } 423 } 424 425 BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { 426 while (st.KeepRunning()) { 427 ... 428 } 429 } 430 /* BarTest is NOT registered */ 431 BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); 432 /* BarTest is now registered */ 433 ``` 434 435 436 ## User-defined counters 437 438 You can add your own counters with user-defined names. The example below 439 will add columns "Foo", "Bar" and "Baz" in its output: 440 441 ```c++ 442 static void UserCountersExample1(benchmark::State& state) { 443 double numFoos = 0, numBars = 0, numBazs = 0; 444 while (state.KeepRunning()) { 445 // ... count Foo,Bar,Baz events 446 } 447 state.counters["Foo"] = numFoos; 448 state.counters["Bar"] = numBars; 449 state.counters["Baz"] = numBazs; 450 } 451 ``` 452 453 The `state.counters` object is a `std::map` with `std::string` keys 454 and `Counter` values. The latter is a `double`-like class, via an implicit 455 conversion to `double&`. Thus you can use all of the standard arithmetic 456 assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter. 457 458 In multithreaded benchmarks, each counter is set on the calling thread only. 459 When the benchmark finishes, the counters from each thread will be summed; 460 the resulting sum is the value which will be shown for the benchmark. 461 462 The `Counter` constructor accepts two parameters: the value as a `double` 463 and a bit flag which allows you to show counters as rates and/or as 464 per-thread averages: 465 466 ```c++ 467 // sets a simple counter 468 state.counters["Foo"] = numFoos; 469 470 // Set the counter as a rate. It will be presented divided 471 // by the duration of the benchmark. 472 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate); 473 474 // Set the counter as a thread-average quantity. It will 475 // be presented divided by the number of threads. 476 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads); 477 478 // There's also a combined flag: 479 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate); 480 ``` 481 482 When you're compiling in C++11 mode or later you can use `insert()` with 483 `std::initializer_list`: 484 485 ```c++ 486 // With C++11, this can be done: 487 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}}); 488 // ... instead of: 489 state.counters["Foo"] = numFoos; 490 state.counters["Bar"] = numBars; 491 state.counters["Baz"] = numBazs; 492 ``` 493 494 ## Exiting Benchmarks in Error 495 496 When errors caused by external influences, such as file I/O and network 497 communication, occur within a benchmark the 498 `State::SkipWithError(const char* msg)` function can be used to skip that run 499 of benchmark and report the error. Note that only future iterations of the 500 `KeepRunning()` are skipped. Users may explicitly return to exit the 501 benchmark immediately. 502 503 The `SkipWithError(...)` function may be used at any point within the benchmark, 504 including before and after the `KeepRunning()` loop. 505 506 For example: 507 508 ```c++ 509 static void BM_test(benchmark::State& state) { 510 auto resource = GetResource(); 511 if (!resource.good()) { 512 state.SkipWithError("Resource is not good!"); 513 // KeepRunning() loop will not be entered. 514 } 515 while (state.KeepRunning()) { 516 auto data = resource.read_data(); 517 if (!resource.good()) { 518 state.SkipWithError("Failed to read data!"); 519 break; // Needed to skip the rest of the iteration. 520 } 521 do_stuff(data); 522 } 523 } 524 ``` 525 526 ## Running a subset of the benchmarks 527 528 The `--benchmark_filter=<regex>` option can be used to only run the benchmarks 529 which match the specified `<regex>`. For example: 530 531 ```bash 532 $ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32 533 Run on (1 X 2300 MHz CPU ) 534 2016-06-25 19:34:24 535 Benchmark Time CPU Iterations 536 ---------------------------------------------------- 537 BM_memcpy/32 11 ns 11 ns 79545455 538 BM_memcpy/32k 2181 ns 2185 ns 324074 539 BM_memcpy/32 12 ns 12 ns 54687500 540 BM_memcpy/32k 1834 ns 1837 ns 357143 541 ``` 542 543 544 ## Output Formats 545 The library supports multiple output formats. Use the 546 `--benchmark_format=<console|json|csv>` flag to set the format type. `console` 547 is the default format. 548 549 The Console format is intended to be a human readable format. By default 550 the format generates color output. Context is output on stderr and the 551 tabular data on stdout. Example tabular output looks like: 552 ``` 553 Benchmark Time(ns) CPU(ns) Iterations 554 ---------------------------------------------------------------------- 555 BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s 556 BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s 557 BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s 558 ``` 559 560 The JSON format outputs human readable json split into two top level attributes. 561 The `context` attribute contains information about the run in general, including 562 information about the CPU and the date. 563 The `benchmarks` attribute contains a list of ever benchmark run. Example json 564 output looks like: 565 ```json 566 { 567 "context": { 568 "date": "2015/03/17-18:40:25", 569 "num_cpus": 40, 570 "mhz_per_cpu": 2801, 571 "cpu_scaling_enabled": false, 572 "build_type": "debug" 573 }, 574 "benchmarks": [ 575 { 576 "name": "BM_SetInsert/1024/1", 577 "iterations": 94877, 578 "real_time": 29275, 579 "cpu_time": 29836, 580 "bytes_per_second": 134066, 581 "items_per_second": 33516 582 }, 583 { 584 "name": "BM_SetInsert/1024/8", 585 "iterations": 21609, 586 "real_time": 32317, 587 "cpu_time": 32429, 588 "bytes_per_second": 986770, 589 "items_per_second": 246693 590 }, 591 { 592 "name": "BM_SetInsert/1024/10", 593 "iterations": 21393, 594 "real_time": 32724, 595 "cpu_time": 33355, 596 "bytes_per_second": 1199226, 597 "items_per_second": 299807 598 } 599 ] 600 } 601 ``` 602 603 The CSV format outputs comma-separated values. The `context` is output on stderr 604 and the CSV itself on stdout. Example CSV output looks like: 605 ``` 606 name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label 607 "BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, 608 "BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, 609 "BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06, 610 ``` 611 612 ## Output Files 613 The library supports writing the output of the benchmark to a file specified 614 by `--benchmark_out=<filename>`. The format of the output can be specified 615 using `--benchmark_out_format={json|console|csv}`. Specifying 616 `--benchmark_out` does not suppress the console output. 617 618 ## Debug vs Release 619 By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use: 620 621 ``` 622 cmake -DCMAKE_BUILD_TYPE=Release 623 ``` 624 625 To enable link-time optimisation, use 626 627 ``` 628 cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true 629 ``` 630 631 ## Linking against the library 632 When using gcc, it is necessary to link against pthread to avoid runtime exceptions. 633 This is due to how gcc implements std::thread. 634 See [issue #67](https://github.com/google/benchmark/issues/67) for more details. 635 636 ## Compiler Support 637 638 Google Benchmark uses C++11 when building the library. As such we require 639 a modern C++ toolchain, both compiler and standard library. 640 641 The following minimum versions are strongly recommended build the library: 642 643 * GCC 4.8 644 * Clang 3.4 645 * Visual Studio 2013 646 * Intel 2015 Update 1 647 648 Anything older *may* work. 649 650 Note: Using the library and its headers in C++03 is supported. C++11 is only 651 required to build the library. 652 653 # Known Issues 654 655 ### Windows 656 657 * Users must manually link `shlwapi.lib`. Failure to do so may result 658 in unresolved symbols. 659 660