Home | History | Annotate | Download | only in test
      1 #include "benchmark/benchmark.h"
      2 
      3 #include <assert.h>
      4 #include <math.h>
      5 #include <stdint.h>
      6 
      7 #include <chrono>
      8 #include <cstdlib>
      9 #include <iostream>
     10 #include <limits>
     11 #include <list>
     12 #include <map>
     13 #include <mutex>
     14 #include <set>
     15 #include <sstream>
     16 #include <string>
     17 #include <thread>
     18 #include <utility>
     19 #include <vector>
     20 
     21 #if defined(__GNUC__)
     22 #define BENCHMARK_NOINLINE __attribute__((noinline))
     23 #else
     24 #define BENCHMARK_NOINLINE
     25 #endif
     26 
     27 namespace {
     28 
     29 int BENCHMARK_NOINLINE Factorial(uint32_t n) {
     30   return (n == 1) ? 1 : n * Factorial(n - 1);
     31 }
     32 
     33 double CalculatePi(int depth) {
     34   double pi = 0.0;
     35   for (int i = 0; i < depth; ++i) {
     36     double numerator = static_cast<double>(((i % 2) * 2) - 1);
     37     double denominator = static_cast<double>((2 * i) - 1);
     38     pi += numerator / denominator;
     39   }
     40   return (pi - 1.0) * 4;
     41 }
     42 
     43 std::set<int> ConstructRandomSet(int size) {
     44   std::set<int> s;
     45   for (int i = 0; i < size; ++i) s.insert(i);
     46   return s;
     47 }
     48 
     49 std::mutex test_vector_mu;
     50 std::vector<int>* test_vector = nullptr;
     51 
     52 }  // end namespace
     53 
     54 static void BM_Factorial(benchmark::State& state) {
     55   int fac_42 = 0;
     56   while (state.KeepRunning()) fac_42 = Factorial(8);
     57   // Prevent compiler optimizations
     58   std::stringstream ss;
     59   ss << fac_42;
     60   state.SetLabel(ss.str());
     61 }
     62 BENCHMARK(BM_Factorial);
     63 BENCHMARK(BM_Factorial)->UseRealTime();
     64 
     65 static void BM_CalculatePiRange(benchmark::State& state) {
     66   double pi = 0.0;
     67   while (state.KeepRunning()) pi = CalculatePi(state.range(0));
     68   std::stringstream ss;
     69   ss << pi;
     70   state.SetLabel(ss.str());
     71 }
     72 BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);
     73 
     74 static void BM_CalculatePi(benchmark::State& state) {
     75   static const int depth = 1024;
     76   while (state.KeepRunning()) {
     77     benchmark::DoNotOptimize(CalculatePi(depth));
     78   }
     79 }
     80 BENCHMARK(BM_CalculatePi)->Threads(8);
     81 BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32);
     82 BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
     83 
     84 static void BM_SetInsert(benchmark::State& state) {
     85   while (state.KeepRunning()) {
     86     state.PauseTiming();
     87     std::set<int> data = ConstructRandomSet(state.range(0));
     88     state.ResumeTiming();
     89     for (int j = 0; j < state.range(1); ++j) data.insert(rand());
     90   }
     91   state.SetItemsProcessed(state.iterations() * state.range(1));
     92   state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int));
     93 }
     94 BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {1, 10}});
     95 
     96 template <typename Container,
     97           typename ValueType = typename Container::value_type>
     98 static void BM_Sequential(benchmark::State& state) {
     99   ValueType v = 42;
    100   while (state.KeepRunning()) {
    101     Container c;
    102     for (int i = state.range(0); --i;) c.push_back(v);
    103   }
    104   const size_t items_processed = state.iterations() * state.range(0);
    105   state.SetItemsProcessed(items_processed);
    106   state.SetBytesProcessed(items_processed * sizeof(v));
    107 }
    108 BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int)
    109     ->Range(1 << 0, 1 << 10);
    110 BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10);
    111 // Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond.
    112 #if __cplusplus >= 201103L
    113 BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
    114 #endif
    115 
    116 static void BM_StringCompare(benchmark::State& state) {
    117   std::string s1(state.range(0), '-');
    118   std::string s2(state.range(0), '-');
    119   while (state.KeepRunning()) benchmark::DoNotOptimize(s1.compare(s2));
    120 }
    121 BENCHMARK(BM_StringCompare)->Range(1, 1 << 20);
    122 
    123 static void BM_SetupTeardown(benchmark::State& state) {
    124   if (state.thread_index == 0) {
    125     // No need to lock test_vector_mu here as this is running single-threaded.
    126     test_vector = new std::vector<int>();
    127   }
    128   int i = 0;
    129   while (state.KeepRunning()) {
    130     std::lock_guard<std::mutex> l(test_vector_mu);
    131     if (i % 2 == 0)
    132       test_vector->push_back(i);
    133     else
    134       test_vector->pop_back();
    135     ++i;
    136   }
    137   if (state.thread_index == 0) {
    138     delete test_vector;
    139   }
    140 }
    141 BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
    142 
    143 static void BM_LongTest(benchmark::State& state) {
    144   double tracker = 0.0;
    145   while (state.KeepRunning()) {
    146     for (int i = 0; i < state.range(0); ++i)
    147       benchmark::DoNotOptimize(tracker += i);
    148   }
    149 }
    150 BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28);
    151 
    152 static void BM_ParallelMemset(benchmark::State& state) {
    153   int size = state.range(0) / static_cast<int>(sizeof(int));
    154   int thread_size = size / state.threads;
    155   int from = thread_size * state.thread_index;
    156   int to = from + thread_size;
    157 
    158   if (state.thread_index == 0) {
    159     test_vector = new std::vector<int>(size);
    160   }
    161 
    162   while (state.KeepRunning()) {
    163     for (int i = from; i < to; i++) {
    164       // No need to lock test_vector_mu as ranges
    165       // do not overlap between threads.
    166       benchmark::DoNotOptimize(test_vector->at(i) = 1);
    167     }
    168   }
    169 
    170   if (state.thread_index == 0) {
    171     delete test_vector;
    172   }
    173 }
    174 BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);
    175 
    176 static void BM_ManualTiming(benchmark::State& state) {
    177   size_t slept_for = 0;
    178   int microseconds = state.range(0);
    179   std::chrono::duration<double, std::micro> sleep_duration{
    180       static_cast<double>(microseconds)};
    181 
    182   while (state.KeepRunning()) {
    183     auto start = std::chrono::high_resolution_clock::now();
    184     // Simulate some useful workload with a sleep
    185     std::this_thread::sleep_for(
    186         std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration));
    187     auto end = std::chrono::high_resolution_clock::now();
    188 
    189     auto elapsed =
    190         std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
    191 
    192     state.SetIterationTime(elapsed.count());
    193     slept_for += microseconds;
    194   }
    195   state.SetItemsProcessed(slept_for);
    196 }
    197 BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime();
    198 BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime();
    199 
    200 #if __cplusplus >= 201103L
    201 
    202 template <class... Args>
    203 void BM_with_args(benchmark::State& state, Args&&...) {
    204   while (state.KeepRunning()) {
    205   }
    206 }
    207 BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44);
    208 BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"),
    209                   std::pair<int, double>(42, 3.8));
    210 
    211 void BM_non_template_args(benchmark::State& state, int, double) {
    212   while(state.KeepRunning()) {}
    213 }
    214 BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0);
    215 
    216 static void BM_UserCounter(benchmark::State& state) {
    217   static const int depth = 1024;
    218   while (state.KeepRunning()) {
    219     benchmark::DoNotOptimize(CalculatePi(depth));
    220   }
    221   state.counters["Foo"] = 1;
    222   state.counters["Bar"] = 2;
    223   state.counters["Baz"] = 3;
    224   state.counters["Bat"] = 5;
    225 #ifdef BENCHMARK_HAS_CXX11
    226   state.counters.insert({{"Foo", 2}, {"Bar", 3}, {"Baz", 5}, {"Bat", 6}});
    227 #endif
    228 }
    229 BENCHMARK(BM_UserCounter)->Threads(8);
    230 BENCHMARK(BM_UserCounter)->ThreadRange(1, 32);
    231 BENCHMARK(BM_UserCounter)->ThreadPerCpu();
    232 
    233 #endif  // __cplusplus >= 201103L
    234 
    235 static void BM_DenseThreadRanges(benchmark::State& st) {
    236   switch (st.range(0)) {
    237     case 1:
    238       assert(st.threads == 1 || st.threads == 2 || st.threads == 3);
    239       break;
    240     case 2:
    241       assert(st.threads == 1 || st.threads == 3 || st.threads == 4);
    242       break;
    243     case 3:
    244       assert(st.threads == 5 || st.threads == 8 || st.threads == 11 ||
    245              st.threads == 14);
    246       break;
    247     default:
    248       assert(false && "Invalid test case number");
    249   }
    250   while (st.KeepRunning()) {
    251   }
    252 }
    253 BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3);
    254 BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2);
    255 BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3);
    256 
    257 BENCHMARK_MAIN()
    258