Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     55       || testing::GTEST_FLAG(throw_on_failure);
     56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     57 }
     58 
     59 #include <limits.h>  // For INT_MAX.
     60 #include <stdlib.h>
     61 #include <string.h>
     62 #include <time.h>
     63 
     64 #include <map>
     65 #include <vector>
     66 #include <ostream>
     67 
     68 #include "gtest/gtest-spi.h"
     69 
     70 // Indicates that this translation unit is part of Google Test's
     71 // implementation.  It must come before gtest-internal-inl.h is
     72 // included, or there will be a compiler error.  This trick is to
     73 // prevent a user from accidentally including gtest-internal-inl.h in
     74 // his code.
     75 #define GTEST_IMPLEMENTATION_ 1
     76 #include "src/gtest-internal-inl.h"
     77 #undef GTEST_IMPLEMENTATION_
     78 
     79 namespace testing {
     80 namespace internal {
     81 
     82 #if GTEST_CAN_STREAM_RESULTS_
     83 
     84 class StreamingListenerTest : public Test {
     85  public:
     86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
     87    public:
     88     // Sends a string to the socket.
     89     virtual void Send(const string& message) { output_ += message; }
     90 
     91     string output_;
     92   };
     93 
     94   StreamingListenerTest()
     95       : fake_sock_writer_(new FakeSocketWriter),
     96         streamer_(fake_sock_writer_),
     97         test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
     98 
     99  protected:
    100   string* output() { return &(fake_sock_writer_->output_); }
    101 
    102   FakeSocketWriter* const fake_sock_writer_;
    103   StreamingListener streamer_;
    104   UnitTest unit_test_;
    105   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
    106 };
    107 
    108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
    109   *output() = "";
    110   streamer_.OnTestProgramEnd(unit_test_);
    111   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
    112 }
    113 
    114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
    115   *output() = "";
    116   streamer_.OnTestIterationEnd(unit_test_, 42);
    117   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
    118 }
    119 
    120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
    121   *output() = "";
    122   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
    123   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
    124 }
    125 
    126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
    127   *output() = "";
    128   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
    129   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
    130 }
    131 
    132 TEST_F(StreamingListenerTest, OnTestStart) {
    133   *output() = "";
    134   streamer_.OnTestStart(test_info_obj_);
    135   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
    136 }
    137 
    138 TEST_F(StreamingListenerTest, OnTestEnd) {
    139   *output() = "";
    140   streamer_.OnTestEnd(test_info_obj_);
    141   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
    142 }
    143 
    144 TEST_F(StreamingListenerTest, OnTestPartResult) {
    145   *output() = "";
    146   streamer_.OnTestPartResult(TestPartResult(
    147       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
    148 
    149   // Meta characters in the failure message should be properly escaped.
    150   EXPECT_EQ(
    151       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
    152       *output());
    153 }
    154 
    155 #endif  // GTEST_CAN_STREAM_RESULTS_
    156 
    157 // Provides access to otherwise private parts of the TestEventListeners class
    158 // that are needed to test it.
    159 class TestEventListenersAccessor {
    160  public:
    161   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
    162     return listeners->repeater();
    163   }
    164 
    165   static void SetDefaultResultPrinter(TestEventListeners* listeners,
    166                                       TestEventListener* listener) {
    167     listeners->SetDefaultResultPrinter(listener);
    168   }
    169   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
    170                                      TestEventListener* listener) {
    171     listeners->SetDefaultXmlGenerator(listener);
    172   }
    173 
    174   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    175     return listeners.EventForwardingEnabled();
    176   }
    177 
    178   static void SuppressEventForwarding(TestEventListeners* listeners) {
    179     listeners->SuppressEventForwarding();
    180   }
    181 };
    182 
    183 class UnitTestRecordPropertyTestHelper : public Test {
    184  protected:
    185   UnitTestRecordPropertyTestHelper() {}
    186 
    187   // Forwards to UnitTest::RecordProperty() to bypass access controls.
    188   void UnitTestRecordProperty(const char* key, const std::string& value) {
    189     unit_test_.RecordProperty(key, value);
    190   }
    191 
    192   UnitTest unit_test_;
    193 };
    194 
    195 }  // namespace internal
    196 }  // namespace testing
    197 
    198 using testing::AssertionFailure;
    199 using testing::AssertionResult;
    200 using testing::AssertionSuccess;
    201 using testing::DoubleLE;
    202 using testing::EmptyTestEventListener;
    203 using testing::Environment;
    204 using testing::FloatLE;
    205 using testing::GTEST_FLAG(also_run_disabled_tests);
    206 using testing::GTEST_FLAG(break_on_failure);
    207 using testing::GTEST_FLAG(catch_exceptions);
    208 using testing::GTEST_FLAG(color);
    209 using testing::GTEST_FLAG(death_test_use_fork);
    210 using testing::GTEST_FLAG(filter);
    211 using testing::GTEST_FLAG(list_tests);
    212 using testing::GTEST_FLAG(output);
    213 using testing::GTEST_FLAG(print_time);
    214 using testing::GTEST_FLAG(random_seed);
    215 using testing::GTEST_FLAG(repeat);
    216 using testing::GTEST_FLAG(show_internal_stack_frames);
    217 using testing::GTEST_FLAG(shuffle);
    218 using testing::GTEST_FLAG(stack_trace_depth);
    219 using testing::GTEST_FLAG(stream_result_to);
    220 using testing::GTEST_FLAG(throw_on_failure);
    221 using testing::IsNotSubstring;
    222 using testing::IsSubstring;
    223 using testing::Message;
    224 using testing::ScopedFakeTestPartResultReporter;
    225 using testing::StaticAssertTypeEq;
    226 using testing::Test;
    227 using testing::TestCase;
    228 using testing::TestEventListeners;
    229 using testing::TestInfo;
    230 using testing::TestPartResult;
    231 using testing::TestPartResultArray;
    232 using testing::TestProperty;
    233 using testing::TestResult;
    234 using testing::TimeInMillis;
    235 using testing::UnitTest;
    236 using testing::kMaxStackTraceDepth;
    237 using testing::internal::AddReference;
    238 using testing::internal::AlwaysFalse;
    239 using testing::internal::AlwaysTrue;
    240 using testing::internal::AppendUserMessage;
    241 using testing::internal::ArrayAwareFind;
    242 using testing::internal::ArrayEq;
    243 using testing::internal::CodePointToUtf8;
    244 using testing::internal::CompileAssertTypesEqual;
    245 using testing::internal::CopyArray;
    246 using testing::internal::CountIf;
    247 using testing::internal::EqFailure;
    248 using testing::internal::FloatingPoint;
    249 using testing::internal::ForEach;
    250 using testing::internal::FormatEpochTimeInMillisAsIso8601;
    251 using testing::internal::FormatTimeInMillisAsSeconds;
    252 using testing::internal::GTestFlagSaver;
    253 using testing::internal::GetCurrentOsStackTraceExceptTop;
    254 using testing::internal::GetElementOr;
    255 using testing::internal::GetNextRandomSeed;
    256 using testing::internal::GetRandomSeedFromFlag;
    257 using testing::internal::GetTestTypeId;
    258 using testing::internal::GetTimeInMillis;
    259 using testing::internal::GetTypeId;
    260 using testing::internal::GetUnitTestImpl;
    261 using testing::internal::ImplicitlyConvertible;
    262 using testing::internal::Int32;
    263 using testing::internal::Int32FromEnvOrDie;
    264 using testing::internal::IsAProtocolMessage;
    265 using testing::internal::IsContainer;
    266 using testing::internal::IsContainerTest;
    267 using testing::internal::IsNotContainer;
    268 using testing::internal::NativeArray;
    269 using testing::internal::ParseInt32Flag;
    270 using testing::internal::RemoveConst;
    271 using testing::internal::RemoveReference;
    272 using testing::internal::ShouldRunTestOnShard;
    273 using testing::internal::ShouldShard;
    274 using testing::internal::ShouldUseColor;
    275 using testing::internal::Shuffle;
    276 using testing::internal::ShuffleRange;
    277 using testing::internal::SkipPrefix;
    278 using testing::internal::StreamableToString;
    279 using testing::internal::String;
    280 using testing::internal::TestEventListenersAccessor;
    281 using testing::internal::TestResultAccessor;
    282 using testing::internal::UInt32;
    283 using testing::internal::WideStringToUtf8;
    284 using testing::internal::kCopy;
    285 using testing::internal::kMaxRandomSeed;
    286 using testing::internal::kReference;
    287 using testing::internal::kTestTypeIdInGoogleTest;
    288 using testing::internal::scoped_ptr;
    289 
    290 #if GTEST_HAS_STREAM_REDIRECTION
    291 using testing::internal::CaptureStdout;
    292 using testing::internal::GetCapturedStdout;
    293 #endif
    294 
    295 #if GTEST_IS_THREADSAFE
    296 using testing::internal::ThreadWithParam;
    297 #endif
    298 
    299 class TestingVector : public std::vector<int> {
    300 };
    301 
    302 ::std::ostream& operator<<(::std::ostream& os,
    303                            const TestingVector& vector) {
    304   os << "{ ";
    305   for (size_t i = 0; i < vector.size(); i++) {
    306     os << vector[i] << " ";
    307   }
    308   os << "}";
    309   return os;
    310 }
    311 
    312 // This line tests that we can define tests in an unnamed namespace.
    313 namespace {
    314 
    315 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    316   const int seed = GetRandomSeedFromFlag(0);
    317   EXPECT_LE(1, seed);
    318   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    319 }
    320 
    321 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    322   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    323   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    324   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    325   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    326             GetRandomSeedFromFlag(kMaxRandomSeed));
    327 }
    328 
    329 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    330   const int seed1 = GetRandomSeedFromFlag(-1);
    331   EXPECT_LE(1, seed1);
    332   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    333 
    334   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    335   EXPECT_LE(1, seed2);
    336   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    337 }
    338 
    339 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    340   EXPECT_EQ(2, GetNextRandomSeed(1));
    341   EXPECT_EQ(3, GetNextRandomSeed(2));
    342   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    343             GetNextRandomSeed(kMaxRandomSeed - 1));
    344   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    345 
    346   // We deliberately don't test GetNextRandomSeed() with invalid
    347   // inputs, as that requires death tests, which are expensive.  This
    348   // is fine as GetNextRandomSeed() is internal and has a
    349   // straightforward definition.
    350 }
    351 
    352 static void ClearCurrentTestPartResults() {
    353   TestResultAccessor::ClearTestPartResults(
    354       GetUnitTestImpl()->current_test_result());
    355 }
    356 
    357 // Tests GetTypeId.
    358 
    359 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    360   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    361   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    362 }
    363 
    364 class SubClassOfTest : public Test {};
    365 class AnotherSubClassOfTest : public Test {};
    366 
    367 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    368   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    369   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    370   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    371   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    372   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    373   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    374 }
    375 
    376 // Verifies that GetTestTypeId() returns the same value, no matter it
    377 // is called from inside Google Test or outside of it.
    378 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    379   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    380 }
    381 
    382 // Tests FormatTimeInMillisAsSeconds().
    383 
    384 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    385   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    386 }
    387 
    388 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    389   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    390   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    391   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    392   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    393   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    394 }
    395 
    396 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    397   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    398   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    399   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    400   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    401   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    402 }
    403 
    404 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
    405 // for particular dates below was verified in Python using
    406 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
    407 
    408 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
    409 // have to set up a particular timezone to obtain predictable results.
    410 class FormatEpochTimeInMillisAsIso8601Test : public Test {
    411  public:
    412   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
    413   // 32 bits, even when 64-bit integer types are available.  We have to
    414   // force the constants to have a 64-bit type here.
    415   static const TimeInMillis kMillisPerSec = 1000;
    416 
    417  private:
    418   virtual void SetUp() {
    419     saved_tz_ = NULL;
    420 #if _MSC_VER
    421 # pragma warning(push)          // Saves the current warning state.
    422 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    423                                 // (function or variable may be unsafe
    424                                 // for getenv, function is deprecated for
    425                                 // strdup).
    426     if (getenv("TZ"))
    427       saved_tz_ = strdup(getenv("TZ"));
    428 # pragma warning(pop)           // Restores the warning state again.
    429 #else
    430     if (getenv("TZ"))
    431       saved_tz_ = strdup(getenv("TZ"));
    432 #endif
    433 
    434     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
    435     // cannot use the local time zone because the function's output depends
    436     // on the time zone.
    437     SetTimeZone("UTC+00");
    438   }
    439 
    440   virtual void TearDown() {
    441     SetTimeZone(saved_tz_);
    442     free(const_cast<char*>(saved_tz_));
    443     saved_tz_ = NULL;
    444   }
    445 
    446   static void SetTimeZone(const char* time_zone) {
    447     // tzset() distinguishes between the TZ variable being present and empty
    448     // and not being present, so we have to consider the case of time_zone
    449     // being NULL.
    450 #if _MSC_VER
    451     // ...Unless it's MSVC, whose standard library's _putenv doesn't
    452     // distinguish between an empty and a missing variable.
    453     const std::string env_var =
    454         std::string("TZ=") + (time_zone ? time_zone : "");
    455     _putenv(env_var.c_str());
    456 # pragma warning(push)          // Saves the current warning state.
    457 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    458                                 // (function is deprecated).
    459     tzset();
    460 # pragma warning(pop)           // Restores the warning state again.
    461 #else
    462     if (time_zone) {
    463       setenv(("TZ"), time_zone, 1);
    464     } else {
    465       unsetenv("TZ");
    466     }
    467     tzset();
    468 #endif
    469   }
    470 
    471   const char* saved_tz_;
    472 };
    473 
    474 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
    475 
    476 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
    477   EXPECT_EQ("2011-10-31T18:52:42",
    478             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
    479 }
    480 
    481 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
    482   EXPECT_EQ(
    483       "2011-10-31T18:52:42",
    484       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
    485 }
    486 
    487 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
    488   EXPECT_EQ("2011-09-03T05:07:02",
    489             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
    490 }
    491 
    492 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
    493   EXPECT_EQ("2011-09-28T17:08:22",
    494             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
    495 }
    496 
    497 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
    498   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
    499 }
    500 
    501 #if GTEST_CAN_COMPARE_NULL
    502 
    503 # ifdef __BORLANDC__
    504 // Silences warnings: "Condition is always true", "Unreachable code"
    505 #  pragma option push -w-ccc -w-rch
    506 # endif
    507 
    508 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    509 // pointer literal.
    510 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    511   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    512   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    513   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    514   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    515 
    516 # ifndef __BORLANDC__
    517 
    518   // Some compilers may fail to detect some null pointer literals;
    519   // as long as users of the framework don't use such literals, this
    520   // is harmless.
    521   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
    522 
    523 # endif
    524 }
    525 
    526 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    527 // pointer literal.
    528 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    529   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    530   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    531   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    532   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    533 }
    534 
    535 # ifdef __BORLANDC__
    536 // Restores warnings after previous "#pragma option push" suppressed them.
    537 #  pragma option pop
    538 # endif
    539 
    540 #endif  // GTEST_CAN_COMPARE_NULL
    541 //
    542 // Tests CodePointToUtf8().
    543 
    544 // Tests that the NUL character L'\0' is encoded correctly.
    545 TEST(CodePointToUtf8Test, CanEncodeNul) {
    546   EXPECT_EQ("", CodePointToUtf8(L'\0'));
    547 }
    548 
    549 // Tests that ASCII characters are encoded correctly.
    550 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    551   EXPECT_EQ("a", CodePointToUtf8(L'a'));
    552   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
    553   EXPECT_EQ("&", CodePointToUtf8(L'&'));
    554   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
    555 }
    556 
    557 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    558 // as 110xxxxx 10xxxxxx.
    559 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    560   // 000 1101 0011 => 110-00011 10-010011
    561   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
    562 
    563   // 101 0111 0110 => 110-10101 10-110110
    564   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    565   // in wide strings and wide chars. In order to accomodate them, we have to
    566   // introduce such character constants as integers.
    567   EXPECT_EQ("\xD5\xB6",
    568             CodePointToUtf8(static_cast<wchar_t>(0x576)));
    569 }
    570 
    571 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    572 // as 1110xxxx 10xxxxxx 10xxxxxx.
    573 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    574   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    575   EXPECT_EQ("\xE0\xA3\x93",
    576             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
    577 
    578   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    579   EXPECT_EQ("\xEC\x9D\x8D",
    580             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
    581 }
    582 
    583 #if !GTEST_WIDE_STRING_USES_UTF16_
    584 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    585 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    586 // 16-bit wide. This code may not compile on those systems.
    587 
    588 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    589 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    590 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    591   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    592   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
    593 
    594   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    595   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
    596 
    597   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    598   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
    599 }
    600 
    601 // Tests that encoding an invalid code-point generates the expected result.
    602 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    603   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
    604 }
    605 
    606 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    607 
    608 // Tests WideStringToUtf8().
    609 
    610 // Tests that the NUL character L'\0' is encoded correctly.
    611 TEST(WideStringToUtf8Test, CanEncodeNul) {
    612   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    613   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    614 }
    615 
    616 // Tests that ASCII strings are encoded correctly.
    617 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    618   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    619   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    620   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    621   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    622 }
    623 
    624 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    625 // as 110xxxxx 10xxxxxx.
    626 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    627   // 000 1101 0011 => 110-00011 10-010011
    628   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    629   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    630 
    631   // 101 0111 0110 => 110-10101 10-110110
    632   const wchar_t s[] = { 0x576, '\0' };
    633   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    634   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    635 }
    636 
    637 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    638 // as 1110xxxx 10xxxxxx 10xxxxxx.
    639 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    640   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    641   const wchar_t s1[] = { 0x8D3, '\0' };
    642   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    643   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    644 
    645   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    646   const wchar_t s2[] = { 0xC74D, '\0' };
    647   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    648   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    649 }
    650 
    651 // Tests that the conversion stops when the function encounters \0 character.
    652 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    653   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    654 }
    655 
    656 // Tests that the conversion stops when the function reaches the limit
    657 // specified by the 'length' parameter.
    658 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    659   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    660 }
    661 
    662 #if !GTEST_WIDE_STRING_USES_UTF16_
    663 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    664 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    665 // on the systems using UTF-16 encoding.
    666 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    667   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    668   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    669   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    670 
    671   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    672   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    673   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    674 }
    675 
    676 // Tests that encoding an invalid code-point generates the expected result.
    677 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    678   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    679                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    680 }
    681 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    682 // Tests that surrogate pairs are encoded correctly on the systems using
    683 // UTF-16 encoding in the wide strings.
    684 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    685   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    686   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    687 }
    688 
    689 // Tests that encoding an invalid UTF-16 surrogate pair
    690 // generates the expected result.
    691 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    692   // Leading surrogate is at the end of the string.
    693   const wchar_t s1[] = { 0xD800, '\0' };
    694   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    695   // Leading surrogate is not followed by the trailing surrogate.
    696   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    697   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    698   // Trailing surrogate appearas without a leading surrogate.
    699   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    700   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    701 }
    702 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    703 
    704 // Tests that codepoint concatenation works correctly.
    705 #if !GTEST_WIDE_STRING_USES_UTF16_
    706 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    707   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    708   EXPECT_STREQ(
    709       "\xF4\x88\x98\xB4"
    710           "\xEC\x9D\x8D"
    711           "\n"
    712           "\xD5\xB6"
    713           "\xE0\xA3\x93"
    714           "\xF4\x88\x98\xB4",
    715       WideStringToUtf8(s, -1).c_str());
    716 }
    717 #else
    718 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    719   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    720   EXPECT_STREQ(
    721       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    722       WideStringToUtf8(s, -1).c_str());
    723 }
    724 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    725 
    726 // Tests the Random class.
    727 
    728 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    729   testing::internal::Random random(42);
    730   EXPECT_DEATH_IF_SUPPORTED(
    731       random.Generate(0),
    732       "Cannot generate a number in the range \\[0, 0\\)");
    733   EXPECT_DEATH_IF_SUPPORTED(
    734       random.Generate(testing::internal::Random::kMaxRange + 1),
    735       "Generation of a number in \\[0, 2147483649\\) was requested, "
    736       "but this can only generate numbers in \\[0, 2147483648\\)");
    737 }
    738 
    739 TEST(RandomTest, GeneratesNumbersWithinRange) {
    740   const UInt32 kRange = 10000;
    741   testing::internal::Random random(12345);
    742   for (int i = 0; i < 10; i++) {
    743     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    744   }
    745 
    746   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    747   for (int i = 0; i < 10; i++) {
    748     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    749   }
    750 }
    751 
    752 TEST(RandomTest, RepeatsWhenReseeded) {
    753   const int kSeed = 123;
    754   const int kArraySize = 10;
    755   const UInt32 kRange = 10000;
    756   UInt32 values[kArraySize];
    757 
    758   testing::internal::Random random(kSeed);
    759   for (int i = 0; i < kArraySize; i++) {
    760     values[i] = random.Generate(kRange);
    761   }
    762 
    763   random.Reseed(kSeed);
    764   for (int i = 0; i < kArraySize; i++) {
    765     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    766   }
    767 }
    768 
    769 // Tests STL container utilities.
    770 
    771 // Tests CountIf().
    772 
    773 static bool IsPositive(int n) { return n > 0; }
    774 
    775 TEST(ContainerUtilityTest, CountIf) {
    776   std::vector<int> v;
    777   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    778 
    779   v.push_back(-1);
    780   v.push_back(0);
    781   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    782 
    783   v.push_back(2);
    784   v.push_back(-10);
    785   v.push_back(10);
    786   EXPECT_EQ(2, CountIf(v, IsPositive));
    787 }
    788 
    789 // Tests ForEach().
    790 
    791 static int g_sum = 0;
    792 static void Accumulate(int n) { g_sum += n; }
    793 
    794 TEST(ContainerUtilityTest, ForEach) {
    795   std::vector<int> v;
    796   g_sum = 0;
    797   ForEach(v, Accumulate);
    798   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    799 
    800   g_sum = 0;
    801   v.push_back(1);
    802   ForEach(v, Accumulate);
    803   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    804 
    805   g_sum = 0;
    806   v.push_back(20);
    807   v.push_back(300);
    808   ForEach(v, Accumulate);
    809   EXPECT_EQ(321, g_sum);
    810 }
    811 
    812 // Tests GetElementOr().
    813 TEST(ContainerUtilityTest, GetElementOr) {
    814   std::vector<char> a;
    815   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    816 
    817   a.push_back('a');
    818   a.push_back('b');
    819   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    820   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    821   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    822   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    823 }
    824 
    825 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    826   std::vector<int> a;
    827   a.push_back(0);
    828   a.push_back(1);
    829   a.push_back(2);
    830   testing::internal::Random random(1);
    831 
    832   EXPECT_DEATH_IF_SUPPORTED(
    833       ShuffleRange(&random, -1, 1, &a),
    834       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    835   EXPECT_DEATH_IF_SUPPORTED(
    836       ShuffleRange(&random, 4, 4, &a),
    837       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    838   EXPECT_DEATH_IF_SUPPORTED(
    839       ShuffleRange(&random, 3, 2, &a),
    840       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    841   EXPECT_DEATH_IF_SUPPORTED(
    842       ShuffleRange(&random, 3, 4, &a),
    843       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    844 }
    845 
    846 class VectorShuffleTest : public Test {
    847  protected:
    848   static const int kVectorSize = 20;
    849 
    850   VectorShuffleTest() : random_(1) {
    851     for (int i = 0; i < kVectorSize; i++) {
    852       vector_.push_back(i);
    853     }
    854   }
    855 
    856   static bool VectorIsCorrupt(const TestingVector& vector) {
    857     if (kVectorSize != static_cast<int>(vector.size())) {
    858       return true;
    859     }
    860 
    861     bool found_in_vector[kVectorSize] = { false };
    862     for (size_t i = 0; i < vector.size(); i++) {
    863       const int e = vector[i];
    864       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    865         return true;
    866       }
    867       found_in_vector[e] = true;
    868     }
    869 
    870     // Vector size is correct, elements' range is correct, no
    871     // duplicate elements.  Therefore no corruption has occurred.
    872     return false;
    873   }
    874 
    875   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    876     return !VectorIsCorrupt(vector);
    877   }
    878 
    879   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    880     for (int i = begin; i < end; i++) {
    881       if (i != vector[i]) {
    882         return true;
    883       }
    884     }
    885     return false;
    886   }
    887 
    888   static bool RangeIsUnshuffled(
    889       const TestingVector& vector, int begin, int end) {
    890     return !RangeIsShuffled(vector, begin, end);
    891   }
    892 
    893   static bool VectorIsShuffled(const TestingVector& vector) {
    894     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    895   }
    896 
    897   static bool VectorIsUnshuffled(const TestingVector& vector) {
    898     return !VectorIsShuffled(vector);
    899   }
    900 
    901   testing::internal::Random random_;
    902   TestingVector vector_;
    903 };  // class VectorShuffleTest
    904 
    905 const int VectorShuffleTest::kVectorSize;
    906 
    907 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    908   // Tests an empty range at the beginning...
    909   ShuffleRange(&random_, 0, 0, &vector_);
    910   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    911   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    912 
    913   // ...in the middle...
    914   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    915   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    916   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    917 
    918   // ...at the end...
    919   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    920   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    921   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    922 
    923   // ...and past the end.
    924   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    925   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    926   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    927 }
    928 
    929 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    930   // Tests a size one range at the beginning...
    931   ShuffleRange(&random_, 0, 1, &vector_);
    932   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    933   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    934 
    935   // ...in the middle...
    936   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    937   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    938   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    939 
    940   // ...and at the end.
    941   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    942   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    943   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    944 }
    945 
    946 // Because we use our own random number generator and a fixed seed,
    947 // we can guarantee that the following "random" tests will succeed.
    948 
    949 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    950   Shuffle(&random_, &vector_);
    951   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    952   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    953 
    954   // Tests the first and last elements in particular to ensure that
    955   // there are no off-by-one problems in our shuffle algorithm.
    956   EXPECT_NE(0, vector_[0]);
    957   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    958 }
    959 
    960 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    961   const int kRangeSize = kVectorSize/2;
    962 
    963   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    964 
    965   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    966   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    967   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    968 }
    969 
    970 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    971   const int kRangeSize = kVectorSize / 2;
    972   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    973 
    974   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    975   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    976   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    977 }
    978 
    979 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    980   int kRangeSize = kVectorSize/3;
    981   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    982 
    983   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    984   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    985   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    986   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    987 }
    988 
    989 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    990   TestingVector vector2;
    991   for (int i = 0; i < kVectorSize; i++) {
    992     vector2.push_back(i);
    993   }
    994 
    995   random_.Reseed(1234);
    996   Shuffle(&random_, &vector_);
    997   random_.Reseed(1234);
    998   Shuffle(&random_, &vector2);
    999 
   1000   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
   1001   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
   1002 
   1003   for (int i = 0; i < kVectorSize; i++) {
   1004     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
   1005   }
   1006 }
   1007 
   1008 // Tests the size of the AssertHelper class.
   1009 
   1010 TEST(AssertHelperTest, AssertHelperIsSmall) {
   1011   // To avoid breaking clients that use lots of assertions in one
   1012   // function, we cannot grow the size of AssertHelper.
   1013   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
   1014 }
   1015 
   1016 // Tests String::EndsWithCaseInsensitive().
   1017 TEST(StringTest, EndsWithCaseInsensitive) {
   1018   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
   1019   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
   1020   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
   1021   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
   1022 
   1023   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
   1024   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
   1025   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
   1026 }
   1027 
   1028 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1029 // appear in macro parameters after wide char literals.  Provide an alias
   1030 // for NULL as a workaround.
   1031 static const wchar_t* const kNull = NULL;
   1032 
   1033 // Tests String::CaseInsensitiveWideCStringEquals
   1034 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1035   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1036   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1037   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1038   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1039   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1040   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1041   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1042   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1043 }
   1044 
   1045 #if GTEST_OS_WINDOWS
   1046 
   1047 // Tests String::ShowWideCString().
   1048 TEST(StringTest, ShowWideCString) {
   1049   EXPECT_STREQ("(null)",
   1050                String::ShowWideCString(NULL).c_str());
   1051   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1052   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1053 }
   1054 
   1055 # if GTEST_OS_WINDOWS_MOBILE
   1056 TEST(StringTest, AnsiAndUtf16Null) {
   1057   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1058   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1059 }
   1060 
   1061 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1062   const char* ansi = String::Utf16ToAnsi(L"str");
   1063   EXPECT_STREQ("str", ansi);
   1064   delete [] ansi;
   1065   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1066   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1067   delete [] utf16;
   1068 }
   1069 
   1070 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1071   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1072   EXPECT_STREQ(".:\\ \"*?", ansi);
   1073   delete [] ansi;
   1074   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1075   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1076   delete [] utf16;
   1077 }
   1078 # endif  // GTEST_OS_WINDOWS_MOBILE
   1079 
   1080 #endif  // GTEST_OS_WINDOWS
   1081 
   1082 // Tests TestProperty construction.
   1083 TEST(TestPropertyTest, StringValue) {
   1084   TestProperty property("key", "1");
   1085   EXPECT_STREQ("key", property.key());
   1086   EXPECT_STREQ("1", property.value());
   1087 }
   1088 
   1089 // Tests TestProperty replacing a value.
   1090 TEST(TestPropertyTest, ReplaceStringValue) {
   1091   TestProperty property("key", "1");
   1092   EXPECT_STREQ("1", property.value());
   1093   property.SetValue("2");
   1094   EXPECT_STREQ("2", property.value());
   1095 }
   1096 
   1097 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1098 // functions (i.e. their definitions cannot be inlined at the call
   1099 // sites), or C++Builder won't compile the code.
   1100 static void AddFatalFailure() {
   1101   FAIL() << "Expected fatal failure.";
   1102 }
   1103 
   1104 static void AddNonfatalFailure() {
   1105   ADD_FAILURE() << "Expected non-fatal failure.";
   1106 }
   1107 
   1108 class ScopedFakeTestPartResultReporterTest : public Test {
   1109  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1110   enum FailureMode {
   1111     FATAL_FAILURE,
   1112     NONFATAL_FAILURE
   1113   };
   1114   static void AddFailure(FailureMode failure) {
   1115     if (failure == FATAL_FAILURE) {
   1116       AddFatalFailure();
   1117     } else {
   1118       AddNonfatalFailure();
   1119     }
   1120   }
   1121 };
   1122 
   1123 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1124 // failures.
   1125 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1126   TestPartResultArray results;
   1127   {
   1128     ScopedFakeTestPartResultReporter reporter(
   1129         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1130         &results);
   1131     AddFailure(NONFATAL_FAILURE);
   1132     AddFailure(FATAL_FAILURE);
   1133   }
   1134 
   1135   EXPECT_EQ(2, results.size());
   1136   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1137   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1138 }
   1139 
   1140 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1141   TestPartResultArray results;
   1142   {
   1143     // Tests, that the deprecated constructor still works.
   1144     ScopedFakeTestPartResultReporter reporter(&results);
   1145     AddFailure(NONFATAL_FAILURE);
   1146   }
   1147   EXPECT_EQ(1, results.size());
   1148 }
   1149 
   1150 #if GTEST_IS_THREADSAFE
   1151 
   1152 class ScopedFakeTestPartResultReporterWithThreadsTest
   1153   : public ScopedFakeTestPartResultReporterTest {
   1154  protected:
   1155   static void AddFailureInOtherThread(FailureMode failure) {
   1156     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1157     thread.Join();
   1158   }
   1159 };
   1160 
   1161 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1162        InterceptsTestFailuresInAllThreads) {
   1163   TestPartResultArray results;
   1164   {
   1165     ScopedFakeTestPartResultReporter reporter(
   1166         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1167     AddFailure(NONFATAL_FAILURE);
   1168     AddFailure(FATAL_FAILURE);
   1169     AddFailureInOtherThread(NONFATAL_FAILURE);
   1170     AddFailureInOtherThread(FATAL_FAILURE);
   1171   }
   1172 
   1173   EXPECT_EQ(4, results.size());
   1174   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1175   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1176   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1177   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1178 }
   1179 
   1180 #endif  // GTEST_IS_THREADSAFE
   1181 
   1182 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1183 // work even if the failure is generated in a called function rather than
   1184 // the current context.
   1185 
   1186 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1187 
   1188 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1189   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1190 }
   1191 
   1192 #if GTEST_HAS_GLOBAL_STRING
   1193 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1194   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1195 }
   1196 #endif
   1197 
   1198 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1199   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1200                        ::std::string("Expected fatal failure."));
   1201 }
   1202 
   1203 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1204   // We have another test below to verify that the macro catches fatal
   1205   // failures generated on another thread.
   1206   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1207                                       "Expected fatal failure.");
   1208 }
   1209 
   1210 #ifdef __BORLANDC__
   1211 // Silences warnings: "Condition is always true"
   1212 # pragma option push -w-ccc
   1213 #endif
   1214 
   1215 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1216 // function even when the statement in it contains ASSERT_*.
   1217 
   1218 int NonVoidFunction() {
   1219   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1220   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1221   return 0;
   1222 }
   1223 
   1224 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1225   NonVoidFunction();
   1226 }
   1227 
   1228 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1229 // current function even though 'statement' generates a fatal failure.
   1230 
   1231 void DoesNotAbortHelper(bool* aborted) {
   1232   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1233   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1234 
   1235   *aborted = false;
   1236 }
   1237 
   1238 #ifdef __BORLANDC__
   1239 // Restores warnings after previous "#pragma option push" suppressed them.
   1240 # pragma option pop
   1241 #endif
   1242 
   1243 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1244   bool aborted = true;
   1245   DoesNotAbortHelper(&aborted);
   1246   EXPECT_FALSE(aborted);
   1247 }
   1248 
   1249 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1250 // statement that contains a macro which expands to code containing an
   1251 // unprotected comma.
   1252 
   1253 static int global_var = 0;
   1254 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1255 
   1256 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1257 #ifndef __BORLANDC__
   1258   // ICE's in C++Builder.
   1259   EXPECT_FATAL_FAILURE({
   1260     GTEST_USE_UNPROTECTED_COMMA_;
   1261     AddFatalFailure();
   1262   }, "");
   1263 #endif
   1264 
   1265   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1266     GTEST_USE_UNPROTECTED_COMMA_;
   1267     AddFatalFailure();
   1268   }, "");
   1269 }
   1270 
   1271 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1272 
   1273 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1274 
   1275 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1276   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1277                           "Expected non-fatal failure.");
   1278 }
   1279 
   1280 #if GTEST_HAS_GLOBAL_STRING
   1281 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1282   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1283                           ::string("Expected non-fatal failure."));
   1284 }
   1285 #endif
   1286 
   1287 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1288   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1289                           ::std::string("Expected non-fatal failure."));
   1290 }
   1291 
   1292 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1293   // We have another test below to verify that the macro catches
   1294   // non-fatal failures generated on another thread.
   1295   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1296                                          "Expected non-fatal failure.");
   1297 }
   1298 
   1299 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1300 // statement that contains a macro which expands to code containing an
   1301 // unprotected comma.
   1302 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1303   EXPECT_NONFATAL_FAILURE({
   1304     GTEST_USE_UNPROTECTED_COMMA_;
   1305     AddNonfatalFailure();
   1306   }, "");
   1307 
   1308   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1309     GTEST_USE_UNPROTECTED_COMMA_;
   1310     AddNonfatalFailure();
   1311   }, "");
   1312 }
   1313 
   1314 #if GTEST_IS_THREADSAFE
   1315 
   1316 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1317     ExpectFailureWithThreadsTest;
   1318 
   1319 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1320   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1321                                       "Expected fatal failure.");
   1322 }
   1323 
   1324 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1325   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1326       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1327 }
   1328 
   1329 #endif  // GTEST_IS_THREADSAFE
   1330 
   1331 // Tests the TestProperty class.
   1332 
   1333 TEST(TestPropertyTest, ConstructorWorks) {
   1334   const TestProperty property("key", "value");
   1335   EXPECT_STREQ("key", property.key());
   1336   EXPECT_STREQ("value", property.value());
   1337 }
   1338 
   1339 TEST(TestPropertyTest, SetValue) {
   1340   TestProperty property("key", "value_1");
   1341   EXPECT_STREQ("key", property.key());
   1342   property.SetValue("value_2");
   1343   EXPECT_STREQ("key", property.key());
   1344   EXPECT_STREQ("value_2", property.value());
   1345 }
   1346 
   1347 // Tests the TestResult class
   1348 
   1349 // The test fixture for testing TestResult.
   1350 class TestResultTest : public Test {
   1351  protected:
   1352   typedef std::vector<TestPartResult> TPRVector;
   1353 
   1354   // We make use of 2 TestPartResult objects,
   1355   TestPartResult * pr1, * pr2;
   1356 
   1357   // ... and 3 TestResult objects.
   1358   TestResult * r0, * r1, * r2;
   1359 
   1360   virtual void SetUp() {
   1361     // pr1 is for success.
   1362     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1363                              "foo/bar.cc",
   1364                              10,
   1365                              "Success!");
   1366 
   1367     // pr2 is for fatal failure.
   1368     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1369                              "foo/bar.cc",
   1370                              -1,  // This line number means "unknown"
   1371                              "Failure!");
   1372 
   1373     // Creates the TestResult objects.
   1374     r0 = new TestResult();
   1375     r1 = new TestResult();
   1376     r2 = new TestResult();
   1377 
   1378     // In order to test TestResult, we need to modify its internal
   1379     // state, in particular the TestPartResult vector it holds.
   1380     // test_part_results() returns a const reference to this vector.
   1381     // We cast it to a non-const object s.t. it can be modified (yes,
   1382     // this is a hack).
   1383     TPRVector* results1 = const_cast<TPRVector*>(
   1384         &TestResultAccessor::test_part_results(*r1));
   1385     TPRVector* results2 = const_cast<TPRVector*>(
   1386         &TestResultAccessor::test_part_results(*r2));
   1387 
   1388     // r0 is an empty TestResult.
   1389 
   1390     // r1 contains a single SUCCESS TestPartResult.
   1391     results1->push_back(*pr1);
   1392 
   1393     // r2 contains a SUCCESS, and a FAILURE.
   1394     results2->push_back(*pr1);
   1395     results2->push_back(*pr2);
   1396   }
   1397 
   1398   virtual void TearDown() {
   1399     delete pr1;
   1400     delete pr2;
   1401 
   1402     delete r0;
   1403     delete r1;
   1404     delete r2;
   1405   }
   1406 
   1407   // Helper that compares two two TestPartResults.
   1408   static void CompareTestPartResult(const TestPartResult& expected,
   1409                                     const TestPartResult& actual) {
   1410     EXPECT_EQ(expected.type(), actual.type());
   1411     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1412     EXPECT_EQ(expected.line_number(), actual.line_number());
   1413     EXPECT_STREQ(expected.summary(), actual.summary());
   1414     EXPECT_STREQ(expected.message(), actual.message());
   1415     EXPECT_EQ(expected.passed(), actual.passed());
   1416     EXPECT_EQ(expected.failed(), actual.failed());
   1417     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1418     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1419   }
   1420 };
   1421 
   1422 // Tests TestResult::total_part_count().
   1423 TEST_F(TestResultTest, total_part_count) {
   1424   ASSERT_EQ(0, r0->total_part_count());
   1425   ASSERT_EQ(1, r1->total_part_count());
   1426   ASSERT_EQ(2, r2->total_part_count());
   1427 }
   1428 
   1429 // Tests TestResult::Passed().
   1430 TEST_F(TestResultTest, Passed) {
   1431   ASSERT_TRUE(r0->Passed());
   1432   ASSERT_TRUE(r1->Passed());
   1433   ASSERT_FALSE(r2->Passed());
   1434 }
   1435 
   1436 // Tests TestResult::Failed().
   1437 TEST_F(TestResultTest, Failed) {
   1438   ASSERT_FALSE(r0->Failed());
   1439   ASSERT_FALSE(r1->Failed());
   1440   ASSERT_TRUE(r2->Failed());
   1441 }
   1442 
   1443 // Tests TestResult::GetTestPartResult().
   1444 
   1445 typedef TestResultTest TestResultDeathTest;
   1446 
   1447 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1448   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1449   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1450   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1451   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1452 }
   1453 
   1454 // Tests TestResult has no properties when none are added.
   1455 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1456   TestResult test_result;
   1457   ASSERT_EQ(0, test_result.test_property_count());
   1458 }
   1459 
   1460 // Tests TestResult has the expected property when added.
   1461 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1462   TestResult test_result;
   1463   TestProperty property("key_1", "1");
   1464   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
   1465   ASSERT_EQ(1, test_result.test_property_count());
   1466   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1467   EXPECT_STREQ("key_1", actual_property.key());
   1468   EXPECT_STREQ("1", actual_property.value());
   1469 }
   1470 
   1471 // Tests TestResult has multiple properties when added.
   1472 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1473   TestResult test_result;
   1474   TestProperty property_1("key_1", "1");
   1475   TestProperty property_2("key_2", "2");
   1476   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1477   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1478   ASSERT_EQ(2, test_result.test_property_count());
   1479   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1480   EXPECT_STREQ("key_1", actual_property_1.key());
   1481   EXPECT_STREQ("1", actual_property_1.value());
   1482 
   1483   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1484   EXPECT_STREQ("key_2", actual_property_2.key());
   1485   EXPECT_STREQ("2", actual_property_2.value());
   1486 }
   1487 
   1488 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1489 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1490   TestResult test_result;
   1491   TestProperty property_1_1("key_1", "1");
   1492   TestProperty property_2_1("key_2", "2");
   1493   TestProperty property_1_2("key_1", "12");
   1494   TestProperty property_2_2("key_2", "22");
   1495   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
   1496   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
   1497   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
   1498   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
   1499 
   1500   ASSERT_EQ(2, test_result.test_property_count());
   1501   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1502   EXPECT_STREQ("key_1", actual_property_1.key());
   1503   EXPECT_STREQ("12", actual_property_1.value());
   1504 
   1505   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1506   EXPECT_STREQ("key_2", actual_property_2.key());
   1507   EXPECT_STREQ("22", actual_property_2.value());
   1508 }
   1509 
   1510 // Tests TestResult::GetTestProperty().
   1511 TEST(TestResultPropertyTest, GetTestProperty) {
   1512   TestResult test_result;
   1513   TestProperty property_1("key_1", "1");
   1514   TestProperty property_2("key_2", "2");
   1515   TestProperty property_3("key_3", "3");
   1516   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1517   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1518   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
   1519 
   1520   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1521   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1522   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1523 
   1524   EXPECT_STREQ("key_1", fetched_property_1.key());
   1525   EXPECT_STREQ("1", fetched_property_1.value());
   1526 
   1527   EXPECT_STREQ("key_2", fetched_property_2.key());
   1528   EXPECT_STREQ("2", fetched_property_2.value());
   1529 
   1530   EXPECT_STREQ("key_3", fetched_property_3.key());
   1531   EXPECT_STREQ("3", fetched_property_3.value());
   1532 
   1533   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1534   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1535 }
   1536 
   1537 // Tests that GTestFlagSaver works on Windows and Mac.
   1538 
   1539 class GTestFlagSaverTest : public Test {
   1540  protected:
   1541   // Saves the Google Test flags such that we can restore them later, and
   1542   // then sets them to their default values.  This will be called
   1543   // before the first test in this test case is run.
   1544   static void SetUpTestCase() {
   1545     saver_ = new GTestFlagSaver;
   1546 
   1547     GTEST_FLAG(also_run_disabled_tests) = false;
   1548     GTEST_FLAG(break_on_failure) = false;
   1549     GTEST_FLAG(catch_exceptions) = false;
   1550     GTEST_FLAG(death_test_use_fork) = false;
   1551     GTEST_FLAG(color) = "auto";
   1552     GTEST_FLAG(filter) = "";
   1553     GTEST_FLAG(list_tests) = false;
   1554     GTEST_FLAG(output) = "";
   1555     GTEST_FLAG(print_time) = true;
   1556     GTEST_FLAG(random_seed) = 0;
   1557     GTEST_FLAG(repeat) = 1;
   1558     GTEST_FLAG(shuffle) = false;
   1559     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1560     GTEST_FLAG(stream_result_to) = "";
   1561     GTEST_FLAG(throw_on_failure) = false;
   1562   }
   1563 
   1564   // Restores the Google Test flags that the tests have modified.  This will
   1565   // be called after the last test in this test case is run.
   1566   static void TearDownTestCase() {
   1567     delete saver_;
   1568     saver_ = NULL;
   1569   }
   1570 
   1571   // Verifies that the Google Test flags have their default values, and then
   1572   // modifies each of them.
   1573   void VerifyAndModifyFlags() {
   1574     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1575     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1576     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1577     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1578     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1579     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1580     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1581     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1582     EXPECT_TRUE(GTEST_FLAG(print_time));
   1583     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1584     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1585     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1586     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1587     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1588     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1589 
   1590     GTEST_FLAG(also_run_disabled_tests) = true;
   1591     GTEST_FLAG(break_on_failure) = true;
   1592     GTEST_FLAG(catch_exceptions) = true;
   1593     GTEST_FLAG(color) = "no";
   1594     GTEST_FLAG(death_test_use_fork) = true;
   1595     GTEST_FLAG(filter) = "abc";
   1596     GTEST_FLAG(list_tests) = true;
   1597     GTEST_FLAG(output) = "xml:foo.xml";
   1598     GTEST_FLAG(print_time) = false;
   1599     GTEST_FLAG(random_seed) = 1;
   1600     GTEST_FLAG(repeat) = 100;
   1601     GTEST_FLAG(shuffle) = true;
   1602     GTEST_FLAG(stack_trace_depth) = 1;
   1603     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1604     GTEST_FLAG(throw_on_failure) = true;
   1605   }
   1606 
   1607  private:
   1608   // For saving Google Test flags during this test case.
   1609   static GTestFlagSaver* saver_;
   1610 };
   1611 
   1612 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1613 
   1614 // Google Test doesn't guarantee the order of tests.  The following two
   1615 // tests are designed to work regardless of their order.
   1616 
   1617 // Modifies the Google Test flags in the test body.
   1618 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1619   VerifyAndModifyFlags();
   1620 }
   1621 
   1622 // Verifies that the Google Test flags in the body of the previous test were
   1623 // restored to their original values.
   1624 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1625   VerifyAndModifyFlags();
   1626 }
   1627 
   1628 // Sets an environment variable with the given name to the given
   1629 // value.  If the value argument is "", unsets the environment
   1630 // variable.  The caller must ensure that both arguments are not NULL.
   1631 static void SetEnv(const char* name, const char* value) {
   1632 #if GTEST_OS_WINDOWS_MOBILE
   1633   // Environment variables are not supported on Windows CE.
   1634   return;
   1635 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1636   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1637   // ensure that the string remains valid as long as it might be needed.
   1638   // We use an std::map to do so.
   1639   static std::map<std::string, std::string*> added_env;
   1640 
   1641   // Because putenv stores a pointer to the string buffer, we can't delete the
   1642   // previous string (if present) until after it's replaced.
   1643   std::string *prev_env = NULL;
   1644   if (added_env.find(name) != added_env.end()) {
   1645     prev_env = added_env[name];
   1646   }
   1647   added_env[name] = new std::string(
   1648       (Message() << name << "=" << value).GetString());
   1649 
   1650   // The standard signature of putenv accepts a 'char*' argument. Other
   1651   // implementations, like C++Builder's, accept a 'const char*'.
   1652   // We cast away the 'const' since that would work for both variants.
   1653   putenv(const_cast<char*>(added_env[name]->c_str()));
   1654   delete prev_env;
   1655 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1656   _putenv((Message() << name << "=" << value).GetString().c_str());
   1657 #else
   1658   if (*value == '\0') {
   1659     unsetenv(name);
   1660   } else {
   1661     setenv(name, value, 1);
   1662   }
   1663 #endif  // GTEST_OS_WINDOWS_MOBILE
   1664 }
   1665 
   1666 #if !GTEST_OS_WINDOWS_MOBILE
   1667 // Environment variables are not supported on Windows CE.
   1668 
   1669 using testing::internal::Int32FromGTestEnv;
   1670 
   1671 // Tests Int32FromGTestEnv().
   1672 
   1673 // Tests that Int32FromGTestEnv() returns the default value when the
   1674 // environment variable is not set.
   1675 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1676   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1677   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1678 }
   1679 
   1680 // Tests that Int32FromGTestEnv() returns the default value when the
   1681 // environment variable overflows as an Int32.
   1682 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1683   printf("(expecting 2 warnings)\n");
   1684 
   1685   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1686   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1687 
   1688   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1689   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1690 }
   1691 
   1692 // Tests that Int32FromGTestEnv() returns the default value when the
   1693 // environment variable does not represent a valid decimal integer.
   1694 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1695   printf("(expecting 2 warnings)\n");
   1696 
   1697   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1698   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1699 
   1700   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1701   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   1702 }
   1703 
   1704 // Tests that Int32FromGTestEnv() parses and returns the value of the
   1705 // environment variable when it represents a valid decimal integer in
   1706 // the range of an Int32.
   1707 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   1708   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   1709   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   1710 
   1711   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   1712   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   1713 }
   1714 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1715 
   1716 // Tests ParseInt32Flag().
   1717 
   1718 // Tests that ParseInt32Flag() returns false and doesn't change the
   1719 // output value when the flag has wrong format
   1720 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   1721   Int32 value = 123;
   1722   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   1723   EXPECT_EQ(123, value);
   1724 
   1725   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   1726   EXPECT_EQ(123, value);
   1727 }
   1728 
   1729 // Tests that ParseInt32Flag() returns false and doesn't change the
   1730 // output value when the flag overflows as an Int32.
   1731 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   1732   printf("(expecting 2 warnings)\n");
   1733 
   1734   Int32 value = 123;
   1735   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   1736   EXPECT_EQ(123, value);
   1737 
   1738   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   1739   EXPECT_EQ(123, value);
   1740 }
   1741 
   1742 // Tests that ParseInt32Flag() returns false and doesn't change the
   1743 // output value when the flag does not represent a valid decimal
   1744 // integer.
   1745 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   1746   printf("(expecting 2 warnings)\n");
   1747 
   1748   Int32 value = 123;
   1749   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   1750   EXPECT_EQ(123, value);
   1751 
   1752   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   1753   EXPECT_EQ(123, value);
   1754 }
   1755 
   1756 // Tests that ParseInt32Flag() parses the value of the flag and
   1757 // returns true when the flag represents a valid decimal integer in
   1758 // the range of an Int32.
   1759 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   1760   Int32 value = 123;
   1761   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   1762   EXPECT_EQ(456, value);
   1763 
   1764   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   1765                              "abc", &value));
   1766   EXPECT_EQ(-789, value);
   1767 }
   1768 
   1769 // Tests that Int32FromEnvOrDie() parses the value of the var or
   1770 // returns the correct default.
   1771 // Environment variables are not supported on Windows CE.
   1772 #if !GTEST_OS_WINDOWS_MOBILE
   1773 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   1774   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1775   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   1776   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1777   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   1778   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1779 }
   1780 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1781 
   1782 // Tests that Int32FromEnvOrDie() aborts with an error message
   1783 // if the variable is not an Int32.
   1784 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   1785   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   1786   EXPECT_DEATH_IF_SUPPORTED(
   1787       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1788       ".*");
   1789 }
   1790 
   1791 // Tests that Int32FromEnvOrDie() aborts with an error message
   1792 // if the variable cannot be represnted by an Int32.
   1793 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   1794   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   1795   EXPECT_DEATH_IF_SUPPORTED(
   1796       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1797       ".*");
   1798 }
   1799 
   1800 // Tests that ShouldRunTestOnShard() selects all tests
   1801 // where there is 1 shard.
   1802 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   1803   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   1804   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   1805   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   1806   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   1807   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   1808 }
   1809 
   1810 class ShouldShardTest : public testing::Test {
   1811  protected:
   1812   virtual void SetUp() {
   1813     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   1814     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   1815   }
   1816 
   1817   virtual void TearDown() {
   1818     SetEnv(index_var_, "");
   1819     SetEnv(total_var_, "");
   1820   }
   1821 
   1822   const char* index_var_;
   1823   const char* total_var_;
   1824 };
   1825 
   1826 // Tests that sharding is disabled if neither of the environment variables
   1827 // are set.
   1828 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   1829   SetEnv(index_var_, "");
   1830   SetEnv(total_var_, "");
   1831 
   1832   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1833   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1834 }
   1835 
   1836 // Tests that sharding is not enabled if total_shards  == 1.
   1837 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   1838   SetEnv(index_var_, "0");
   1839   SetEnv(total_var_, "1");
   1840   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1841   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1842 }
   1843 
   1844 // Tests that sharding is enabled if total_shards > 1 and
   1845 // we are not in a death test subprocess.
   1846 // Environment variables are not supported on Windows CE.
   1847 #if !GTEST_OS_WINDOWS_MOBILE
   1848 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   1849   SetEnv(index_var_, "4");
   1850   SetEnv(total_var_, "22");
   1851   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1852   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1853 
   1854   SetEnv(index_var_, "8");
   1855   SetEnv(total_var_, "9");
   1856   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1857   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1858 
   1859   SetEnv(index_var_, "0");
   1860   SetEnv(total_var_, "9");
   1861   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1862   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1863 }
   1864 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1865 
   1866 // Tests that we exit in error if the sharding values are not valid.
   1867 
   1868 typedef ShouldShardTest ShouldShardDeathTest;
   1869 
   1870 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   1871   SetEnv(index_var_, "4");
   1872   SetEnv(total_var_, "4");
   1873   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1874 
   1875   SetEnv(index_var_, "4");
   1876   SetEnv(total_var_, "-2");
   1877   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1878 
   1879   SetEnv(index_var_, "5");
   1880   SetEnv(total_var_, "");
   1881   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1882 
   1883   SetEnv(index_var_, "");
   1884   SetEnv(total_var_, "5");
   1885   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1886 }
   1887 
   1888 // Tests that ShouldRunTestOnShard is a partition when 5
   1889 // shards are used.
   1890 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   1891   // Choose an arbitrary number of tests and shards.
   1892   const int num_tests = 17;
   1893   const int num_shards = 5;
   1894 
   1895   // Check partitioning: each test should be on exactly 1 shard.
   1896   for (int test_id = 0; test_id < num_tests; test_id++) {
   1897     int prev_selected_shard_index = -1;
   1898     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1899       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   1900         if (prev_selected_shard_index < 0) {
   1901           prev_selected_shard_index = shard_index;
   1902         } else {
   1903           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   1904             << shard_index << " are both selected to run test " << test_id;
   1905         }
   1906       }
   1907     }
   1908   }
   1909 
   1910   // Check balance: This is not required by the sharding protocol, but is a
   1911   // desirable property for performance.
   1912   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1913     int num_tests_on_shard = 0;
   1914     for (int test_id = 0; test_id < num_tests; test_id++) {
   1915       num_tests_on_shard +=
   1916         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   1917     }
   1918     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   1919   }
   1920 }
   1921 
   1922 // For the same reason we are not explicitly testing everything in the
   1923 // Test class, there are no separate tests for the following classes
   1924 // (except for some trivial cases):
   1925 //
   1926 //   TestCase, UnitTest, UnitTestResultPrinter.
   1927 //
   1928 // Similarly, there are no separate tests for the following macros:
   1929 //
   1930 //   TEST, TEST_F, RUN_ALL_TESTS
   1931 
   1932 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   1933   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   1934   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   1935 }
   1936 
   1937 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
   1938   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
   1939   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
   1940 }
   1941 
   1942 // When a property using a reserved key is supplied to this function, it
   1943 // tests that a non-fatal failure is added, a fatal failure is not added,
   1944 // and that the property is not recorded.
   1945 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1946     const TestResult& test_result, const char* key) {
   1947   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
   1948   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
   1949                                                   << "' recorded unexpectedly.";
   1950 }
   1951 
   1952 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   1953     const char* key) {
   1954   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
   1955   ASSERT_TRUE(test_info != NULL);
   1956   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
   1957                                                         key);
   1958 }
   1959 
   1960 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1961     const char* key) {
   1962   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1963   ASSERT_TRUE(test_case != NULL);
   1964   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1965       test_case->ad_hoc_test_result(), key);
   1966 }
   1967 
   1968 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   1969     const char* key) {
   1970   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1971       UnitTest::GetInstance()->ad_hoc_test_result(), key);
   1972 }
   1973 
   1974 // Tests that property recording functions in UnitTest outside of tests
   1975 // functions correcly.  Creating a separate instance of UnitTest ensures it
   1976 // is in a state similar to the UnitTest's singleton's between tests.
   1977 class UnitTestRecordPropertyTest :
   1978     public testing::internal::UnitTestRecordPropertyTestHelper {
   1979  public:
   1980   static void SetUpTestCase() {
   1981     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1982         "disabled");
   1983     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1984         "errors");
   1985     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1986         "failures");
   1987     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1988         "name");
   1989     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1990         "tests");
   1991     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1992         "time");
   1993 
   1994     Test::RecordProperty("test_case_key_1", "1");
   1995     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1996     ASSERT_TRUE(test_case != NULL);
   1997 
   1998     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
   1999     EXPECT_STREQ("test_case_key_1",
   2000                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
   2001     EXPECT_STREQ("1",
   2002                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
   2003   }
   2004 };
   2005 
   2006 // Tests TestResult has the expected property when added.
   2007 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
   2008   UnitTestRecordProperty("key_1", "1");
   2009 
   2010   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
   2011 
   2012   EXPECT_STREQ("key_1",
   2013                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2014   EXPECT_STREQ("1",
   2015                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2016 }
   2017 
   2018 // Tests TestResult has multiple properties when added.
   2019 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
   2020   UnitTestRecordProperty("key_1", "1");
   2021   UnitTestRecordProperty("key_2", "2");
   2022 
   2023   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2024 
   2025   EXPECT_STREQ("key_1",
   2026                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2027   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2028 
   2029   EXPECT_STREQ("key_2",
   2030                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2031   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2032 }
   2033 
   2034 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   2035 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
   2036   UnitTestRecordProperty("key_1", "1");
   2037   UnitTestRecordProperty("key_2", "2");
   2038   UnitTestRecordProperty("key_1", "12");
   2039   UnitTestRecordProperty("key_2", "22");
   2040 
   2041   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2042 
   2043   EXPECT_STREQ("key_1",
   2044                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2045   EXPECT_STREQ("12",
   2046                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2047 
   2048   EXPECT_STREQ("key_2",
   2049                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2050   EXPECT_STREQ("22",
   2051                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2052 }
   2053 
   2054 TEST_F(UnitTestRecordPropertyTest,
   2055        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
   2056   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2057       "name");
   2058   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2059       "value_param");
   2060   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2061       "type_param");
   2062   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2063       "status");
   2064   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2065       "time");
   2066   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2067       "classname");
   2068 }
   2069 
   2070 TEST_F(UnitTestRecordPropertyTest,
   2071        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
   2072   EXPECT_NONFATAL_FAILURE(
   2073       Test::RecordProperty("name", "1"),
   2074       "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
   2075       " are reserved");
   2076 }
   2077 
   2078 class UnitTestRecordPropertyTestEnvironment : public Environment {
   2079  public:
   2080   virtual void TearDown() {
   2081     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2082         "tests");
   2083     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2084         "failures");
   2085     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2086         "disabled");
   2087     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2088         "errors");
   2089     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2090         "name");
   2091     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2092         "timestamp");
   2093     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2094         "time");
   2095     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2096         "random_seed");
   2097   }
   2098 };
   2099 
   2100 // This will test property recording outside of any test or test case.
   2101 static Environment* record_property_env =
   2102     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
   2103 
   2104 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2105 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2106 // view them as smoke tests that can be easily reviewed and verified.
   2107 // A more complete set of tests for predicate assertions can be found
   2108 // in gtest_pred_impl_unittest.cc.
   2109 
   2110 // First, some predicates and predicate-formatters needed by the tests.
   2111 
   2112 // Returns true iff the argument is an even number.
   2113 bool IsEven(int n) {
   2114   return (n % 2) == 0;
   2115 }
   2116 
   2117 // A functor that returns true iff the argument is an even number.
   2118 struct IsEvenFunctor {
   2119   bool operator()(int n) { return IsEven(n); }
   2120 };
   2121 
   2122 // A predicate-formatter function that asserts the argument is an even
   2123 // number.
   2124 AssertionResult AssertIsEven(const char* expr, int n) {
   2125   if (IsEven(n)) {
   2126     return AssertionSuccess();
   2127   }
   2128 
   2129   Message msg;
   2130   msg << expr << " evaluates to " << n << ", which is not even.";
   2131   return AssertionFailure(msg);
   2132 }
   2133 
   2134 // A predicate function that returns AssertionResult for use in
   2135 // EXPECT/ASSERT_TRUE/FALSE.
   2136 AssertionResult ResultIsEven(int n) {
   2137   if (IsEven(n))
   2138     return AssertionSuccess() << n << " is even";
   2139   else
   2140     return AssertionFailure() << n << " is odd";
   2141 }
   2142 
   2143 // A predicate function that returns AssertionResult but gives no
   2144 // explanation why it succeeds. Needed for testing that
   2145 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2146 AssertionResult ResultIsEvenNoExplanation(int n) {
   2147   if (IsEven(n))
   2148     return AssertionSuccess();
   2149   else
   2150     return AssertionFailure() << n << " is odd";
   2151 }
   2152 
   2153 // A predicate-formatter functor that asserts the argument is an even
   2154 // number.
   2155 struct AssertIsEvenFunctor {
   2156   AssertionResult operator()(const char* expr, int n) {
   2157     return AssertIsEven(expr, n);
   2158   }
   2159 };
   2160 
   2161 // Returns true iff the sum of the arguments is an even number.
   2162 bool SumIsEven2(int n1, int n2) {
   2163   return IsEven(n1 + n2);
   2164 }
   2165 
   2166 // A functor that returns true iff the sum of the arguments is an even
   2167 // number.
   2168 struct SumIsEven3Functor {
   2169   bool operator()(int n1, int n2, int n3) {
   2170     return IsEven(n1 + n2 + n3);
   2171   }
   2172 };
   2173 
   2174 // A predicate-formatter function that asserts the sum of the
   2175 // arguments is an even number.
   2176 AssertionResult AssertSumIsEven4(
   2177     const char* e1, const char* e2, const char* e3, const char* e4,
   2178     int n1, int n2, int n3, int n4) {
   2179   const int sum = n1 + n2 + n3 + n4;
   2180   if (IsEven(sum)) {
   2181     return AssertionSuccess();
   2182   }
   2183 
   2184   Message msg;
   2185   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2186       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2187       << ") evaluates to " << sum << ", which is not even.";
   2188   return AssertionFailure(msg);
   2189 }
   2190 
   2191 // A predicate-formatter functor that asserts the sum of the arguments
   2192 // is an even number.
   2193 struct AssertSumIsEven5Functor {
   2194   AssertionResult operator()(
   2195       const char* e1, const char* e2, const char* e3, const char* e4,
   2196       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2197     const int sum = n1 + n2 + n3 + n4 + n5;
   2198     if (IsEven(sum)) {
   2199       return AssertionSuccess();
   2200     }
   2201 
   2202     Message msg;
   2203     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2204         << " ("
   2205         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2206         << ") evaluates to " << sum << ", which is not even.";
   2207     return AssertionFailure(msg);
   2208   }
   2209 };
   2210 
   2211 
   2212 // Tests unary predicate assertions.
   2213 
   2214 // Tests unary predicate assertions that don't use a custom formatter.
   2215 TEST(Pred1Test, WithoutFormat) {
   2216   // Success cases.
   2217   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2218   ASSERT_PRED1(IsEven, 4);
   2219 
   2220   // Failure cases.
   2221   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2222     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2223   }, "This failure is expected.");
   2224   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2225                        "evaluates to false");
   2226 }
   2227 
   2228 // Tests unary predicate assertions that use a custom formatter.
   2229 TEST(Pred1Test, WithFormat) {
   2230   // Success cases.
   2231   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2232   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2233     << "This failure is UNEXPECTED!";
   2234 
   2235   // Failure cases.
   2236   const int n = 5;
   2237   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2238                           "n evaluates to 5, which is not even.");
   2239   EXPECT_FATAL_FAILURE({  // NOLINT
   2240     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2241   }, "This failure is expected.");
   2242 }
   2243 
   2244 // Tests that unary predicate assertions evaluates their arguments
   2245 // exactly once.
   2246 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2247   // A success case.
   2248   static int n = 0;
   2249   EXPECT_PRED1(IsEven, n++);
   2250   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2251 
   2252   // A failure case.
   2253   EXPECT_FATAL_FAILURE({  // NOLINT
   2254     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2255         << "This failure is expected.";
   2256   }, "This failure is expected.");
   2257   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2258 }
   2259 
   2260 
   2261 // Tests predicate assertions whose arity is >= 2.
   2262 
   2263 // Tests predicate assertions that don't use a custom formatter.
   2264 TEST(PredTest, WithoutFormat) {
   2265   // Success cases.
   2266   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2267   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2268 
   2269   // Failure cases.
   2270   const int n1 = 1;
   2271   const int n2 = 2;
   2272   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2273     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2274   }, "This failure is expected.");
   2275   EXPECT_FATAL_FAILURE({  // NOLINT
   2276     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2277   }, "evaluates to false");
   2278 }
   2279 
   2280 // Tests predicate assertions that use a custom formatter.
   2281 TEST(PredTest, WithFormat) {
   2282   // Success cases.
   2283   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2284     "This failure is UNEXPECTED!";
   2285   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2286 
   2287   // Failure cases.
   2288   const int n1 = 1;
   2289   const int n2 = 2;
   2290   const int n3 = 4;
   2291   const int n4 = 6;
   2292   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2293     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2294   }, "evaluates to 13, which is not even.");
   2295   EXPECT_FATAL_FAILURE({  // NOLINT
   2296     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2297         << "This failure is expected.";
   2298   }, "This failure is expected.");
   2299 }
   2300 
   2301 // Tests that predicate assertions evaluates their arguments
   2302 // exactly once.
   2303 TEST(PredTest, SingleEvaluationOnFailure) {
   2304   // A success case.
   2305   int n1 = 0;
   2306   int n2 = 0;
   2307   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2308   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2309   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2310 
   2311   // Another success case.
   2312   n1 = n2 = 0;
   2313   int n3 = 0;
   2314   int n4 = 0;
   2315   int n5 = 0;
   2316   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2317                       n1++, n2++, n3++, n4++, n5++)
   2318                         << "This failure is UNEXPECTED!";
   2319   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2320   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2321   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2322   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2323   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2324 
   2325   // A failure case.
   2326   n1 = n2 = n3 = 0;
   2327   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2328     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2329         << "This failure is expected.";
   2330   }, "This failure is expected.");
   2331   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2332   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2333   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2334 
   2335   // Another failure case.
   2336   n1 = n2 = n3 = n4 = 0;
   2337   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2338     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2339   }, "evaluates to 1, which is not even.");
   2340   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2341   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2342   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2343   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2344 }
   2345 
   2346 
   2347 // Some helper functions for testing using overloaded/template
   2348 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2349 
   2350 bool IsPositive(double x) {
   2351   return x > 0;
   2352 }
   2353 
   2354 template <typename T>
   2355 bool IsNegative(T x) {
   2356   return x < 0;
   2357 }
   2358 
   2359 template <typename T1, typename T2>
   2360 bool GreaterThan(T1 x1, T2 x2) {
   2361   return x1 > x2;
   2362 }
   2363 
   2364 // Tests that overloaded functions can be used in *_PRED* as long as
   2365 // their types are explicitly specified.
   2366 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2367   // C++Builder requires C-style casts rather than static_cast.
   2368   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2369   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2370 }
   2371 
   2372 // Tests that template functions can be used in *_PRED* as long as
   2373 // their types are explicitly specified.
   2374 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2375   EXPECT_PRED1(IsNegative<int>, -5);
   2376   // Makes sure that we can handle templates with more than one
   2377   // parameter.
   2378   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2379 }
   2380 
   2381 
   2382 // Some helper functions for testing using overloaded/template
   2383 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2384 
   2385 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2386   return n > 0 ? AssertionSuccess() :
   2387       AssertionFailure(Message() << "Failure");
   2388 }
   2389 
   2390 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2391   return x > 0 ? AssertionSuccess() :
   2392       AssertionFailure(Message() << "Failure");
   2393 }
   2394 
   2395 template <typename T>
   2396 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2397   return x < 0 ? AssertionSuccess() :
   2398       AssertionFailure(Message() << "Failure");
   2399 }
   2400 
   2401 template <typename T1, typename T2>
   2402 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2403                              const T1& x1, const T2& x2) {
   2404   return x1 == x2 ? AssertionSuccess() :
   2405       AssertionFailure(Message() << "Failure");
   2406 }
   2407 
   2408 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2409 // without explicitly specifying their types.
   2410 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2411   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2412   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2413 }
   2414 
   2415 // Tests that template functions can be used in *_PRED_FORMAT* without
   2416 // explicitly specifying their types.
   2417 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2418   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2419   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2420 }
   2421 
   2422 
   2423 // Tests string assertions.
   2424 
   2425 // Tests ASSERT_STREQ with non-NULL arguments.
   2426 TEST(StringAssertionTest, ASSERT_STREQ) {
   2427   const char * const p1 = "good";
   2428   ASSERT_STREQ(p1, p1);
   2429 
   2430   // Let p2 have the same content as p1, but be at a different address.
   2431   const char p2[] = "good";
   2432   ASSERT_STREQ(p1, p2);
   2433 
   2434   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2435                        "Expected: \"bad\"");
   2436 }
   2437 
   2438 // Tests ASSERT_STREQ with NULL arguments.
   2439 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2440   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2441   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2442                        "non-null");
   2443 }
   2444 
   2445 // Tests ASSERT_STREQ with NULL arguments.
   2446 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2447   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2448                        "non-null");
   2449 }
   2450 
   2451 // Tests ASSERT_STRNE.
   2452 TEST(StringAssertionTest, ASSERT_STRNE) {
   2453   ASSERT_STRNE("hi", "Hi");
   2454   ASSERT_STRNE("Hi", NULL);
   2455   ASSERT_STRNE(NULL, "Hi");
   2456   ASSERT_STRNE("", NULL);
   2457   ASSERT_STRNE(NULL, "");
   2458   ASSERT_STRNE("", "Hi");
   2459   ASSERT_STRNE("Hi", "");
   2460   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2461                        "\"Hi\" vs \"Hi\"");
   2462 }
   2463 
   2464 // Tests ASSERT_STRCASEEQ.
   2465 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2466   ASSERT_STRCASEEQ("hi", "Hi");
   2467   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2468 
   2469   ASSERT_STRCASEEQ("", "");
   2470   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2471                        "(ignoring case)");
   2472 }
   2473 
   2474 // Tests ASSERT_STRCASENE.
   2475 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2476   ASSERT_STRCASENE("hi1", "Hi2");
   2477   ASSERT_STRCASENE("Hi", NULL);
   2478   ASSERT_STRCASENE(NULL, "Hi");
   2479   ASSERT_STRCASENE("", NULL);
   2480   ASSERT_STRCASENE(NULL, "");
   2481   ASSERT_STRCASENE("", "Hi");
   2482   ASSERT_STRCASENE("Hi", "");
   2483   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2484                        "(ignoring case)");
   2485 }
   2486 
   2487 // Tests *_STREQ on wide strings.
   2488 TEST(StringAssertionTest, STREQ_Wide) {
   2489   // NULL strings.
   2490   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2491 
   2492   // Empty strings.
   2493   ASSERT_STREQ(L"", L"");
   2494 
   2495   // Non-null vs NULL.
   2496   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2497                           "non-null");
   2498 
   2499   // Equal strings.
   2500   EXPECT_STREQ(L"Hi", L"Hi");
   2501 
   2502   // Unequal strings.
   2503   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2504                           "Abc");
   2505 
   2506   // Strings containing wide characters.
   2507   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2508                           "abc");
   2509 
   2510   // The streaming variation.
   2511   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2512     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
   2513   }, "Expected failure");
   2514 }
   2515 
   2516 // Tests *_STRNE on wide strings.
   2517 TEST(StringAssertionTest, STRNE_Wide) {
   2518   // NULL strings.
   2519   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2520     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2521   }, "");
   2522 
   2523   // Empty strings.
   2524   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2525                           "L\"\"");
   2526 
   2527   // Non-null vs NULL.
   2528   ASSERT_STRNE(L"non-null", NULL);
   2529 
   2530   // Equal strings.
   2531   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2532                           "L\"Hi\"");
   2533 
   2534   // Unequal strings.
   2535   EXPECT_STRNE(L"abc", L"Abc");
   2536 
   2537   // Strings containing wide characters.
   2538   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2539                           "abc");
   2540 
   2541   // The streaming variation.
   2542   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
   2543 }
   2544 
   2545 // Tests for ::testing::IsSubstring().
   2546 
   2547 // Tests that IsSubstring() returns the correct result when the input
   2548 // argument type is const char*.
   2549 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2550   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2551   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2552   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2553 
   2554   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2555   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2556 }
   2557 
   2558 // Tests that IsSubstring() returns the correct result when the input
   2559 // argument type is const wchar_t*.
   2560 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2561   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2562   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2563   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2564 
   2565   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2566   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2567 }
   2568 
   2569 // Tests that IsSubstring() generates the correct message when the input
   2570 // argument type is const char*.
   2571 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2572   EXPECT_STREQ("Value of: needle_expr\n"
   2573                "  Actual: \"needle\"\n"
   2574                "Expected: a substring of haystack_expr\n"
   2575                "Which is: \"haystack\"",
   2576                IsSubstring("needle_expr", "haystack_expr",
   2577                            "needle", "haystack").failure_message());
   2578 }
   2579 
   2580 // Tests that IsSubstring returns the correct result when the input
   2581 // argument type is ::std::string.
   2582 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2583   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2584   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2585 }
   2586 
   2587 #if GTEST_HAS_STD_WSTRING
   2588 // Tests that IsSubstring returns the correct result when the input
   2589 // argument type is ::std::wstring.
   2590 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2591   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2592   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2593 }
   2594 
   2595 // Tests that IsSubstring() generates the correct message when the input
   2596 // argument type is ::std::wstring.
   2597 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2598   EXPECT_STREQ("Value of: needle_expr\n"
   2599                "  Actual: L\"needle\"\n"
   2600                "Expected: a substring of haystack_expr\n"
   2601                "Which is: L\"haystack\"",
   2602                IsSubstring(
   2603                    "needle_expr", "haystack_expr",
   2604                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2605 }
   2606 
   2607 #endif  // GTEST_HAS_STD_WSTRING
   2608 
   2609 // Tests for ::testing::IsNotSubstring().
   2610 
   2611 // Tests that IsNotSubstring() returns the correct result when the input
   2612 // argument type is const char*.
   2613 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2614   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2615   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2616 }
   2617 
   2618 // Tests that IsNotSubstring() returns the correct result when the input
   2619 // argument type is const wchar_t*.
   2620 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2621   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2622   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2623 }
   2624 
   2625 // Tests that IsNotSubstring() generates the correct message when the input
   2626 // argument type is const wchar_t*.
   2627 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2628   EXPECT_STREQ("Value of: needle_expr\n"
   2629                "  Actual: L\"needle\"\n"
   2630                "Expected: not a substring of haystack_expr\n"
   2631                "Which is: L\"two needles\"",
   2632                IsNotSubstring(
   2633                    "needle_expr", "haystack_expr",
   2634                    L"needle", L"two needles").failure_message());
   2635 }
   2636 
   2637 // Tests that IsNotSubstring returns the correct result when the input
   2638 // argument type is ::std::string.
   2639 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2640   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2641   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2642 }
   2643 
   2644 // Tests that IsNotSubstring() generates the correct message when the input
   2645 // argument type is ::std::string.
   2646 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2647   EXPECT_STREQ("Value of: needle_expr\n"
   2648                "  Actual: \"needle\"\n"
   2649                "Expected: not a substring of haystack_expr\n"
   2650                "Which is: \"two needles\"",
   2651                IsNotSubstring(
   2652                    "needle_expr", "haystack_expr",
   2653                    ::std::string("needle"), "two needles").failure_message());
   2654 }
   2655 
   2656 #if GTEST_HAS_STD_WSTRING
   2657 
   2658 // Tests that IsNotSubstring returns the correct result when the input
   2659 // argument type is ::std::wstring.
   2660 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2661   EXPECT_FALSE(
   2662       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2663   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2664 }
   2665 
   2666 #endif  // GTEST_HAS_STD_WSTRING
   2667 
   2668 // Tests floating-point assertions.
   2669 
   2670 template <typename RawType>
   2671 class FloatingPointTest : public Test {
   2672  protected:
   2673   // Pre-calculated numbers to be used by the tests.
   2674   struct TestValues {
   2675     RawType close_to_positive_zero;
   2676     RawType close_to_negative_zero;
   2677     RawType further_from_negative_zero;
   2678 
   2679     RawType close_to_one;
   2680     RawType further_from_one;
   2681 
   2682     RawType infinity;
   2683     RawType close_to_infinity;
   2684     RawType further_from_infinity;
   2685 
   2686     RawType nan1;
   2687     RawType nan2;
   2688   };
   2689 
   2690   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2691   typedef typename Floating::Bits Bits;
   2692 
   2693   virtual void SetUp() {
   2694     const size_t max_ulps = Floating::kMaxUlps;
   2695 
   2696     // The bits that represent 0.0.
   2697     const Bits zero_bits = Floating(0).bits();
   2698 
   2699     // Makes some numbers close to 0.0.
   2700     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2701         zero_bits + max_ulps/2);
   2702     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2703         zero_bits + max_ulps - max_ulps/2);
   2704     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2705         zero_bits + max_ulps + 1 - max_ulps/2);
   2706 
   2707     // The bits that represent 1.0.
   2708     const Bits one_bits = Floating(1).bits();
   2709 
   2710     // Makes some numbers close to 1.0.
   2711     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2712     values_.further_from_one = Floating::ReinterpretBits(
   2713         one_bits + max_ulps + 1);
   2714 
   2715     // +infinity.
   2716     values_.infinity = Floating::Infinity();
   2717 
   2718     // The bits that represent +infinity.
   2719     const Bits infinity_bits = Floating(values_.infinity).bits();
   2720 
   2721     // Makes some numbers close to infinity.
   2722     values_.close_to_infinity = Floating::ReinterpretBits(
   2723         infinity_bits - max_ulps);
   2724     values_.further_from_infinity = Floating::ReinterpretBits(
   2725         infinity_bits - max_ulps - 1);
   2726 
   2727     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2728     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2729     // exception if our environment enables floating point exceptions.
   2730     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2731         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2732     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2733         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2734   }
   2735 
   2736   void TestSize() {
   2737     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2738   }
   2739 
   2740   static TestValues values_;
   2741 };
   2742 
   2743 template <typename RawType>
   2744 typename FloatingPointTest<RawType>::TestValues
   2745     FloatingPointTest<RawType>::values_;
   2746 
   2747 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2748 typedef FloatingPointTest<float> FloatTest;
   2749 
   2750 // Tests that the size of Float::Bits matches the size of float.
   2751 TEST_F(FloatTest, Size) {
   2752   TestSize();
   2753 }
   2754 
   2755 // Tests comparing with +0 and -0.
   2756 TEST_F(FloatTest, Zeros) {
   2757   EXPECT_FLOAT_EQ(0.0, -0.0);
   2758   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2759                           "1.0");
   2760   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2761                        "1.5");
   2762 }
   2763 
   2764 // Tests comparing numbers close to 0.
   2765 //
   2766 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2767 // overflow occurs when comparing numbers whose absolute value is very
   2768 // small.
   2769 TEST_F(FloatTest, AlmostZeros) {
   2770   // In C++Builder, names within local classes (such as used by
   2771   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2772   // scoping class.  Use a static local alias as a workaround.
   2773   // We use the assignment syntax since some compilers, like Sun Studio,
   2774   // don't allow initializing references using construction syntax
   2775   // (parentheses).
   2776   static const FloatTest::TestValues& v = this->values_;
   2777 
   2778   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2779   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2780   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2781 
   2782   EXPECT_FATAL_FAILURE({  // NOLINT
   2783     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2784                     v.further_from_negative_zero);
   2785   }, "v.further_from_negative_zero");
   2786 }
   2787 
   2788 // Tests comparing numbers close to each other.
   2789 TEST_F(FloatTest, SmallDiff) {
   2790   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2791   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2792                           "values_.further_from_one");
   2793 }
   2794 
   2795 // Tests comparing numbers far apart.
   2796 TEST_F(FloatTest, LargeDiff) {
   2797   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2798                           "3.0");
   2799 }
   2800 
   2801 // Tests comparing with infinity.
   2802 //
   2803 // This ensures that no overflow occurs when comparing numbers whose
   2804 // absolute value is very large.
   2805 TEST_F(FloatTest, Infinity) {
   2806   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2807   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2808 #if !GTEST_OS_SYMBIAN
   2809   // Nokia's STLport crashes if we try to output infinity or NaN.
   2810   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2811                           "-values_.infinity");
   2812 
   2813   // This is interesting as the representations of infinity and nan1
   2814   // are only 1 DLP apart.
   2815   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2816                           "values_.nan1");
   2817 #endif  // !GTEST_OS_SYMBIAN
   2818 }
   2819 
   2820 // Tests that comparing with NAN always returns false.
   2821 TEST_F(FloatTest, NaN) {
   2822 #if !GTEST_OS_SYMBIAN
   2823 // Nokia's STLport crashes if we try to output infinity or NaN.
   2824 
   2825   // In C++Builder, names within local classes (such as used by
   2826   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2827   // scoping class.  Use a static local alias as a workaround.
   2828   // We use the assignment syntax since some compilers, like Sun Studio,
   2829   // don't allow initializing references using construction syntax
   2830   // (parentheses).
   2831   static const FloatTest::TestValues& v = this->values_;
   2832 
   2833   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2834                           "v.nan1");
   2835   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2836                           "v.nan2");
   2837   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2838                           "v.nan1");
   2839 
   2840   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2841                        "v.infinity");
   2842 #endif  // !GTEST_OS_SYMBIAN
   2843 }
   2844 
   2845 // Tests that *_FLOAT_EQ are reflexive.
   2846 TEST_F(FloatTest, Reflexive) {
   2847   EXPECT_FLOAT_EQ(0.0, 0.0);
   2848   EXPECT_FLOAT_EQ(1.0, 1.0);
   2849   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2850 }
   2851 
   2852 // Tests that *_FLOAT_EQ are commutative.
   2853 TEST_F(FloatTest, Commutative) {
   2854   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2855   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2856 
   2857   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2858   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2859                           "1.0");
   2860 }
   2861 
   2862 // Tests EXPECT_NEAR.
   2863 TEST_F(FloatTest, EXPECT_NEAR) {
   2864   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   2865   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   2866   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2867                           "The difference between 1.0f and 1.5f is 0.5, "
   2868                           "which exceeds 0.25f");
   2869   // To work around a bug in gcc 2.95.0, there is intentionally no
   2870   // space after the first comma in the previous line.
   2871 }
   2872 
   2873 // Tests ASSERT_NEAR.
   2874 TEST_F(FloatTest, ASSERT_NEAR) {
   2875   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   2876   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   2877   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2878                        "The difference between 1.0f and 1.5f is 0.5, "
   2879                        "which exceeds 0.25f");
   2880   // To work around a bug in gcc 2.95.0, there is intentionally no
   2881   // space after the first comma in the previous line.
   2882 }
   2883 
   2884 // Tests the cases where FloatLE() should succeed.
   2885 TEST_F(FloatTest, FloatLESucceeds) {
   2886   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   2887   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   2888 
   2889   // or when val1 is greater than, but almost equals to, val2.
   2890   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   2891 }
   2892 
   2893 // Tests the cases where FloatLE() should fail.
   2894 TEST_F(FloatTest, FloatLEFails) {
   2895   // When val1 is greater than val2 by a large margin,
   2896   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   2897                           "(2.0f) <= (1.0f)");
   2898 
   2899   // or by a small yet non-negligible margin,
   2900   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2901     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   2902   }, "(values_.further_from_one) <= (1.0f)");
   2903 
   2904 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2905   // Nokia's STLport crashes if we try to output infinity or NaN.
   2906   // C++Builder gives bad results for ordered comparisons involving NaNs
   2907   // due to compiler bugs.
   2908   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2909     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   2910   }, "(values_.nan1) <= (values_.infinity)");
   2911   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2912     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   2913   }, "(-values_.infinity) <= (values_.nan1)");
   2914   EXPECT_FATAL_FAILURE({  // NOLINT
   2915     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   2916   }, "(values_.nan1) <= (values_.nan1)");
   2917 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2918 }
   2919 
   2920 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   2921 typedef FloatingPointTest<double> DoubleTest;
   2922 
   2923 // Tests that the size of Double::Bits matches the size of double.
   2924 TEST_F(DoubleTest, Size) {
   2925   TestSize();
   2926 }
   2927 
   2928 // Tests comparing with +0 and -0.
   2929 TEST_F(DoubleTest, Zeros) {
   2930   EXPECT_DOUBLE_EQ(0.0, -0.0);
   2931   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   2932                           "1.0");
   2933   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   2934                        "1.0");
   2935 }
   2936 
   2937 // Tests comparing numbers close to 0.
   2938 //
   2939 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   2940 // overflow occurs when comparing numbers whose absolute value is very
   2941 // small.
   2942 TEST_F(DoubleTest, AlmostZeros) {
   2943   // In C++Builder, names within local classes (such as used by
   2944   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2945   // scoping class.  Use a static local alias as a workaround.
   2946   // We use the assignment syntax since some compilers, like Sun Studio,
   2947   // don't allow initializing references using construction syntax
   2948   // (parentheses).
   2949   static const DoubleTest::TestValues& v = this->values_;
   2950 
   2951   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   2952   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   2953   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2954 
   2955   EXPECT_FATAL_FAILURE({  // NOLINT
   2956     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   2957                      v.further_from_negative_zero);
   2958   }, "v.further_from_negative_zero");
   2959 }
   2960 
   2961 // Tests comparing numbers close to each other.
   2962 TEST_F(DoubleTest, SmallDiff) {
   2963   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   2964   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   2965                           "values_.further_from_one");
   2966 }
   2967 
   2968 // Tests comparing numbers far apart.
   2969 TEST_F(DoubleTest, LargeDiff) {
   2970   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   2971                           "3.0");
   2972 }
   2973 
   2974 // Tests comparing with infinity.
   2975 //
   2976 // This ensures that no overflow occurs when comparing numbers whose
   2977 // absolute value is very large.
   2978 TEST_F(DoubleTest, Infinity) {
   2979   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   2980   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   2981 #if !GTEST_OS_SYMBIAN
   2982   // Nokia's STLport crashes if we try to output infinity or NaN.
   2983   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   2984                           "-values_.infinity");
   2985 
   2986   // This is interesting as the representations of infinity_ and nan1_
   2987   // are only 1 DLP apart.
   2988   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   2989                           "values_.nan1");
   2990 #endif  // !GTEST_OS_SYMBIAN
   2991 }
   2992 
   2993 // Tests that comparing with NAN always returns false.
   2994 TEST_F(DoubleTest, NaN) {
   2995 #if !GTEST_OS_SYMBIAN
   2996   // In C++Builder, names within local classes (such as used by
   2997   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2998   // scoping class.  Use a static local alias as a workaround.
   2999   // We use the assignment syntax since some compilers, like Sun Studio,
   3000   // don't allow initializing references using construction syntax
   3001   // (parentheses).
   3002   static const DoubleTest::TestValues& v = this->values_;
   3003 
   3004   // Nokia's STLport crashes if we try to output infinity or NaN.
   3005   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   3006                           "v.nan1");
   3007   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   3008   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   3009   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   3010                        "v.infinity");
   3011 #endif  // !GTEST_OS_SYMBIAN
   3012 }
   3013 
   3014 // Tests that *_DOUBLE_EQ are reflexive.
   3015 TEST_F(DoubleTest, Reflexive) {
   3016   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3017   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3018 #if !GTEST_OS_SYMBIAN
   3019   // Nokia's STLport crashes if we try to output infinity or NaN.
   3020   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3021 #endif  // !GTEST_OS_SYMBIAN
   3022 }
   3023 
   3024 // Tests that *_DOUBLE_EQ are commutative.
   3025 TEST_F(DoubleTest, Commutative) {
   3026   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3027   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3028 
   3029   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3030   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3031                           "1.0");
   3032 }
   3033 
   3034 // Tests EXPECT_NEAR.
   3035 TEST_F(DoubleTest, EXPECT_NEAR) {
   3036   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3037   EXPECT_NEAR(2.0, 3.0, 1.0);
   3038   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3039                           "The difference between 1.0 and 1.5 is 0.5, "
   3040                           "which exceeds 0.25");
   3041   // To work around a bug in gcc 2.95.0, there is intentionally no
   3042   // space after the first comma in the previous statement.
   3043 }
   3044 
   3045 // Tests ASSERT_NEAR.
   3046 TEST_F(DoubleTest, ASSERT_NEAR) {
   3047   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3048   ASSERT_NEAR(2.0, 3.0, 1.0);
   3049   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3050                        "The difference between 1.0 and 1.5 is 0.5, "
   3051                        "which exceeds 0.25");
   3052   // To work around a bug in gcc 2.95.0, there is intentionally no
   3053   // space after the first comma in the previous statement.
   3054 }
   3055 
   3056 // Tests the cases where DoubleLE() should succeed.
   3057 TEST_F(DoubleTest, DoubleLESucceeds) {
   3058   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3059   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3060 
   3061   // or when val1 is greater than, but almost equals to, val2.
   3062   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3063 }
   3064 
   3065 // Tests the cases where DoubleLE() should fail.
   3066 TEST_F(DoubleTest, DoubleLEFails) {
   3067   // When val1 is greater than val2 by a large margin,
   3068   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3069                           "(2.0) <= (1.0)");
   3070 
   3071   // or by a small yet non-negligible margin,
   3072   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3073     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3074   }, "(values_.further_from_one) <= (1.0)");
   3075 
   3076 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3077   // Nokia's STLport crashes if we try to output infinity or NaN.
   3078   // C++Builder gives bad results for ordered comparisons involving NaNs
   3079   // due to compiler bugs.
   3080   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3081     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3082   }, "(values_.nan1) <= (values_.infinity)");
   3083   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3084     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3085   }, " (-values_.infinity) <= (values_.nan1)");
   3086   EXPECT_FATAL_FAILURE({  // NOLINT
   3087     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3088   }, "(values_.nan1) <= (values_.nan1)");
   3089 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3090 }
   3091 
   3092 
   3093 // Verifies that a test or test case whose name starts with DISABLED_ is
   3094 // not run.
   3095 
   3096 // A test whose name starts with DISABLED_.
   3097 // Should not run.
   3098 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3099   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3100 }
   3101 
   3102 // A test whose name does not start with DISABLED_.
   3103 // Should run.
   3104 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3105   EXPECT_EQ(1, 1);
   3106 }
   3107 
   3108 // A test case whose name starts with DISABLED_.
   3109 // Should not run.
   3110 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3111   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3112 }
   3113 
   3114 // A test case and test whose names start with DISABLED_.
   3115 // Should not run.
   3116 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3117   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3118 }
   3119 
   3120 // Check that when all tests in a test case are disabled, SetupTestCase() and
   3121 // TearDownTestCase() are not called.
   3122 class DisabledTestsTest : public Test {
   3123  protected:
   3124   static void SetUpTestCase() {
   3125     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3126               "SetupTestCase() should not be called.";
   3127   }
   3128 
   3129   static void TearDownTestCase() {
   3130     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3131               "TearDownTestCase() should not be called.";
   3132   }
   3133 };
   3134 
   3135 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3136   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3137 }
   3138 
   3139 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3140   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3141 }
   3142 
   3143 // Tests that disabled typed tests aren't run.
   3144 
   3145 #if GTEST_HAS_TYPED_TEST
   3146 
   3147 template <typename T>
   3148 class TypedTest : public Test {
   3149 };
   3150 
   3151 typedef testing::Types<int, double> NumericTypes;
   3152 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3153 
   3154 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3155   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3156 }
   3157 
   3158 template <typename T>
   3159 class DISABLED_TypedTest : public Test {
   3160 };
   3161 
   3162 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3163 
   3164 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3165   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3166 }
   3167 
   3168 #endif  // GTEST_HAS_TYPED_TEST
   3169 
   3170 // Tests that disabled type-parameterized tests aren't run.
   3171 
   3172 #if GTEST_HAS_TYPED_TEST_P
   3173 
   3174 template <typename T>
   3175 class TypedTestP : public Test {
   3176 };
   3177 
   3178 TYPED_TEST_CASE_P(TypedTestP);
   3179 
   3180 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3181   FAIL() << "Unexpected failure: "
   3182          << "Disabled type-parameterized test should not run.";
   3183 }
   3184 
   3185 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3186 
   3187 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3188 
   3189 template <typename T>
   3190 class DISABLED_TypedTestP : public Test {
   3191 };
   3192 
   3193 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3194 
   3195 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3196   FAIL() << "Unexpected failure: "
   3197          << "Disabled type-parameterized test should not run.";
   3198 }
   3199 
   3200 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3201 
   3202 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3203 
   3204 #endif  // GTEST_HAS_TYPED_TEST_P
   3205 
   3206 // Tests that assertion macros evaluate their arguments exactly once.
   3207 
   3208 class SingleEvaluationTest : public Test {
   3209  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3210   // This helper function is needed by the FailedASSERT_STREQ test
   3211   // below.  It's public to work around C++Builder's bug with scoping local
   3212   // classes.
   3213   static void CompareAndIncrementCharPtrs() {
   3214     ASSERT_STREQ(p1_++, p2_++);
   3215   }
   3216 
   3217   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3218   // public to work around C++Builder's bug with scoping local classes.
   3219   static void CompareAndIncrementInts() {
   3220     ASSERT_NE(a_++, b_++);
   3221   }
   3222 
   3223  protected:
   3224   SingleEvaluationTest() {
   3225     p1_ = s1_;
   3226     p2_ = s2_;
   3227     a_ = 0;
   3228     b_ = 0;
   3229   }
   3230 
   3231   static const char* const s1_;
   3232   static const char* const s2_;
   3233   static const char* p1_;
   3234   static const char* p2_;
   3235 
   3236   static int a_;
   3237   static int b_;
   3238 };
   3239 
   3240 const char* const SingleEvaluationTest::s1_ = "01234";
   3241 const char* const SingleEvaluationTest::s2_ = "abcde";
   3242 const char* SingleEvaluationTest::p1_;
   3243 const char* SingleEvaluationTest::p2_;
   3244 int SingleEvaluationTest::a_;
   3245 int SingleEvaluationTest::b_;
   3246 
   3247 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3248 // exactly once.
   3249 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3250   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3251                        "p2_++");
   3252   EXPECT_EQ(s1_ + 1, p1_);
   3253   EXPECT_EQ(s2_ + 1, p2_);
   3254 }
   3255 
   3256 // Tests that string assertion arguments are evaluated exactly once.
   3257 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3258   // successful EXPECT_STRNE
   3259   EXPECT_STRNE(p1_++, p2_++);
   3260   EXPECT_EQ(s1_ + 1, p1_);
   3261   EXPECT_EQ(s2_ + 1, p2_);
   3262 
   3263   // failed EXPECT_STRCASEEQ
   3264   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3265                           "ignoring case");
   3266   EXPECT_EQ(s1_ + 2, p1_);
   3267   EXPECT_EQ(s2_ + 2, p2_);
   3268 }
   3269 
   3270 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3271 // once.
   3272 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3273   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3274                        "(a_++) != (b_++)");
   3275   EXPECT_EQ(1, a_);
   3276   EXPECT_EQ(1, b_);
   3277 }
   3278 
   3279 // Tests that assertion arguments are evaluated exactly once.
   3280 TEST_F(SingleEvaluationTest, OtherCases) {
   3281   // successful EXPECT_TRUE
   3282   EXPECT_TRUE(0 == a_++);  // NOLINT
   3283   EXPECT_EQ(1, a_);
   3284 
   3285   // failed EXPECT_TRUE
   3286   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3287   EXPECT_EQ(2, a_);
   3288 
   3289   // successful EXPECT_GT
   3290   EXPECT_GT(a_++, b_++);
   3291   EXPECT_EQ(3, a_);
   3292   EXPECT_EQ(1, b_);
   3293 
   3294   // failed EXPECT_LT
   3295   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3296   EXPECT_EQ(4, a_);
   3297   EXPECT_EQ(2, b_);
   3298 
   3299   // successful ASSERT_TRUE
   3300   ASSERT_TRUE(0 < a_++);  // NOLINT
   3301   EXPECT_EQ(5, a_);
   3302 
   3303   // successful ASSERT_GT
   3304   ASSERT_GT(a_++, b_++);
   3305   EXPECT_EQ(6, a_);
   3306   EXPECT_EQ(3, b_);
   3307 }
   3308 
   3309 #if GTEST_HAS_EXCEPTIONS
   3310 
   3311 void ThrowAnInteger() {
   3312   throw 1;
   3313 }
   3314 
   3315 // Tests that assertion arguments are evaluated exactly once.
   3316 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3317   // successful EXPECT_THROW
   3318   EXPECT_THROW({  // NOLINT
   3319     a_++;
   3320     ThrowAnInteger();
   3321   }, int);
   3322   EXPECT_EQ(1, a_);
   3323 
   3324   // failed EXPECT_THROW, throws different
   3325   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3326     a_++;
   3327     ThrowAnInteger();
   3328   }, bool), "throws a different type");
   3329   EXPECT_EQ(2, a_);
   3330 
   3331   // failed EXPECT_THROW, throws nothing
   3332   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3333   EXPECT_EQ(3, a_);
   3334 
   3335   // successful EXPECT_NO_THROW
   3336   EXPECT_NO_THROW(a_++);
   3337   EXPECT_EQ(4, a_);
   3338 
   3339   // failed EXPECT_NO_THROW
   3340   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3341     a_++;
   3342     ThrowAnInteger();
   3343   }), "it throws");
   3344   EXPECT_EQ(5, a_);
   3345 
   3346   // successful EXPECT_ANY_THROW
   3347   EXPECT_ANY_THROW({  // NOLINT
   3348     a_++;
   3349     ThrowAnInteger();
   3350   });
   3351   EXPECT_EQ(6, a_);
   3352 
   3353   // failed EXPECT_ANY_THROW
   3354   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3355   EXPECT_EQ(7, a_);
   3356 }
   3357 
   3358 #endif  // GTEST_HAS_EXCEPTIONS
   3359 
   3360 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3361 class NoFatalFailureTest : public Test {
   3362  protected:
   3363   void Succeeds() {}
   3364   void FailsNonFatal() {
   3365     ADD_FAILURE() << "some non-fatal failure";
   3366   }
   3367   void Fails() {
   3368     FAIL() << "some fatal failure";
   3369   }
   3370 
   3371   void DoAssertNoFatalFailureOnFails() {
   3372     ASSERT_NO_FATAL_FAILURE(Fails());
   3373     ADD_FAILURE() << "shold not reach here.";
   3374   }
   3375 
   3376   void DoExpectNoFatalFailureOnFails() {
   3377     EXPECT_NO_FATAL_FAILURE(Fails());
   3378     ADD_FAILURE() << "other failure";
   3379   }
   3380 };
   3381 
   3382 TEST_F(NoFatalFailureTest, NoFailure) {
   3383   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3384   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3385 }
   3386 
   3387 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3388   EXPECT_NONFATAL_FAILURE(
   3389       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3390       "some non-fatal failure");
   3391   EXPECT_NONFATAL_FAILURE(
   3392       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3393       "some non-fatal failure");
   3394 }
   3395 
   3396 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3397   TestPartResultArray gtest_failures;
   3398   {
   3399     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3400     DoAssertNoFatalFailureOnFails();
   3401   }
   3402   ASSERT_EQ(2, gtest_failures.size());
   3403   EXPECT_EQ(TestPartResult::kFatalFailure,
   3404             gtest_failures.GetTestPartResult(0).type());
   3405   EXPECT_EQ(TestPartResult::kFatalFailure,
   3406             gtest_failures.GetTestPartResult(1).type());
   3407   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3408                       gtest_failures.GetTestPartResult(0).message());
   3409   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3410                       gtest_failures.GetTestPartResult(1).message());
   3411 }
   3412 
   3413 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3414   TestPartResultArray gtest_failures;
   3415   {
   3416     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3417     DoExpectNoFatalFailureOnFails();
   3418   }
   3419   ASSERT_EQ(3, gtest_failures.size());
   3420   EXPECT_EQ(TestPartResult::kFatalFailure,
   3421             gtest_failures.GetTestPartResult(0).type());
   3422   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3423             gtest_failures.GetTestPartResult(1).type());
   3424   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3425             gtest_failures.GetTestPartResult(2).type());
   3426   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3427                       gtest_failures.GetTestPartResult(0).message());
   3428   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3429                       gtest_failures.GetTestPartResult(1).message());
   3430   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3431                       gtest_failures.GetTestPartResult(2).message());
   3432 }
   3433 
   3434 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3435   TestPartResultArray gtest_failures;
   3436   {
   3437     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3438     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3439   }
   3440   ASSERT_EQ(2, gtest_failures.size());
   3441   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3442             gtest_failures.GetTestPartResult(0).type());
   3443   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3444             gtest_failures.GetTestPartResult(1).type());
   3445   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3446                       gtest_failures.GetTestPartResult(0).message());
   3447   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3448                       gtest_failures.GetTestPartResult(1).message());
   3449 }
   3450 
   3451 // Tests non-string assertions.
   3452 
   3453 // Tests EqFailure(), used for implementing *EQ* assertions.
   3454 TEST(AssertionTest, EqFailure) {
   3455   const std::string foo_val("5"), bar_val("6");
   3456   const std::string msg1(
   3457       EqFailure("foo", "bar", foo_val, bar_val, false)
   3458       .failure_message());
   3459   EXPECT_STREQ(
   3460       "Value of: bar\n"
   3461       "  Actual: 6\n"
   3462       "Expected: foo\n"
   3463       "Which is: 5",
   3464       msg1.c_str());
   3465 
   3466   const std::string msg2(
   3467       EqFailure("foo", "6", foo_val, bar_val, false)
   3468       .failure_message());
   3469   EXPECT_STREQ(
   3470       "Value of: 6\n"
   3471       "Expected: foo\n"
   3472       "Which is: 5",
   3473       msg2.c_str());
   3474 
   3475   const std::string msg3(
   3476       EqFailure("5", "bar", foo_val, bar_val, false)
   3477       .failure_message());
   3478   EXPECT_STREQ(
   3479       "Value of: bar\n"
   3480       "  Actual: 6\n"
   3481       "Expected: 5",
   3482       msg3.c_str());
   3483 
   3484   const std::string msg4(
   3485       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3486   EXPECT_STREQ(
   3487       "Value of: 6\n"
   3488       "Expected: 5",
   3489       msg4.c_str());
   3490 
   3491   const std::string msg5(
   3492       EqFailure("foo", "bar",
   3493                 std::string("\"x\""), std::string("\"y\""),
   3494                 true).failure_message());
   3495   EXPECT_STREQ(
   3496       "Value of: bar\n"
   3497       "  Actual: \"y\"\n"
   3498       "Expected: foo (ignoring case)\n"
   3499       "Which is: \"x\"",
   3500       msg5.c_str());
   3501 }
   3502 
   3503 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3504 TEST(AssertionTest, AppendUserMessage) {
   3505   const std::string foo("foo");
   3506 
   3507   Message msg;
   3508   EXPECT_STREQ("foo",
   3509                AppendUserMessage(foo, msg).c_str());
   3510 
   3511   msg << "bar";
   3512   EXPECT_STREQ("foo\nbar",
   3513                AppendUserMessage(foo, msg).c_str());
   3514 }
   3515 
   3516 #ifdef __BORLANDC__
   3517 // Silences warnings: "Condition is always true", "Unreachable code"
   3518 # pragma option push -w-ccc -w-rch
   3519 #endif
   3520 
   3521 // Tests ASSERT_TRUE.
   3522 TEST(AssertionTest, ASSERT_TRUE) {
   3523   ASSERT_TRUE(2 > 1);  // NOLINT
   3524   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3525                        "2 < 1");
   3526 }
   3527 
   3528 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3529 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3530   ASSERT_TRUE(ResultIsEven(2));
   3531 #ifndef __BORLANDC__
   3532   // ICE's in C++Builder.
   3533   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3534                        "Value of: ResultIsEven(3)\n"
   3535                        "  Actual: false (3 is odd)\n"
   3536                        "Expected: true");
   3537 #endif
   3538   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3539   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3540                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3541                        "  Actual: false (3 is odd)\n"
   3542                        "Expected: true");
   3543 }
   3544 
   3545 // Tests ASSERT_FALSE.
   3546 TEST(AssertionTest, ASSERT_FALSE) {
   3547   ASSERT_FALSE(2 < 1);  // NOLINT
   3548   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3549                        "Value of: 2 > 1\n"
   3550                        "  Actual: true\n"
   3551                        "Expected: false");
   3552 }
   3553 
   3554 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3555 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3556   ASSERT_FALSE(ResultIsEven(3));
   3557 #ifndef __BORLANDC__
   3558   // ICE's in C++Builder.
   3559   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3560                        "Value of: ResultIsEven(2)\n"
   3561                        "  Actual: true (2 is even)\n"
   3562                        "Expected: false");
   3563 #endif
   3564   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3565   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3566                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3567                        "  Actual: true\n"
   3568                        "Expected: false");
   3569 }
   3570 
   3571 #ifdef __BORLANDC__
   3572 // Restores warnings after previous "#pragma option push" supressed them
   3573 # pragma option pop
   3574 #endif
   3575 
   3576 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3577 // sure that the specialization we did for integer and anonymous enums
   3578 // isn't used for double arguments.
   3579 TEST(ExpectTest, ASSERT_EQ_Double) {
   3580   // A success.
   3581   ASSERT_EQ(5.6, 5.6);
   3582 
   3583   // A failure.
   3584   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3585                        "5.1");
   3586 }
   3587 
   3588 // Tests ASSERT_EQ.
   3589 TEST(AssertionTest, ASSERT_EQ) {
   3590   ASSERT_EQ(5, 2 + 3);
   3591   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3592                        "Value of: 2*3\n"
   3593                        "  Actual: 6\n"
   3594                        "Expected: 5");
   3595 }
   3596 
   3597 // Tests ASSERT_EQ(NULL, pointer).
   3598 #if GTEST_CAN_COMPARE_NULL
   3599 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3600   // A success.
   3601   const char* p = NULL;
   3602   // Some older GCC versions may issue a spurious waring in this or the next
   3603   // assertion statement. This warning should not be suppressed with
   3604   // static_cast since the test verifies the ability to use bare NULL as the
   3605   // expected parameter to the macro.
   3606   ASSERT_EQ(NULL, p);
   3607 
   3608   // A failure.
   3609   static int n = 0;
   3610   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3611                        "Value of: &n\n");
   3612 }
   3613 #endif  // GTEST_CAN_COMPARE_NULL
   3614 
   3615 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3616 // treated as a null pointer by the compiler, we need to make sure
   3617 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3618 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3619 TEST(ExpectTest, ASSERT_EQ_0) {
   3620   int n = 0;
   3621 
   3622   // A success.
   3623   ASSERT_EQ(0, n);
   3624 
   3625   // A failure.
   3626   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3627                        "Expected: 0");
   3628 }
   3629 
   3630 // Tests ASSERT_NE.
   3631 TEST(AssertionTest, ASSERT_NE) {
   3632   ASSERT_NE(6, 7);
   3633   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3634                        "Expected: ('a') != ('a'), "
   3635                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3636 }
   3637 
   3638 // Tests ASSERT_LE.
   3639 TEST(AssertionTest, ASSERT_LE) {
   3640   ASSERT_LE(2, 3);
   3641   ASSERT_LE(2, 2);
   3642   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3643                        "Expected: (2) <= (0), actual: 2 vs 0");
   3644 }
   3645 
   3646 // Tests ASSERT_LT.
   3647 TEST(AssertionTest, ASSERT_LT) {
   3648   ASSERT_LT(2, 3);
   3649   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3650                        "Expected: (2) < (2), actual: 2 vs 2");
   3651 }
   3652 
   3653 // Tests ASSERT_GE.
   3654 TEST(AssertionTest, ASSERT_GE) {
   3655   ASSERT_GE(2, 1);
   3656   ASSERT_GE(2, 2);
   3657   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3658                        "Expected: (2) >= (3), actual: 2 vs 3");
   3659 }
   3660 
   3661 // Tests ASSERT_GT.
   3662 TEST(AssertionTest, ASSERT_GT) {
   3663   ASSERT_GT(2, 1);
   3664   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3665                        "Expected: (2) > (2), actual: 2 vs 2");
   3666 }
   3667 
   3668 #if GTEST_HAS_EXCEPTIONS
   3669 
   3670 void ThrowNothing() {}
   3671 
   3672 // Tests ASSERT_THROW.
   3673 TEST(AssertionTest, ASSERT_THROW) {
   3674   ASSERT_THROW(ThrowAnInteger(), int);
   3675 
   3676 # ifndef __BORLANDC__
   3677 
   3678   // ICE's in C++Builder 2007 and 2009.
   3679   EXPECT_FATAL_FAILURE(
   3680       ASSERT_THROW(ThrowAnInteger(), bool),
   3681       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3682       "  Actual: it throws a different type.");
   3683 # endif
   3684 
   3685   EXPECT_FATAL_FAILURE(
   3686       ASSERT_THROW(ThrowNothing(), bool),
   3687       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3688       "  Actual: it throws nothing.");
   3689 }
   3690 
   3691 // Tests ASSERT_NO_THROW.
   3692 TEST(AssertionTest, ASSERT_NO_THROW) {
   3693   ASSERT_NO_THROW(ThrowNothing());
   3694   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3695                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3696                        "\n  Actual: it throws.");
   3697 }
   3698 
   3699 // Tests ASSERT_ANY_THROW.
   3700 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3701   ASSERT_ANY_THROW(ThrowAnInteger());
   3702   EXPECT_FATAL_FAILURE(
   3703       ASSERT_ANY_THROW(ThrowNothing()),
   3704       "Expected: ThrowNothing() throws an exception.\n"
   3705       "  Actual: it doesn't.");
   3706 }
   3707 
   3708 #endif  // GTEST_HAS_EXCEPTIONS
   3709 
   3710 // Makes sure we deal with the precedence of <<.  This test should
   3711 // compile.
   3712 TEST(AssertionTest, AssertPrecedence) {
   3713   ASSERT_EQ(1 < 2, true);
   3714   bool false_value = false;
   3715   ASSERT_EQ(true && false_value, false);
   3716 }
   3717 
   3718 // A subroutine used by the following test.
   3719 void TestEq1(int x) {
   3720   ASSERT_EQ(1, x);
   3721 }
   3722 
   3723 // Tests calling a test subroutine that's not part of a fixture.
   3724 TEST(AssertionTest, NonFixtureSubroutine) {
   3725   EXPECT_FATAL_FAILURE(TestEq1(2),
   3726                        "Value of: x");
   3727 }
   3728 
   3729 // An uncopyable class.
   3730 class Uncopyable {
   3731  public:
   3732   explicit Uncopyable(int a_value) : value_(a_value) {}
   3733 
   3734   int value() const { return value_; }
   3735   bool operator==(const Uncopyable& rhs) const {
   3736     return value() == rhs.value();
   3737   }
   3738  private:
   3739   // This constructor deliberately has no implementation, as we don't
   3740   // want this class to be copyable.
   3741   Uncopyable(const Uncopyable&);  // NOLINT
   3742 
   3743   int value_;
   3744 };
   3745 
   3746 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3747   return os << value.value();
   3748 }
   3749 
   3750 
   3751 bool IsPositiveUncopyable(const Uncopyable& x) {
   3752   return x.value() > 0;
   3753 }
   3754 
   3755 // A subroutine used by the following test.
   3756 void TestAssertNonPositive() {
   3757   Uncopyable y(-1);
   3758   ASSERT_PRED1(IsPositiveUncopyable, y);
   3759 }
   3760 // A subroutine used by the following test.
   3761 void TestAssertEqualsUncopyable() {
   3762   Uncopyable x(5);
   3763   Uncopyable y(-1);
   3764   ASSERT_EQ(x, y);
   3765 }
   3766 
   3767 // Tests that uncopyable objects can be used in assertions.
   3768 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3769   Uncopyable x(5);
   3770   ASSERT_PRED1(IsPositiveUncopyable, x);
   3771   ASSERT_EQ(x, x);
   3772   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3773     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3774   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3775     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3776 }
   3777 
   3778 // Tests that uncopyable objects can be used in expects.
   3779 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3780   Uncopyable x(5);
   3781   EXPECT_PRED1(IsPositiveUncopyable, x);
   3782   Uncopyable y(-1);
   3783   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3784     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3785   EXPECT_EQ(x, x);
   3786   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3787     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3788 }
   3789 
   3790 enum NamedEnum {
   3791   kE1 = 0,
   3792   kE2 = 1
   3793 };
   3794 
   3795 TEST(AssertionTest, NamedEnum) {
   3796   EXPECT_EQ(kE1, kE1);
   3797   EXPECT_LT(kE1, kE2);
   3798   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3799   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
   3800 }
   3801 
   3802 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3803 // anonymous enums in assertions.  Therefore the following test is not
   3804 // done on Mac.
   3805 // Sun Studio and HP aCC also reject this code.
   3806 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
   3807 
   3808 // Tests using assertions with anonymous enums.
   3809 enum {
   3810   kCaseA = -1,
   3811 
   3812 # if GTEST_OS_LINUX
   3813 
   3814   // We want to test the case where the size of the anonymous enum is
   3815   // larger than sizeof(int), to make sure our implementation of the
   3816   // assertions doesn't truncate the enums.  However, MSVC
   3817   // (incorrectly) doesn't allow an enum value to exceed the range of
   3818   // an int, so this has to be conditionally compiled.
   3819   //
   3820   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3821   // int size.  We want to test whether this will confuse the
   3822   // assertions.
   3823   kCaseB = testing::internal::kMaxBiggestInt,
   3824 
   3825 # else
   3826 
   3827   kCaseB = INT_MAX,
   3828 
   3829 # endif  // GTEST_OS_LINUX
   3830 
   3831   kCaseC = 42
   3832 };
   3833 
   3834 TEST(AssertionTest, AnonymousEnum) {
   3835 # if GTEST_OS_LINUX
   3836 
   3837   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3838 
   3839 # endif  // GTEST_OS_LINUX
   3840 
   3841   EXPECT_EQ(kCaseA, kCaseA);
   3842   EXPECT_NE(kCaseA, kCaseB);
   3843   EXPECT_LT(kCaseA, kCaseB);
   3844   EXPECT_LE(kCaseA, kCaseB);
   3845   EXPECT_GT(kCaseB, kCaseA);
   3846   EXPECT_GE(kCaseA, kCaseA);
   3847   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3848                           "(kCaseA) >= (kCaseB)");
   3849   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3850                           "-1 vs 42");
   3851 
   3852   ASSERT_EQ(kCaseA, kCaseA);
   3853   ASSERT_NE(kCaseA, kCaseB);
   3854   ASSERT_LT(kCaseA, kCaseB);
   3855   ASSERT_LE(kCaseA, kCaseB);
   3856   ASSERT_GT(kCaseB, kCaseA);
   3857   ASSERT_GE(kCaseA, kCaseA);
   3858 
   3859 # ifndef __BORLANDC__
   3860 
   3861   // ICE's in C++Builder.
   3862   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3863                        "Value of: kCaseB");
   3864   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3865                        "Actual: 42");
   3866 # endif
   3867 
   3868   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3869                        "Which is: -1");
   3870 }
   3871 
   3872 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3873 
   3874 #if GTEST_OS_WINDOWS
   3875 
   3876 static HRESULT UnexpectedHRESULTFailure() {
   3877   return E_UNEXPECTED;
   3878 }
   3879 
   3880 static HRESULT OkHRESULTSuccess() {
   3881   return S_OK;
   3882 }
   3883 
   3884 static HRESULT FalseHRESULTSuccess() {
   3885   return S_FALSE;
   3886 }
   3887 
   3888 // HRESULT assertion tests test both zero and non-zero
   3889 // success codes as well as failure message for each.
   3890 //
   3891 // Windows CE doesn't support message texts.
   3892 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   3893   EXPECT_HRESULT_SUCCEEDED(S_OK);
   3894   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   3895 
   3896   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3897     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3898     "  Actual: 0x8000FFFF");
   3899 }
   3900 
   3901 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   3902   ASSERT_HRESULT_SUCCEEDED(S_OK);
   3903   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   3904 
   3905   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3906     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3907     "  Actual: 0x8000FFFF");
   3908 }
   3909 
   3910 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   3911   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   3912 
   3913   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   3914     "Expected: (OkHRESULTSuccess()) fails.\n"
   3915     "  Actual: 0x0");
   3916   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3917     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3918     "  Actual: 0x1");
   3919 }
   3920 
   3921 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   3922   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   3923 
   3924 # ifndef __BORLANDC__
   3925 
   3926   // ICE's in C++Builder 2007 and 2009.
   3927   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   3928     "Expected: (OkHRESULTSuccess()) fails.\n"
   3929     "  Actual: 0x0");
   3930 # endif
   3931 
   3932   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3933     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3934     "  Actual: 0x1");
   3935 }
   3936 
   3937 // Tests that streaming to the HRESULT macros works.
   3938 TEST(HRESULTAssertionTest, Streaming) {
   3939   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3940   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3941   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3942   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3943 
   3944   EXPECT_NONFATAL_FAILURE(
   3945       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3946       "expected failure");
   3947 
   3948 # ifndef __BORLANDC__
   3949 
   3950   // ICE's in C++Builder 2007 and 2009.
   3951   EXPECT_FATAL_FAILURE(
   3952       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3953       "expected failure");
   3954 # endif
   3955 
   3956   EXPECT_NONFATAL_FAILURE(
   3957       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   3958       "expected failure");
   3959 
   3960   EXPECT_FATAL_FAILURE(
   3961       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   3962       "expected failure");
   3963 }
   3964 
   3965 #endif  // GTEST_OS_WINDOWS
   3966 
   3967 #ifdef __BORLANDC__
   3968 // Silences warnings: "Condition is always true", "Unreachable code"
   3969 # pragma option push -w-ccc -w-rch
   3970 #endif
   3971 
   3972 // Tests that the assertion macros behave like single statements.
   3973 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   3974   if (AlwaysFalse())
   3975     ASSERT_TRUE(false) << "This should never be executed; "
   3976                           "It's a compilation test only.";
   3977 
   3978   if (AlwaysTrue())
   3979     EXPECT_FALSE(false);
   3980   else
   3981     ;  // NOLINT
   3982 
   3983   if (AlwaysFalse())
   3984     ASSERT_LT(1, 3);
   3985 
   3986   if (AlwaysFalse())
   3987     ;  // NOLINT
   3988   else
   3989     EXPECT_GT(3, 2) << "";
   3990 }
   3991 
   3992 #if GTEST_HAS_EXCEPTIONS
   3993 // Tests that the compiler will not complain about unreachable code in the
   3994 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   3995 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   3996   int n = 0;
   3997 
   3998   EXPECT_THROW(throw 1, int);
   3999   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   4000   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   4001   EXPECT_NO_THROW(n++);
   4002   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   4003   EXPECT_ANY_THROW(throw 1);
   4004   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   4005 }
   4006 
   4007 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   4008   if (AlwaysFalse())
   4009     EXPECT_THROW(ThrowNothing(), bool);
   4010 
   4011   if (AlwaysTrue())
   4012     EXPECT_THROW(ThrowAnInteger(), int);
   4013   else
   4014     ;  // NOLINT
   4015 
   4016   if (AlwaysFalse())
   4017     EXPECT_NO_THROW(ThrowAnInteger());
   4018 
   4019   if (AlwaysTrue())
   4020     EXPECT_NO_THROW(ThrowNothing());
   4021   else
   4022     ;  // NOLINT
   4023 
   4024   if (AlwaysFalse())
   4025     EXPECT_ANY_THROW(ThrowNothing());
   4026 
   4027   if (AlwaysTrue())
   4028     EXPECT_ANY_THROW(ThrowAnInteger());
   4029   else
   4030     ;  // NOLINT
   4031 }
   4032 #endif  // GTEST_HAS_EXCEPTIONS
   4033 
   4034 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4035   if (AlwaysFalse())
   4036     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4037                                     << "It's a compilation test only.";
   4038   else
   4039     ;  // NOLINT
   4040 
   4041   if (AlwaysFalse())
   4042     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4043   else
   4044     ;  // NOLINT
   4045 
   4046   if (AlwaysTrue())
   4047     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4048   else
   4049     ;  // NOLINT
   4050 
   4051   if (AlwaysFalse())
   4052     ;  // NOLINT
   4053   else
   4054     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4055 }
   4056 
   4057 // Tests that the assertion macros work well with switch statements.
   4058 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4059   switch (0) {
   4060     case 1:
   4061       break;
   4062     default:
   4063       ASSERT_TRUE(true);
   4064   }
   4065 
   4066   switch (0)
   4067     case 0:
   4068       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4069 
   4070   // Binary assertions are implemented using a different code path
   4071   // than the Boolean assertions.  Hence we test them separately.
   4072   switch (0) {
   4073     case 1:
   4074     default:
   4075       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4076   }
   4077 
   4078   switch (0)
   4079     case 0:
   4080       EXPECT_NE(1, 2);
   4081 }
   4082 
   4083 #if GTEST_HAS_EXCEPTIONS
   4084 
   4085 void ThrowAString() {
   4086     throw "std::string";
   4087 }
   4088 
   4089 // Test that the exception assertion macros compile and work with const
   4090 // type qualifier.
   4091 TEST(AssertionSyntaxTest, WorksWithConst) {
   4092     ASSERT_THROW(ThrowAString(), const char*);
   4093 
   4094     EXPECT_THROW(ThrowAString(), const char*);
   4095 }
   4096 
   4097 #endif  // GTEST_HAS_EXCEPTIONS
   4098 
   4099 }  // namespace
   4100 
   4101 namespace testing {
   4102 
   4103 // Tests that Google Test tracks SUCCEED*.
   4104 TEST(SuccessfulAssertionTest, SUCCEED) {
   4105   SUCCEED();
   4106   SUCCEED() << "OK";
   4107   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4108 }
   4109 
   4110 // Tests that Google Test doesn't track successful EXPECT_*.
   4111 TEST(SuccessfulAssertionTest, EXPECT) {
   4112   EXPECT_TRUE(true);
   4113   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4114 }
   4115 
   4116 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4117 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4118   EXPECT_STREQ("", "");
   4119   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4120 }
   4121 
   4122 // Tests that Google Test doesn't track successful ASSERT_*.
   4123 TEST(SuccessfulAssertionTest, ASSERT) {
   4124   ASSERT_TRUE(true);
   4125   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4126 }
   4127 
   4128 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4129 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4130   ASSERT_STREQ("", "");
   4131   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4132 }
   4133 
   4134 }  // namespace testing
   4135 
   4136 namespace {
   4137 
   4138 // Tests the message streaming variation of assertions.
   4139 
   4140 TEST(AssertionWithMessageTest, EXPECT) {
   4141   EXPECT_EQ(1, 1) << "This should succeed.";
   4142   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
   4143                           "Expected failure #1");
   4144   EXPECT_LE(1, 2) << "This should succeed.";
   4145   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
   4146                           "Expected failure #2.");
   4147   EXPECT_GE(1, 0) << "This should succeed.";
   4148   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
   4149                           "Expected failure #3.");
   4150 
   4151   EXPECT_STREQ("1", "1") << "This should succeed.";
   4152   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
   4153                           "Expected failure #4.");
   4154   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
   4155   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
   4156                           "Expected failure #5.");
   4157 
   4158   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
   4159   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
   4160                           "Expected failure #6.");
   4161   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
   4162 }
   4163 
   4164 TEST(AssertionWithMessageTest, ASSERT) {
   4165   ASSERT_EQ(1, 1) << "This should succeed.";
   4166   ASSERT_NE(1, 2) << "This should succeed.";
   4167   ASSERT_LE(1, 2) << "This should succeed.";
   4168   ASSERT_LT(1, 2) << "This should succeed.";
   4169   ASSERT_GE(1, 0) << "This should succeed.";
   4170   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
   4171                        "Expected failure.");
   4172 }
   4173 
   4174 TEST(AssertionWithMessageTest, ASSERT_STR) {
   4175   ASSERT_STREQ("1", "1") << "This should succeed.";
   4176   ASSERT_STRNE("1", "2") << "This should succeed.";
   4177   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
   4178   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
   4179                        "Expected failure.");
   4180 }
   4181 
   4182 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
   4183   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
   4184   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
   4185   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
   4186                        "Expect failure.");
   4187   // To work around a bug in gcc 2.95.0, there is intentionally no
   4188   // space after the first comma in the previous statement.
   4189 }
   4190 
   4191 // Tests using ASSERT_FALSE with a streamed message.
   4192 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
   4193   ASSERT_FALSE(false) << "This shouldn't fail.";
   4194   EXPECT_FATAL_FAILURE({  // NOLINT
   4195     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
   4196                        << " evaluates to " << true;
   4197   }, "Expected failure");
   4198 }
   4199 
   4200 // Tests using FAIL with a streamed message.
   4201 TEST(AssertionWithMessageTest, FAIL) {
   4202   EXPECT_FATAL_FAILURE(FAIL() << 0,
   4203                        "0");
   4204 }
   4205 
   4206 // Tests using SUCCEED with a streamed message.
   4207 TEST(AssertionWithMessageTest, SUCCEED) {
   4208   SUCCEED() << "Success == " << 1;
   4209 }
   4210 
   4211 // Tests using ASSERT_TRUE with a streamed message.
   4212 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
   4213   ASSERT_TRUE(true) << "This should succeed.";
   4214   ASSERT_TRUE(true) << true;
   4215   EXPECT_FATAL_FAILURE({  // NOLINT
   4216     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
   4217                        << static_cast<char *>(NULL);
   4218   }, "(null)(null)");
   4219 }
   4220 
   4221 #if GTEST_OS_WINDOWS
   4222 // Tests using wide strings in assertion messages.
   4223 TEST(AssertionWithMessageTest, WideStringMessage) {
   4224   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4225     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
   4226   }, "This failure is expected.");
   4227   EXPECT_FATAL_FAILURE({  // NOLINT
   4228     ASSERT_EQ(1, 2) << "This failure is "
   4229                     << L"expected too.\x8120";
   4230   }, "This failure is expected too.");
   4231 }
   4232 #endif  // GTEST_OS_WINDOWS
   4233 
   4234 // Tests EXPECT_TRUE.
   4235 TEST(ExpectTest, EXPECT_TRUE) {
   4236   EXPECT_TRUE(true) << "Intentional success";
   4237   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
   4238                           "Intentional failure #1.");
   4239   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
   4240                           "Intentional failure #2.");
   4241   EXPECT_TRUE(2 > 1);  // NOLINT
   4242   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4243                           "Value of: 2 < 1\n"
   4244                           "  Actual: false\n"
   4245                           "Expected: true");
   4246   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4247                           "2 > 3");
   4248 }
   4249 
   4250 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4251 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4252   EXPECT_TRUE(ResultIsEven(2));
   4253   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4254                           "Value of: ResultIsEven(3)\n"
   4255                           "  Actual: false (3 is odd)\n"
   4256                           "Expected: true");
   4257   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4258   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4259                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4260                           "  Actual: false (3 is odd)\n"
   4261                           "Expected: true");
   4262 }
   4263 
   4264 // Tests EXPECT_FALSE with a streamed message.
   4265 TEST(ExpectTest, EXPECT_FALSE) {
   4266   EXPECT_FALSE(2 < 1);  // NOLINT
   4267   EXPECT_FALSE(false) << "Intentional success";
   4268   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
   4269                           "Intentional failure #1.");
   4270   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
   4271                           "Intentional failure #2.");
   4272   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4273                           "Value of: 2 > 1\n"
   4274                           "  Actual: true\n"
   4275                           "Expected: false");
   4276   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4277                           "2 < 3");
   4278 }
   4279 
   4280 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4281 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4282   EXPECT_FALSE(ResultIsEven(3));
   4283   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4284                           "Value of: ResultIsEven(2)\n"
   4285                           "  Actual: true (2 is even)\n"
   4286                           "Expected: false");
   4287   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4288   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4289                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4290                           "  Actual: true\n"
   4291                           "Expected: false");
   4292 }
   4293 
   4294 #ifdef __BORLANDC__
   4295 // Restores warnings after previous "#pragma option push" supressed them
   4296 # pragma option pop
   4297 #endif
   4298 
   4299 // Tests EXPECT_EQ.
   4300 TEST(ExpectTest, EXPECT_EQ) {
   4301   EXPECT_EQ(5, 2 + 3);
   4302   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4303                           "Value of: 2*3\n"
   4304                           "  Actual: 6\n"
   4305                           "Expected: 5");
   4306   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4307                           "2 - 3");
   4308 }
   4309 
   4310 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4311 // sure that the specialization we did for integer and anonymous enums
   4312 // isn't used for double arguments.
   4313 TEST(ExpectTest, EXPECT_EQ_Double) {
   4314   // A success.
   4315   EXPECT_EQ(5.6, 5.6);
   4316 
   4317   // A failure.
   4318   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4319                           "5.1");
   4320 }
   4321 
   4322 #if GTEST_CAN_COMPARE_NULL
   4323 // Tests EXPECT_EQ(NULL, pointer).
   4324 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4325   // A success.
   4326   const char* p = NULL;
   4327   // Some older GCC versions may issue a spurious warning in this or the next
   4328   // assertion statement. This warning should not be suppressed with
   4329   // static_cast since the test verifies the ability to use bare NULL as the
   4330   // expected parameter to the macro.
   4331   EXPECT_EQ(NULL, p);
   4332 
   4333   // A failure.
   4334   int n = 0;
   4335   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4336                           "Value of: &n\n");
   4337 }
   4338 #endif  // GTEST_CAN_COMPARE_NULL
   4339 
   4340 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4341 // treated as a null pointer by the compiler, we need to make sure
   4342 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4343 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4344 TEST(ExpectTest, EXPECT_EQ_0) {
   4345   int n = 0;
   4346 
   4347   // A success.
   4348   EXPECT_EQ(0, n);
   4349 
   4350   // A failure.
   4351   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4352                           "Expected: 0");
   4353 }
   4354 
   4355 // Tests EXPECT_NE.
   4356 TEST(ExpectTest, EXPECT_NE) {
   4357   EXPECT_NE(6, 7);
   4358 
   4359   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4360                           "Expected: ('a') != ('a'), "
   4361                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4362   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4363                           "2");
   4364   char* const p0 = NULL;
   4365   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4366                           "p0");
   4367   // Only way to get the Nokia compiler to compile the cast
   4368   // is to have a separate void* variable first. Putting
   4369   // the two casts on the same line doesn't work, neither does
   4370   // a direct C-style to char*.
   4371   void* pv1 = (void*)0x1234;  // NOLINT
   4372   char* const p1 = reinterpret_cast<char*>(pv1);
   4373   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4374                           "p1");
   4375 }
   4376 
   4377 // Tests EXPECT_LE.
   4378 TEST(ExpectTest, EXPECT_LE) {
   4379   EXPECT_LE(2, 3);
   4380   EXPECT_LE(2, 2);
   4381   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4382                           "Expected: (2) <= (0), actual: 2 vs 0");
   4383   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4384                           "(1.1) <= (0.9)");
   4385 }
   4386 
   4387 // Tests EXPECT_LT.
   4388 TEST(ExpectTest, EXPECT_LT) {
   4389   EXPECT_LT(2, 3);
   4390   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4391                           "Expected: (2) < (2), actual: 2 vs 2");
   4392   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4393                           "(2) < (1)");
   4394 }
   4395 
   4396 // Tests EXPECT_GE.
   4397 TEST(ExpectTest, EXPECT_GE) {
   4398   EXPECT_GE(2, 1);
   4399   EXPECT_GE(2, 2);
   4400   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4401                           "Expected: (2) >= (3), actual: 2 vs 3");
   4402   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4403                           "(0.9) >= (1.1)");
   4404 }
   4405 
   4406 // Tests EXPECT_GT.
   4407 TEST(ExpectTest, EXPECT_GT) {
   4408   EXPECT_GT(2, 1);
   4409   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4410                           "Expected: (2) > (2), actual: 2 vs 2");
   4411   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4412                           "(2) > (3)");
   4413 }
   4414 
   4415 #if GTEST_HAS_EXCEPTIONS
   4416 
   4417 // Tests EXPECT_THROW.
   4418 TEST(ExpectTest, EXPECT_THROW) {
   4419   EXPECT_THROW(ThrowAnInteger(), int);
   4420   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4421                           "Expected: ThrowAnInteger() throws an exception of "
   4422                           "type bool.\n  Actual: it throws a different type.");
   4423   EXPECT_NONFATAL_FAILURE(
   4424       EXPECT_THROW(ThrowNothing(), bool),
   4425       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4426       "  Actual: it throws nothing.");
   4427 }
   4428 
   4429 // Tests EXPECT_NO_THROW.
   4430 TEST(ExpectTest, EXPECT_NO_THROW) {
   4431   EXPECT_NO_THROW(ThrowNothing());
   4432   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4433                           "Expected: ThrowAnInteger() doesn't throw an "
   4434                           "exception.\n  Actual: it throws.");
   4435 }
   4436 
   4437 // Tests EXPECT_ANY_THROW.
   4438 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4439   EXPECT_ANY_THROW(ThrowAnInteger());
   4440   EXPECT_NONFATAL_FAILURE(
   4441       EXPECT_ANY_THROW(ThrowNothing()),
   4442       "Expected: ThrowNothing() throws an exception.\n"
   4443       "  Actual: it doesn't.");
   4444 }
   4445 
   4446 #endif  // GTEST_HAS_EXCEPTIONS
   4447 
   4448 // Make sure we deal with the precedence of <<.
   4449 TEST(ExpectTest, ExpectPrecedence) {
   4450   EXPECT_EQ(1 < 2, true);
   4451   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4452                           "Value of: true && false");
   4453 }
   4454 
   4455 
   4456 // Tests the StreamableToString() function.
   4457 
   4458 // Tests using StreamableToString() on a scalar.
   4459 TEST(StreamableToStringTest, Scalar) {
   4460   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4461 }
   4462 
   4463 // Tests using StreamableToString() on a non-char pointer.
   4464 TEST(StreamableToStringTest, Pointer) {
   4465   int n = 0;
   4466   int* p = &n;
   4467   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4468 }
   4469 
   4470 // Tests using StreamableToString() on a NULL non-char pointer.
   4471 TEST(StreamableToStringTest, NullPointer) {
   4472   int* p = NULL;
   4473   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4474 }
   4475 
   4476 // Tests using StreamableToString() on a C string.
   4477 TEST(StreamableToStringTest, CString) {
   4478   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4479 }
   4480 
   4481 // Tests using StreamableToString() on a NULL C string.
   4482 TEST(StreamableToStringTest, NullCString) {
   4483   char* p = NULL;
   4484   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4485 }
   4486 
   4487 // Tests using streamable values as assertion messages.
   4488 
   4489 // Tests using std::string as an assertion message.
   4490 TEST(StreamableTest, string) {
   4491   static const std::string str(
   4492       "This failure message is a std::string, and is expected.");
   4493   EXPECT_FATAL_FAILURE(FAIL() << str,
   4494                        str.c_str());
   4495 }
   4496 
   4497 // Tests that we can output strings containing embedded NULs.
   4498 // Limited to Linux because we can only do this with std::string's.
   4499 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4500   static const char char_array_with_nul[] =
   4501       "Here's a NUL\0 and some more string";
   4502   static const std::string string_with_nul(char_array_with_nul,
   4503                                            sizeof(char_array_with_nul)
   4504                                            - 1);  // drops the trailing NUL
   4505   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4506                        "Here's a NUL\\0 and some more string");
   4507 }
   4508 
   4509 // Tests that we can output a NUL char.
   4510 TEST(StreamableTest, NULChar) {
   4511   EXPECT_FATAL_FAILURE({  // NOLINT
   4512     FAIL() << "A NUL" << '\0' << " and some more string";
   4513   }, "A NUL\\0 and some more string");
   4514 }
   4515 
   4516 // Tests using int as an assertion message.
   4517 TEST(StreamableTest, int) {
   4518   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4519                        "900913");
   4520 }
   4521 
   4522 // Tests using NULL char pointer as an assertion message.
   4523 //
   4524 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4525 // implemented a workaround (substituting "(null)" for NULL).  This
   4526 // tests whether the workaround works.
   4527 TEST(StreamableTest, NullCharPtr) {
   4528   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4529                        "(null)");
   4530 }
   4531 
   4532 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4533 // streamed to testing::Message.
   4534 TEST(StreamableTest, BasicIoManip) {
   4535   EXPECT_FATAL_FAILURE({  // NOLINT
   4536     FAIL() << "Line 1." << std::endl
   4537            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4538   }, "Line 1.\nA NUL char \\0 in line 2.");
   4539 }
   4540 
   4541 // Tests the macros that haven't been covered so far.
   4542 
   4543 void AddFailureHelper(bool* aborted) {
   4544   *aborted = true;
   4545   ADD_FAILURE() << "Intentional failure.";
   4546   *aborted = false;
   4547 }
   4548 
   4549 // Tests ADD_FAILURE.
   4550 TEST(MacroTest, ADD_FAILURE) {
   4551   bool aborted = true;
   4552   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4553                           "Intentional failure.");
   4554   EXPECT_FALSE(aborted);
   4555 }
   4556 
   4557 // Tests ADD_FAILURE_AT.
   4558 TEST(MacroTest, ADD_FAILURE_AT) {
   4559   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4560   // the failure message contains the user-streamed part.
   4561   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4562 
   4563   // Verifies that the user-streamed part is optional.
   4564   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4565 
   4566   // Unfortunately, we cannot verify that the failure message contains
   4567   // the right file path and line number the same way, as
   4568   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4569   // line number.  Instead, we do that in gtest_output_test_.cc.
   4570 }
   4571 
   4572 // Tests FAIL.
   4573 TEST(MacroTest, FAIL) {
   4574   EXPECT_FATAL_FAILURE(FAIL(),
   4575                        "Failed");
   4576   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4577                        "Intentional failure.");
   4578 }
   4579 
   4580 // Tests SUCCEED
   4581 TEST(MacroTest, SUCCEED) {
   4582   SUCCEED();
   4583   SUCCEED() << "Explicit success.";
   4584 }
   4585 
   4586 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4587 //
   4588 // These tests fail *intentionally*, s.t. the failure messages can be
   4589 // generated and tested.
   4590 //
   4591 // We have different tests for different argument types.
   4592 
   4593 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4594 TEST(EqAssertionTest, Bool) {
   4595   EXPECT_EQ(true,  true);
   4596   EXPECT_FATAL_FAILURE({
   4597       bool false_value = false;
   4598       ASSERT_EQ(false_value, true);
   4599     }, "Value of: true");
   4600 }
   4601 
   4602 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4603 TEST(EqAssertionTest, Int) {
   4604   ASSERT_EQ(32, 32);
   4605   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4606                           "33");
   4607 }
   4608 
   4609 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4610 TEST(EqAssertionTest, Time_T) {
   4611   EXPECT_EQ(static_cast<time_t>(0),
   4612             static_cast<time_t>(0));
   4613   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4614                                  static_cast<time_t>(1234)),
   4615                        "1234");
   4616 }
   4617 
   4618 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4619 TEST(EqAssertionTest, Char) {
   4620   ASSERT_EQ('z', 'z');
   4621   const char ch = 'b';
   4622   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4623                           "ch");
   4624   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4625                           "ch");
   4626 }
   4627 
   4628 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4629 TEST(EqAssertionTest, WideChar) {
   4630   EXPECT_EQ(L'b', L'b');
   4631 
   4632   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4633                           "Value of: L'x'\n"
   4634                           "  Actual: L'x' (120, 0x78)\n"
   4635                           "Expected: L'\0'\n"
   4636                           "Which is: L'\0' (0, 0x0)");
   4637 
   4638   static wchar_t wchar;
   4639   wchar = L'b';
   4640   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4641                           "wchar");
   4642   wchar = 0x8119;
   4643   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4644                        "Value of: wchar");
   4645 }
   4646 
   4647 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4648 TEST(EqAssertionTest, StdString) {
   4649   // Compares a const char* to an std::string that has identical
   4650   // content.
   4651   ASSERT_EQ("Test", ::std::string("Test"));
   4652 
   4653   // Compares two identical std::strings.
   4654   static const ::std::string str1("A * in the middle");
   4655   static const ::std::string str2(str1);
   4656   EXPECT_EQ(str1, str2);
   4657 
   4658   // Compares a const char* to an std::string that has different
   4659   // content
   4660   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4661                           "\"test\"");
   4662 
   4663   // Compares an std::string to a char* that has different content.
   4664   char* const p1 = const_cast<char*>("foo");
   4665   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4666                           "p1");
   4667 
   4668   // Compares two std::strings that have different contents, one of
   4669   // which having a NUL character in the middle.  This should fail.
   4670   static ::std::string str3(str1);
   4671   str3.at(2) = '\0';
   4672   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4673                        "Value of: str3\n"
   4674                        "  Actual: \"A \\0 in the middle\"");
   4675 }
   4676 
   4677 #if GTEST_HAS_STD_WSTRING
   4678 
   4679 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4680 TEST(EqAssertionTest, StdWideString) {
   4681   // Compares two identical std::wstrings.
   4682   const ::std::wstring wstr1(L"A * in the middle");
   4683   const ::std::wstring wstr2(wstr1);
   4684   ASSERT_EQ(wstr1, wstr2);
   4685 
   4686   // Compares an std::wstring to a const wchar_t* that has identical
   4687   // content.
   4688   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4689   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4690 
   4691   // Compares an std::wstring to a const wchar_t* that has different
   4692   // content.
   4693   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4694   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4695     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4696   }, "kTestX8120");
   4697 
   4698   // Compares two std::wstrings that have different contents, one of
   4699   // which having a NUL character in the middle.
   4700   ::std::wstring wstr3(wstr1);
   4701   wstr3.at(2) = L'\0';
   4702   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4703                           "wstr3");
   4704 
   4705   // Compares a wchar_t* to an std::wstring that has different
   4706   // content.
   4707   EXPECT_FATAL_FAILURE({  // NOLINT
   4708     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4709   }, "");
   4710 }
   4711 
   4712 #endif  // GTEST_HAS_STD_WSTRING
   4713 
   4714 #if GTEST_HAS_GLOBAL_STRING
   4715 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4716 TEST(EqAssertionTest, GlobalString) {
   4717   // Compares a const char* to a ::string that has identical content.
   4718   EXPECT_EQ("Test", ::string("Test"));
   4719 
   4720   // Compares two identical ::strings.
   4721   const ::string str1("A * in the middle");
   4722   const ::string str2(str1);
   4723   ASSERT_EQ(str1, str2);
   4724 
   4725   // Compares a ::string to a const char* that has different content.
   4726   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4727                           "test");
   4728 
   4729   // Compares two ::strings that have different contents, one of which
   4730   // having a NUL character in the middle.
   4731   ::string str3(str1);
   4732   str3.at(2) = '\0';
   4733   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4734                           "str3");
   4735 
   4736   // Compares a ::string to a char* that has different content.
   4737   EXPECT_FATAL_FAILURE({  // NOLINT
   4738     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4739   }, "");
   4740 }
   4741 
   4742 #endif  // GTEST_HAS_GLOBAL_STRING
   4743 
   4744 #if GTEST_HAS_GLOBAL_WSTRING
   4745 
   4746 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4747 TEST(EqAssertionTest, GlobalWideString) {
   4748   // Compares two identical ::wstrings.
   4749   static const ::wstring wstr1(L"A * in the middle");
   4750   static const ::wstring wstr2(wstr1);
   4751   EXPECT_EQ(wstr1, wstr2);
   4752 
   4753   // Compares a const wchar_t* to a ::wstring that has identical content.
   4754   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4755   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4756 
   4757   // Compares a const wchar_t* to a ::wstring that has different
   4758   // content.
   4759   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4760   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4761     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4762   }, "Test\\x8119");
   4763 
   4764   // Compares a wchar_t* to a ::wstring that has different content.
   4765   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4766   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4767                           "bar");
   4768 
   4769   // Compares two ::wstrings that have different contents, one of which
   4770   // having a NUL character in the middle.
   4771   static ::wstring wstr3;
   4772   wstr3 = wstr1;
   4773   wstr3.at(2) = L'\0';
   4774   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4775                        "wstr3");
   4776 }
   4777 
   4778 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4779 
   4780 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4781 TEST(EqAssertionTest, CharPointer) {
   4782   char* const p0 = NULL;
   4783   // Only way to get the Nokia compiler to compile the cast
   4784   // is to have a separate void* variable first. Putting
   4785   // the two casts on the same line doesn't work, neither does
   4786   // a direct C-style to char*.
   4787   void* pv1 = (void*)0x1234;  // NOLINT
   4788   void* pv2 = (void*)0xABC0;  // NOLINT
   4789   char* const p1 = reinterpret_cast<char*>(pv1);
   4790   char* const p2 = reinterpret_cast<char*>(pv2);
   4791   ASSERT_EQ(p1, p1);
   4792 
   4793   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4794                           "Value of: p2");
   4795   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4796                           "p2");
   4797   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4798                                  reinterpret_cast<char*>(0xABC0)),
   4799                        "ABC0");
   4800 }
   4801 
   4802 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4803 TEST(EqAssertionTest, WideCharPointer) {
   4804   wchar_t* const p0 = NULL;
   4805   // Only way to get the Nokia compiler to compile the cast
   4806   // is to have a separate void* variable first. Putting
   4807   // the two casts on the same line doesn't work, neither does
   4808   // a direct C-style to char*.
   4809   void* pv1 = (void*)0x1234;  // NOLINT
   4810   void* pv2 = (void*)0xABC0;  // NOLINT
   4811   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4812   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4813   EXPECT_EQ(p0, p0);
   4814 
   4815   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4816                           "Value of: p2");
   4817   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4818                           "p2");
   4819   void* pv3 = (void*)0x1234;  // NOLINT
   4820   void* pv4 = (void*)0xABC0;  // NOLINT
   4821   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4822   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4823   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4824                           "p4");
   4825 }
   4826 
   4827 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4828 TEST(EqAssertionTest, OtherPointer) {
   4829   ASSERT_EQ(static_cast<const int*>(NULL),
   4830             static_cast<const int*>(NULL));
   4831   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4832                                  reinterpret_cast<const int*>(0x1234)),
   4833                        "0x1234");
   4834 }
   4835 
   4836 // A class that supports binary comparison operators but not streaming.
   4837 class UnprintableChar {
   4838  public:
   4839   explicit UnprintableChar(char ch) : char_(ch) {}
   4840 
   4841   bool operator==(const UnprintableChar& rhs) const {
   4842     return char_ == rhs.char_;
   4843   }
   4844   bool operator!=(const UnprintableChar& rhs) const {
   4845     return char_ != rhs.char_;
   4846   }
   4847   bool operator<(const UnprintableChar& rhs) const {
   4848     return char_ < rhs.char_;
   4849   }
   4850   bool operator<=(const UnprintableChar& rhs) const {
   4851     return char_ <= rhs.char_;
   4852   }
   4853   bool operator>(const UnprintableChar& rhs) const {
   4854     return char_ > rhs.char_;
   4855   }
   4856   bool operator>=(const UnprintableChar& rhs) const {
   4857     return char_ >= rhs.char_;
   4858   }
   4859 
   4860  private:
   4861   char char_;
   4862 };
   4863 
   4864 // Tests that ASSERT_EQ() and friends don't require the arguments to
   4865 // be printable.
   4866 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   4867   const UnprintableChar x('x'), y('y');
   4868   ASSERT_EQ(x, x);
   4869   EXPECT_NE(x, y);
   4870   ASSERT_LT(x, y);
   4871   EXPECT_LE(x, y);
   4872   ASSERT_GT(y, x);
   4873   EXPECT_GE(x, x);
   4874 
   4875   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   4876   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   4877   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   4878   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   4879   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   4880 
   4881   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   4882   // variables, so we have to write UnprintableChar('x') instead of x.
   4883 #ifndef __BORLANDC__
   4884   // ICE's in C++Builder.
   4885   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   4886                        "1-byte object <78>");
   4887   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4888                        "1-byte object <78>");
   4889 #endif
   4890   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4891                        "1-byte object <79>");
   4892   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4893                        "1-byte object <78>");
   4894   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4895                        "1-byte object <79>");
   4896 }
   4897 
   4898 // Tests the FRIEND_TEST macro.
   4899 
   4900 // This class has a private member we want to test.  We will test it
   4901 // both in a TEST and in a TEST_F.
   4902 class Foo {
   4903  public:
   4904   Foo() {}
   4905 
   4906  private:
   4907   int Bar() const { return 1; }
   4908 
   4909   // Declares the friend tests that can access the private member
   4910   // Bar().
   4911   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   4912   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   4913 };
   4914 
   4915 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   4916 // class's private members.  This should compile.
   4917 TEST(FRIEND_TEST_Test, TEST) {
   4918   ASSERT_EQ(1, Foo().Bar());
   4919 }
   4920 
   4921 // The fixture needed to test using FRIEND_TEST with TEST_F.
   4922 class FRIEND_TEST_Test2 : public Test {
   4923  protected:
   4924   Foo foo;
   4925 };
   4926 
   4927 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   4928 // class's private members.  This should compile.
   4929 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   4930   ASSERT_EQ(1, foo.Bar());
   4931 }
   4932 
   4933 // Tests the life cycle of Test objects.
   4934 
   4935 // The test fixture for testing the life cycle of Test objects.
   4936 //
   4937 // This class counts the number of live test objects that uses this
   4938 // fixture.
   4939 class TestLifeCycleTest : public Test {
   4940  protected:
   4941   // Constructor.  Increments the number of test objects that uses
   4942   // this fixture.
   4943   TestLifeCycleTest() { count_++; }
   4944 
   4945   // Destructor.  Decrements the number of test objects that uses this
   4946   // fixture.
   4947   ~TestLifeCycleTest() { count_--; }
   4948 
   4949   // Returns the number of live test objects that uses this fixture.
   4950   int count() const { return count_; }
   4951 
   4952  private:
   4953   static int count_;
   4954 };
   4955 
   4956 int TestLifeCycleTest::count_ = 0;
   4957 
   4958 // Tests the life cycle of test objects.
   4959 TEST_F(TestLifeCycleTest, Test1) {
   4960   // There should be only one test object in this test case that's
   4961   // currently alive.
   4962   ASSERT_EQ(1, count());
   4963 }
   4964 
   4965 // Tests the life cycle of test objects.
   4966 TEST_F(TestLifeCycleTest, Test2) {
   4967   // After Test1 is done and Test2 is started, there should still be
   4968   // only one live test object, as the object for Test1 should've been
   4969   // deleted.
   4970   ASSERT_EQ(1, count());
   4971 }
   4972 
   4973 }  // namespace
   4974 
   4975 // Tests that the copy constructor works when it is NOT optimized away by
   4976 // the compiler.
   4977 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   4978   // Checks that the copy constructor doesn't try to dereference NULL pointers
   4979   // in the source object.
   4980   AssertionResult r1 = AssertionSuccess();
   4981   AssertionResult r2 = r1;
   4982   // The following line is added to prevent the compiler from optimizing
   4983   // away the constructor call.
   4984   r1 << "abc";
   4985 
   4986   AssertionResult r3 = r1;
   4987   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   4988   EXPECT_STREQ("abc", r1.message());
   4989 }
   4990 
   4991 // Tests that AssertionSuccess and AssertionFailure construct
   4992 // AssertionResult objects as expected.
   4993 TEST(AssertionResultTest, ConstructionWorks) {
   4994   AssertionResult r1 = AssertionSuccess();
   4995   EXPECT_TRUE(r1);
   4996   EXPECT_STREQ("", r1.message());
   4997 
   4998   AssertionResult r2 = AssertionSuccess() << "abc";
   4999   EXPECT_TRUE(r2);
   5000   EXPECT_STREQ("abc", r2.message());
   5001 
   5002   AssertionResult r3 = AssertionFailure();
   5003   EXPECT_FALSE(r3);
   5004   EXPECT_STREQ("", r3.message());
   5005 
   5006   AssertionResult r4 = AssertionFailure() << "def";
   5007   EXPECT_FALSE(r4);
   5008   EXPECT_STREQ("def", r4.message());
   5009 
   5010   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   5011   EXPECT_FALSE(r5);
   5012   EXPECT_STREQ("ghi", r5.message());
   5013 }
   5014 
   5015 // Tests that the negation flips the predicate result but keeps the message.
   5016 TEST(AssertionResultTest, NegationWorks) {
   5017   AssertionResult r1 = AssertionSuccess() << "abc";
   5018   EXPECT_FALSE(!r1);
   5019   EXPECT_STREQ("abc", (!r1).message());
   5020 
   5021   AssertionResult r2 = AssertionFailure() << "def";
   5022   EXPECT_TRUE(!r2);
   5023   EXPECT_STREQ("def", (!r2).message());
   5024 }
   5025 
   5026 TEST(AssertionResultTest, StreamingWorks) {
   5027   AssertionResult r = AssertionSuccess();
   5028   r << "abc" << 'd' << 0 << true;
   5029   EXPECT_STREQ("abcd0true", r.message());
   5030 }
   5031 
   5032 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   5033   AssertionResult r = AssertionSuccess();
   5034   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   5035   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   5036 }
   5037 
   5038 // Tests streaming a user type whose definition and operator << are
   5039 // both in the global namespace.
   5040 class Base {
   5041  public:
   5042   explicit Base(int an_x) : x_(an_x) {}
   5043   int x() const { return x_; }
   5044  private:
   5045   int x_;
   5046 };
   5047 std::ostream& operator<<(std::ostream& os,
   5048                          const Base& val) {
   5049   return os << val.x();
   5050 }
   5051 std::ostream& operator<<(std::ostream& os,
   5052                          const Base* pointer) {
   5053   return os << "(" << pointer->x() << ")";
   5054 }
   5055 
   5056 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   5057   Message msg;
   5058   Base a(1);
   5059 
   5060   msg << a << &a;  // Uses ::operator<<.
   5061   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5062 }
   5063 
   5064 // Tests streaming a user type whose definition and operator<< are
   5065 // both in an unnamed namespace.
   5066 namespace {
   5067 class MyTypeInUnnamedNameSpace : public Base {
   5068  public:
   5069   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   5070 };
   5071 std::ostream& operator<<(std::ostream& os,
   5072                          const MyTypeInUnnamedNameSpace& val) {
   5073   return os << val.x();
   5074 }
   5075 std::ostream& operator<<(std::ostream& os,
   5076                          const MyTypeInUnnamedNameSpace* pointer) {
   5077   return os << "(" << pointer->x() << ")";
   5078 }
   5079 }  // namespace
   5080 
   5081 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   5082   Message msg;
   5083   MyTypeInUnnamedNameSpace a(1);
   5084 
   5085   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5086   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5087 }
   5088 
   5089 // Tests streaming a user type whose definition and operator<< are
   5090 // both in a user namespace.
   5091 namespace namespace1 {
   5092 class MyTypeInNameSpace1 : public Base {
   5093  public:
   5094   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   5095 };
   5096 std::ostream& operator<<(std::ostream& os,
   5097                          const MyTypeInNameSpace1& val) {
   5098   return os << val.x();
   5099 }
   5100 std::ostream& operator<<(std::ostream& os,
   5101                          const MyTypeInNameSpace1* pointer) {
   5102   return os << "(" << pointer->x() << ")";
   5103 }
   5104 }  // namespace namespace1
   5105 
   5106 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5107   Message msg;
   5108   namespace1::MyTypeInNameSpace1 a(1);
   5109 
   5110   msg << a << &a;  // Uses namespace1::operator<<.
   5111   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5112 }
   5113 
   5114 // Tests streaming a user type whose definition is in a user namespace
   5115 // but whose operator<< is in the global namespace.
   5116 namespace namespace2 {
   5117 class MyTypeInNameSpace2 : public ::Base {
   5118  public:
   5119   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   5120 };
   5121 }  // namespace namespace2
   5122 std::ostream& operator<<(std::ostream& os,
   5123                          const namespace2::MyTypeInNameSpace2& val) {
   5124   return os << val.x();
   5125 }
   5126 std::ostream& operator<<(std::ostream& os,
   5127                          const namespace2::MyTypeInNameSpace2* pointer) {
   5128   return os << "(" << pointer->x() << ")";
   5129 }
   5130 
   5131 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5132   Message msg;
   5133   namespace2::MyTypeInNameSpace2 a(1);
   5134 
   5135   msg << a << &a;  // Uses ::operator<<.
   5136   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5137 }
   5138 
   5139 // Tests streaming NULL pointers to testing::Message.
   5140 TEST(MessageTest, NullPointers) {
   5141   Message msg;
   5142   char* const p1 = NULL;
   5143   unsigned char* const p2 = NULL;
   5144   int* p3 = NULL;
   5145   double* p4 = NULL;
   5146   bool* p5 = NULL;
   5147   Message* p6 = NULL;
   5148 
   5149   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5150   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5151                msg.GetString().c_str());
   5152 }
   5153 
   5154 // Tests streaming wide strings to testing::Message.
   5155 TEST(MessageTest, WideStrings) {
   5156   // Streams a NULL of type const wchar_t*.
   5157   const wchar_t* const_wstr = NULL;
   5158   EXPECT_STREQ("(null)",
   5159                (Message() << const_wstr).GetString().c_str());
   5160 
   5161   // Streams a NULL of type wchar_t*.
   5162   wchar_t* wstr = NULL;
   5163   EXPECT_STREQ("(null)",
   5164                (Message() << wstr).GetString().c_str());
   5165 
   5166   // Streams a non-NULL of type const wchar_t*.
   5167   const_wstr = L"abc\x8119";
   5168   EXPECT_STREQ("abc\xe8\x84\x99",
   5169                (Message() << const_wstr).GetString().c_str());
   5170 
   5171   // Streams a non-NULL of type wchar_t*.
   5172   wstr = const_cast<wchar_t*>(const_wstr);
   5173   EXPECT_STREQ("abc\xe8\x84\x99",
   5174                (Message() << wstr).GetString().c_str());
   5175 }
   5176 
   5177 
   5178 // This line tests that we can define tests in the testing namespace.
   5179 namespace testing {
   5180 
   5181 // Tests the TestInfo class.
   5182 
   5183 class TestInfoTest : public Test {
   5184  protected:
   5185   static const TestInfo* GetTestInfo(const char* test_name) {
   5186     const TestCase* const test_case = GetUnitTestImpl()->
   5187         GetTestCase("TestInfoTest", "", NULL, NULL);
   5188 
   5189     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5190       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5191       if (strcmp(test_name, test_info->name()) == 0)
   5192         return test_info;
   5193     }
   5194     return NULL;
   5195   }
   5196 
   5197   static const TestResult* GetTestResult(
   5198       const TestInfo* test_info) {
   5199     return test_info->result();
   5200   }
   5201 };
   5202 
   5203 // Tests TestInfo::test_case_name() and TestInfo::name().
   5204 TEST_F(TestInfoTest, Names) {
   5205   const TestInfo* const test_info = GetTestInfo("Names");
   5206 
   5207   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5208   ASSERT_STREQ("Names", test_info->name());
   5209 }
   5210 
   5211 // Tests TestInfo::result().
   5212 TEST_F(TestInfoTest, result) {
   5213   const TestInfo* const test_info = GetTestInfo("result");
   5214 
   5215   // Initially, there is no TestPartResult for this test.
   5216   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5217 
   5218   // After the previous assertion, there is still none.
   5219   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5220 }
   5221 
   5222 // Tests setting up and tearing down a test case.
   5223 
   5224 class SetUpTestCaseTest : public Test {
   5225  protected:
   5226   // This will be called once before the first test in this test case
   5227   // is run.
   5228   static void SetUpTestCase() {
   5229     printf("Setting up the test case . . .\n");
   5230 
   5231     // Initializes some shared resource.  In this simple example, we
   5232     // just create a C string.  More complex stuff can be done if
   5233     // desired.
   5234     shared_resource_ = "123";
   5235 
   5236     // Increments the number of test cases that have been set up.
   5237     counter_++;
   5238 
   5239     // SetUpTestCase() should be called only once.
   5240     EXPECT_EQ(1, counter_);
   5241   }
   5242 
   5243   // This will be called once after the last test in this test case is
   5244   // run.
   5245   static void TearDownTestCase() {
   5246     printf("Tearing down the test case . . .\n");
   5247 
   5248     // Decrements the number of test cases that have been set up.
   5249     counter_--;
   5250 
   5251     // TearDownTestCase() should be called only once.
   5252     EXPECT_EQ(0, counter_);
   5253 
   5254     // Cleans up the shared resource.
   5255     shared_resource_ = NULL;
   5256   }
   5257 
   5258   // This will be called before each test in this test case.
   5259   virtual void SetUp() {
   5260     // SetUpTestCase() should be called only once, so counter_ should
   5261     // always be 1.
   5262     EXPECT_EQ(1, counter_);
   5263   }
   5264 
   5265   // Number of test cases that have been set up.
   5266   static int counter_;
   5267 
   5268   // Some resource to be shared by all tests in this test case.
   5269   static const char* shared_resource_;
   5270 };
   5271 
   5272 int SetUpTestCaseTest::counter_ = 0;
   5273 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5274 
   5275 // A test that uses the shared resource.
   5276 TEST_F(SetUpTestCaseTest, Test1) {
   5277   EXPECT_STRNE(NULL, shared_resource_);
   5278 }
   5279 
   5280 // Another test that uses the shared resource.
   5281 TEST_F(SetUpTestCaseTest, Test2) {
   5282   EXPECT_STREQ("123", shared_resource_);
   5283 }
   5284 
   5285 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5286 
   5287 // The Flags struct stores a copy of all Google Test flags.
   5288 struct Flags {
   5289   // Constructs a Flags struct where each flag has its default value.
   5290   Flags() : also_run_disabled_tests(false),
   5291             break_on_failure(false),
   5292             catch_exceptions(false),
   5293             death_test_use_fork(false),
   5294             filter(""),
   5295             list_tests(false),
   5296             output(""),
   5297             print_time(true),
   5298             random_seed(0),
   5299             repeat(1),
   5300             shuffle(false),
   5301             stack_trace_depth(kMaxStackTraceDepth),
   5302             stream_result_to(""),
   5303             throw_on_failure(false) {}
   5304 
   5305   // Factory methods.
   5306 
   5307   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5308   // the given value.
   5309   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5310     Flags flags;
   5311     flags.also_run_disabled_tests = also_run_disabled_tests;
   5312     return flags;
   5313   }
   5314 
   5315   // Creates a Flags struct where the gtest_break_on_failure flag has
   5316   // the given value.
   5317   static Flags BreakOnFailure(bool break_on_failure) {
   5318     Flags flags;
   5319     flags.break_on_failure = break_on_failure;
   5320     return flags;
   5321   }
   5322 
   5323   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5324   // the given value.
   5325   static Flags CatchExceptions(bool catch_exceptions) {
   5326     Flags flags;
   5327     flags.catch_exceptions = catch_exceptions;
   5328     return flags;
   5329   }
   5330 
   5331   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5332   // the given value.
   5333   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5334     Flags flags;
   5335     flags.death_test_use_fork = death_test_use_fork;
   5336     return flags;
   5337   }
   5338 
   5339   // Creates a Flags struct where the gtest_filter flag has the given
   5340   // value.
   5341   static Flags Filter(const char* filter) {
   5342     Flags flags;
   5343     flags.filter = filter;
   5344     return flags;
   5345   }
   5346 
   5347   // Creates a Flags struct where the gtest_list_tests flag has the
   5348   // given value.
   5349   static Flags ListTests(bool list_tests) {
   5350     Flags flags;
   5351     flags.list_tests = list_tests;
   5352     return flags;
   5353   }
   5354 
   5355   // Creates a Flags struct where the gtest_output flag has the given
   5356   // value.
   5357   static Flags Output(const char* output) {
   5358     Flags flags;
   5359     flags.output = output;
   5360     return flags;
   5361   }
   5362 
   5363   // Creates a Flags struct where the gtest_print_time flag has the given
   5364   // value.
   5365   static Flags PrintTime(bool print_time) {
   5366     Flags flags;
   5367     flags.print_time = print_time;
   5368     return flags;
   5369   }
   5370 
   5371   // Creates a Flags struct where the gtest_random_seed flag has
   5372   // the given value.
   5373   static Flags RandomSeed(Int32 random_seed) {
   5374     Flags flags;
   5375     flags.random_seed = random_seed;
   5376     return flags;
   5377   }
   5378 
   5379   // Creates a Flags struct where the gtest_repeat flag has the given
   5380   // value.
   5381   static Flags Repeat(Int32 repeat) {
   5382     Flags flags;
   5383     flags.repeat = repeat;
   5384     return flags;
   5385   }
   5386 
   5387   // Creates a Flags struct where the gtest_shuffle flag has
   5388   // the given value.
   5389   static Flags Shuffle(bool shuffle) {
   5390     Flags flags;
   5391     flags.shuffle = shuffle;
   5392     return flags;
   5393   }
   5394 
   5395   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5396   // the given value.
   5397   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5398     Flags flags;
   5399     flags.stack_trace_depth = stack_trace_depth;
   5400     return flags;
   5401   }
   5402 
   5403   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5404   // the given value.
   5405   static Flags StreamResultTo(const char* stream_result_to) {
   5406     Flags flags;
   5407     flags.stream_result_to = stream_result_to;
   5408     return flags;
   5409   }
   5410 
   5411   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5412   // the given value.
   5413   static Flags ThrowOnFailure(bool throw_on_failure) {
   5414     Flags flags;
   5415     flags.throw_on_failure = throw_on_failure;
   5416     return flags;
   5417   }
   5418 
   5419   // These fields store the flag values.
   5420   bool also_run_disabled_tests;
   5421   bool break_on_failure;
   5422   bool catch_exceptions;
   5423   bool death_test_use_fork;
   5424   const char* filter;
   5425   bool list_tests;
   5426   const char* output;
   5427   bool print_time;
   5428   Int32 random_seed;
   5429   Int32 repeat;
   5430   bool shuffle;
   5431   Int32 stack_trace_depth;
   5432   const char* stream_result_to;
   5433   bool throw_on_failure;
   5434 };
   5435 
   5436 // Fixture for testing InitGoogleTest().
   5437 class InitGoogleTestTest : public Test {
   5438  protected:
   5439   // Clears the flags before each test.
   5440   virtual void SetUp() {
   5441     GTEST_FLAG(also_run_disabled_tests) = false;
   5442     GTEST_FLAG(break_on_failure) = false;
   5443     GTEST_FLAG(catch_exceptions) = false;
   5444     GTEST_FLAG(death_test_use_fork) = false;
   5445     GTEST_FLAG(filter) = "";
   5446     GTEST_FLAG(list_tests) = false;
   5447     GTEST_FLAG(output) = "";
   5448     GTEST_FLAG(print_time) = true;
   5449     GTEST_FLAG(random_seed) = 0;
   5450     GTEST_FLAG(repeat) = 1;
   5451     GTEST_FLAG(shuffle) = false;
   5452     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5453     GTEST_FLAG(stream_result_to) = "";
   5454     GTEST_FLAG(throw_on_failure) = false;
   5455   }
   5456 
   5457   // Asserts that two narrow or wide string arrays are equal.
   5458   template <typename CharType>
   5459   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5460                                   size_t size2, CharType** array2) {
   5461     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5462 
   5463     for (size_t i = 0; i != size1; i++) {
   5464       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5465     }
   5466   }
   5467 
   5468   // Verifies that the flag values match the expected values.
   5469   static void CheckFlags(const Flags& expected) {
   5470     EXPECT_EQ(expected.also_run_disabled_tests,
   5471               GTEST_FLAG(also_run_disabled_tests));
   5472     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5473     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5474     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5475     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5476     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5477     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5478     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5479     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5480     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5481     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5482     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5483     EXPECT_STREQ(expected.stream_result_to,
   5484                  GTEST_FLAG(stream_result_to).c_str());
   5485     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5486   }
   5487 
   5488   // Parses a command line (specified by argc1 and argv1), then
   5489   // verifies that the flag values are expected and that the
   5490   // recognized flags are removed from the command line.
   5491   template <typename CharType>
   5492   static void TestParsingFlags(int argc1, const CharType** argv1,
   5493                                int argc2, const CharType** argv2,
   5494                                const Flags& expected, bool should_print_help) {
   5495     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5496     ::testing::internal::g_help_flag = false;
   5497 
   5498 #if GTEST_HAS_STREAM_REDIRECTION
   5499     CaptureStdout();
   5500 #endif
   5501 
   5502     // Parses the command line.
   5503     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5504 
   5505 #if GTEST_HAS_STREAM_REDIRECTION
   5506     const std::string captured_stdout = GetCapturedStdout();
   5507 #endif
   5508 
   5509     // Verifies the flag values.
   5510     CheckFlags(expected);
   5511 
   5512     // Verifies that the recognized flags are removed from the command
   5513     // line.
   5514     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5515 
   5516     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5517     // help message for the flags it recognizes.
   5518     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5519 
   5520 #if GTEST_HAS_STREAM_REDIRECTION
   5521     const char* const expected_help_fragment =
   5522         "This program contains tests written using";
   5523     if (should_print_help) {
   5524       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5525     } else {
   5526       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5527                           expected_help_fragment, captured_stdout);
   5528     }
   5529 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5530 
   5531     ::testing::internal::g_help_flag = saved_help_flag;
   5532   }
   5533 
   5534   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5535   // to specify the array sizes.
   5536 
   5537 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5538   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5539                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5540                    expected, should_print_help)
   5541 };
   5542 
   5543 // Tests parsing an empty command line.
   5544 TEST_F(InitGoogleTestTest, Empty) {
   5545   const char* argv[] = {
   5546     NULL
   5547   };
   5548 
   5549   const char* argv2[] = {
   5550     NULL
   5551   };
   5552 
   5553   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5554 }
   5555 
   5556 // Tests parsing a command line that has no flag.
   5557 TEST_F(InitGoogleTestTest, NoFlag) {
   5558   const char* argv[] = {
   5559     "foo.exe",
   5560     NULL
   5561   };
   5562 
   5563   const char* argv2[] = {
   5564     "foo.exe",
   5565     NULL
   5566   };
   5567 
   5568   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5569 }
   5570 
   5571 // Tests parsing a bad --gtest_filter flag.
   5572 TEST_F(InitGoogleTestTest, FilterBad) {
   5573   const char* argv[] = {
   5574     "foo.exe",
   5575     "--gtest_filter",
   5576     NULL
   5577   };
   5578 
   5579   const char* argv2[] = {
   5580     "foo.exe",
   5581     "--gtest_filter",
   5582     NULL
   5583   };
   5584 
   5585   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5586 }
   5587 
   5588 // Tests parsing an empty --gtest_filter flag.
   5589 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5590   const char* argv[] = {
   5591     "foo.exe",
   5592     "--gtest_filter=",
   5593     NULL
   5594   };
   5595 
   5596   const char* argv2[] = {
   5597     "foo.exe",
   5598     NULL
   5599   };
   5600 
   5601   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5602 }
   5603 
   5604 // Tests parsing a non-empty --gtest_filter flag.
   5605 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5606   const char* argv[] = {
   5607     "foo.exe",
   5608     "--gtest_filter=abc",
   5609     NULL
   5610   };
   5611 
   5612   const char* argv2[] = {
   5613     "foo.exe",
   5614     NULL
   5615   };
   5616 
   5617   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5618 }
   5619 
   5620 // Tests parsing --gtest_break_on_failure.
   5621 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5622   const char* argv[] = {
   5623     "foo.exe",
   5624     "--gtest_break_on_failure",
   5625     NULL
   5626 };
   5627 
   5628   const char* argv2[] = {
   5629     "foo.exe",
   5630     NULL
   5631   };
   5632 
   5633   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5634 }
   5635 
   5636 // Tests parsing --gtest_break_on_failure=0.
   5637 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5638   const char* argv[] = {
   5639     "foo.exe",
   5640     "--gtest_break_on_failure=0",
   5641     NULL
   5642   };
   5643 
   5644   const char* argv2[] = {
   5645     "foo.exe",
   5646     NULL
   5647   };
   5648 
   5649   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5650 }
   5651 
   5652 // Tests parsing --gtest_break_on_failure=f.
   5653 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5654   const char* argv[] = {
   5655     "foo.exe",
   5656     "--gtest_break_on_failure=f",
   5657     NULL
   5658   };
   5659 
   5660   const char* argv2[] = {
   5661     "foo.exe",
   5662     NULL
   5663   };
   5664 
   5665   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5666 }
   5667 
   5668 // Tests parsing --gtest_break_on_failure=F.
   5669 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5670   const char* argv[] = {
   5671     "foo.exe",
   5672     "--gtest_break_on_failure=F",
   5673     NULL
   5674   };
   5675 
   5676   const char* argv2[] = {
   5677     "foo.exe",
   5678     NULL
   5679   };
   5680 
   5681   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5682 }
   5683 
   5684 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5685 // definition.
   5686 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5687   const char* argv[] = {
   5688     "foo.exe",
   5689     "--gtest_break_on_failure=1",
   5690     NULL
   5691   };
   5692 
   5693   const char* argv2[] = {
   5694     "foo.exe",
   5695     NULL
   5696   };
   5697 
   5698   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5699 }
   5700 
   5701 // Tests parsing --gtest_catch_exceptions.
   5702 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5703   const char* argv[] = {
   5704     "foo.exe",
   5705     "--gtest_catch_exceptions",
   5706     NULL
   5707   };
   5708 
   5709   const char* argv2[] = {
   5710     "foo.exe",
   5711     NULL
   5712   };
   5713 
   5714   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5715 }
   5716 
   5717 // Tests parsing --gtest_death_test_use_fork.
   5718 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5719   const char* argv[] = {
   5720     "foo.exe",
   5721     "--gtest_death_test_use_fork",
   5722     NULL
   5723   };
   5724 
   5725   const char* argv2[] = {
   5726     "foo.exe",
   5727     NULL
   5728   };
   5729 
   5730   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5731 }
   5732 
   5733 // Tests having the same flag twice with different values.  The
   5734 // expected behavior is that the one coming last takes precedence.
   5735 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5736   const char* argv[] = {
   5737     "foo.exe",
   5738     "--gtest_filter=a",
   5739     "--gtest_filter=b",
   5740     NULL
   5741   };
   5742 
   5743   const char* argv2[] = {
   5744     "foo.exe",
   5745     NULL
   5746   };
   5747 
   5748   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5749 }
   5750 
   5751 // Tests having an unrecognized flag on the command line.
   5752 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5753   const char* argv[] = {
   5754     "foo.exe",
   5755     "--gtest_break_on_failure",
   5756     "bar",  // Unrecognized by Google Test.
   5757     "--gtest_filter=b",
   5758     NULL
   5759   };
   5760 
   5761   const char* argv2[] = {
   5762     "foo.exe",
   5763     "bar",
   5764     NULL
   5765   };
   5766 
   5767   Flags flags;
   5768   flags.break_on_failure = true;
   5769   flags.filter = "b";
   5770   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5771 }
   5772 
   5773 // Tests having a --gtest_list_tests flag
   5774 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5775     const char* argv[] = {
   5776       "foo.exe",
   5777       "--gtest_list_tests",
   5778       NULL
   5779     };
   5780 
   5781     const char* argv2[] = {
   5782       "foo.exe",
   5783       NULL
   5784     };
   5785 
   5786     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5787 }
   5788 
   5789 // Tests having a --gtest_list_tests flag with a "true" value
   5790 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5791     const char* argv[] = {
   5792       "foo.exe",
   5793       "--gtest_list_tests=1",
   5794       NULL
   5795     };
   5796 
   5797     const char* argv2[] = {
   5798       "foo.exe",
   5799       NULL
   5800     };
   5801 
   5802     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5803 }
   5804 
   5805 // Tests having a --gtest_list_tests flag with a "false" value
   5806 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5807     const char* argv[] = {
   5808       "foo.exe",
   5809       "--gtest_list_tests=0",
   5810       NULL
   5811     };
   5812 
   5813     const char* argv2[] = {
   5814       "foo.exe",
   5815       NULL
   5816     };
   5817 
   5818     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5819 }
   5820 
   5821 // Tests parsing --gtest_list_tests=f.
   5822 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5823   const char* argv[] = {
   5824     "foo.exe",
   5825     "--gtest_list_tests=f",
   5826     NULL
   5827   };
   5828 
   5829   const char* argv2[] = {
   5830     "foo.exe",
   5831     NULL
   5832   };
   5833 
   5834   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5835 }
   5836 
   5837 // Tests parsing --gtest_list_tests=F.
   5838 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5839   const char* argv[] = {
   5840     "foo.exe",
   5841     "--gtest_list_tests=F",
   5842     NULL
   5843   };
   5844 
   5845   const char* argv2[] = {
   5846     "foo.exe",
   5847     NULL
   5848   };
   5849 
   5850   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5851 }
   5852 
   5853 // Tests parsing --gtest_output (invalid).
   5854 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5855   const char* argv[] = {
   5856     "foo.exe",
   5857     "--gtest_output",
   5858     NULL
   5859   };
   5860 
   5861   const char* argv2[] = {
   5862     "foo.exe",
   5863     "--gtest_output",
   5864     NULL
   5865   };
   5866 
   5867   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   5868 }
   5869 
   5870 // Tests parsing --gtest_output=xml
   5871 TEST_F(InitGoogleTestTest, OutputXml) {
   5872   const char* argv[] = {
   5873     "foo.exe",
   5874     "--gtest_output=xml",
   5875     NULL
   5876   };
   5877 
   5878   const char* argv2[] = {
   5879     "foo.exe",
   5880     NULL
   5881   };
   5882 
   5883   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   5884 }
   5885 
   5886 // Tests parsing --gtest_output=xml:file
   5887 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   5888   const char* argv[] = {
   5889     "foo.exe",
   5890     "--gtest_output=xml:file",
   5891     NULL
   5892   };
   5893 
   5894   const char* argv2[] = {
   5895     "foo.exe",
   5896     NULL
   5897   };
   5898 
   5899   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   5900 }
   5901 
   5902 // Tests parsing --gtest_output=xml:directory/path/
   5903 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   5904   const char* argv[] = {
   5905     "foo.exe",
   5906     "--gtest_output=xml:directory/path/",
   5907     NULL
   5908   };
   5909 
   5910   const char* argv2[] = {
   5911     "foo.exe",
   5912     NULL
   5913   };
   5914 
   5915   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5916                             Flags::Output("xml:directory/path/"), false);
   5917 }
   5918 
   5919 // Tests having a --gtest_print_time flag
   5920 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   5921     const char* argv[] = {
   5922       "foo.exe",
   5923       "--gtest_print_time",
   5924       NULL
   5925     };
   5926 
   5927     const char* argv2[] = {
   5928       "foo.exe",
   5929       NULL
   5930     };
   5931 
   5932     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5933 }
   5934 
   5935 // Tests having a --gtest_print_time flag with a "true" value
   5936 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   5937     const char* argv[] = {
   5938       "foo.exe",
   5939       "--gtest_print_time=1",
   5940       NULL
   5941     };
   5942 
   5943     const char* argv2[] = {
   5944       "foo.exe",
   5945       NULL
   5946     };
   5947 
   5948     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5949 }
   5950 
   5951 // Tests having a --gtest_print_time flag with a "false" value
   5952 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   5953     const char* argv[] = {
   5954       "foo.exe",
   5955       "--gtest_print_time=0",
   5956       NULL
   5957     };
   5958 
   5959     const char* argv2[] = {
   5960       "foo.exe",
   5961       NULL
   5962     };
   5963 
   5964     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5965 }
   5966 
   5967 // Tests parsing --gtest_print_time=f.
   5968 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   5969   const char* argv[] = {
   5970     "foo.exe",
   5971     "--gtest_print_time=f",
   5972     NULL
   5973   };
   5974 
   5975   const char* argv2[] = {
   5976     "foo.exe",
   5977     NULL
   5978   };
   5979 
   5980   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5981 }
   5982 
   5983 // Tests parsing --gtest_print_time=F.
   5984 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   5985   const char* argv[] = {
   5986     "foo.exe",
   5987     "--gtest_print_time=F",
   5988     NULL
   5989   };
   5990 
   5991   const char* argv2[] = {
   5992     "foo.exe",
   5993     NULL
   5994   };
   5995 
   5996   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5997 }
   5998 
   5999 // Tests parsing --gtest_random_seed=number
   6000 TEST_F(InitGoogleTestTest, RandomSeed) {
   6001   const char* argv[] = {
   6002     "foo.exe",
   6003     "--gtest_random_seed=1000",
   6004     NULL
   6005   };
   6006 
   6007   const char* argv2[] = {
   6008     "foo.exe",
   6009     NULL
   6010   };
   6011 
   6012   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   6013 }
   6014 
   6015 // Tests parsing --gtest_repeat=number
   6016 TEST_F(InitGoogleTestTest, Repeat) {
   6017   const char* argv[] = {
   6018     "foo.exe",
   6019     "--gtest_repeat=1000",
   6020     NULL
   6021   };
   6022 
   6023   const char* argv2[] = {
   6024     "foo.exe",
   6025     NULL
   6026   };
   6027 
   6028   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   6029 }
   6030 
   6031 // Tests having a --gtest_also_run_disabled_tests flag
   6032 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   6033     const char* argv[] = {
   6034       "foo.exe",
   6035       "--gtest_also_run_disabled_tests",
   6036       NULL
   6037     };
   6038 
   6039     const char* argv2[] = {
   6040       "foo.exe",
   6041       NULL
   6042     };
   6043 
   6044     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6045                               Flags::AlsoRunDisabledTests(true), false);
   6046 }
   6047 
   6048 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   6049 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   6050     const char* argv[] = {
   6051       "foo.exe",
   6052       "--gtest_also_run_disabled_tests=1",
   6053       NULL
   6054     };
   6055 
   6056     const char* argv2[] = {
   6057       "foo.exe",
   6058       NULL
   6059     };
   6060 
   6061     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6062                               Flags::AlsoRunDisabledTests(true), false);
   6063 }
   6064 
   6065 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   6066 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   6067     const char* argv[] = {
   6068       "foo.exe",
   6069       "--gtest_also_run_disabled_tests=0",
   6070       NULL
   6071     };
   6072 
   6073     const char* argv2[] = {
   6074       "foo.exe",
   6075       NULL
   6076     };
   6077 
   6078     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6079                               Flags::AlsoRunDisabledTests(false), false);
   6080 }
   6081 
   6082 // Tests parsing --gtest_shuffle.
   6083 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   6084   const char* argv[] = {
   6085     "foo.exe",
   6086     "--gtest_shuffle",
   6087     NULL
   6088 };
   6089 
   6090   const char* argv2[] = {
   6091     "foo.exe",
   6092     NULL
   6093   };
   6094 
   6095   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6096 }
   6097 
   6098 // Tests parsing --gtest_shuffle=0.
   6099 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   6100   const char* argv[] = {
   6101     "foo.exe",
   6102     "--gtest_shuffle=0",
   6103     NULL
   6104   };
   6105 
   6106   const char* argv2[] = {
   6107     "foo.exe",
   6108     NULL
   6109   };
   6110 
   6111   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   6112 }
   6113 
   6114 // Tests parsing a --gtest_shuffle flag that has a "true"
   6115 // definition.
   6116 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   6117   const char* argv[] = {
   6118     "foo.exe",
   6119     "--gtest_shuffle=1",
   6120     NULL
   6121   };
   6122 
   6123   const char* argv2[] = {
   6124     "foo.exe",
   6125     NULL
   6126   };
   6127 
   6128   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6129 }
   6130 
   6131 // Tests parsing --gtest_stack_trace_depth=number.
   6132 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   6133   const char* argv[] = {
   6134     "foo.exe",
   6135     "--gtest_stack_trace_depth=5",
   6136     NULL
   6137   };
   6138 
   6139   const char* argv2[] = {
   6140     "foo.exe",
   6141     NULL
   6142   };
   6143 
   6144   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6145 }
   6146 
   6147 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6148   const char* argv[] = {
   6149     "foo.exe",
   6150     "--gtest_stream_result_to=localhost:1234",
   6151     NULL
   6152   };
   6153 
   6154   const char* argv2[] = {
   6155     "foo.exe",
   6156     NULL
   6157   };
   6158 
   6159   GTEST_TEST_PARSING_FLAGS_(
   6160       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6161 }
   6162 
   6163 // Tests parsing --gtest_throw_on_failure.
   6164 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6165   const char* argv[] = {
   6166     "foo.exe",
   6167     "--gtest_throw_on_failure",
   6168     NULL
   6169 };
   6170 
   6171   const char* argv2[] = {
   6172     "foo.exe",
   6173     NULL
   6174   };
   6175 
   6176   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6177 }
   6178 
   6179 // Tests parsing --gtest_throw_on_failure=0.
   6180 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6181   const char* argv[] = {
   6182     "foo.exe",
   6183     "--gtest_throw_on_failure=0",
   6184     NULL
   6185   };
   6186 
   6187   const char* argv2[] = {
   6188     "foo.exe",
   6189     NULL
   6190   };
   6191 
   6192   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6193 }
   6194 
   6195 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6196 // definition.
   6197 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6198   const char* argv[] = {
   6199     "foo.exe",
   6200     "--gtest_throw_on_failure=1",
   6201     NULL
   6202   };
   6203 
   6204   const char* argv2[] = {
   6205     "foo.exe",
   6206     NULL
   6207   };
   6208 
   6209   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6210 }
   6211 
   6212 #if GTEST_OS_WINDOWS
   6213 // Tests parsing wide strings.
   6214 TEST_F(InitGoogleTestTest, WideStrings) {
   6215   const wchar_t* argv[] = {
   6216     L"foo.exe",
   6217     L"--gtest_filter=Foo*",
   6218     L"--gtest_list_tests=1",
   6219     L"--gtest_break_on_failure",
   6220     L"--non_gtest_flag",
   6221     NULL
   6222   };
   6223 
   6224   const wchar_t* argv2[] = {
   6225     L"foo.exe",
   6226     L"--non_gtest_flag",
   6227     NULL
   6228   };
   6229 
   6230   Flags expected_flags;
   6231   expected_flags.break_on_failure = true;
   6232   expected_flags.filter = "Foo*";
   6233   expected_flags.list_tests = true;
   6234 
   6235   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6236 }
   6237 #endif  // GTEST_OS_WINDOWS
   6238 
   6239 // Tests current_test_info() in UnitTest.
   6240 class CurrentTestInfoTest : public Test {
   6241  protected:
   6242   // Tests that current_test_info() returns NULL before the first test in
   6243   // the test case is run.
   6244   static void SetUpTestCase() {
   6245     // There should be no tests running at this point.
   6246     const TestInfo* test_info =
   6247       UnitTest::GetInstance()->current_test_info();
   6248     EXPECT_TRUE(test_info == NULL)
   6249         << "There should be no tests running at this point.";
   6250   }
   6251 
   6252   // Tests that current_test_info() returns NULL after the last test in
   6253   // the test case has run.
   6254   static void TearDownTestCase() {
   6255     const TestInfo* test_info =
   6256       UnitTest::GetInstance()->current_test_info();
   6257     EXPECT_TRUE(test_info == NULL)
   6258         << "There should be no tests running at this point.";
   6259   }
   6260 };
   6261 
   6262 // Tests that current_test_info() returns TestInfo for currently running
   6263 // test by checking the expected test name against the actual one.
   6264 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6265   const TestInfo* test_info =
   6266     UnitTest::GetInstance()->current_test_info();
   6267   ASSERT_TRUE(NULL != test_info)
   6268       << "There is a test running so we should have a valid TestInfo.";
   6269   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6270       << "Expected the name of the currently running test case.";
   6271   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6272       << "Expected the name of the currently running test.";
   6273 }
   6274 
   6275 // Tests that current_test_info() returns TestInfo for currently running
   6276 // test by checking the expected test name against the actual one.  We
   6277 // use this test to see that the TestInfo object actually changed from
   6278 // the previous invocation.
   6279 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6280   const TestInfo* test_info =
   6281     UnitTest::GetInstance()->current_test_info();
   6282   ASSERT_TRUE(NULL != test_info)
   6283       << "There is a test running so we should have a valid TestInfo.";
   6284   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6285       << "Expected the name of the currently running test case.";
   6286   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6287       << "Expected the name of the currently running test.";
   6288 }
   6289 
   6290 }  // namespace testing
   6291 
   6292 // These two lines test that we can define tests in a namespace that
   6293 // has the name "testing" and is nested in another namespace.
   6294 namespace my_namespace {
   6295 namespace testing {
   6296 
   6297 // Makes sure that TEST knows to use ::testing::Test instead of
   6298 // ::my_namespace::testing::Test.
   6299 class Test {};
   6300 
   6301 // Makes sure that an assertion knows to use ::testing::Message instead of
   6302 // ::my_namespace::testing::Message.
   6303 class Message {};
   6304 
   6305 // Makes sure that an assertion knows to use
   6306 // ::testing::AssertionResult instead of
   6307 // ::my_namespace::testing::AssertionResult.
   6308 class AssertionResult {};
   6309 
   6310 // Tests that an assertion that should succeed works as expected.
   6311 TEST(NestedTestingNamespaceTest, Success) {
   6312   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6313 }
   6314 
   6315 // Tests that an assertion that should fail works as expected.
   6316 TEST(NestedTestingNamespaceTest, Failure) {
   6317   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6318                        "This failure is expected.");
   6319 }
   6320 
   6321 }  // namespace testing
   6322 }  // namespace my_namespace
   6323 
   6324 // Tests that one can call superclass SetUp and TearDown methods--
   6325 // that is, that they are not private.
   6326 // No tests are based on this fixture; the test "passes" if it compiles
   6327 // successfully.
   6328 class ProtectedFixtureMethodsTest : public Test {
   6329  protected:
   6330   virtual void SetUp() {
   6331     Test::SetUp();
   6332   }
   6333   virtual void TearDown() {
   6334     Test::TearDown();
   6335   }
   6336 };
   6337 
   6338 // StreamingAssertionsTest tests the streaming versions of a representative
   6339 // sample of assertions.
   6340 TEST(StreamingAssertionsTest, Unconditional) {
   6341   SUCCEED() << "expected success";
   6342   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6343                           "expected failure");
   6344   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6345                        "expected failure");
   6346 }
   6347 
   6348 #ifdef __BORLANDC__
   6349 // Silences warnings: "Condition is always true", "Unreachable code"
   6350 # pragma option push -w-ccc -w-rch
   6351 #endif
   6352 
   6353 TEST(StreamingAssertionsTest, Truth) {
   6354   EXPECT_TRUE(true) << "unexpected failure";
   6355   ASSERT_TRUE(true) << "unexpected failure";
   6356   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6357                           "expected failure");
   6358   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6359                        "expected failure");
   6360 }
   6361 
   6362 TEST(StreamingAssertionsTest, Truth2) {
   6363   EXPECT_FALSE(false) << "unexpected failure";
   6364   ASSERT_FALSE(false) << "unexpected failure";
   6365   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6366                           "expected failure");
   6367   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6368                        "expected failure");
   6369 }
   6370 
   6371 #ifdef __BORLANDC__
   6372 // Restores warnings after previous "#pragma option push" supressed them
   6373 # pragma option pop
   6374 #endif
   6375 
   6376 TEST(StreamingAssertionsTest, IntegerEquals) {
   6377   EXPECT_EQ(1, 1) << "unexpected failure";
   6378   ASSERT_EQ(1, 1) << "unexpected failure";
   6379   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6380                           "expected failure");
   6381   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6382                        "expected failure");
   6383 }
   6384 
   6385 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6386   EXPECT_LT(1, 2) << "unexpected failure";
   6387   ASSERT_LT(1, 2) << "unexpected failure";
   6388   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6389                           "expected failure");
   6390   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6391                        "expected failure");
   6392 }
   6393 
   6394 TEST(StreamingAssertionsTest, StringsEqual) {
   6395   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6396   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6397   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6398                           "expected failure");
   6399   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6400                        "expected failure");
   6401 }
   6402 
   6403 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6404   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6405   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6406   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6407                           "expected failure");
   6408   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6409                        "expected failure");
   6410 }
   6411 
   6412 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6413   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6414   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6415   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6416                           "expected failure");
   6417   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6418                        "expected failure");
   6419 }
   6420 
   6421 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6422   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6423   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6424   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6425                           "expected failure");
   6426   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6427                        "expected failure");
   6428 }
   6429 
   6430 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6431   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6432   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6433   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6434                           "expected failure");
   6435   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6436                        "expected failure");
   6437 }
   6438 
   6439 #if GTEST_HAS_EXCEPTIONS
   6440 
   6441 TEST(StreamingAssertionsTest, Throw) {
   6442   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6443   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6444   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6445                           "expected failure", "expected failure");
   6446   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6447                        "expected failure", "expected failure");
   6448 }
   6449 
   6450 TEST(StreamingAssertionsTest, NoThrow) {
   6451   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6452   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6453   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6454                           "expected failure", "expected failure");
   6455   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6456                        "expected failure", "expected failure");
   6457 }
   6458 
   6459 TEST(StreamingAssertionsTest, AnyThrow) {
   6460   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6461   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6462   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6463                           "expected failure", "expected failure");
   6464   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6465                        "expected failure", "expected failure");
   6466 }
   6467 
   6468 #endif  // GTEST_HAS_EXCEPTIONS
   6469 
   6470 // Tests that Google Test correctly decides whether to use colors in the output.
   6471 
   6472 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6473   GTEST_FLAG(color) = "yes";
   6474 
   6475   SetEnv("TERM", "xterm");  // TERM supports colors.
   6476   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6477   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6478 
   6479   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6480   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6481   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6482 }
   6483 
   6484 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6485   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6486 
   6487   GTEST_FLAG(color) = "True";
   6488   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6489 
   6490   GTEST_FLAG(color) = "t";
   6491   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6492 
   6493   GTEST_FLAG(color) = "1";
   6494   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6495 }
   6496 
   6497 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6498   GTEST_FLAG(color) = "no";
   6499 
   6500   SetEnv("TERM", "xterm");  // TERM supports colors.
   6501   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6502   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6503 
   6504   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6505   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6506   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6507 }
   6508 
   6509 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6510   SetEnv("TERM", "xterm");  // TERM supports colors.
   6511 
   6512   GTEST_FLAG(color) = "F";
   6513   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6514 
   6515   GTEST_FLAG(color) = "0";
   6516   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6517 
   6518   GTEST_FLAG(color) = "unknown";
   6519   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6520 }
   6521 
   6522 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6523   GTEST_FLAG(color) = "auto";
   6524 
   6525   SetEnv("TERM", "xterm");  // TERM supports colors.
   6526   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6527   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6528 }
   6529 
   6530 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6531   GTEST_FLAG(color) = "auto";
   6532 
   6533 #if GTEST_OS_WINDOWS
   6534   // On Windows, we ignore the TERM variable as it's usually not set.
   6535 
   6536   SetEnv("TERM", "dumb");
   6537   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6538 
   6539   SetEnv("TERM", "");
   6540   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6541 
   6542   SetEnv("TERM", "xterm");
   6543   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6544 #else
   6545   // On non-Windows platforms, we rely on TERM to determine if the
   6546   // terminal supports colors.
   6547 
   6548   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6549   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6550 
   6551   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6552   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6553 
   6554   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6555   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6556 
   6557   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6558   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6559 
   6560   SetEnv("TERM", "xterm");  // TERM supports colors.
   6561   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6562 
   6563   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6564   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6565 
   6566   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6567   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6568 
   6569   SetEnv("TERM", "screen");  // TERM supports colors.
   6570   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6571 
   6572   SetEnv("TERM", "screen-256color");  // TERM supports colors.
   6573   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6574 
   6575   SetEnv("TERM", "linux");  // TERM supports colors.
   6576   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6577 
   6578   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6579   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6580 #endif  // GTEST_OS_WINDOWS
   6581 }
   6582 
   6583 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6584 
   6585 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6586 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6587     StaticAssertTypeEq<const int, const int>();
   6588 
   6589 // Verifies that StaticAssertTypeEq works in a class.
   6590 
   6591 template <typename T>
   6592 class StaticAssertTypeEqTestHelper {
   6593  public:
   6594   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6595 };
   6596 
   6597 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6598   StaticAssertTypeEqTestHelper<bool>();
   6599 }
   6600 
   6601 // Verifies that StaticAssertTypeEq works inside a function.
   6602 
   6603 typedef int IntAlias;
   6604 
   6605 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6606   StaticAssertTypeEq<int, IntAlias>();
   6607   StaticAssertTypeEq<int*, IntAlias*>();
   6608 }
   6609 
   6610 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6611   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6612 
   6613   // We don't have a stack walker in Google Test yet.
   6614   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6615   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6616 }
   6617 
   6618 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6619   EXPECT_FALSE(HasNonfatalFailure());
   6620 }
   6621 
   6622 static void FailFatally() { FAIL(); }
   6623 
   6624 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6625   FailFatally();
   6626   const bool has_nonfatal_failure = HasNonfatalFailure();
   6627   ClearCurrentTestPartResults();
   6628   EXPECT_FALSE(has_nonfatal_failure);
   6629 }
   6630 
   6631 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6632   ADD_FAILURE();
   6633   const bool has_nonfatal_failure = HasNonfatalFailure();
   6634   ClearCurrentTestPartResults();
   6635   EXPECT_TRUE(has_nonfatal_failure);
   6636 }
   6637 
   6638 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6639   FailFatally();
   6640   ADD_FAILURE();
   6641   const bool has_nonfatal_failure = HasNonfatalFailure();
   6642   ClearCurrentTestPartResults();
   6643   EXPECT_TRUE(has_nonfatal_failure);
   6644 }
   6645 
   6646 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6647 static bool HasNonfatalFailureHelper() {
   6648   return testing::Test::HasNonfatalFailure();
   6649 }
   6650 
   6651 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6652   EXPECT_FALSE(HasNonfatalFailureHelper());
   6653 }
   6654 
   6655 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6656   ADD_FAILURE();
   6657   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6658   ClearCurrentTestPartResults();
   6659   EXPECT_TRUE(has_nonfatal_failure);
   6660 }
   6661 
   6662 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6663   EXPECT_FALSE(HasFailure());
   6664 }
   6665 
   6666 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6667   FailFatally();
   6668   const bool has_failure = HasFailure();
   6669   ClearCurrentTestPartResults();
   6670   EXPECT_TRUE(has_failure);
   6671 }
   6672 
   6673 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6674   ADD_FAILURE();
   6675   const bool has_failure = HasFailure();
   6676   ClearCurrentTestPartResults();
   6677   EXPECT_TRUE(has_failure);
   6678 }
   6679 
   6680 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6681   FailFatally();
   6682   ADD_FAILURE();
   6683   const bool has_failure = HasFailure();
   6684   ClearCurrentTestPartResults();
   6685   EXPECT_TRUE(has_failure);
   6686 }
   6687 
   6688 // A wrapper for calling HasFailure outside of a test body.
   6689 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6690 
   6691 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6692   EXPECT_FALSE(HasFailureHelper());
   6693 }
   6694 
   6695 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6696   ADD_FAILURE();
   6697   const bool has_failure = HasFailureHelper();
   6698   ClearCurrentTestPartResults();
   6699   EXPECT_TRUE(has_failure);
   6700 }
   6701 
   6702 class TestListener : public EmptyTestEventListener {
   6703  public:
   6704   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6705   TestListener(int* on_start_counter, bool* is_destroyed)
   6706       : on_start_counter_(on_start_counter),
   6707         is_destroyed_(is_destroyed) {}
   6708 
   6709   virtual ~TestListener() {
   6710     if (is_destroyed_)
   6711       *is_destroyed_ = true;
   6712   }
   6713 
   6714  protected:
   6715   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6716     if (on_start_counter_ != NULL)
   6717       (*on_start_counter_)++;
   6718   }
   6719 
   6720  private:
   6721   int* on_start_counter_;
   6722   bool* is_destroyed_;
   6723 };
   6724 
   6725 // Tests the constructor.
   6726 TEST(TestEventListenersTest, ConstructionWorks) {
   6727   TestEventListeners listeners;
   6728 
   6729   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6730   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6731   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6732 }
   6733 
   6734 // Tests that the TestEventListeners destructor deletes all the listeners it
   6735 // owns.
   6736 TEST(TestEventListenersTest, DestructionWorks) {
   6737   bool default_result_printer_is_destroyed = false;
   6738   bool default_xml_printer_is_destroyed = false;
   6739   bool extra_listener_is_destroyed = false;
   6740   TestListener* default_result_printer = new TestListener(
   6741       NULL, &default_result_printer_is_destroyed);
   6742   TestListener* default_xml_printer = new TestListener(
   6743       NULL, &default_xml_printer_is_destroyed);
   6744   TestListener* extra_listener = new TestListener(
   6745       NULL, &extra_listener_is_destroyed);
   6746 
   6747   {
   6748     TestEventListeners listeners;
   6749     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6750                                                         default_result_printer);
   6751     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6752                                                        default_xml_printer);
   6753     listeners.Append(extra_listener);
   6754   }
   6755   EXPECT_TRUE(default_result_printer_is_destroyed);
   6756   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6757   EXPECT_TRUE(extra_listener_is_destroyed);
   6758 }
   6759 
   6760 // Tests that a listener Append'ed to a TestEventListeners list starts
   6761 // receiving events.
   6762 TEST(TestEventListenersTest, Append) {
   6763   int on_start_counter = 0;
   6764   bool is_destroyed = false;
   6765   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6766   {
   6767     TestEventListeners listeners;
   6768     listeners.Append(listener);
   6769     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6770         *UnitTest::GetInstance());
   6771     EXPECT_EQ(1, on_start_counter);
   6772   }
   6773   EXPECT_TRUE(is_destroyed);
   6774 }
   6775 
   6776 // Tests that listeners receive events in the order they were appended to
   6777 // the list, except for *End requests, which must be received in the reverse
   6778 // order.
   6779 class SequenceTestingListener : public EmptyTestEventListener {
   6780  public:
   6781   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
   6782       : vector_(vector), id_(id) {}
   6783 
   6784  protected:
   6785   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6786     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   6787   }
   6788 
   6789   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6790     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   6791   }
   6792 
   6793   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6794                                     int /*iteration*/) {
   6795     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   6796   }
   6797 
   6798   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6799                                   int /*iteration*/) {
   6800     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   6801   }
   6802 
   6803  private:
   6804   std::string GetEventDescription(const char* method) {
   6805     Message message;
   6806     message << id_ << "." << method;
   6807     return message.GetString();
   6808   }
   6809 
   6810   std::vector<std::string>* vector_;
   6811   const char* const id_;
   6812 
   6813   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6814 };
   6815 
   6816 TEST(EventListenerTest, AppendKeepsOrder) {
   6817   std::vector<std::string> vec;
   6818   TestEventListeners listeners;
   6819   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6820   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6821   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6822 
   6823   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6824       *UnitTest::GetInstance());
   6825   ASSERT_EQ(3U, vec.size());
   6826   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   6827   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   6828   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   6829 
   6830   vec.clear();
   6831   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6832       *UnitTest::GetInstance());
   6833   ASSERT_EQ(3U, vec.size());
   6834   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   6835   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   6836   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   6837 
   6838   vec.clear();
   6839   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6840       *UnitTest::GetInstance(), 0);
   6841   ASSERT_EQ(3U, vec.size());
   6842   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   6843   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   6844   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   6845 
   6846   vec.clear();
   6847   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6848       *UnitTest::GetInstance(), 0);
   6849   ASSERT_EQ(3U, vec.size());
   6850   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   6851   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   6852   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   6853 }
   6854 
   6855 // Tests that a listener removed from a TestEventListeners list stops receiving
   6856 // events and is not deleted when the list is destroyed.
   6857 TEST(TestEventListenersTest, Release) {
   6858   int on_start_counter = 0;
   6859   bool is_destroyed = false;
   6860   // Although Append passes the ownership of this object to the list,
   6861   // the following calls release it, and we need to delete it before the
   6862   // test ends.
   6863   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6864   {
   6865     TestEventListeners listeners;
   6866     listeners.Append(listener);
   6867     EXPECT_EQ(listener, listeners.Release(listener));
   6868     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6869         *UnitTest::GetInstance());
   6870     EXPECT_TRUE(listeners.Release(listener) == NULL);
   6871   }
   6872   EXPECT_EQ(0, on_start_counter);
   6873   EXPECT_FALSE(is_destroyed);
   6874   delete listener;
   6875 }
   6876 
   6877 // Tests that no events are forwarded when event forwarding is disabled.
   6878 TEST(EventListenerTest, SuppressEventForwarding) {
   6879   int on_start_counter = 0;
   6880   TestListener* listener = new TestListener(&on_start_counter, NULL);
   6881 
   6882   TestEventListeners listeners;
   6883   listeners.Append(listener);
   6884   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6885   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   6886   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6887   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6888       *UnitTest::GetInstance());
   6889   EXPECT_EQ(0, on_start_counter);
   6890 }
   6891 
   6892 // Tests that events generated by Google Test are not forwarded in
   6893 // death test subprocesses.
   6894 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   6895   EXPECT_DEATH_IF_SUPPORTED({
   6896       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   6897           *GetUnitTestImpl()->listeners())) << "expected failure";},
   6898       "expected failure");
   6899 }
   6900 
   6901 // Tests that a listener installed via SetDefaultResultPrinter() starts
   6902 // receiving events and is returned via default_result_printer() and that
   6903 // the previous default_result_printer is removed from the list and deleted.
   6904 TEST(EventListenerTest, default_result_printer) {
   6905   int on_start_counter = 0;
   6906   bool is_destroyed = false;
   6907   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6908 
   6909   TestEventListeners listeners;
   6910   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6911 
   6912   EXPECT_EQ(listener, listeners.default_result_printer());
   6913 
   6914   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6915       *UnitTest::GetInstance());
   6916 
   6917   EXPECT_EQ(1, on_start_counter);
   6918 
   6919   // Replacing default_result_printer with something else should remove it
   6920   // from the list and destroy it.
   6921   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   6922 
   6923   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6924   EXPECT_TRUE(is_destroyed);
   6925 
   6926   // After broadcasting an event the counter is still the same, indicating
   6927   // the listener is not in the list anymore.
   6928   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6929       *UnitTest::GetInstance());
   6930   EXPECT_EQ(1, on_start_counter);
   6931 }
   6932 
   6933 // Tests that the default_result_printer listener stops receiving events
   6934 // when removed via Release and that is not owned by the list anymore.
   6935 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   6936   int on_start_counter = 0;
   6937   bool is_destroyed = false;
   6938   // Although Append passes the ownership of this object to the list,
   6939   // the following calls release it, and we need to delete it before the
   6940   // test ends.
   6941   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6942   {
   6943     TestEventListeners listeners;
   6944     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6945 
   6946     EXPECT_EQ(listener, listeners.Release(listener));
   6947     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6948     EXPECT_FALSE(is_destroyed);
   6949 
   6950     // Broadcasting events now should not affect default_result_printer.
   6951     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6952         *UnitTest::GetInstance());
   6953     EXPECT_EQ(0, on_start_counter);
   6954   }
   6955   // Destroying the list should not affect the listener now, too.
   6956   EXPECT_FALSE(is_destroyed);
   6957   delete listener;
   6958 }
   6959 
   6960 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   6961 // receiving events and is returned via default_xml_generator() and that
   6962 // the previous default_xml_generator is removed from the list and deleted.
   6963 TEST(EventListenerTest, default_xml_generator) {
   6964   int on_start_counter = 0;
   6965   bool is_destroyed = false;
   6966   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6967 
   6968   TestEventListeners listeners;
   6969   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6970 
   6971   EXPECT_EQ(listener, listeners.default_xml_generator());
   6972 
   6973   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6974       *UnitTest::GetInstance());
   6975 
   6976   EXPECT_EQ(1, on_start_counter);
   6977 
   6978   // Replacing default_xml_generator with something else should remove it
   6979   // from the list and destroy it.
   6980   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   6981 
   6982   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6983   EXPECT_TRUE(is_destroyed);
   6984 
   6985   // After broadcasting an event the counter is still the same, indicating
   6986   // the listener is not in the list anymore.
   6987   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6988       *UnitTest::GetInstance());
   6989   EXPECT_EQ(1, on_start_counter);
   6990 }
   6991 
   6992 // Tests that the default_xml_generator listener stops receiving events
   6993 // when removed via Release and that is not owned by the list anymore.
   6994 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   6995   int on_start_counter = 0;
   6996   bool is_destroyed = false;
   6997   // Although Append passes the ownership of this object to the list,
   6998   // the following calls release it, and we need to delete it before the
   6999   // test ends.
   7000   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7001   {
   7002     TestEventListeners listeners;
   7003     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7004 
   7005     EXPECT_EQ(listener, listeners.Release(listener));
   7006     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7007     EXPECT_FALSE(is_destroyed);
   7008 
   7009     // Broadcasting events now should not affect default_xml_generator.
   7010     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7011         *UnitTest::GetInstance());
   7012     EXPECT_EQ(0, on_start_counter);
   7013   }
   7014   // Destroying the list should not affect the listener now, too.
   7015   EXPECT_FALSE(is_destroyed);
   7016   delete listener;
   7017 }
   7018 
   7019 // Sanity tests to ensure that the alternative, verbose spellings of
   7020 // some of the macros work.  We don't test them thoroughly as that
   7021 // would be quite involved.  Since their implementations are
   7022 // straightforward, and they are rarely used, we'll just rely on the
   7023 // users to tell us when they are broken.
   7024 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   7025   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   7026 
   7027   // GTEST_FAIL is the same as FAIL.
   7028   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   7029                        "An expected failure");
   7030 
   7031   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   7032 
   7033   GTEST_ASSERT_EQ(0, 0);
   7034   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   7035                        "An expected failure");
   7036   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   7037                        "An expected failure");
   7038 
   7039   GTEST_ASSERT_NE(0, 1);
   7040   GTEST_ASSERT_NE(1, 0);
   7041   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   7042                        "An expected failure");
   7043 
   7044   GTEST_ASSERT_LE(0, 0);
   7045   GTEST_ASSERT_LE(0, 1);
   7046   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   7047                        "An expected failure");
   7048 
   7049   GTEST_ASSERT_LT(0, 1);
   7050   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   7051                        "An expected failure");
   7052   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   7053                        "An expected failure");
   7054 
   7055   GTEST_ASSERT_GE(0, 0);
   7056   GTEST_ASSERT_GE(1, 0);
   7057   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   7058                        "An expected failure");
   7059 
   7060   GTEST_ASSERT_GT(1, 0);
   7061   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   7062                        "An expected failure");
   7063   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   7064                        "An expected failure");
   7065 }
   7066 
   7067 // Tests for internal utilities necessary for implementation of the universal
   7068 // printing.
   7069 // TODO(vladl (at) google.com): Find a better home for them.
   7070 
   7071 class ConversionHelperBase {};
   7072 class ConversionHelperDerived : public ConversionHelperBase {};
   7073 
   7074 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   7075 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   7076   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   7077                         const_true);
   7078   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   7079 }
   7080 
   7081 // Tests that IsAProtocolMessage<T>::value is true when T is
   7082 // proto2::Message or a sub-class of it.
   7083 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   7084   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   7085   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   7086 }
   7087 
   7088 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   7089 // ProtocolMessage nor a sub-class of it.
   7090 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   7091   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   7092   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   7093 }
   7094 
   7095 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   7096 // equal.
   7097 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   7098   CompileAssertTypesEqual<void, void>();
   7099   CompileAssertTypesEqual<int*, int*>();
   7100 }
   7101 
   7102 // Tests that RemoveReference does not affect non-reference types.
   7103 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   7104   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   7105   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   7106 }
   7107 
   7108 // Tests that RemoveReference removes reference from reference types.
   7109 TEST(RemoveReferenceTest, RemovesReference) {
   7110   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   7111   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   7112 }
   7113 
   7114 // Tests GTEST_REMOVE_REFERENCE_.
   7115 
   7116 template <typename T1, typename T2>
   7117 void TestGTestRemoveReference() {
   7118   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   7119 }
   7120 
   7121 TEST(RemoveReferenceTest, MacroVersion) {
   7122   TestGTestRemoveReference<int, int>();
   7123   TestGTestRemoveReference<const char, const char&>();
   7124 }
   7125 
   7126 
   7127 // Tests that RemoveConst does not affect non-const types.
   7128 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   7129   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   7130   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   7131 }
   7132 
   7133 // Tests that RemoveConst removes const from const types.
   7134 TEST(RemoveConstTest, RemovesConst) {
   7135   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   7136   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   7137   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   7138 }
   7139 
   7140 // Tests GTEST_REMOVE_CONST_.
   7141 
   7142 template <typename T1, typename T2>
   7143 void TestGTestRemoveConst() {
   7144   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7145 }
   7146 
   7147 TEST(RemoveConstTest, MacroVersion) {
   7148   TestGTestRemoveConst<int, int>();
   7149   TestGTestRemoveConst<double&, double&>();
   7150   TestGTestRemoveConst<char, const char>();
   7151 }
   7152 
   7153 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7154 
   7155 template <typename T1, typename T2>
   7156 void TestGTestRemoveReferenceAndConst() {
   7157   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7158 }
   7159 
   7160 TEST(RemoveReferenceToConstTest, Works) {
   7161   TestGTestRemoveReferenceAndConst<int, int>();
   7162   TestGTestRemoveReferenceAndConst<double, double&>();
   7163   TestGTestRemoveReferenceAndConst<char, const char>();
   7164   TestGTestRemoveReferenceAndConst<char, const char&>();
   7165   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7166 }
   7167 
   7168 // Tests that AddReference does not affect reference types.
   7169 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7170   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7171   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7172 }
   7173 
   7174 // Tests that AddReference adds reference to non-reference types.
   7175 TEST(AddReferenceTest, AddsReference) {
   7176   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7177   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7178 }
   7179 
   7180 // Tests GTEST_ADD_REFERENCE_.
   7181 
   7182 template <typename T1, typename T2>
   7183 void TestGTestAddReference() {
   7184   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7185 }
   7186 
   7187 TEST(AddReferenceTest, MacroVersion) {
   7188   TestGTestAddReference<int&, int>();
   7189   TestGTestAddReference<const char&, const char&>();
   7190 }
   7191 
   7192 // Tests GTEST_REFERENCE_TO_CONST_.
   7193 
   7194 template <typename T1, typename T2>
   7195 void TestGTestReferenceToConst() {
   7196   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7197 }
   7198 
   7199 TEST(GTestReferenceToConstTest, Works) {
   7200   TestGTestReferenceToConst<const char&, char>();
   7201   TestGTestReferenceToConst<const int&, const int>();
   7202   TestGTestReferenceToConst<const double&, double>();
   7203   TestGTestReferenceToConst<const std::string&, const std::string&>();
   7204 }
   7205 
   7206 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7207 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7208   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7209   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7210                         const_false);
   7211 }
   7212 
   7213 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7214 // be implicitly converted to T2.
   7215 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7216   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7217   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7218   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7219   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7220   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7221                                      const ConversionHelperBase&>::value));
   7222   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7223                                      ConversionHelperBase>::value));
   7224 }
   7225 
   7226 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7227 // cannot be implicitly converted to T2.
   7228 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7229   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7230   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7231   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7232   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7233                                       ConversionHelperDerived&>::value));
   7234 }
   7235 
   7236 // Tests IsContainerTest.
   7237 
   7238 class NonContainer {};
   7239 
   7240 TEST(IsContainerTestTest, WorksForNonContainer) {
   7241   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7242   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7243   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7244 }
   7245 
   7246 TEST(IsContainerTestTest, WorksForContainer) {
   7247   EXPECT_EQ(sizeof(IsContainer),
   7248             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7249   EXPECT_EQ(sizeof(IsContainer),
   7250             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7251 }
   7252 
   7253 // Tests ArrayEq().
   7254 
   7255 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7256   EXPECT_TRUE(ArrayEq(5, 5L));
   7257   EXPECT_FALSE(ArrayEq('a', 0));
   7258 }
   7259 
   7260 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7261   // Note that a and b are distinct but compatible types.
   7262   const int a[] = { 0, 1 };
   7263   long b[] = { 0, 1 };
   7264   EXPECT_TRUE(ArrayEq(a, b));
   7265   EXPECT_TRUE(ArrayEq(a, 2, b));
   7266 
   7267   b[0] = 2;
   7268   EXPECT_FALSE(ArrayEq(a, b));
   7269   EXPECT_FALSE(ArrayEq(a, 1, b));
   7270 }
   7271 
   7272 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7273   const char a[][3] = { "hi", "lo" };
   7274   const char b[][3] = { "hi", "lo" };
   7275   const char c[][3] = { "hi", "li" };
   7276 
   7277   EXPECT_TRUE(ArrayEq(a, b));
   7278   EXPECT_TRUE(ArrayEq(a, 2, b));
   7279 
   7280   EXPECT_FALSE(ArrayEq(a, c));
   7281   EXPECT_FALSE(ArrayEq(a, 2, c));
   7282 }
   7283 
   7284 // Tests ArrayAwareFind().
   7285 
   7286 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7287   const char a[] = "hello";
   7288   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7289   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7290 }
   7291 
   7292 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7293   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7294   const int b[2] = { 2, 3 };
   7295   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7296 
   7297   const int c[2] = { 6, 7 };
   7298   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7299 }
   7300 
   7301 // Tests CopyArray().
   7302 
   7303 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7304   int n = 0;
   7305   CopyArray('a', &n);
   7306   EXPECT_EQ('a', n);
   7307 }
   7308 
   7309 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7310   const char a[3] = "hi";
   7311   int b[3];
   7312 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7313   CopyArray(a, &b);
   7314   EXPECT_TRUE(ArrayEq(a, b));
   7315 #endif
   7316 
   7317   int c[3];
   7318   CopyArray(a, 3, c);
   7319   EXPECT_TRUE(ArrayEq(a, c));
   7320 }
   7321 
   7322 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7323   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7324   int b[2][3];
   7325 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7326   CopyArray(a, &b);
   7327   EXPECT_TRUE(ArrayEq(a, b));
   7328 #endif
   7329 
   7330   int c[2][3];
   7331   CopyArray(a, 2, c);
   7332   EXPECT_TRUE(ArrayEq(a, c));
   7333 }
   7334 
   7335 // Tests NativeArray.
   7336 
   7337 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7338   const int a[3] = { 0, 1, 2 };
   7339   NativeArray<int> na(a, 3, kReference);
   7340   EXPECT_EQ(3U, na.size());
   7341   EXPECT_EQ(a, na.begin());
   7342 }
   7343 
   7344 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7345   typedef int Array[2];
   7346   Array* a = new Array[1];
   7347   (*a)[0] = 0;
   7348   (*a)[1] = 1;
   7349   NativeArray<int> na(*a, 2, kCopy);
   7350   EXPECT_NE(*a, na.begin());
   7351   delete[] a;
   7352   EXPECT_EQ(0, na.begin()[0]);
   7353   EXPECT_EQ(1, na.begin()[1]);
   7354 
   7355   // We rely on the heap checker to verify that na deletes the copy of
   7356   // array.
   7357 }
   7358 
   7359 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7360   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7361   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7362 
   7363   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7364   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7365 }
   7366 
   7367 TEST(NativeArrayTest, MethodsWork) {
   7368   const int a[3] = { 0, 1, 2 };
   7369   NativeArray<int> na(a, 3, kCopy);
   7370   ASSERT_EQ(3U, na.size());
   7371   EXPECT_EQ(3, na.end() - na.begin());
   7372 
   7373   NativeArray<int>::const_iterator it = na.begin();
   7374   EXPECT_EQ(0, *it);
   7375   ++it;
   7376   EXPECT_EQ(1, *it);
   7377   it++;
   7378   EXPECT_EQ(2, *it);
   7379   ++it;
   7380   EXPECT_EQ(na.end(), it);
   7381 
   7382   EXPECT_TRUE(na == na);
   7383 
   7384   NativeArray<int> na2(a, 3, kReference);
   7385   EXPECT_TRUE(na == na2);
   7386 
   7387   const int b1[3] = { 0, 1, 1 };
   7388   const int b2[4] = { 0, 1, 2, 3 };
   7389   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
   7390   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
   7391 }
   7392 
   7393 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7394   const char a[2][3] = { "hi", "lo" };
   7395   NativeArray<char[3]> na(a, 2, kReference);
   7396   ASSERT_EQ(2U, na.size());
   7397   EXPECT_EQ(a, na.begin());
   7398 }
   7399 
   7400 // Tests SkipPrefix().
   7401 
   7402 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7403   const char* const str = "hello";
   7404 
   7405   const char* p = str;
   7406   EXPECT_TRUE(SkipPrefix("", &p));
   7407   EXPECT_EQ(str, p);
   7408 
   7409   p = str;
   7410   EXPECT_TRUE(SkipPrefix("hell", &p));
   7411   EXPECT_EQ(str + 4, p);
   7412 }
   7413 
   7414 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7415   const char* const str = "world";
   7416 
   7417   const char* p = str;
   7418   EXPECT_FALSE(SkipPrefix("W", &p));
   7419   EXPECT_EQ(str, p);
   7420 
   7421   p = str;
   7422   EXPECT_FALSE(SkipPrefix("world!", &p));
   7423   EXPECT_EQ(str, p);
   7424 }
   7425