1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_VECTOR_H 18 #define ANDROID_VECTOR_H 19 20 #include <stdint.h> 21 #include <sys/types.h> 22 23 #include <log/log.h> 24 #include <utils/TypeHelpers.h> 25 #include <utils/VectorImpl.h> 26 27 /* 28 * Used to blacklist some functions from CFI. 29 * 30 */ 31 #ifndef __has_attribute 32 #define __has_attribute(x) 0 33 #endif 34 35 #if __has_attribute(no_sanitize) 36 #define UTILS_VECTOR_NO_CFI __attribute__((no_sanitize("cfi"))) 37 #else 38 #define UTILS_VECTOR_NO_CFI 39 #endif 40 41 // --------------------------------------------------------------------------- 42 43 namespace android { 44 45 template <typename TYPE> 46 class SortedVector; 47 48 /*! 49 * The main templated vector class ensuring type safety 50 * while making use of VectorImpl. 51 * This is the class users want to use. 52 * 53 * DO NOT USE: please use std::vector 54 */ 55 56 template <class TYPE> 57 class Vector : private VectorImpl 58 { 59 public: 60 typedef TYPE value_type; 61 62 /*! 63 * Constructors and destructors 64 */ 65 66 Vector(); 67 Vector(const Vector<TYPE>& rhs); 68 explicit Vector(const SortedVector<TYPE>& rhs); 69 virtual ~Vector(); 70 71 /*! copy operator */ 72 const Vector<TYPE>& operator = (const Vector<TYPE>& rhs) const; 73 Vector<TYPE>& operator = (const Vector<TYPE>& rhs); 74 75 const Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const; 76 Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs); 77 78 /* 79 * empty the vector 80 */ 81 82 inline void clear() { VectorImpl::clear(); } 83 84 /*! 85 * vector stats 86 */ 87 88 //! returns number of items in the vector 89 inline size_t size() const { return VectorImpl::size(); } 90 //! returns whether or not the vector is empty 91 inline bool isEmpty() const { return VectorImpl::isEmpty(); } 92 //! returns how many items can be stored without reallocating the backing store 93 inline size_t capacity() const { return VectorImpl::capacity(); } 94 //! sets the capacity. capacity can never be reduced less than size() 95 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); } 96 97 /*! 98 * set the size of the vector. items are appended with the default 99 * constructor, or removed from the end as needed. 100 */ 101 inline ssize_t resize(size_t size) { return VectorImpl::resize(size); } 102 103 /*! 104 * C-style array access 105 */ 106 107 //! read-only C-style access 108 inline const TYPE* array() const; 109 //! read-write C-style access 110 TYPE* editArray(); 111 112 /*! 113 * accessors 114 */ 115 116 //! read-only access to an item at a given index 117 inline const TYPE& operator [] (size_t index) const; 118 //! alternate name for operator [] 119 inline const TYPE& itemAt(size_t index) const; 120 //! stack-usage of the vector. returns the top of the stack (last element) 121 const TYPE& top() const; 122 123 /*! 124 * modifying the array 125 */ 126 127 //! copy-on write support, grants write access to an item 128 TYPE& editItemAt(size_t index); 129 //! grants right access to the top of the stack (last element) 130 TYPE& editTop(); 131 132 /*! 133 * append/insert another vector 134 */ 135 136 //! insert another vector at a given index 137 ssize_t insertVectorAt(const Vector<TYPE>& vector, size_t index); 138 139 //! append another vector at the end of this one 140 ssize_t appendVector(const Vector<TYPE>& vector); 141 142 143 //! insert an array at a given index 144 ssize_t insertArrayAt(const TYPE* array, size_t index, size_t length); 145 146 //! append an array at the end of this vector 147 ssize_t appendArray(const TYPE* array, size_t length); 148 149 /*! 150 * add/insert/replace items 151 */ 152 153 //! insert one or several items initialized with their default constructor 154 inline ssize_t insertAt(size_t index, size_t numItems = 1); 155 //! insert one or several items initialized from a prototype item 156 ssize_t insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1); 157 //! pop the top of the stack (removes the last element). No-op if the stack's empty 158 inline void pop(); 159 //! pushes an item initialized with its default constructor 160 inline void push(); 161 //! pushes an item on the top of the stack 162 void push(const TYPE& item); 163 //! same as push() but returns the index the item was added at (or an error) 164 inline ssize_t add(); 165 //! same as push() but returns the index the item was added at (or an error) 166 ssize_t add(const TYPE& item); 167 //! replace an item with a new one initialized with its default constructor 168 inline ssize_t replaceAt(size_t index); 169 //! replace an item with a new one 170 ssize_t replaceAt(const TYPE& item, size_t index); 171 172 /*! 173 * remove items 174 */ 175 176 //! remove several items 177 inline ssize_t removeItemsAt(size_t index, size_t count = 1); 178 //! remove one item 179 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); } 180 181 /*! 182 * sort (stable) the array 183 */ 184 185 typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs); 186 typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state); 187 188 inline status_t sort(compar_t cmp); 189 inline status_t sort(compar_r_t cmp, void* state); 190 191 // for debugging only 192 inline size_t getItemSize() const { return itemSize(); } 193 194 195 /* 196 * these inlines add some level of compatibility with STL. eventually 197 * we should probably turn things around. 198 */ 199 typedef TYPE* iterator; 200 typedef TYPE const* const_iterator; 201 202 inline iterator begin() { return editArray(); } 203 inline iterator end() { return editArray() + size(); } 204 inline const_iterator begin() const { return array(); } 205 inline const_iterator end() const { return array() + size(); } 206 inline void reserve(size_t n) { setCapacity(n); } 207 inline bool empty() const{ return isEmpty(); } 208 inline void push_back(const TYPE& item) { insertAt(item, size(), 1); } 209 inline void push_front(const TYPE& item) { insertAt(item, 0, 1); } 210 inline iterator erase(iterator pos) { 211 ssize_t index = removeItemsAt(static_cast<size_t>(pos-array())); 212 return begin() + index; 213 } 214 215 protected: 216 virtual void do_construct(void* storage, size_t num) const; 217 virtual void do_destroy(void* storage, size_t num) const; 218 virtual void do_copy(void* dest, const void* from, size_t num) const; 219 virtual void do_splat(void* dest, const void* item, size_t num) const; 220 virtual void do_move_forward(void* dest, const void* from, size_t num) const; 221 virtual void do_move_backward(void* dest, const void* from, size_t num) const; 222 }; 223 224 // --------------------------------------------------------------------------- 225 // No user serviceable parts from here... 226 // --------------------------------------------------------------------------- 227 228 template<class TYPE> inline 229 Vector<TYPE>::Vector() 230 : VectorImpl(sizeof(TYPE), 231 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0) 232 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0) 233 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0)) 234 ) 235 { 236 } 237 238 template<class TYPE> inline 239 Vector<TYPE>::Vector(const Vector<TYPE>& rhs) 240 : VectorImpl(rhs) { 241 } 242 243 template<class TYPE> inline 244 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs) 245 : VectorImpl(static_cast<const VectorImpl&>(rhs)) { 246 } 247 248 template<class TYPE> inline 249 Vector<TYPE>::~Vector() { 250 finish_vector(); 251 } 252 253 template<class TYPE> inline 254 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) { 255 VectorImpl::operator = (rhs); 256 return *this; 257 } 258 259 template<class TYPE> inline 260 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const { 261 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)); 262 return *this; 263 } 264 265 template<class TYPE> inline 266 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) { 267 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)); 268 return *this; 269 } 270 271 template<class TYPE> inline 272 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const { 273 VectorImpl::operator = (rhs); 274 return *this; 275 } 276 277 template<class TYPE> inline 278 const TYPE* Vector<TYPE>::array() const { 279 return static_cast<const TYPE *>(arrayImpl()); 280 } 281 282 template<class TYPE> inline 283 TYPE* Vector<TYPE>::editArray() { 284 return static_cast<TYPE *>(editArrayImpl()); 285 } 286 287 288 template<class TYPE> inline 289 const TYPE& Vector<TYPE>::operator[](size_t index) const { 290 LOG_FATAL_IF(index>=size(), 291 "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__, 292 int(index), int(size())); 293 return *(array() + index); 294 } 295 296 template<class TYPE> inline 297 const TYPE& Vector<TYPE>::itemAt(size_t index) const { 298 return operator[](index); 299 } 300 301 template<class TYPE> inline 302 const TYPE& Vector<TYPE>::top() const { 303 return *(array() + size() - 1); 304 } 305 306 template<class TYPE> inline 307 TYPE& Vector<TYPE>::editItemAt(size_t index) { 308 return *( static_cast<TYPE *>(editItemLocation(index)) ); 309 } 310 311 template<class TYPE> inline 312 TYPE& Vector<TYPE>::editTop() { 313 return *( static_cast<TYPE *>(editItemLocation(size()-1)) ); 314 } 315 316 template<class TYPE> inline 317 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) { 318 return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index); 319 } 320 321 template<class TYPE> inline 322 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) { 323 return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector)); 324 } 325 326 template<class TYPE> inline 327 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) { 328 return VectorImpl::insertArrayAt(array, index, length); 329 } 330 331 template<class TYPE> inline 332 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) { 333 return VectorImpl::appendArray(array, length); 334 } 335 336 template<class TYPE> inline 337 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) { 338 return VectorImpl::insertAt(&item, index, numItems); 339 } 340 341 template<class TYPE> inline 342 void Vector<TYPE>::push(const TYPE& item) { 343 return VectorImpl::push(&item); 344 } 345 346 template<class TYPE> inline 347 ssize_t Vector<TYPE>::add(const TYPE& item) { 348 return VectorImpl::add(&item); 349 } 350 351 template<class TYPE> inline 352 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) { 353 return VectorImpl::replaceAt(&item, index); 354 } 355 356 template<class TYPE> inline 357 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) { 358 return VectorImpl::insertAt(index, numItems); 359 } 360 361 template<class TYPE> inline 362 void Vector<TYPE>::pop() { 363 VectorImpl::pop(); 364 } 365 366 template<class TYPE> inline 367 void Vector<TYPE>::push() { 368 VectorImpl::push(); 369 } 370 371 template<class TYPE> inline 372 ssize_t Vector<TYPE>::add() { 373 return VectorImpl::add(); 374 } 375 376 template<class TYPE> inline 377 ssize_t Vector<TYPE>::replaceAt(size_t index) { 378 return VectorImpl::replaceAt(index); 379 } 380 381 template<class TYPE> inline 382 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) { 383 return VectorImpl::removeItemsAt(index, count); 384 } 385 386 template<class TYPE> inline 387 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) { 388 return VectorImpl::sort(reinterpret_cast<VectorImpl::compar_t>(cmp)); 389 } 390 391 template<class TYPE> inline 392 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) { 393 return VectorImpl::sort(reinterpret_cast<VectorImpl::compar_r_t>(cmp), state); 394 } 395 396 // --------------------------------------------------------------------------- 397 398 template<class TYPE> 399 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_construct(void* storage, size_t num) const { 400 construct_type( reinterpret_cast<TYPE*>(storage), num ); 401 } 402 403 template<class TYPE> 404 void Vector<TYPE>::do_destroy(void* storage, size_t num) const { 405 destroy_type( reinterpret_cast<TYPE*>(storage), num ); 406 } 407 408 template<class TYPE> 409 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const { 410 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 411 } 412 413 template<class TYPE> 414 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const { 415 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num ); 416 } 417 418 template<class TYPE> 419 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const { 420 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 421 } 422 423 template<class TYPE> 424 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const { 425 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 426 } 427 428 }; // namespace android 429 430 431 // --------------------------------------------------------------------------- 432 433 #endif // ANDROID_VECTOR_H 434