Home | History | Annotate | Download | only in gold
      1 // ehframe.cc -- handle exception frame sections for gold
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cstring>
     26 #include <algorithm>
     27 
     28 #include "elfcpp.h"
     29 #include "dwarf.h"
     30 #include "symtab.h"
     31 #include "reloc.h"
     32 #include "ehframe.h"
     33 
     34 namespace gold
     35 {
     36 
     37 // This file handles generation of the exception frame header that
     38 // gcc's runtime support libraries use to find unwind information at
     39 // runtime.  This file also handles discarding duplicate exception
     40 // frame information.
     41 
     42 // The exception frame header starts with four bytes:
     43 
     44 // 0: The version number, currently 1.
     45 
     46 // 1: The encoding of the pointer to the exception frames.  This can
     47 //    be any DWARF unwind encoding (DW_EH_PE_*).  It is normally a 4
     48 //    byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
     49 
     50 // 2: The encoding of the count of the number of FDE pointers in the
     51 //    lookup table.  This can be any DWARF unwind encoding, and in
     52 //    particular can be DW_EH_PE_omit if the count is omitted.  It is
     53 //    normally a 4 byte unsigned count (DW_EH_PE_udata4).
     54 
     55 // 3: The encoding of the lookup table entries.  Currently gcc's
     56 //    libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
     57 //    which means that the values are 4 byte offsets from the start of
     58 //    the table.
     59 
     60 // The exception frame header is followed by a pointer to the contents
     61 // of the exception frame section (.eh_frame).  This pointer is
     62 // encoded as specified in the byte at offset 1 of the header (i.e.,
     63 // it is normally a 4 byte PC relative offset).
     64 
     65 // If there is a lookup table, this is followed by the count of the
     66 // number of FDE pointers, encoded as specified in the byte at offset
     67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
     68 
     69 // This is followed by the table, which should start at an 4-byte
     70 // aligned address in memory.  Each entry in the table is 8 bytes.
     71 // Each entry represents an FDE.  The first four bytes of each entry
     72 // are an offset to the starting PC for the FDE.  The last four bytes
     73 // of each entry are an offset to the FDE data.  The offsets are from
     74 // the start of the exception frame header information.  The entries
     75 // are in sorted order by starting PC.
     76 
     77 const int eh_frame_hdr_size = 4;
     78 
     79 // Construct the exception frame header.
     80 
     81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
     82 			   const Eh_frame* eh_frame_data)
     83   : Output_section_data(4),
     84     eh_frame_section_(eh_frame_section),
     85     eh_frame_data_(eh_frame_data),
     86     fde_offsets_(),
     87     any_unrecognized_eh_frame_sections_(false)
     88 {
     89 }
     90 
     91 // Set the size of the exception frame header.
     92 
     93 void
     94 Eh_frame_hdr::set_final_data_size()
     95 {
     96   unsigned int data_size = eh_frame_hdr_size + 4;
     97   if (!this->any_unrecognized_eh_frame_sections_)
     98     {
     99       unsigned int fde_count = this->eh_frame_data_->fde_count();
    100       if (fde_count != 0)
    101 	data_size += 4 + 8 * fde_count;
    102       this->fde_offsets_.reserve(fde_count);
    103     }
    104   this->set_data_size(data_size);
    105 }
    106 
    107 // Write the data to the file.
    108 
    109 void
    110 Eh_frame_hdr::do_write(Output_file* of)
    111 {
    112   switch (parameters->size_and_endianness())
    113     {
    114 #ifdef HAVE_TARGET_32_LITTLE
    115     case Parameters::TARGET_32_LITTLE:
    116       this->do_sized_write<32, false>(of);
    117       break;
    118 #endif
    119 #ifdef HAVE_TARGET_32_BIG
    120     case Parameters::TARGET_32_BIG:
    121       this->do_sized_write<32, true>(of);
    122       break;
    123 #endif
    124 #ifdef HAVE_TARGET_64_LITTLE
    125     case Parameters::TARGET_64_LITTLE:
    126       this->do_sized_write<64, false>(of);
    127       break;
    128 #endif
    129 #ifdef HAVE_TARGET_64_BIG
    130     case Parameters::TARGET_64_BIG:
    131       this->do_sized_write<64, true>(of);
    132       break;
    133 #endif
    134     default:
    135       gold_unreachable();
    136     }
    137 }
    138 
    139 // Write the data to the file with the right endianness.
    140 
    141 template<int size, bool big_endian>
    142 void
    143 Eh_frame_hdr::do_sized_write(Output_file* of)
    144 {
    145   const off_t off = this->offset();
    146   const off_t oview_size = this->data_size();
    147   unsigned char* const oview = of->get_output_view(off, oview_size);
    148 
    149   // Version number.
    150   oview[0] = 1;
    151 
    152   // Write out a 4 byte PC relative offset to the address of the
    153   // .eh_frame section.
    154   oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
    155   uint64_t eh_frame_address = this->eh_frame_section_->address();
    156   uint64_t eh_frame_hdr_address = this->address();
    157   uint64_t eh_frame_offset = (eh_frame_address -
    158 			      (eh_frame_hdr_address + 4));
    159   elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
    160 
    161   if (this->any_unrecognized_eh_frame_sections_
    162       || this->fde_offsets_.empty())
    163     {
    164       // There are no FDEs, or we didn't recognize the format of the
    165       // some of the .eh_frame sections, so we can't write out the
    166       // sorted table.
    167       oview[2] = elfcpp::DW_EH_PE_omit;
    168       oview[3] = elfcpp::DW_EH_PE_omit;
    169 
    170       gold_assert(oview_size == 8);
    171     }
    172   else
    173     {
    174       oview[2] = elfcpp::DW_EH_PE_udata4;
    175       oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
    176 
    177       elfcpp::Swap<32, big_endian>::writeval(oview + 8,
    178 					     this->fde_offsets_.size());
    179 
    180       // We have the offsets of the FDEs in the .eh_frame section.  We
    181       // couldn't easily get the PC values before, as they depend on
    182       // relocations which are, of course, target specific.  This code
    183       // is run after all those relocations have been applied to the
    184       // output file.  Here we read the output file again to find the
    185       // PC values.  Then we sort the list and write it out.
    186 
    187       Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
    188       this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
    189 						&fde_addresses);
    190 
    191       std::sort(fde_addresses.begin(), fde_addresses.end(),
    192 		Fde_address_compare<size>());
    193 
    194       typename elfcpp::Elf_types<size>::Elf_Addr output_address;
    195       output_address = this->address();
    196 
    197       unsigned char* pfde = oview + 12;
    198       for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
    199 	   p != fde_addresses.end();
    200 	   ++p)
    201 	{
    202 	  elfcpp::Swap<32, big_endian>::writeval(pfde,
    203 						 p->first - output_address);
    204 	  elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
    205 						 p->second - output_address);
    206 	  pfde += 8;
    207 	}
    208 
    209       gold_assert(pfde - oview == oview_size);
    210     }
    211 
    212   of->write_output_view(off, oview_size, oview);
    213 }
    214 
    215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
    216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
    217 // FDE's encoding is FDE_ENCODING, return the output address of the
    218 // FDE's PC.
    219 
    220 template<int size, bool big_endian>
    221 typename elfcpp::Elf_types<size>::Elf_Addr
    222 Eh_frame_hdr::get_fde_pc(
    223     typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
    224     const unsigned char* eh_frame_contents,
    225     section_offset_type fde_offset,
    226     unsigned char fde_encoding)
    227 {
    228   // The FDE starts with a 4 byte length and a 4 byte offset to the
    229   // CIE.  The PC follows.
    230   const unsigned char* p = eh_frame_contents + fde_offset + 8;
    231 
    232   typename elfcpp::Elf_types<size>::Elf_Addr pc;
    233   bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
    234   int pc_size = fde_encoding & 7;
    235   if (pc_size == elfcpp::DW_EH_PE_absptr)
    236     {
    237       if (size == 32)
    238 	pc_size = elfcpp::DW_EH_PE_udata4;
    239       else if (size == 64)
    240 	pc_size = elfcpp::DW_EH_PE_udata8;
    241       else
    242 	gold_unreachable();
    243     }
    244 
    245   switch (pc_size)
    246     {
    247     case elfcpp::DW_EH_PE_udata2:
    248       pc = elfcpp::Swap<16, big_endian>::readval(p);
    249       if (is_signed)
    250 	pc = (pc ^ 0x8000) - 0x8000;
    251       break;
    252 
    253     case elfcpp::DW_EH_PE_udata4:
    254       pc = elfcpp::Swap<32, big_endian>::readval(p);
    255       if (size > 32 && is_signed)
    256 	pc = (pc ^ 0x80000000) - 0x80000000;
    257       break;
    258 
    259     case elfcpp::DW_EH_PE_udata8:
    260       gold_assert(size == 64);
    261       pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
    262       break;
    263 
    264     default:
    265       // All other cases were rejected in Eh_frame::read_cie.
    266       gold_unreachable();
    267     }
    268 
    269   switch (fde_encoding & 0x70)
    270     {
    271     case 0:
    272       break;
    273 
    274     case elfcpp::DW_EH_PE_pcrel:
    275       pc += eh_frame_address + fde_offset + 8;
    276       break;
    277 
    278     case elfcpp::DW_EH_PE_datarel:
    279       pc += parameters->target().ehframe_datarel_base();
    280       break;
    281 
    282     default:
    283       // If other cases arise, then we have to handle them, or we have
    284       // to reject them by returning false in Eh_frame::read_cie.
    285       gold_unreachable();
    286     }
    287 
    288   gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
    289 
    290   return pc;
    291 }
    292 
    293 // Given an array of FDE offsets in the .eh_frame section, return an
    294 // array of offsets from the exception frame header to the FDE's
    295 // output PC and to the output address of the FDE itself.  We get the
    296 // FDE's PC by actually looking in the .eh_frame section we just wrote
    297 // to the output file.
    298 
    299 template<int size, bool big_endian>
    300 void
    301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
    302 				const Fde_offsets* fde_offsets,
    303 				Fde_addresses<size>* fde_addresses)
    304 {
    305   typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
    306   eh_frame_address = this->eh_frame_section_->address();
    307   off_t eh_frame_offset = this->eh_frame_section_->offset();
    308   off_t eh_frame_size = this->eh_frame_section_->data_size();
    309   const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
    310 							      eh_frame_size);
    311 
    312   for (Fde_offsets::const_iterator p = fde_offsets->begin();
    313        p != fde_offsets->end();
    314        ++p)
    315     {
    316       typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
    317       fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
    318 						  eh_frame_contents,
    319 						  p->first, p->second);
    320       fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
    321     }
    322 
    323   of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
    324 }
    325 
    326 // Class Fde.
    327 
    328 // Write the FDE to OVIEW starting at OFFSET.  CIE_OFFSET is the
    329 // offset of the CIE in OVIEW.  OUTPUT_OFFSET is the offset of the
    330 // Eh_frame section within the output section.  FDE_ENCODING is the
    331 // encoding, from the CIE.  ADDRALIGN is the required alignment.
    332 // ADDRESS is the virtual address of OVIEW.  Record the FDE pc for
    333 // EH_FRAME_HDR.  Return the new offset.
    334 
    335 template<int size, bool big_endian>
    336 section_offset_type
    337 Fde::write(unsigned char* oview, section_offset_type output_offset,
    338 	   section_offset_type offset, uint64_t address, unsigned int addralign,
    339 	   section_offset_type cie_offset, unsigned char fde_encoding,
    340 	   Eh_frame_hdr* eh_frame_hdr)
    341 {
    342   gold_assert((offset & (addralign - 1)) == 0);
    343 
    344   size_t length = this->contents_.length();
    345 
    346   // We add 8 when getting the aligned length to account for the
    347   // length word and the CIE offset.
    348   size_t aligned_full_length = align_address(length + 8, addralign);
    349 
    350   // Write the length of the FDE as a 32-bit word.  The length word
    351   // does not include the four bytes of the length word itself, but it
    352   // does include the offset to the CIE.
    353   elfcpp::Swap<32, big_endian>::writeval(oview + offset,
    354                                          aligned_full_length - 4);
    355 
    356   // Write the offset to the CIE as a 32-bit word.  This is the
    357   // difference between the address of the offset word itself and the
    358   // CIE address.
    359   elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
    360 					 offset + 4 - cie_offset);
    361 
    362   // Copy the rest of the FDE.  Note that this is run before
    363   // relocation processing is done on this section, so the relocations
    364   // will later be applied to the FDE data.
    365   memcpy(oview + offset + 8, this->contents_.data(), length);
    366 
    367   // If this FDE is associated with a PLT, fill in the PLT's address
    368   // and size.
    369   if (this->object_ == NULL)
    370     {
    371       gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
    372       uint64_t paddress;
    373       off_t psize;
    374       parameters->target().plt_fde_location(this->u_.from_linker.plt,
    375 					    oview + offset + 8,
    376 					    &paddress, &psize);
    377       uint64_t poffset = paddress - (address + offset + 8);
    378       int32_t spoffset = static_cast<int32_t>(poffset);
    379       uint32_t upsize = static_cast<uint32_t>(psize);
    380       if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
    381 	  || static_cast<off_t>(upsize) != psize)
    382 	gold_warning(_("overflow in PLT unwind data; "
    383 		       "unwinding through PLT may fail"));
    384       elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
    385       elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
    386     }
    387 
    388   if (aligned_full_length > length + 8)
    389     memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
    390 
    391   // Tell the exception frame header about this FDE.
    392   if (eh_frame_hdr != NULL)
    393     eh_frame_hdr->record_fde(output_offset + offset, fde_encoding);
    394 
    395   return offset + aligned_full_length;
    396 }
    397 
    398 // Class Cie.
    399 
    400 // Destructor.
    401 
    402 Cie::~Cie()
    403 {
    404   for (std::vector<Fde*>::iterator p = this->fdes_.begin();
    405        p != this->fdes_.end();
    406        ++p)
    407     delete *p;
    408 }
    409 
    410 // Set the output offset of a CIE.  Return the new output offset.
    411 
    412 section_offset_type
    413 Cie::set_output_offset(section_offset_type output_offset,
    414 		       unsigned int addralign,
    415 		       Output_section_data *output_data)
    416 {
    417   size_t length = this->contents_.length();
    418 
    419   // Add 4 for length and 4 for zero CIE identifier tag.
    420   length += 8;
    421 
    422   if (this->object_ != NULL)
    423     {
    424       // Add a mapping so that relocations are applied correctly.
    425       this->object_->add_merge_mapping(output_data, this->shndx_,
    426                                        this->input_offset_, length,
    427                                        output_offset);
    428     }
    429 
    430   length = align_address(length, addralign);
    431 
    432   for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
    433        p != this->fdes_.end();
    434        ++p)
    435     {
    436       (*p)->add_mapping(output_offset + length, output_data);
    437 
    438       size_t fde_length = (*p)->length();
    439       fde_length = align_address(fde_length, addralign);
    440       length += fde_length;
    441     }
    442 
    443   return output_offset + length;
    444 }
    445 
    446 // Write the CIE to OVIEW starting at OFFSET.  OUTPUT_OFFSET is the
    447 // offset of the Eh_frame section within the output section.  Round up
    448 // the bytes to ADDRALIGN.  ADDRESS is the virtual address of OVIEW.
    449 // EH_FRAME_HDR is the exception frame header for FDE recording.
    450 // POST_FDES stashes FDEs created after mappings were done, for later
    451 // writing.  Return the new offset.
    452 
    453 template<int size, bool big_endian>
    454 section_offset_type
    455 Cie::write(unsigned char* oview, section_offset_type output_offset,
    456 	   section_offset_type offset, uint64_t address,
    457 	   unsigned int addralign, Eh_frame_hdr* eh_frame_hdr,
    458 	   Post_fdes* post_fdes)
    459 {
    460   gold_assert((offset & (addralign - 1)) == 0);
    461 
    462   section_offset_type cie_offset = offset;
    463 
    464   size_t length = this->contents_.length();
    465 
    466   // We add 8 when getting the aligned length to account for the
    467   // length word and the CIE tag.
    468   size_t aligned_full_length = align_address(length + 8, addralign);
    469 
    470   // Write the length of the CIE as a 32-bit word.  The length word
    471   // does not include the four bytes of the length word itself.
    472   elfcpp::Swap<32, big_endian>::writeval(oview + offset,
    473                                          aligned_full_length - 4);
    474 
    475   // Write the tag which marks this as a CIE: a 32-bit zero.
    476   elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
    477 
    478   // Write out the CIE data.
    479   memcpy(oview + offset + 8, this->contents_.data(), length);
    480 
    481   if (aligned_full_length > length + 8)
    482     memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
    483 
    484   offset += aligned_full_length;
    485 
    486   // Write out the associated FDEs.
    487   unsigned char fde_encoding = this->fde_encoding_;
    488   for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
    489        p != this->fdes_.end();
    490        ++p)
    491     {
    492       if ((*p)->post_map())
    493 	post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding));
    494       else
    495 	offset = (*p)->write<size, big_endian>(oview, output_offset, offset,
    496 					       address, addralign, cie_offset,
    497 					       fde_encoding, eh_frame_hdr);
    498     }
    499 
    500   return offset;
    501 }
    502 
    503 // We track all the CIEs we see, and merge them when possible.  This
    504 // works because each FDE holds an offset to the relevant CIE: we
    505 // rewrite the FDEs to point to the merged CIE.  This is worthwhile
    506 // because in a typical C++ program many FDEs in many different object
    507 // files will use the same CIE.
    508 
    509 // An equality operator for Cie.
    510 
    511 bool
    512 operator==(const Cie& cie1, const Cie& cie2)
    513 {
    514   return (cie1.personality_name_ == cie2.personality_name_
    515 	  && cie1.contents_ == cie2.contents_);
    516 }
    517 
    518 // A less-than operator for Cie.
    519 
    520 bool
    521 operator<(const Cie& cie1, const Cie& cie2)
    522 {
    523   if (cie1.personality_name_ != cie2.personality_name_)
    524     return cie1.personality_name_ < cie2.personality_name_;
    525   return cie1.contents_ < cie2.contents_;
    526 }
    527 
    528 // Class Eh_frame.
    529 
    530 Eh_frame::Eh_frame()
    531   : Output_section_data(Output_data::default_alignment()),
    532     eh_frame_hdr_(NULL),
    533     cie_offsets_(),
    534     unmergeable_cie_offsets_(),
    535     mappings_are_done_(false),
    536     final_data_size_(0)
    537 {
    538 }
    539 
    540 // Skip an LEB128, updating *PP to point to the next character.
    541 // Return false if we ran off the end of the string.
    542 
    543 bool
    544 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
    545 {
    546   const unsigned char* p;
    547   for (p = *pp; p < pend; ++p)
    548     {
    549       if ((*p & 0x80) == 0)
    550 	{
    551 	  *pp = p + 1;
    552 	  return true;
    553 	}
    554     }
    555   return false;
    556 }
    557 
    558 // Add input section SHNDX in OBJECT to an exception frame section.
    559 // SYMBOLS is the contents of the symbol table section (size
    560 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
    561 // SYMBOL_NAMES_SIZE).  RELOC_SHNDX is the index of a relocation
    562 // section applying to SHNDX, or 0 if none, or -1U if more than one.
    563 // RELOC_TYPE is the type of the reloc section if there is one, either
    564 // SHT_REL or SHT_RELA.  We try to parse the input exception frame
    565 // data into our data structures.  If we can't do it, we return false
    566 // to mean that the section should be handled as a normal input
    567 // section.
    568 
    569 template<int size, bool big_endian>
    570 Eh_frame::Eh_frame_section_disposition
    571 Eh_frame::add_ehframe_input_section(
    572     Sized_relobj_file<size, big_endian>* object,
    573     const unsigned char* symbols,
    574     section_size_type symbols_size,
    575     const unsigned char* symbol_names,
    576     section_size_type symbol_names_size,
    577     unsigned int shndx,
    578     unsigned int reloc_shndx,
    579     unsigned int reloc_type)
    580 {
    581   // Get the section contents.
    582   section_size_type contents_len;
    583   const unsigned char* pcontents = object->section_contents(shndx,
    584 							    &contents_len,
    585 							    false);
    586   if (contents_len == 0)
    587     return EH_EMPTY_SECTION;
    588 
    589   // If this is the marker section for the end of the data, then
    590   // return false to force it to be handled as an ordinary input
    591   // section.  If we don't do this, we won't correctly handle the case
    592   // of unrecognized .eh_frame sections.
    593   if (contents_len == 4
    594       && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
    595     return EH_END_MARKER_SECTION;
    596 
    597   New_cies new_cies;
    598   if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
    599 					  symbol_names, symbol_names_size,
    600 					  shndx, reloc_shndx,
    601 					  reloc_type, pcontents,
    602 					  contents_len, &new_cies))
    603     {
    604       if (this->eh_frame_hdr_ != NULL)
    605 	this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
    606 
    607       for (New_cies::iterator p = new_cies.begin();
    608 	   p != new_cies.end();
    609 	   ++p)
    610 	delete p->first;
    611 
    612       return EH_UNRECOGNIZED_SECTION;
    613     }
    614 
    615   // Now that we know we are using this section, record any new CIEs
    616   // that we found.
    617   for (New_cies::const_iterator p = new_cies.begin();
    618        p != new_cies.end();
    619        ++p)
    620     {
    621       if (p->second)
    622 	this->cie_offsets_.insert(p->first);
    623       else
    624 	this->unmergeable_cie_offsets_.push_back(p->first);
    625     }
    626 
    627   return EH_OPTIMIZABLE_SECTION;
    628 }
    629 
    630 // The bulk of the implementation of add_ehframe_input_section.
    631 
    632 template<int size, bool big_endian>
    633 bool
    634 Eh_frame::do_add_ehframe_input_section(
    635     Sized_relobj_file<size, big_endian>* object,
    636     const unsigned char* symbols,
    637     section_size_type symbols_size,
    638     const unsigned char* symbol_names,
    639     section_size_type symbol_names_size,
    640     unsigned int shndx,
    641     unsigned int reloc_shndx,
    642     unsigned int reloc_type,
    643     const unsigned char* pcontents,
    644     section_size_type contents_len,
    645     New_cies* new_cies)
    646 {
    647   Track_relocs<size, big_endian> relocs;
    648 
    649   const unsigned char* p = pcontents;
    650   const unsigned char* pend = p + contents_len;
    651 
    652   // Get the contents of the reloc section if any.
    653   if (!relocs.initialize(object, reloc_shndx, reloc_type))
    654     return false;
    655 
    656   // Keep track of which CIEs are at which offsets.
    657   Offsets_to_cie cies;
    658 
    659   while (p < pend)
    660     {
    661       if (pend - p < 4)
    662 	return false;
    663 
    664       // There shouldn't be any relocations here.
    665       if (relocs.advance(p + 4 - pcontents) > 0)
    666 	return false;
    667 
    668       unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
    669       p += 4;
    670       if (len == 0)
    671 	{
    672 	  // We should only find a zero-length entry at the end of the
    673 	  // section.
    674 	  if (p < pend)
    675 	    return false;
    676 	  break;
    677 	}
    678       // We don't support a 64-bit .eh_frame.
    679       if (len == 0xffffffff)
    680 	return false;
    681       if (static_cast<unsigned int>(pend - p) < len)
    682 	return false;
    683 
    684       const unsigned char* const pentend = p + len;
    685 
    686       if (pend - p < 4)
    687 	return false;
    688       if (relocs.advance(p + 4 - pcontents) > 0)
    689 	return false;
    690 
    691       unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
    692       p += 4;
    693 
    694       if (id == 0)
    695 	{
    696 	  // CIE.
    697 	  if (!this->read_cie(object, shndx, symbols, symbols_size,
    698 			      symbol_names, symbol_names_size,
    699 			      pcontents, p, pentend, &relocs, &cies,
    700 			      new_cies))
    701 	    return false;
    702 	}
    703       else
    704 	{
    705 	  // FDE.
    706 	  if (!this->read_fde(object, shndx, symbols, symbols_size,
    707 			      pcontents, id, p, pentend, &relocs, &cies))
    708 	    return false;
    709 	}
    710 
    711       p = pentend;
    712     }
    713 
    714   return true;
    715 }
    716 
    717 // Read a CIE.  Return false if we can't parse the information.
    718 
    719 template<int size, bool big_endian>
    720 bool
    721 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
    722 		   unsigned int shndx,
    723 		   const unsigned char* symbols,
    724 		   section_size_type symbols_size,
    725 		   const unsigned char* symbol_names,
    726 		   section_size_type symbol_names_size,
    727 		   const unsigned char* pcontents,
    728 		   const unsigned char* pcie,
    729 		   const unsigned char* pcieend,
    730 		   Track_relocs<size, big_endian>* relocs,
    731 		   Offsets_to_cie* cies,
    732 		   New_cies* new_cies)
    733 {
    734   bool mergeable = true;
    735 
    736   // We need to find the personality routine if there is one, since we
    737   // can only merge CIEs which use the same routine.  We also need to
    738   // find the FDE encoding if there is one, so that we can read the PC
    739   // from the FDE.
    740 
    741   const unsigned char* p = pcie;
    742 
    743   if (pcieend - p < 1)
    744     return false;
    745   unsigned char version = *p++;
    746   if (version != 1 && version != 3)
    747     return false;
    748 
    749   const unsigned char* paug = p;
    750   const void* paugendv = memchr(p, '\0', pcieend - p);
    751   const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
    752   if (paugend == NULL)
    753     return false;
    754   p = paugend + 1;
    755 
    756   if (paug[0] == 'e' && paug[1] == 'h')
    757     {
    758       // This is a CIE from gcc before version 3.0.  We can't merge
    759       // these.  We can still read the FDEs.
    760       mergeable = false;
    761       paug += 2;
    762       if (*paug != '\0')
    763 	return false;
    764       if (pcieend - p < size / 8)
    765 	return false;
    766       p += size / 8;
    767     }
    768 
    769   // Skip the code alignment.
    770   if (!skip_leb128(&p, pcieend))
    771     return false;
    772 
    773   // Skip the data alignment.
    774   if (!skip_leb128(&p, pcieend))
    775     return false;
    776 
    777   // Skip the return column.
    778   if (version == 1)
    779     {
    780       if (pcieend - p < 1)
    781 	return false;
    782       ++p;
    783     }
    784   else
    785     {
    786       if (!skip_leb128(&p, pcieend))
    787 	return false;
    788     }
    789 
    790   if (*paug == 'z')
    791     {
    792       ++paug;
    793       // Skip the augmentation size.
    794       if (!skip_leb128(&p, pcieend))
    795 	return false;
    796     }
    797 
    798   unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
    799   int per_offset = -1;
    800   while (*paug != '\0')
    801     {
    802       switch (*paug)
    803 	{
    804 	case 'L': // LSDA encoding.
    805 	  if (pcieend - p < 1)
    806 	    return false;
    807 	  ++p;
    808 	  break;
    809 
    810 	case 'R': // FDE encoding.
    811 	  if (pcieend - p < 1)
    812 	    return false;
    813 	  fde_encoding = *p;
    814 	  switch (fde_encoding & 7)
    815 	    {
    816 	    case elfcpp::DW_EH_PE_absptr:
    817 	    case elfcpp::DW_EH_PE_udata2:
    818 	    case elfcpp::DW_EH_PE_udata4:
    819 	    case elfcpp::DW_EH_PE_udata8:
    820 	      break;
    821 	    default:
    822 	      // We don't expect to see any other cases here, and
    823 	      // we're not prepared to handle them.
    824 	      return false;
    825 	    }
    826 	  ++p;
    827 	  break;
    828 
    829 	case 'S':
    830 	  break;
    831 
    832 	case 'P':
    833 	  // Personality encoding.
    834 	  {
    835 	    if (pcieend - p < 1)
    836 	      return false;
    837 	    unsigned char per_encoding = *p;
    838 	    ++p;
    839 
    840 	    if ((per_encoding & 0x60) == 0x60)
    841 	      return false;
    842 	    unsigned int per_width;
    843 	    switch (per_encoding & 7)
    844 	      {
    845 	      case elfcpp::DW_EH_PE_udata2:
    846 		per_width = 2;
    847 		break;
    848 	      case elfcpp::DW_EH_PE_udata4:
    849 		per_width = 4;
    850 		break;
    851 	      case elfcpp::DW_EH_PE_udata8:
    852 		per_width = 8;
    853 		break;
    854 	      case elfcpp::DW_EH_PE_absptr:
    855 		per_width = size / 8;
    856 		break;
    857 	      default:
    858 		return false;
    859 	      }
    860 
    861 	    if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
    862 	      {
    863 		unsigned int len = p - pcie;
    864 		len += per_width - 1;
    865 		len &= ~ (per_width - 1);
    866 		if (static_cast<unsigned int>(pcieend - p) < len)
    867 		  return false;
    868 		p += len;
    869 	      }
    870 
    871 	    per_offset = p - pcontents;
    872 
    873 	    if (static_cast<unsigned int>(pcieend - p) < per_width)
    874 	      return false;
    875 	    p += per_width;
    876 	  }
    877 	  break;
    878 
    879 	default:
    880 	  return false;
    881 	}
    882 
    883       ++paug;
    884     }
    885 
    886   const char* personality_name = "";
    887   if (per_offset != -1)
    888     {
    889       if (relocs->advance(per_offset) > 0)
    890 	return false;
    891       if (relocs->next_offset() != per_offset)
    892 	return false;
    893 
    894       unsigned int personality_symndx = relocs->next_symndx();
    895       if (personality_symndx == -1U)
    896 	return false;
    897 
    898       if (personality_symndx < object->local_symbol_count())
    899 	{
    900 	  // We can only merge this CIE if the personality routine is
    901 	  // a global symbol.  We can still read the FDEs.
    902 	  mergeable = false;
    903 	}
    904       else
    905 	{
    906 	  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
    907 	  if (personality_symndx >= symbols_size / sym_size)
    908 	    return false;
    909 	  elfcpp::Sym<size, big_endian> sym(symbols
    910 					    + (personality_symndx * sym_size));
    911 	  unsigned int name_offset = sym.get_st_name();
    912 	  if (name_offset >= symbol_names_size)
    913 	    return false;
    914 	  personality_name = (reinterpret_cast<const char*>(symbol_names)
    915 			      + name_offset);
    916 	}
    917 
    918       int r = relocs->advance(per_offset + 1);
    919       gold_assert(r == 1);
    920     }
    921 
    922   if (relocs->advance(pcieend - pcontents) > 0)
    923     return false;
    924 
    925   Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
    926 	  personality_name, pcie, pcieend - pcie);
    927   Cie* cie_pointer = NULL;
    928   if (mergeable)
    929     {
    930       Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
    931       if (find_cie != this->cie_offsets_.end())
    932 	cie_pointer = *find_cie;
    933       else
    934 	{
    935 	  // See if we already saw this CIE in this object file.
    936 	  for (New_cies::const_iterator pc = new_cies->begin();
    937 	       pc != new_cies->end();
    938 	       ++pc)
    939 	    {
    940 	      if (*(pc->first) == cie)
    941 		{
    942 		  cie_pointer = pc->first;
    943 		  break;
    944 		}
    945 	    }
    946 	}
    947     }
    948 
    949   if (cie_pointer == NULL)
    950     {
    951       cie_pointer = new Cie(cie);
    952       new_cies->push_back(std::make_pair(cie_pointer, mergeable));
    953     }
    954   else
    955     {
    956       // We are deleting this CIE.  Record that in our mapping from
    957       // input sections to the output section.  At this point we don't
    958       // know for sure that we are doing a special mapping for this
    959       // input section, but that's OK--if we don't do a special
    960       // mapping, nobody will ever ask for the mapping we add here.
    961       object->add_merge_mapping(this, shndx, (pcie - 8) - pcontents,
    962                                 pcieend - (pcie - 8), -1);
    963     }
    964 
    965   // Record this CIE plus the offset in the input section.
    966   cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
    967 
    968   return true;
    969 }
    970 
    971 // Read an FDE.  Return false if we can't parse the information.
    972 
    973 template<int size, bool big_endian>
    974 bool
    975 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
    976 		   unsigned int shndx,
    977 		   const unsigned char* symbols,
    978 		   section_size_type symbols_size,
    979 		   const unsigned char* pcontents,
    980 		   unsigned int offset,
    981 		   const unsigned char* pfde,
    982 		   const unsigned char* pfdeend,
    983 		   Track_relocs<size, big_endian>* relocs,
    984 		   Offsets_to_cie* cies)
    985 {
    986   // OFFSET is the distance between the 4 bytes before PFDE to the
    987   // start of the CIE.  The offset we recorded for the CIE is 8 bytes
    988   // after the start of the CIE--after the length and the zero tag.
    989   unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
    990   Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
    991   if (pcie == cies->end())
    992     return false;
    993   Cie* cie = pcie->second;
    994 
    995   int pc_size = 0;
    996   switch (cie->fde_encoding() & 7)
    997     {
    998     case elfcpp::DW_EH_PE_udata2:
    999       pc_size = 2;
   1000       break;
   1001     case elfcpp::DW_EH_PE_udata4:
   1002       pc_size = 4;
   1003       break;
   1004     case elfcpp::DW_EH_PE_udata8:
   1005       gold_assert(size == 64);
   1006       pc_size = 8;
   1007       break;
   1008     case elfcpp::DW_EH_PE_absptr:
   1009       pc_size = size == 32 ? 4 : 8;
   1010       break;
   1011     default:
   1012       // All other cases were rejected in Eh_frame::read_cie.
   1013       gold_unreachable();
   1014     }
   1015 
   1016   // The FDE should start with a reloc to the start of the code which
   1017   // it describes.
   1018   if (relocs->advance(pfde - pcontents) > 0)
   1019     return false;
   1020   if (relocs->next_offset() != pfde - pcontents)
   1021     {
   1022       // In an object produced by a relocatable link, gold may have
   1023       // discarded a COMDAT group in the previous link, but not the
   1024       // corresponding FDEs. In that case, gold will have discarded
   1025       // the relocations, so the FDE will have a non-relocatable zero
   1026       // (regardless of whether the PC encoding is absolute, pc-relative,
   1027       // or data-relative) instead of a pointer to the start of the code.
   1028 
   1029       uint64_t pc_value = 0;
   1030       switch (pc_size)
   1031 	{
   1032 	case 2:
   1033 	  pc_value = elfcpp::Swap<16, big_endian>::readval(pfde);
   1034 	  break;
   1035 	case 4:
   1036 	  pc_value = elfcpp::Swap<32, big_endian>::readval(pfde);
   1037 	  break;
   1038 	case 8:
   1039 	  pc_value = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde);
   1040 	  break;
   1041 	default:
   1042 	  gold_unreachable();
   1043 	}
   1044 
   1045       if (pc_value == 0)
   1046 	{
   1047 	  // This FDE applies to a discarded function.  We
   1048 	  // can discard this FDE.
   1049 	  object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
   1050 				    pfdeend - (pfde - 8), -1);
   1051 	  return true;
   1052 	}
   1053 
   1054       // Otherwise, reject the FDE.
   1055       return false;
   1056     }
   1057 
   1058   unsigned int symndx = relocs->next_symndx();
   1059   if (symndx == -1U)
   1060     return false;
   1061 
   1062   // There can be another reloc in the FDE, if the CIE specifies an
   1063   // LSDA (language specific data area).  We currently don't care.  We
   1064   // will care later if we want to optimize the LSDA from an absolute
   1065   // pointer to a PC relative offset when generating a shared library.
   1066   relocs->advance(pfdeend - pcontents);
   1067 
   1068   // Find the section index for code that this FDE describes.
   1069   // If we have discarded the section, we can also discard the FDE.
   1070   unsigned int fde_shndx;
   1071   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   1072   if (symndx >= symbols_size / sym_size)
   1073     return false;
   1074   elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
   1075   bool is_ordinary;
   1076   fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
   1077 				       &is_ordinary);
   1078   bool is_discarded = (is_ordinary
   1079 		       && fde_shndx != elfcpp::SHN_UNDEF
   1080 		       && fde_shndx < object->shnum()
   1081 		       && !object->is_section_included(fde_shndx));
   1082 
   1083   // Fetch the address range field from the FDE. The offset and size
   1084   // of the field depends on the PC encoding given in the CIE, but
   1085   // it is always an absolute value. If the address range is 0, this
   1086   // FDE corresponds to a function that was discarded during optimization
   1087   // (too late to discard the corresponding FDE).
   1088   uint64_t address_range = 0;
   1089   switch (pc_size)
   1090     {
   1091     case 2:
   1092       address_range = elfcpp::Swap<16, big_endian>::readval(pfde + 2);
   1093       break;
   1094     case 4:
   1095       address_range = elfcpp::Swap<32, big_endian>::readval(pfde + 4);
   1096       break;
   1097     case 8:
   1098       address_range = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde + 8);
   1099       break;
   1100     default:
   1101       gold_unreachable();
   1102     }
   1103 
   1104   if (is_discarded || address_range == 0)
   1105     {
   1106       // This FDE applies to a discarded function.  We
   1107       // can discard this FDE.
   1108       object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
   1109                                 pfdeend - (pfde - 8), -1);
   1110       return true;
   1111     }
   1112 
   1113   cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
   1114 		       pfde, pfdeend - pfde));
   1115 
   1116   return true;
   1117 }
   1118 
   1119 // Add unwind information for a PLT.
   1120 
   1121 void
   1122 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
   1123 			      size_t cie_length, const unsigned char* fde_data,
   1124 			      size_t fde_length)
   1125 {
   1126   Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
   1127 	  cie_data, cie_length);
   1128   Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
   1129   Cie* pcie;
   1130   if (find_cie != this->cie_offsets_.end())
   1131     pcie = *find_cie;
   1132   else
   1133     {
   1134       gold_assert(!this->mappings_are_done_);
   1135       pcie = new Cie(cie);
   1136       this->cie_offsets_.insert(pcie);
   1137     }
   1138 
   1139   Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
   1140   pcie->add_fde(fde);
   1141 
   1142   if (this->mappings_are_done_)
   1143     this->final_data_size_ += align_address(fde_length + 8, this->addralign());
   1144 }
   1145 
   1146 // Return the number of FDEs.
   1147 
   1148 unsigned int
   1149 Eh_frame::fde_count() const
   1150 {
   1151   unsigned int ret = 0;
   1152   for (Unmergeable_cie_offsets::const_iterator p =
   1153 	 this->unmergeable_cie_offsets_.begin();
   1154        p != this->unmergeable_cie_offsets_.end();
   1155        ++p)
   1156     ret += (*p)->fde_count();
   1157   for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
   1158        p != this->cie_offsets_.end();
   1159        ++p)
   1160     ret += (*p)->fde_count();
   1161   return ret;
   1162 }
   1163 
   1164 // Set the final data size.
   1165 
   1166 void
   1167 Eh_frame::set_final_data_size()
   1168 {
   1169   // We can be called more than once if Layout::set_segment_offsets
   1170   // finds a better mapping.  We don't want to add all the mappings
   1171   // again.
   1172   if (this->mappings_are_done_)
   1173     {
   1174       this->set_data_size(this->final_data_size_);
   1175       return;
   1176     }
   1177 
   1178   section_offset_type output_start = 0;
   1179   if (this->is_offset_valid())
   1180     output_start = this->offset() - this->output_section()->offset();
   1181   section_offset_type output_offset = output_start;
   1182 
   1183   for (Unmergeable_cie_offsets::iterator p =
   1184 	 this->unmergeable_cie_offsets_.begin();
   1185        p != this->unmergeable_cie_offsets_.end();
   1186        ++p)
   1187     output_offset = (*p)->set_output_offset(output_offset,
   1188 					    this->addralign(),
   1189 					    this);
   1190 
   1191   for (Cie_offsets::iterator p = this->cie_offsets_.begin();
   1192        p != this->cie_offsets_.end();
   1193        ++p)
   1194     output_offset = (*p)->set_output_offset(output_offset,
   1195 					    this->addralign(),
   1196 					    this);
   1197 
   1198   this->mappings_are_done_ = true;
   1199   this->final_data_size_ = output_offset - output_start;
   1200 
   1201   gold_assert((output_offset & (this->addralign() - 1)) == 0);
   1202   this->set_data_size(this->final_data_size_);
   1203 }
   1204 
   1205 // Return an output offset for an input offset.
   1206 
   1207 bool
   1208 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
   1209 			   section_offset_type offset,
   1210 			   section_offset_type* poutput) const
   1211 {
   1212   return object->merge_output_offset(shndx, offset, poutput);
   1213 }
   1214 
   1215 // Write the data to the output file.
   1216 
   1217 void
   1218 Eh_frame::do_write(Output_file* of)
   1219 {
   1220   const off_t offset = this->offset();
   1221   const off_t oview_size = this->data_size();
   1222   unsigned char* const oview = of->get_output_view(offset, oview_size);
   1223 
   1224   switch (parameters->size_and_endianness())
   1225     {
   1226 #ifdef HAVE_TARGET_32_LITTLE
   1227     case Parameters::TARGET_32_LITTLE:
   1228       this->do_sized_write<32, false>(oview);
   1229       break;
   1230 #endif
   1231 #ifdef HAVE_TARGET_32_BIG
   1232     case Parameters::TARGET_32_BIG:
   1233       this->do_sized_write<32, true>(oview);
   1234       break;
   1235 #endif
   1236 #ifdef HAVE_TARGET_64_LITTLE
   1237     case Parameters::TARGET_64_LITTLE:
   1238       this->do_sized_write<64, false>(oview);
   1239       break;
   1240 #endif
   1241 #ifdef HAVE_TARGET_64_BIG
   1242     case Parameters::TARGET_64_BIG:
   1243       this->do_sized_write<64, true>(oview);
   1244       break;
   1245 #endif
   1246     default:
   1247       gold_unreachable();
   1248     }
   1249 
   1250   of->write_output_view(offset, oview_size, oview);
   1251 }
   1252 
   1253 // Write the data to the output file--template version.
   1254 
   1255 template<int size, bool big_endian>
   1256 void
   1257 Eh_frame::do_sized_write(unsigned char* oview)
   1258 {
   1259   uint64_t address = this->address();
   1260   unsigned int addralign = this->addralign();
   1261   section_offset_type o = 0;
   1262   const off_t output_offset = this->offset() - this->output_section()->offset();
   1263   Post_fdes post_fdes;
   1264   for (Unmergeable_cie_offsets::iterator p =
   1265 	 this->unmergeable_cie_offsets_.begin();
   1266        p != this->unmergeable_cie_offsets_.end();
   1267        ++p)
   1268     o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
   1269 				      addralign, this->eh_frame_hdr_,
   1270 				      &post_fdes);
   1271   for (Cie_offsets::iterator p = this->cie_offsets_.begin();
   1272        p != this->cie_offsets_.end();
   1273        ++p)
   1274     o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
   1275 				      addralign, this->eh_frame_hdr_,
   1276 				      &post_fdes);
   1277   for (Post_fdes::iterator p = post_fdes.begin();
   1278        p != post_fdes.end();
   1279        ++p)
   1280     o = (*p).fde->write<size, big_endian>(oview, output_offset, o, address,
   1281 					  addralign, (*p).cie_offset,
   1282 					  (*p).fde_encoding,
   1283 					  this->eh_frame_hdr_);
   1284 }
   1285 
   1286 #ifdef HAVE_TARGET_32_LITTLE
   1287 template
   1288 Eh_frame::Eh_frame_section_disposition
   1289 Eh_frame::add_ehframe_input_section<32, false>(
   1290     Sized_relobj_file<32, false>* object,
   1291     const unsigned char* symbols,
   1292     section_size_type symbols_size,
   1293     const unsigned char* symbol_names,
   1294     section_size_type symbol_names_size,
   1295     unsigned int shndx,
   1296     unsigned int reloc_shndx,
   1297     unsigned int reloc_type);
   1298 #endif
   1299 
   1300 #ifdef HAVE_TARGET_32_BIG
   1301 template
   1302 Eh_frame::Eh_frame_section_disposition
   1303 Eh_frame::add_ehframe_input_section<32, true>(
   1304     Sized_relobj_file<32, true>* object,
   1305     const unsigned char* symbols,
   1306     section_size_type symbols_size,
   1307     const unsigned char* symbol_names,
   1308     section_size_type symbol_names_size,
   1309     unsigned int shndx,
   1310     unsigned int reloc_shndx,
   1311     unsigned int reloc_type);
   1312 #endif
   1313 
   1314 #ifdef HAVE_TARGET_64_LITTLE
   1315 template
   1316 Eh_frame::Eh_frame_section_disposition
   1317 Eh_frame::add_ehframe_input_section<64, false>(
   1318     Sized_relobj_file<64, false>* object,
   1319     const unsigned char* symbols,
   1320     section_size_type symbols_size,
   1321     const unsigned char* symbol_names,
   1322     section_size_type symbol_names_size,
   1323     unsigned int shndx,
   1324     unsigned int reloc_shndx,
   1325     unsigned int reloc_type);
   1326 #endif
   1327 
   1328 #ifdef HAVE_TARGET_64_BIG
   1329 template
   1330 Eh_frame::Eh_frame_section_disposition
   1331 Eh_frame::add_ehframe_input_section<64, true>(
   1332     Sized_relobj_file<64, true>* object,
   1333     const unsigned char* symbols,
   1334     section_size_type symbols_size,
   1335     const unsigned char* symbol_names,
   1336     section_size_type symbol_names_size,
   1337     unsigned int shndx,
   1338     unsigned int reloc_shndx,
   1339     unsigned int reloc_type);
   1340 #endif
   1341 
   1342 } // End namespace gold.
   1343