Home | History | Annotate | Download | only in gold
      1 // icf.cc -- Identical Code Folding.
      2 //
      3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
      4 // Written by Sriraman Tallam <tmsriram (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 // Identical Code Folding Algorithm
     24 // ----------------------------------
     25 // Detecting identical functions is done here and the basic algorithm
     26 // is as follows.  A checksum is computed on each foldable section using
     27 // its contents and relocations.  If the symbol name corresponding to
     28 // a relocation is known it is used to compute the checksum.  If the
     29 // symbol name is not known the stringified name of the object and the
     30 // section number pointed to by the relocation is used.  The checksums
     31 // are stored as keys in a hash map and a section is identical to some
     32 // other section if its checksum is already present in the hash map.
     33 // Checksum collisions are handled by using a multimap and explicitly
     34 // checking the contents when two sections have the same checksum.
     35 //
     36 // However, two functions A and B with identical text but with
     37 // relocations pointing to different foldable sections can be identical if
     38 // the corresponding foldable sections to which their relocations point to
     39 // turn out to be identical.  Hence, this checksumming process must be
     40 // done repeatedly until convergence is obtained.  Here is an example for
     41 // the following case :
     42 //
     43 // int funcA ()               int funcB ()
     44 // {                          {
     45 //   return foo();              return goo();
     46 // }                          }
     47 //
     48 // The functions funcA and funcB are identical if functions foo() and
     49 // goo() are identical.
     50 //
     51 // Hence, as described above, we repeatedly do the checksumming,
     52 // assigning identical functions to the same group, until convergence is
     53 // obtained.  Now, we have two different ways to do this depending on how
     54 // we initialize.
     55 //
     56 // Algorithm I :
     57 // -----------
     58 // We can start with marking all functions as different and repeatedly do
     59 // the checksumming.  This has the advantage that we do not need to wait
     60 // for convergence. We can stop at any point and correctness will be
     61 // guaranteed although not all cases would have been found.  However, this
     62 // has a problem that some cases can never be found even if it is run until
     63 // convergence.  Here is an example with mutually recursive functions :
     64 //
     65 // int funcA (int a)            int funcB (int a)
     66 // {                            {
     67 //   if (a == 1)                  if (a == 1)
     68 //     return 1;                    return 1;
     69 //   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
     70 // }                            }
     71 //
     72 // In this example funcA and funcB are identical and one of them could be
     73 // folded into the other.  However, if we start with assuming that funcA
     74 // and funcB are not identical, the algorithm, even after it is run to
     75 // convergence, cannot detect that they are identical.  It should be noted
     76 // that even if the functions were self-recursive, Algorithm I cannot catch
     77 // that they are identical, at least as is.
     78 //
     79 // Algorithm II :
     80 // ------------
     81 // Here we start with marking all functions as identical and then repeat
     82 // the checksumming until convergence.  This can detect the above case
     83 // mentioned above.  It can detect all cases that Algorithm I can and more.
     84 // However, the caveat is that it has to be run to convergence.  It cannot
     85 // be stopped arbitrarily like Algorithm I as correctness cannot be
     86 // guaranteed.  Algorithm II is not implemented.
     87 //
     88 // Algorithm I is used because experiments show that about three
     89 // iterations are more than enough to achieve convergence. Algorithm I can
     90 // handle recursive calls if it is changed to use a special common symbol
     91 // for recursive relocs.  This seems to be the most common case that
     92 // Algorithm I could not catch as is.  Mutually recursive calls are not
     93 // frequent and Algorithm I wins because of its ability to be stopped
     94 // arbitrarily.
     95 //
     96 // Caveat with using function pointers :
     97 // ------------------------------------
     98 //
     99 // Programs using function pointer comparisons/checks should use function
    100 // folding with caution as the result of such comparisons could be different
    101 // when folding takes place.  This could lead to unexpected run-time
    102 // behaviour.
    103 //
    104 // Safe Folding :
    105 // ------------
    106 //
    107 // ICF in safe mode folds only ctors and dtors if their function pointers can
    108 // never be taken.  Also, for X86-64, safe folding uses the relocation
    109 // type to determine if a function's pointer is taken or not and only folds
    110 // functions whose pointers are definitely not taken.
    111 //
    112 // Caveat with safe folding :
    113 // ------------------------
    114 //
    115 // This applies only to x86_64.
    116 //
    117 // Position independent executables are created from PIC objects (compiled
    118 // with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
    119 // relocation types for function pointer taken and a call are the same.
    120 // Now, it is not always possible to tell if an object used in the link of
    121 // a pie executable is a PIC object or a PIE object.  Hence, for pie
    122 // executables, using relocation types to disambiguate function pointers is
    123 // currently disabled.
    124 //
    125 // Further, it is not correct to use safe folding to build non-pie
    126 // executables using PIC/PIE objects.  PIC/PIE objects have different
    127 // relocation types for function pointers than non-PIC objects, and the
    128 // current implementation of safe folding does not handle those relocation
    129 // types.  Hence, if used, functions whose pointers are taken could still be
    130 // folded causing unpredictable run-time behaviour if the pointers were used
    131 // in comparisons.
    132 //
    133 //
    134 //
    135 // How to run  : --icf=[safe|all|none]
    136 // Optional parameters : --icf-iterations <num> --print-icf-sections
    137 //
    138 // Performance : Less than 20 % link-time overhead on industry strength
    139 // applications.  Up to 6 %  text size reductions.
    140 
    141 #include "gold.h"
    142 #include "object.h"
    143 #include "gc.h"
    144 #include "icf.h"
    145 #include "symtab.h"
    146 #include "libiberty.h"
    147 #include "demangle.h"
    148 #include "elfcpp.h"
    149 #include "int_encoding.h"
    150 
    151 namespace gold
    152 {
    153 
    154 // This function determines if a section or a group of identical
    155 // sections has unique contents.  Such unique sections or groups can be
    156 // declared final and need not be processed any further.
    157 // Parameters :
    158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
    159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
    160 //                            sections is already known to be unique.
    161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
    162 //                    that cannot be folded.   SECTION_CONTENTS are NULL
    163 //                    implies that this function is being called for the
    164 //                    first time before the first iteration of icf.
    165 
    166 static void
    167 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
    168                                std::vector<bool>* is_secn_or_group_unique,
    169                                std::vector<std::string>* section_contents)
    170 {
    171   Unordered_map<uint32_t, unsigned int> uniq_map;
    172   std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
    173     uniq_map_insert;
    174 
    175   for (unsigned int i = 0; i < id_section.size(); i++)
    176     {
    177       if ((*is_secn_or_group_unique)[i])
    178         continue;
    179 
    180       uint32_t cksum;
    181       Section_id secn = id_section[i];
    182       section_size_type plen;
    183       if (section_contents == NULL)
    184         {
    185           // Lock the object so we can read from it.  This is only called
    186           // single-threaded from queue_middle_tasks, so it is OK to lock.
    187           // Unfortunately we have no way to pass in a Task token.
    188           const Task* dummy_task = reinterpret_cast<const Task*>(-1);
    189           Task_lock_obj<Object> tl(dummy_task, secn.first);
    190           const unsigned char* contents;
    191           contents = secn.first->section_contents(secn.second,
    192                                                   &plen,
    193                                                   false);
    194           cksum = xcrc32(contents, plen, 0xffffffff);
    195         }
    196       else
    197         {
    198           const unsigned char* contents_array = reinterpret_cast
    199             <const unsigned char*>((*section_contents)[i].c_str());
    200           cksum = xcrc32(contents_array, (*section_contents)[i].length(),
    201                          0xffffffff);
    202         }
    203       uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
    204       if (uniq_map_insert.second)
    205         {
    206           (*is_secn_or_group_unique)[i] = true;
    207         }
    208       else
    209         {
    210           (*is_secn_or_group_unique)[i] = false;
    211           (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
    212         }
    213     }
    214 }
    215 
    216 // For SHF_MERGE sections that use REL relocations, the addend is stored in
    217 // the text section at the relocation offset.  Read  the addend value given
    218 // the pointer to the addend in the text section and the addend size.
    219 // Update the addend value if a valid addend is found.
    220 // Parameters:
    221 // RELOC_ADDEND_PTR   : Pointer to the addend in the text section.
    222 // ADDEND_SIZE        : The size of the addend.
    223 // RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
    224 
    225 inline void
    226 get_rel_addend(const unsigned char* reloc_addend_ptr,
    227 	       const unsigned int addend_size,
    228 	       uint64_t* reloc_addend_value)
    229 {
    230   switch (addend_size)
    231     {
    232     case 0:
    233       break;
    234     case 1:
    235       *reloc_addend_value =
    236         read_from_pointer<8>(reloc_addend_ptr);
    237       break;
    238     case 2:
    239       *reloc_addend_value =
    240           read_from_pointer<16>(reloc_addend_ptr);
    241       break;
    242     case 4:
    243       *reloc_addend_value =
    244         read_from_pointer<32>(reloc_addend_ptr);
    245       break;
    246     case 8:
    247       *reloc_addend_value =
    248         read_from_pointer<64>(reloc_addend_ptr);
    249       break;
    250     default:
    251       gold_unreachable();
    252     }
    253 }
    254 
    255 // This returns the buffer containing the section's contents, both
    256 // text and relocs.  Relocs are differentiated as those pointing to
    257 // sections that could be folded and those that cannot.  Only relocs
    258 // pointing to sections that could be folded are recomputed on
    259 // subsequent invocations of this function.
    260 // Parameters  :
    261 // FIRST_ITERATION    : true if it is the first invocation.
    262 // SECN               : Section for which contents are desired.
    263 // SECTION_NUM        : Unique section number of this section.
    264 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
    265 //                      to ICF sections.
    266 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
    267 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
    268 //                      sections.
    269 
    270 static std::string
    271 get_section_contents(bool first_iteration,
    272                      const Section_id& secn,
    273                      unsigned int section_num,
    274                      unsigned int* num_tracked_relocs,
    275                      Symbol_table* symtab,
    276                      const std::vector<unsigned int>& kept_section_id,
    277                      std::vector<std::string>* section_contents)
    278 {
    279   // Lock the object so we can read from it.  This is only called
    280   // single-threaded from queue_middle_tasks, so it is OK to lock.
    281   // Unfortunately we have no way to pass in a Task token.
    282   const Task* dummy_task = reinterpret_cast<const Task*>(-1);
    283   Task_lock_obj<Object> tl(dummy_task, secn.first);
    284 
    285   section_size_type plen;
    286   const unsigned char* contents = NULL;
    287   if (first_iteration)
    288     contents = secn.first->section_contents(secn.second, &plen, false);
    289 
    290   // The buffer to hold all the contents including relocs.  A checksum
    291   // is then computed on this buffer.
    292   std::string buffer;
    293   std::string icf_reloc_buffer;
    294 
    295   if (num_tracked_relocs)
    296     *num_tracked_relocs = 0;
    297 
    298   Icf::Reloc_info_list& reloc_info_list =
    299     symtab->icf()->reloc_info_list();
    300 
    301   Icf::Reloc_info_list::iterator it_reloc_info_list =
    302     reloc_info_list.find(secn);
    303 
    304   buffer.clear();
    305   icf_reloc_buffer.clear();
    306 
    307   // Process relocs and put them into the buffer.
    308 
    309   if (it_reloc_info_list != reloc_info_list.end())
    310     {
    311       Icf::Sections_reachable_info &v =
    312         (it_reloc_info_list->second).section_info;
    313       // Stores the information of the symbol pointed to by the reloc.
    314       const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
    315       // Stores the addend and the symbol value.
    316       Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
    317       // Stores the offset of the reloc.
    318       const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
    319       const Icf::Reloc_addend_size_info &reloc_addend_size_info =
    320         (it_reloc_info_list->second).reloc_addend_size_info;
    321       Icf::Sections_reachable_info::iterator it_v = v.begin();
    322       Icf::Symbol_info::const_iterator it_s = s.begin();
    323       Icf::Addend_info::iterator it_a = a.begin();
    324       Icf::Offset_info::const_iterator it_o = o.begin();
    325       Icf::Reloc_addend_size_info::const_iterator it_addend_size =
    326         reloc_addend_size_info.begin();
    327 
    328       for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
    329         {
    330 	  if (first_iteration
    331 	      && it_v->first != NULL)
    332 	    {
    333 	      Symbol_location loc;
    334 	      loc.object = it_v->first;
    335 	      loc.shndx = it_v->second;
    336 	      loc.offset = convert_types<off_t, long long>(it_a->first
    337 							   + it_a->second);
    338 	      // Look through function descriptors
    339 	      parameters->target().function_location(&loc);
    340 	      if (loc.shndx != it_v->second)
    341 		{
    342 		  it_v->second = loc.shndx;
    343 		  // Modify symvalue/addend to the code entry.
    344 		  it_a->first = loc.offset;
    345 		  it_a->second = 0;
    346 		}
    347 	    }
    348 
    349           // ADDEND_STR stores the symbol value and addend and offset,
    350           // each at most 16 hex digits long.  it_a points to a pair
    351           // where first is the symbol value and second is the
    352           // addend.
    353           char addend_str[50];
    354 
    355 	  // It would be nice if we could use format macros in inttypes.h
    356 	  // here but there are not in ISO/IEC C++ 1998.
    357           snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
    358                    static_cast<long long>((*it_a).first),
    359 		   static_cast<long long>((*it_a).second),
    360 		   static_cast<unsigned long long>(*it_o));
    361 
    362 	  // If the symbol pointed to by the reloc is not in an ordinary
    363 	  // section or if the symbol type is not FROM_OBJECT, then the
    364 	  // object is NULL.
    365 	  if (it_v->first == NULL)
    366             {
    367 	      if (first_iteration)
    368                 {
    369 		  // If the symbol name is available, use it.
    370                   if ((*it_s) != NULL)
    371                       buffer.append((*it_s)->name());
    372                   // Append the addend.
    373                   buffer.append(addend_str);
    374                   buffer.append("@");
    375 		}
    376 	      continue;
    377 	    }
    378 
    379           Section_id reloc_secn(it_v->first, it_v->second);
    380 
    381           // If this reloc turns back and points to the same section,
    382           // like a recursive call, use a special symbol to mark this.
    383           if (reloc_secn.first == secn.first
    384               && reloc_secn.second == secn.second)
    385             {
    386               if (first_iteration)
    387                 {
    388                   buffer.append("R");
    389                   buffer.append(addend_str);
    390                   buffer.append("@");
    391                 }
    392               continue;
    393             }
    394           Icf::Uniq_secn_id_map& section_id_map =
    395             symtab->icf()->section_to_int_map();
    396           Icf::Uniq_secn_id_map::iterator section_id_map_it =
    397             section_id_map.find(reloc_secn);
    398           bool is_sym_preemptible = (*it_s != NULL
    399 				     && !(*it_s)->is_from_dynobj()
    400 				     && !(*it_s)->is_undefined()
    401 				     && (*it_s)->is_preemptible());
    402           if (!is_sym_preemptible
    403               && section_id_map_it != section_id_map.end())
    404             {
    405               // This is a reloc to a section that might be folded.
    406               if (num_tracked_relocs)
    407                 (*num_tracked_relocs)++;
    408 
    409               char kept_section_str[10];
    410               unsigned int secn_id = section_id_map_it->second;
    411               snprintf(kept_section_str, sizeof(kept_section_str), "%u",
    412                        kept_section_id[secn_id]);
    413               if (first_iteration)
    414                 {
    415                   buffer.append("ICF_R");
    416                   buffer.append(addend_str);
    417                 }
    418               icf_reloc_buffer.append(kept_section_str);
    419               // Append the addend.
    420               icf_reloc_buffer.append(addend_str);
    421               icf_reloc_buffer.append("@");
    422             }
    423           else
    424             {
    425               // This is a reloc to a section that cannot be folded.
    426               // Process it only in the first iteration.
    427               if (!first_iteration)
    428                 continue;
    429 
    430               uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
    431               // This reloc points to a merge section.  Hash the
    432               // contents of this section.
    433               if ((secn_flags & elfcpp::SHF_MERGE) != 0
    434 		  && parameters->target().can_icf_inline_merge_sections())
    435                 {
    436                   uint64_t entsize =
    437                     (it_v->first)->section_entsize(it_v->second);
    438 		  long long offset = it_a->first;
    439 		  // Handle SHT_RELA and SHT_REL addends, only one of these
    440 		  // addends exists.
    441 		  // Get the SHT_RELA addend.  For RELA relocations, we have
    442 		  // the addend from the relocation.
    443 		  uint64_t reloc_addend_value = it_a->second;
    444 
    445 		  // Handle SHT_REL addends.
    446 		  // For REL relocations, we need to fetch the addend from the
    447 		  // section contents.
    448                   const unsigned char* reloc_addend_ptr =
    449 		    contents + static_cast<unsigned long long>(*it_o);
    450 
    451 		  // Update the addend value with the SHT_REL addend if
    452 		  // available.
    453 		  get_rel_addend(reloc_addend_ptr, *it_addend_size,
    454 				 &reloc_addend_value);
    455 
    456 		  // Ignore the addend when it is a negative value.  See the
    457 		  // comments in Merged_symbol_value::value in object.h.
    458 		  if (reloc_addend_value < 0xffffff00)
    459 		    offset = offset + reloc_addend_value;
    460 
    461                   section_size_type secn_len;
    462 
    463                   const unsigned char* str_contents =
    464                   (it_v->first)->section_contents(it_v->second,
    465                                                   &secn_len,
    466                                                   false) + offset;
    467 		  gold_assert (offset < (long long) secn_len);
    468 
    469                   if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
    470                     {
    471                       // String merge section.
    472                       const char* str_char =
    473                         reinterpret_cast<const char*>(str_contents);
    474                       switch(entsize)
    475                         {
    476                         case 1:
    477                           {
    478                             buffer.append(str_char);
    479                             break;
    480                           }
    481                         case 2:
    482                           {
    483                             const uint16_t* ptr_16 =
    484                               reinterpret_cast<const uint16_t*>(str_char);
    485                             unsigned int strlen_16 = 0;
    486                             // Find the NULL character.
    487                             while(*(ptr_16 + strlen_16) != 0)
    488                                 strlen_16++;
    489                             buffer.append(str_char, strlen_16 * 2);
    490                           }
    491                           break;
    492                         case 4:
    493                           {
    494                             const uint32_t* ptr_32 =
    495                               reinterpret_cast<const uint32_t*>(str_char);
    496                             unsigned int strlen_32 = 0;
    497                             // Find the NULL character.
    498                             while(*(ptr_32 + strlen_32) != 0)
    499                                 strlen_32++;
    500                             buffer.append(str_char, strlen_32 * 4);
    501                           }
    502                           break;
    503                         default:
    504                           gold_unreachable();
    505                         }
    506                     }
    507                   else
    508                     {
    509                       // Use the entsize to determine the length to copy.
    510 		      uint64_t bufsize = entsize;
    511 		      // If entsize is too big, copy all the remaining bytes.
    512 		      if ((offset + entsize) > secn_len)
    513 			bufsize = secn_len - offset;
    514                       buffer.append(reinterpret_cast<const
    515                                                      char*>(str_contents),
    516                                     bufsize);
    517                     }
    518 		  buffer.append("@");
    519                 }
    520               else if ((*it_s) != NULL)
    521                 {
    522                   // If symbol name is available use that.
    523                   buffer.append((*it_s)->name());
    524                   // Append the addend.
    525                   buffer.append(addend_str);
    526                   buffer.append("@");
    527                 }
    528               else
    529                 {
    530                   // Symbol name is not available, like for a local symbol,
    531                   // use object and section id.
    532                   buffer.append(it_v->first->name());
    533                   char secn_id[10];
    534                   snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
    535                   buffer.append(secn_id);
    536                   // Append the addend.
    537                   buffer.append(addend_str);
    538                   buffer.append("@");
    539                 }
    540             }
    541         }
    542     }
    543 
    544   if (first_iteration)
    545     {
    546       buffer.append("Contents = ");
    547       buffer.append(reinterpret_cast<const char*>(contents), plen);
    548       // Store the section contents that dont change to avoid recomputing
    549       // during the next call to this function.
    550       (*section_contents)[section_num] = buffer;
    551     }
    552   else
    553     {
    554       gold_assert(buffer.empty());
    555       // Reuse the contents computed in the previous iteration.
    556       buffer.append((*section_contents)[section_num]);
    557     }
    558 
    559   buffer.append(icf_reloc_buffer);
    560   return buffer;
    561 }
    562 
    563 // This function computes a checksum on each section to detect and form
    564 // groups of identical sections.  The first iteration does this for all
    565 // sections.
    566 // Further iterations do this only for the kept sections from each group to
    567 // determine if larger groups of identical sections could be formed.  The
    568 // first section in each group is the kept section for that group.
    569 //
    570 // CRC32 is the checksumming algorithm and can have collisions.  That is,
    571 // two sections with different contents can have the same checksum. Hence,
    572 // a multimap is used to maintain more than one group of checksum
    573 // identical sections.  A section is added to a group only after its
    574 // contents are explicitly compared with the kept section of the group.
    575 //
    576 // Parameters  :
    577 // ITERATION_NUM           : Invocation instance of this function.
    578 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
    579 //                      to ICF sections.
    580 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
    581 // ID_SECTION         : Vector mapping a section to an unique integer.
    582 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
    583 //                            sections is already known to be unique.
    584 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
    585 //                      sections.
    586 
    587 static bool
    588 match_sections(unsigned int iteration_num,
    589                Symbol_table* symtab,
    590                std::vector<unsigned int>* num_tracked_relocs,
    591                std::vector<unsigned int>* kept_section_id,
    592                const std::vector<Section_id>& id_section,
    593 	       const std::vector<uint64_t>& section_addraligns,
    594                std::vector<bool>* is_secn_or_group_unique,
    595                std::vector<std::string>* section_contents)
    596 {
    597   Unordered_multimap<uint32_t, unsigned int> section_cksum;
    598   std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
    599             Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
    600   bool converged = true;
    601 
    602   if (iteration_num == 1)
    603     preprocess_for_unique_sections(id_section,
    604                                    is_secn_or_group_unique,
    605                                    NULL);
    606   else
    607     preprocess_for_unique_sections(id_section,
    608                                    is_secn_or_group_unique,
    609                                    section_contents);
    610 
    611   std::vector<std::string> full_section_contents;
    612 
    613   for (unsigned int i = 0; i < id_section.size(); i++)
    614     {
    615       full_section_contents.push_back("");
    616       if ((*is_secn_or_group_unique)[i])
    617         continue;
    618 
    619       Section_id secn = id_section[i];
    620       std::string this_secn_contents;
    621       uint32_t cksum;
    622       if (iteration_num == 1)
    623         {
    624           unsigned int num_relocs = 0;
    625           this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
    626                                                     symtab, (*kept_section_id),
    627                                                     section_contents);
    628           (*num_tracked_relocs)[i] = num_relocs;
    629         }
    630       else
    631         {
    632           if ((*kept_section_id)[i] != i)
    633             {
    634               // This section is already folded into something.
    635               continue;
    636             }
    637           this_secn_contents = get_section_contents(false, secn, i, NULL,
    638                                                     symtab, (*kept_section_id),
    639                                                     section_contents);
    640         }
    641 
    642       const unsigned char* this_secn_contents_array =
    643             reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
    644       cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
    645                      0xffffffff);
    646       size_t count = section_cksum.count(cksum);
    647 
    648       if (count == 0)
    649         {
    650           // Start a group with this cksum.
    651           section_cksum.insert(std::make_pair(cksum, i));
    652           full_section_contents[i] = this_secn_contents;
    653         }
    654       else
    655         {
    656           key_range = section_cksum.equal_range(cksum);
    657           Unordered_multimap<uint32_t, unsigned int>::iterator it;
    658           // Search all the groups with this cksum for a match.
    659           for (it = key_range.first; it != key_range.second; ++it)
    660             {
    661               unsigned int kept_section = it->second;
    662               if (full_section_contents[kept_section].length()
    663                   != this_secn_contents.length())
    664                   continue;
    665               if (memcmp(full_section_contents[kept_section].c_str(),
    666                          this_secn_contents.c_str(),
    667                          this_secn_contents.length()) != 0)
    668                   continue;
    669 
    670 	      // Check section alignment here.
    671 	      // The section with the larger alignment requirement
    672 	      // should be kept.  We assume alignment can only be
    673 	      // zero or postive integral powers of two.
    674 	      uint64_t align_i = section_addraligns[i];
    675 	      uint64_t align_kept = section_addraligns[kept_section];
    676 	      if (align_i <= align_kept)
    677 		{
    678 		  (*kept_section_id)[i] = kept_section;
    679 		}
    680 	      else
    681 		{
    682 		  (*kept_section_id)[kept_section] = i;
    683 		  it->second = i;
    684 		  full_section_contents[kept_section].swap(
    685 		      full_section_contents[i]);
    686 		}
    687 
    688               converged = false;
    689               break;
    690             }
    691           if (it == key_range.second)
    692             {
    693               // Create a new group for this cksum.
    694               section_cksum.insert(std::make_pair(cksum, i));
    695               full_section_contents[i] = this_secn_contents;
    696             }
    697         }
    698       // If there are no relocs to foldable sections do not process
    699       // this section any further.
    700       if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
    701         (*is_secn_or_group_unique)[i] = true;
    702     }
    703 
    704   // If a section was folded into another section that was later folded
    705   // again then the former has to be updated.
    706   for (unsigned int i = 0; i < id_section.size(); i++)
    707     {
    708       // Find the end of the folding chain
    709       unsigned int kept = i;
    710       while ((*kept_section_id)[kept] != kept)
    711         {
    712           kept = (*kept_section_id)[kept];
    713         }
    714       // Update every element of the chain
    715       unsigned int current = i;
    716       while ((*kept_section_id)[current] != kept)
    717         {
    718           unsigned int next = (*kept_section_id)[current];
    719           (*kept_section_id)[current] = kept;
    720           current = next;
    721         }
    722     }
    723 
    724   return converged;
    725 }
    726 
    727 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
    728 // This function returns true if the section name is that of a ctor or a dtor.
    729 
    730 static bool
    731 is_function_ctor_or_dtor(const std::string& section_name)
    732 {
    733   const char* mangled_func_name = strrchr(section_name.c_str(), '.');
    734   gold_assert(mangled_func_name != NULL);
    735   if ((is_prefix_of("._ZN", mangled_func_name)
    736        || is_prefix_of("._ZZ", mangled_func_name))
    737       && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
    738           || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
    739     {
    740       return true;
    741     }
    742   return false;
    743 }
    744 
    745 // This is the main ICF function called in gold.cc.  This does the
    746 // initialization and calls match_sections repeatedly (twice by default)
    747 // which computes the crc checksums and detects identical functions.
    748 
    749 void
    750 Icf::find_identical_sections(const Input_objects* input_objects,
    751                              Symbol_table* symtab)
    752 {
    753   unsigned int section_num = 0;
    754   std::vector<unsigned int> num_tracked_relocs;
    755   std::vector<uint64_t> section_addraligns;
    756   std::vector<bool> is_secn_or_group_unique;
    757   std::vector<std::string> section_contents;
    758   const Target& target = parameters->target();
    759 
    760   // Decide which sections are possible candidates first.
    761 
    762   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    763        p != input_objects->relobj_end();
    764        ++p)
    765     {
    766       // Lock the object so we can read from it.  This is only called
    767       // single-threaded from queue_middle_tasks, so it is OK to lock.
    768       // Unfortunately we have no way to pass in a Task token.
    769       const Task* dummy_task = reinterpret_cast<const Task*>(-1);
    770       Task_lock_obj<Object> tl(dummy_task, *p);
    771 
    772       for (unsigned int i = 0;i < (*p)->shnum(); ++i)
    773         {
    774 	  const std::string section_name = (*p)->section_name(i);
    775           if (!is_section_foldable_candidate(section_name))
    776             continue;
    777           if (!(*p)->is_section_included(i))
    778             continue;
    779           if (parameters->options().gc_sections()
    780               && symtab->gc()->is_section_garbage(*p, i))
    781               continue;
    782 	  // With --icf=safe, check if the mangled function name is a ctor
    783 	  // or a dtor.  The mangled function name can be obtained from the
    784 	  // section name by stripping the section prefix.
    785 	  if (parameters->options().icf_safe_folding()
    786               && !is_function_ctor_or_dtor(section_name)
    787 	      && (!target.can_check_for_function_pointers()
    788                   || section_has_function_pointers(*p, i)))
    789             {
    790 	      continue;
    791             }
    792           this->id_section_.push_back(Section_id(*p, i));
    793           this->section_id_[Section_id(*p, i)] = section_num;
    794           this->kept_section_id_.push_back(section_num);
    795           num_tracked_relocs.push_back(0);
    796 	  section_addraligns.push_back((*p)->section_addralign(i));
    797           is_secn_or_group_unique.push_back(false);
    798           section_contents.push_back("");
    799           section_num++;
    800         }
    801     }
    802 
    803   unsigned int num_iterations = 0;
    804 
    805   // Default number of iterations to run ICF is 2.
    806   unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
    807                             ? parameters->options().icf_iterations()
    808                             : 2;
    809 
    810   bool converged = false;
    811 
    812   while (!converged && (num_iterations < max_iterations))
    813     {
    814       num_iterations++;
    815       converged = match_sections(num_iterations, symtab,
    816                                  &num_tracked_relocs, &this->kept_section_id_,
    817                                  this->id_section_, section_addraligns,
    818                                  &is_secn_or_group_unique, &section_contents);
    819     }
    820 
    821   if (parameters->options().print_icf_sections())
    822     {
    823       if (converged)
    824         gold_info(_("%s: ICF Converged after %u iteration(s)"),
    825                   program_name, num_iterations);
    826       else
    827         gold_info(_("%s: ICF stopped after %u iteration(s)"),
    828                   program_name, num_iterations);
    829     }
    830 
    831   // Unfold --keep-unique symbols.
    832   for (options::String_set::const_iterator p =
    833 	 parameters->options().keep_unique_begin();
    834        p != parameters->options().keep_unique_end();
    835        ++p)
    836     {
    837       const char* name = p->c_str();
    838       Symbol* sym = symtab->lookup(name);
    839       if (sym == NULL)
    840 	{
    841 	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
    842 	}
    843       else if (sym->source() == Symbol::FROM_OBJECT
    844                && !sym->object()->is_dynamic())
    845         {
    846           Relobj* obj = static_cast<Relobj*>(sym->object());
    847           bool is_ordinary;
    848           unsigned int shndx = sym->shndx(&is_ordinary);
    849           if (is_ordinary)
    850             {
    851 	      this->unfold_section(obj, shndx);
    852             }
    853         }
    854 
    855     }
    856 
    857   this->icf_ready();
    858 }
    859 
    860 // Unfolds the section denoted by OBJ and SHNDX if folded.
    861 
    862 void
    863 Icf::unfold_section(Relobj* obj, unsigned int shndx)
    864 {
    865   Section_id secn(obj, shndx);
    866   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
    867   if (it == this->section_id_.end())
    868     return;
    869   unsigned int section_num = it->second;
    870   unsigned int kept_section_id = this->kept_section_id_[section_num];
    871   if (kept_section_id != section_num)
    872     this->kept_section_id_[section_num] = section_num;
    873 }
    874 
    875 // This function determines if the section corresponding to the
    876 // given object and index is folded based on if the kept section
    877 // is different from this section.
    878 
    879 bool
    880 Icf::is_section_folded(Relobj* obj, unsigned int shndx)
    881 {
    882   Section_id secn(obj, shndx);
    883   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
    884   if (it == this->section_id_.end())
    885     return false;
    886   unsigned int section_num = it->second;
    887   unsigned int kept_section_id = this->kept_section_id_[section_num];
    888   return kept_section_id != section_num;
    889 }
    890 
    891 // This function returns the folded section for the given section.
    892 
    893 Section_id
    894 Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
    895 {
    896   Section_id dup_secn(dup_obj, dup_shndx);
    897   Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
    898   gold_assert(it != this->section_id_.end());
    899   unsigned int section_num = it->second;
    900   unsigned int kept_section_id = this->kept_section_id_[section_num];
    901   Section_id folded_section = this->id_section_[kept_section_id];
    902   return folded_section;
    903 }
    904 
    905 } // End of namespace gold.
    906