Home | History | Annotate | Download | only in gold
      1 // layout.cc -- lay out output file sections for gold
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cerrno>
     26 #include <cstring>
     27 #include <algorithm>
     28 #include <iostream>
     29 #include <fstream>
     30 #include <utility>
     31 #include <fcntl.h>
     32 #include <fnmatch.h>
     33 #include <unistd.h>
     34 #include "libiberty.h"
     35 #include "md5.h"
     36 #include "sha1.h"
     37 
     38 #include "parameters.h"
     39 #include "options.h"
     40 #include "mapfile.h"
     41 #include "script.h"
     42 #include "script-sections.h"
     43 #include "output.h"
     44 #include "symtab.h"
     45 #include "dynobj.h"
     46 #include "ehframe.h"
     47 #include "gdb-index.h"
     48 #include "compressed_output.h"
     49 #include "reduced_debug_output.h"
     50 #include "object.h"
     51 #include "reloc.h"
     52 #include "descriptors.h"
     53 #include "plugin.h"
     54 #include "incremental.h"
     55 #include "layout.h"
     56 
     57 namespace gold
     58 {
     59 
     60 // Class Free_list.
     61 
     62 // The total number of free lists used.
     63 unsigned int Free_list::num_lists = 0;
     64 // The total number of free list nodes used.
     65 unsigned int Free_list::num_nodes = 0;
     66 // The total number of calls to Free_list::remove.
     67 unsigned int Free_list::num_removes = 0;
     68 // The total number of nodes visited during calls to Free_list::remove.
     69 unsigned int Free_list::num_remove_visits = 0;
     70 // The total number of calls to Free_list::allocate.
     71 unsigned int Free_list::num_allocates = 0;
     72 // The total number of nodes visited during calls to Free_list::allocate.
     73 unsigned int Free_list::num_allocate_visits = 0;
     74 
     75 // Initialize the free list.  Creates a single free list node that
     76 // describes the entire region of length LEN.  If EXTEND is true,
     77 // allocate() is allowed to extend the region beyond its initial
     78 // length.
     79 
     80 void
     81 Free_list::init(off_t len, bool extend)
     82 {
     83   this->list_.push_front(Free_list_node(0, len));
     84   this->last_remove_ = this->list_.begin();
     85   this->extend_ = extend;
     86   this->length_ = len;
     87   ++Free_list::num_lists;
     88   ++Free_list::num_nodes;
     89 }
     90 
     91 // Remove a chunk from the free list.  Because we start with a single
     92 // node that covers the entire section, and remove chunks from it one
     93 // at a time, we do not need to coalesce chunks or handle cases that
     94 // span more than one free node.  We expect to remove chunks from the
     95 // free list in order, and we expect to have only a few chunks of free
     96 // space left (corresponding to files that have changed since the last
     97 // incremental link), so a simple linear list should provide sufficient
     98 // performance.
     99 
    100 void
    101 Free_list::remove(off_t start, off_t end)
    102 {
    103   if (start == end)
    104     return;
    105   gold_assert(start < end);
    106 
    107   ++Free_list::num_removes;
    108 
    109   Iterator p = this->last_remove_;
    110   if (p->start_ > start)
    111     p = this->list_.begin();
    112 
    113   for (; p != this->list_.end(); ++p)
    114     {
    115       ++Free_list::num_remove_visits;
    116       // Find a node that wholly contains the indicated region.
    117       if (p->start_ <= start && p->end_ >= end)
    118 	{
    119 	  // Case 1: the indicated region spans the whole node.
    120 	  // Add some fuzz to avoid creating tiny free chunks.
    121 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
    122 	    p = this->list_.erase(p);
    123 	  // Case 2: remove a chunk from the start of the node.
    124 	  else if (p->start_ + 3 >= start)
    125 	    p->start_ = end;
    126 	  // Case 3: remove a chunk from the end of the node.
    127 	  else if (p->end_ <= end + 3)
    128 	    p->end_ = start;
    129 	  // Case 4: remove a chunk from the middle, and split
    130 	  // the node into two.
    131 	  else
    132 	    {
    133 	      Free_list_node newnode(p->start_, start);
    134 	      p->start_ = end;
    135 	      this->list_.insert(p, newnode);
    136 	      ++Free_list::num_nodes;
    137 	    }
    138 	  this->last_remove_ = p;
    139 	  return;
    140 	}
    141     }
    142 
    143   // Did not find a node containing the given chunk.  This could happen
    144   // because a small chunk was already removed due to the fuzz.
    145   gold_debug(DEBUG_INCREMENTAL,
    146 	     "Free_list::remove(%d,%d) not found",
    147 	     static_cast<int>(start), static_cast<int>(end));
    148 }
    149 
    150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
    151 // if a sufficiently large chunk of free space is not found.
    152 // We use a simple first-fit algorithm.
    153 
    154 off_t
    155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
    156 {
    157   gold_debug(DEBUG_INCREMENTAL,
    158 	     "Free_list::allocate(%08lx, %d, %08lx)",
    159 	     static_cast<long>(len), static_cast<int>(align),
    160 	     static_cast<long>(minoff));
    161   if (len == 0)
    162     return align_address(minoff, align);
    163 
    164   ++Free_list::num_allocates;
    165 
    166   // We usually want to drop free chunks smaller than 4 bytes.
    167   // If we need to guarantee a minimum hole size, though, we need
    168   // to keep track of all free chunks.
    169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
    170 
    171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
    172     {
    173       ++Free_list::num_allocate_visits;
    174       off_t start = p->start_ > minoff ? p->start_ : minoff;
    175       start = align_address(start, align);
    176       off_t end = start + len;
    177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
    178 	{
    179 	  this->length_ = end;
    180 	  p->end_ = end;
    181 	}
    182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
    183 	{
    184 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
    185 	    this->list_.erase(p);
    186 	  else if (p->start_ + fuzz >= start)
    187 	    p->start_ = end;
    188 	  else if (p->end_ <= end + fuzz)
    189 	    p->end_ = start;
    190 	  else
    191 	    {
    192 	      Free_list_node newnode(p->start_, start);
    193 	      p->start_ = end;
    194 	      this->list_.insert(p, newnode);
    195 	      ++Free_list::num_nodes;
    196 	    }
    197 	  return start;
    198 	}
    199     }
    200   if (this->extend_)
    201     {
    202       off_t start = align_address(this->length_, align);
    203       this->length_ = start + len;
    204       return start;
    205     }
    206   return -1;
    207 }
    208 
    209 // Dump the free list (for debugging).
    210 void
    211 Free_list::dump()
    212 {
    213   gold_info("Free list:\n     start      end   length\n");
    214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
    215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
    216 	      static_cast<long>(p->end_),
    217 	      static_cast<long>(p->end_ - p->start_));
    218 }
    219 
    220 // Print the statistics for the free lists.
    221 void
    222 Free_list::print_stats()
    223 {
    224   fprintf(stderr, _("%s: total free lists: %u\n"),
    225 	  program_name, Free_list::num_lists);
    226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
    227 	  program_name, Free_list::num_nodes);
    228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
    229 	  program_name, Free_list::num_removes);
    230   fprintf(stderr, _("%s: nodes visited: %u\n"),
    231 	  program_name, Free_list::num_remove_visits);
    232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
    233 	  program_name, Free_list::num_allocates);
    234   fprintf(stderr, _("%s: nodes visited: %u\n"),
    235 	  program_name, Free_list::num_allocate_visits);
    236 }
    237 
    238 // A Hash_task computes the MD5 checksum of an array of char.
    239 
    240 class Hash_task : public Task
    241 {
    242  public:
    243   Hash_task(Output_file* of,
    244 	    size_t offset,
    245 	    size_t size,
    246 	    unsigned char* dst,
    247 	    Task_token* final_blocker)
    248     : of_(of), offset_(offset), size_(size), dst_(dst),
    249       final_blocker_(final_blocker)
    250   { }
    251 
    252   void
    253   run(Workqueue*)
    254   {
    255     const unsigned char* iv =
    256 	this->of_->get_input_view(this->offset_, this->size_);
    257     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
    258     this->of_->free_input_view(this->offset_, this->size_, iv);
    259   }
    260 
    261   Task_token*
    262   is_runnable()
    263   { return NULL; }
    264 
    265   // Unblock FINAL_BLOCKER_ when done.
    266   void
    267   locks(Task_locker* tl)
    268   { tl->add(this, this->final_blocker_); }
    269 
    270   std::string
    271   get_name() const
    272   { return "Hash_task"; }
    273 
    274  private:
    275   Output_file* of_;
    276   const size_t offset_;
    277   const size_t size_;
    278   unsigned char* const dst_;
    279   Task_token* const final_blocker_;
    280 };
    281 
    282 // Layout::Relaxation_debug_check methods.
    283 
    284 // Check that sections and special data are in reset states.
    285 // We do not save states for Output_sections and special Output_data.
    286 // So we check that they have not assigned any addresses or offsets.
    287 // clean_up_after_relaxation simply resets their addresses and offsets.
    288 void
    289 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
    290     const Layout::Section_list& sections,
    291     const Layout::Data_list& special_outputs,
    292     const Layout::Data_list& relax_outputs)
    293 {
    294   for(Layout::Section_list::const_iterator p = sections.begin();
    295       p != sections.end();
    296       ++p)
    297     gold_assert((*p)->address_and_file_offset_have_reset_values());
    298 
    299   for(Layout::Data_list::const_iterator p = special_outputs.begin();
    300       p != special_outputs.end();
    301       ++p)
    302     gold_assert((*p)->address_and_file_offset_have_reset_values());
    303 
    304   gold_assert(relax_outputs.empty());
    305 }
    306 
    307 // Save information of SECTIONS for checking later.
    308 
    309 void
    310 Layout::Relaxation_debug_check::read_sections(
    311     const Layout::Section_list& sections)
    312 {
    313   for(Layout::Section_list::const_iterator p = sections.begin();
    314       p != sections.end();
    315       ++p)
    316     {
    317       Output_section* os = *p;
    318       Section_info info;
    319       info.output_section = os;
    320       info.address = os->is_address_valid() ? os->address() : 0;
    321       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
    322       info.offset = os->is_offset_valid()? os->offset() : -1 ;
    323       this->section_infos_.push_back(info);
    324     }
    325 }
    326 
    327 // Verify SECTIONS using previously recorded information.
    328 
    329 void
    330 Layout::Relaxation_debug_check::verify_sections(
    331     const Layout::Section_list& sections)
    332 {
    333   size_t i = 0;
    334   for(Layout::Section_list::const_iterator p = sections.begin();
    335       p != sections.end();
    336       ++p, ++i)
    337     {
    338       Output_section* os = *p;
    339       uint64_t address = os->is_address_valid() ? os->address() : 0;
    340       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
    341       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
    342 
    343       if (i >= this->section_infos_.size())
    344 	{
    345 	  gold_fatal("Section_info of %s missing.\n", os->name());
    346 	}
    347       const Section_info& info = this->section_infos_[i];
    348       if (os != info.output_section)
    349 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
    350 		   info.output_section->name(), os->name());
    351       if (address != info.address
    352 	  || data_size != info.data_size
    353 	  || offset != info.offset)
    354 	gold_fatal("Section %s changed.\n", os->name());
    355     }
    356 }
    357 
    358 // Layout_task_runner methods.
    359 
    360 // Lay out the sections.  This is called after all the input objects
    361 // have been read.
    362 
    363 void
    364 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
    365 {
    366   // See if any of the input definitions violate the One Definition Rule.
    367   // TODO: if this is too slow, do this as a task, rather than inline.
    368   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
    369 
    370   Layout* layout = this->layout_;
    371   off_t file_size = layout->finalize(this->input_objects_,
    372 				     this->symtab_,
    373 				     this->target_,
    374 				     task);
    375 
    376   // Now we know the final size of the output file and we know where
    377   // each piece of information goes.
    378 
    379   if (this->mapfile_ != NULL)
    380     {
    381       this->mapfile_->print_discarded_sections(this->input_objects_);
    382       layout->print_to_mapfile(this->mapfile_);
    383     }
    384 
    385   Output_file* of;
    386   if (layout->incremental_base() == NULL)
    387     {
    388       of = new Output_file(parameters->options().output_file_name());
    389       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
    390 	of->set_is_temporary();
    391       of->open(file_size);
    392     }
    393   else
    394     {
    395       of = layout->incremental_base()->output_file();
    396 
    397       // Apply the incremental relocations for symbols whose values
    398       // have changed.  We do this before we resize the file and start
    399       // writing anything else to it, so that we can read the old
    400       // incremental information from the file before (possibly)
    401       // overwriting it.
    402       if (parameters->incremental_update())
    403 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
    404 							     this->layout_,
    405 							     of);
    406 
    407       of->resize(file_size);
    408     }
    409 
    410   // Queue up the final set of tasks.
    411   gold::queue_final_tasks(this->options_, this->input_objects_,
    412 			  this->symtab_, layout, workqueue, of);
    413 }
    414 
    415 // Layout methods.
    416 
    417 Layout::Layout(int number_of_input_files, Script_options* script_options)
    418   : number_of_input_files_(number_of_input_files),
    419     script_options_(script_options),
    420     namepool_(),
    421     sympool_(),
    422     dynpool_(),
    423     signatures_(),
    424     section_name_map_(),
    425     segment_list_(),
    426     section_list_(),
    427     unattached_section_list_(),
    428     special_output_list_(),
    429     relax_output_list_(),
    430     section_headers_(NULL),
    431     tls_segment_(NULL),
    432     relro_segment_(NULL),
    433     interp_segment_(NULL),
    434     increase_relro_(0),
    435     symtab_section_(NULL),
    436     symtab_xindex_(NULL),
    437     dynsym_section_(NULL),
    438     dynsym_xindex_(NULL),
    439     dynamic_section_(NULL),
    440     dynamic_symbol_(NULL),
    441     dynamic_data_(NULL),
    442     eh_frame_section_(NULL),
    443     eh_frame_data_(NULL),
    444     added_eh_frame_data_(false),
    445     eh_frame_hdr_section_(NULL),
    446     gdb_index_data_(NULL),
    447     build_id_note_(NULL),
    448     debug_abbrev_(NULL),
    449     debug_info_(NULL),
    450     group_signatures_(),
    451     output_file_size_(-1),
    452     have_added_input_section_(false),
    453     sections_are_attached_(false),
    454     input_requires_executable_stack_(false),
    455     input_with_gnu_stack_note_(false),
    456     input_without_gnu_stack_note_(false),
    457     has_static_tls_(false),
    458     any_postprocessing_sections_(false),
    459     resized_signatures_(false),
    460     have_stabstr_section_(false),
    461     section_ordering_specified_(false),
    462     unique_segment_for_sections_specified_(false),
    463     incremental_inputs_(NULL),
    464     record_output_section_data_from_script_(false),
    465     script_output_section_data_list_(),
    466     segment_states_(NULL),
    467     relaxation_debug_check_(NULL),
    468     section_order_map_(),
    469     section_segment_map_(),
    470     input_section_position_(),
    471     input_section_glob_(),
    472     incremental_base_(NULL),
    473     free_list_()
    474 {
    475   // Make space for more than enough segments for a typical file.
    476   // This is just for efficiency--it's OK if we wind up needing more.
    477   this->segment_list_.reserve(12);
    478 
    479   // We expect two unattached Output_data objects: the file header and
    480   // the segment headers.
    481   this->special_output_list_.reserve(2);
    482 
    483   // Initialize structure needed for an incremental build.
    484   if (parameters->incremental())
    485     this->incremental_inputs_ = new Incremental_inputs;
    486 
    487   // The section name pool is worth optimizing in all cases, because
    488   // it is small, but there are often overlaps due to .rel sections.
    489   this->namepool_.set_optimize();
    490 }
    491 
    492 // For incremental links, record the base file to be modified.
    493 
    494 void
    495 Layout::set_incremental_base(Incremental_binary* base)
    496 {
    497   this->incremental_base_ = base;
    498   this->free_list_.init(base->output_file()->filesize(), true);
    499 }
    500 
    501 // Hash a key we use to look up an output section mapping.
    502 
    503 size_t
    504 Layout::Hash_key::operator()(const Layout::Key& k) const
    505 {
    506  return k.first + k.second.first + k.second.second;
    507 }
    508 
    509 // These are the debug sections that are actually used by gdb.
    510 // Currently, we've checked versions of gdb up to and including 7.4.
    511 // We only check the part of the name that follows ".debug_" or
    512 // ".zdebug_".
    513 
    514 static const char* gdb_sections[] =
    515 {
    516   "abbrev",
    517   "addr",         // Fission extension
    518   // "aranges",   // not used by gdb as of 7.4
    519   "frame",
    520   "gdb_scripts",
    521   "info",
    522   "types",
    523   "line",
    524   "loc",
    525   "macinfo",
    526   "macro",
    527   // "pubnames",  // not used by gdb as of 7.4
    528   // "pubtypes",  // not used by gdb as of 7.4
    529   // "gnu_pubnames",  // Fission extension
    530   // "gnu_pubtypes",  // Fission extension
    531   "ranges",
    532   "str",
    533   "str_offsets",
    534 };
    535 
    536 // This is the minimum set of sections needed for line numbers.
    537 
    538 static const char* lines_only_debug_sections[] =
    539 {
    540   "abbrev",
    541   // "addr",      // Fission extension
    542   // "aranges",   // not used by gdb as of 7.4
    543   // "frame",
    544   // "gdb_scripts",
    545   "info",
    546   // "types",
    547   "line",
    548   // "loc",
    549   // "macinfo",
    550   // "macro",
    551   // "pubnames",  // not used by gdb as of 7.4
    552   // "pubtypes",  // not used by gdb as of 7.4
    553   // "gnu_pubnames",  // Fission extension
    554   // "gnu_pubtypes",  // Fission extension
    555   // "ranges",
    556   "str",
    557   "str_offsets",  // Fission extension
    558 };
    559 
    560 // These sections are the DWARF fast-lookup tables, and are not needed
    561 // when building a .gdb_index section.
    562 
    563 static const char* gdb_fast_lookup_sections[] =
    564 {
    565   "aranges",
    566   "pubnames",
    567   "gnu_pubnames",
    568   "pubtypes",
    569   "gnu_pubtypes",
    570 };
    571 
    572 // Returns whether the given debug section is in the list of
    573 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
    574 // portion of the name following ".debug_" or ".zdebug_".
    575 
    576 static inline bool
    577 is_gdb_debug_section(const char* suffix)
    578 {
    579   // We can do this faster: binary search or a hashtable.  But why bother?
    580   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
    581     if (strcmp(suffix, gdb_sections[i]) == 0)
    582       return true;
    583   return false;
    584 }
    585 
    586 // Returns whether the given section is needed for lines-only debugging.
    587 
    588 static inline bool
    589 is_lines_only_debug_section(const char* suffix)
    590 {
    591   // We can do this faster: binary search or a hashtable.  But why bother?
    592   for (size_t i = 0;
    593        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
    594        ++i)
    595     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
    596       return true;
    597   return false;
    598 }
    599 
    600 // Returns whether the given section is a fast-lookup section that
    601 // will not be needed when building a .gdb_index section.
    602 
    603 static inline bool
    604 is_gdb_fast_lookup_section(const char* suffix)
    605 {
    606   // We can do this faster: binary search or a hashtable.  But why bother?
    607   for (size_t i = 0;
    608        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
    609        ++i)
    610     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
    611       return true;
    612   return false;
    613 }
    614 
    615 // Sometimes we compress sections.  This is typically done for
    616 // sections that are not part of normal program execution (such as
    617 // .debug_* sections), and where the readers of these sections know
    618 // how to deal with compressed sections.  This routine doesn't say for
    619 // certain whether we'll compress -- it depends on commandline options
    620 // as well -- just whether this section is a candidate for compression.
    621 // (The Output_compressed_section class decides whether to compress
    622 // a given section, and picks the name of the compressed section.)
    623 
    624 static bool
    625 is_compressible_debug_section(const char* secname)
    626 {
    627   return (is_prefix_of(".debug", secname));
    628 }
    629 
    630 // We may see compressed debug sections in input files.  Return TRUE
    631 // if this is the name of a compressed debug section.
    632 
    633 bool
    634 is_compressed_debug_section(const char* secname)
    635 {
    636   return (is_prefix_of(".zdebug", secname));
    637 }
    638 
    639 std::string
    640 corresponding_uncompressed_section_name(std::string secname)
    641 {
    642   gold_assert(secname[0] == '.' && secname[1] == 'z');
    643   std::string ret(".");
    644   ret.append(secname, 2, std::string::npos);
    645   return ret;
    646 }
    647 
    648 // Whether to include this section in the link.
    649 
    650 template<int size, bool big_endian>
    651 bool
    652 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
    653 			const elfcpp::Shdr<size, big_endian>& shdr)
    654 {
    655   if (!parameters->options().relocatable()
    656       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
    657     return false;
    658 
    659   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
    660 
    661   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
    662       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
    663     return parameters->target().should_include_section(sh_type);
    664 
    665   switch (sh_type)
    666     {
    667     case elfcpp::SHT_NULL:
    668     case elfcpp::SHT_SYMTAB:
    669     case elfcpp::SHT_DYNSYM:
    670     case elfcpp::SHT_HASH:
    671     case elfcpp::SHT_DYNAMIC:
    672     case elfcpp::SHT_SYMTAB_SHNDX:
    673       return false;
    674 
    675     case elfcpp::SHT_STRTAB:
    676       // Discard the sections which have special meanings in the ELF
    677       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
    678       // checking the sh_link fields of the appropriate sections.
    679       return (strcmp(name, ".dynstr") != 0
    680 	      && strcmp(name, ".strtab") != 0
    681 	      && strcmp(name, ".shstrtab") != 0);
    682 
    683     case elfcpp::SHT_RELA:
    684     case elfcpp::SHT_REL:
    685     case elfcpp::SHT_GROUP:
    686       // If we are emitting relocations these should be handled
    687       // elsewhere.
    688       gold_assert(!parameters->options().relocatable());
    689       return false;
    690 
    691     case elfcpp::SHT_PROGBITS:
    692       if (parameters->options().strip_debug()
    693 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
    694 	{
    695 	  if (is_debug_info_section(name))
    696 	    return false;
    697 	}
    698       if (parameters->options().strip_debug_non_line()
    699 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
    700 	{
    701 	  // Debugging sections can only be recognized by name.
    702 	  if (is_prefix_of(".debug_", name)
    703 	      && !is_lines_only_debug_section(name + 7))
    704 	    return false;
    705 	  if (is_prefix_of(".zdebug_", name)
    706 	      && !is_lines_only_debug_section(name + 8))
    707 	    return false;
    708 	}
    709       if (parameters->options().strip_debug_gdb()
    710 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
    711 	{
    712 	  // Debugging sections can only be recognized by name.
    713 	  if (is_prefix_of(".debug_", name)
    714 	      && !is_gdb_debug_section(name + 7))
    715 	    return false;
    716 	  if (is_prefix_of(".zdebug_", name)
    717 	      && !is_gdb_debug_section(name + 8))
    718 	    return false;
    719 	}
    720       if (parameters->options().gdb_index()
    721 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
    722 	{
    723 	  // When building .gdb_index, we can strip .debug_pubnames,
    724 	  // .debug_pubtypes, and .debug_aranges sections.
    725 	  if (is_prefix_of(".debug_", name)
    726 	      && is_gdb_fast_lookup_section(name + 7))
    727 	    return false;
    728 	  if (is_prefix_of(".zdebug_", name)
    729 	      && is_gdb_fast_lookup_section(name + 8))
    730 	    return false;
    731 	}
    732       if (parameters->options().strip_lto_sections()
    733 	  && !parameters->options().relocatable()
    734 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
    735 	{
    736 	  // Ignore LTO sections containing intermediate code.
    737 	  if (is_prefix_of(".gnu.lto_", name))
    738 	    return false;
    739 	}
    740       // The GNU linker strips .gnu_debuglink sections, so we do too.
    741       // This is a feature used to keep debugging information in
    742       // separate files.
    743       if (strcmp(name, ".gnu_debuglink") == 0)
    744 	return false;
    745       return true;
    746 
    747     default:
    748       return true;
    749     }
    750 }
    751 
    752 // Return an output section named NAME, or NULL if there is none.
    753 
    754 Output_section*
    755 Layout::find_output_section(const char* name) const
    756 {
    757   for (Section_list::const_iterator p = this->section_list_.begin();
    758        p != this->section_list_.end();
    759        ++p)
    760     if (strcmp((*p)->name(), name) == 0)
    761       return *p;
    762   return NULL;
    763 }
    764 
    765 // Return an output segment of type TYPE, with segment flags SET set
    766 // and segment flags CLEAR clear.  Return NULL if there is none.
    767 
    768 Output_segment*
    769 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
    770 			    elfcpp::Elf_Word clear) const
    771 {
    772   for (Segment_list::const_iterator p = this->segment_list_.begin();
    773        p != this->segment_list_.end();
    774        ++p)
    775     if (static_cast<elfcpp::PT>((*p)->type()) == type
    776 	&& ((*p)->flags() & set) == set
    777 	&& ((*p)->flags() & clear) == 0)
    778       return *p;
    779   return NULL;
    780 }
    781 
    782 // When we put a .ctors or .dtors section with more than one word into
    783 // a .init_array or .fini_array section, we need to reverse the words
    784 // in the .ctors/.dtors section.  This is because .init_array executes
    785 // constructors front to back, where .ctors executes them back to
    786 // front, and vice-versa for .fini_array/.dtors.  Although we do want
    787 // to remap .ctors/.dtors into .init_array/.fini_array because it can
    788 // be more efficient, we don't want to change the order in which
    789 // constructors/destructors are run.  This set just keeps track of
    790 // these sections which need to be reversed.  It is only changed by
    791 // Layout::layout.  It should be a private member of Layout, but that
    792 // would require layout.h to #include object.h to get the definition
    793 // of Section_id.
    794 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
    795 
    796 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
    797 // .init_array/.fini_array section.
    798 
    799 bool
    800 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
    801 {
    802   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
    803 	  != ctors_sections_in_init_array.end());
    804 }
    805 
    806 // Return the output section to use for section NAME with type TYPE
    807 // and section flags FLAGS.  NAME must be canonicalized in the string
    808 // pool, and NAME_KEY is the key.  ORDER is where this should appear
    809 // in the output sections.  IS_RELRO is true for a relro section.
    810 
    811 Output_section*
    812 Layout::get_output_section(const char* name, Stringpool::Key name_key,
    813 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
    814 			   Output_section_order order, bool is_relro)
    815 {
    816   elfcpp::Elf_Word lookup_type = type;
    817 
    818   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
    819   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
    820   // .init_array, .fini_array, and .preinit_array sections by name
    821   // whatever their type in the input file.  We do this because the
    822   // types are not always right in the input files.
    823   if (lookup_type == elfcpp::SHT_INIT_ARRAY
    824       || lookup_type == elfcpp::SHT_FINI_ARRAY
    825       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
    826     lookup_type = elfcpp::SHT_PROGBITS;
    827 
    828   elfcpp::Elf_Xword lookup_flags = flags;
    829 
    830   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
    831   // read-write with read-only sections.  Some other ELF linkers do
    832   // not do this.  FIXME: Perhaps there should be an option
    833   // controlling this.
    834   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
    835 
    836   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
    837   const std::pair<Key, Output_section*> v(key, NULL);
    838   std::pair<Section_name_map::iterator, bool> ins(
    839     this->section_name_map_.insert(v));
    840 
    841   if (!ins.second)
    842     return ins.first->second;
    843   else
    844     {
    845       // This is the first time we've seen this name/type/flags
    846       // combination.  For compatibility with the GNU linker, we
    847       // combine sections with contents and zero flags with sections
    848       // with non-zero flags.  This is a workaround for cases where
    849       // assembler code forgets to set section flags.  FIXME: Perhaps
    850       // there should be an option to control this.
    851       Output_section* os = NULL;
    852 
    853       if (lookup_type == elfcpp::SHT_PROGBITS)
    854 	{
    855 	  if (flags == 0)
    856 	    {
    857 	      Output_section* same_name = this->find_output_section(name);
    858 	      if (same_name != NULL
    859 		  && (same_name->type() == elfcpp::SHT_PROGBITS
    860 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
    861 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
    862 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
    863 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
    864 		os = same_name;
    865 	    }
    866 	  else if ((flags & elfcpp::SHF_TLS) == 0)
    867 	    {
    868 	      elfcpp::Elf_Xword zero_flags = 0;
    869 	      const Key zero_key(name_key, std::make_pair(lookup_type,
    870 							  zero_flags));
    871 	      Section_name_map::iterator p =
    872 		  this->section_name_map_.find(zero_key);
    873 	      if (p != this->section_name_map_.end())
    874 		os = p->second;
    875 	    }
    876 	}
    877 
    878       if (os == NULL)
    879 	os = this->make_output_section(name, type, flags, order, is_relro);
    880 
    881       ins.first->second = os;
    882       return os;
    883     }
    884 }
    885 
    886 // Returns TRUE iff NAME (an input section from RELOBJ) will
    887 // be mapped to an output section that should be KEPT.
    888 
    889 bool
    890 Layout::keep_input_section(const Relobj* relobj, const char* name)
    891 {
    892   if (! this->script_options_->saw_sections_clause())
    893     return false;
    894 
    895   Script_sections* ss = this->script_options_->script_sections();
    896   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
    897   Output_section** output_section_slot;
    898   Script_sections::Section_type script_section_type;
    899   bool keep;
    900 
    901   name = ss->output_section_name(file_name, name, &output_section_slot,
    902 				 &script_section_type, &keep);
    903   return name != NULL && keep;
    904 }
    905 
    906 // Clear the input section flags that should not be copied to the
    907 // output section.
    908 
    909 elfcpp::Elf_Xword
    910 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
    911 {
    912   // Some flags in the input section should not be automatically
    913   // copied to the output section.
    914   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
    915 			    | elfcpp::SHF_GROUP
    916 			    | elfcpp::SHF_COMPRESSED
    917 			    | elfcpp::SHF_MERGE
    918 			    | elfcpp::SHF_STRINGS);
    919 
    920   // We only clear the SHF_LINK_ORDER flag in for
    921   // a non-relocatable link.
    922   if (!parameters->options().relocatable())
    923     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
    924 
    925   return input_section_flags;
    926 }
    927 
    928 // Pick the output section to use for section NAME, in input file
    929 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
    930 // linker created section.  IS_INPUT_SECTION is true if we are
    931 // choosing an output section for an input section found in a input
    932 // file.  ORDER is where this section should appear in the output
    933 // sections.  IS_RELRO is true for a relro section.  This will return
    934 // NULL if the input section should be discarded.
    935 
    936 Output_section*
    937 Layout::choose_output_section(const Relobj* relobj, const char* name,
    938 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
    939 			      bool is_input_section, Output_section_order order,
    940 			      bool is_relro)
    941 {
    942   // We should not see any input sections after we have attached
    943   // sections to segments.
    944   gold_assert(!is_input_section || !this->sections_are_attached_);
    945 
    946   flags = this->get_output_section_flags(flags);
    947 
    948   if (this->script_options_->saw_sections_clause())
    949     {
    950       // We are using a SECTIONS clause, so the output section is
    951       // chosen based only on the name.
    952 
    953       Script_sections* ss = this->script_options_->script_sections();
    954       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
    955       Output_section** output_section_slot;
    956       Script_sections::Section_type script_section_type;
    957       const char* orig_name = name;
    958       bool keep;
    959       name = ss->output_section_name(file_name, name, &output_section_slot,
    960 				     &script_section_type, &keep);
    961 
    962       if (name == NULL)
    963 	{
    964 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
    965 				     "because it is not allowed by the "
    966 				     "SECTIONS clause of the linker script"),
    967 		     orig_name);
    968 	  // The SECTIONS clause says to discard this input section.
    969 	  return NULL;
    970 	}
    971 
    972       // We can only handle script section types ST_NONE and ST_NOLOAD.
    973       switch (script_section_type)
    974 	{
    975 	case Script_sections::ST_NONE:
    976 	  break;
    977 	case Script_sections::ST_NOLOAD:
    978 	  flags &= elfcpp::SHF_ALLOC;
    979 	  break;
    980 	default:
    981 	  gold_unreachable();
    982 	}
    983 
    984       // If this is an orphan section--one not mentioned in the linker
    985       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
    986       // default processing below.
    987 
    988       if (output_section_slot != NULL)
    989 	{
    990 	  if (*output_section_slot != NULL)
    991 	    {
    992 	      (*output_section_slot)->update_flags_for_input_section(flags);
    993 	      return *output_section_slot;
    994 	    }
    995 
    996 	  // We don't put sections found in the linker script into
    997 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
    998 	  // if an orphan section is mapped to a section with the same
    999 	  // name as one in the linker script.
   1000 
   1001 	  name = this->namepool_.add(name, false, NULL);
   1002 
   1003 	  Output_section* os = this->make_output_section(name, type, flags,
   1004 							 order, is_relro);
   1005 
   1006 	  os->set_found_in_sections_clause();
   1007 
   1008 	  // Special handling for NOLOAD sections.
   1009 	  if (script_section_type == Script_sections::ST_NOLOAD)
   1010 	    {
   1011 	      os->set_is_noload();
   1012 
   1013 	      // The constructor of Output_section sets addresses of non-ALLOC
   1014 	      // sections to 0 by default.  We don't want that for NOLOAD
   1015 	      // sections even if they have no SHF_ALLOC flag.
   1016 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
   1017 		  && os->is_address_valid())
   1018 		{
   1019 		  gold_assert(os->address() == 0
   1020 			      && !os->is_offset_valid()
   1021 			      && !os->is_data_size_valid());
   1022 		  os->reset_address_and_file_offset();
   1023 		}
   1024 	    }
   1025 
   1026 	  *output_section_slot = os;
   1027 	  return os;
   1028 	}
   1029     }
   1030 
   1031   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
   1032 
   1033   size_t len = strlen(name);
   1034   std::string uncompressed_name;
   1035 
   1036   // Compressed debug sections should be mapped to the corresponding
   1037   // uncompressed section.
   1038   if (is_compressed_debug_section(name))
   1039     {
   1040       uncompressed_name =
   1041 	  corresponding_uncompressed_section_name(std::string(name, len));
   1042       name = uncompressed_name.c_str();
   1043       len = uncompressed_name.length();
   1044     }
   1045 
   1046   // Turn NAME from the name of the input section into the name of the
   1047   // output section.
   1048   if (is_input_section
   1049       && !this->script_options_->saw_sections_clause()
   1050       && !parameters->options().relocatable())
   1051     {
   1052       const char *orig_name = name;
   1053       name = parameters->target().output_section_name(relobj, name, &len);
   1054       if (name == NULL)
   1055 	name = Layout::output_section_name(relobj, orig_name, &len);
   1056     }
   1057 
   1058   Stringpool::Key name_key;
   1059   name = this->namepool_.add_with_length(name, len, true, &name_key);
   1060 
   1061   // Find or make the output section.  The output section is selected
   1062   // based on the section name, type, and flags.
   1063   return this->get_output_section(name, name_key, type, flags, order, is_relro);
   1064 }
   1065 
   1066 // For incremental links, record the initial fixed layout of a section
   1067 // from the base file, and return a pointer to the Output_section.
   1068 
   1069 template<int size, bool big_endian>
   1070 Output_section*
   1071 Layout::init_fixed_output_section(const char* name,
   1072 				  elfcpp::Shdr<size, big_endian>& shdr)
   1073 {
   1074   unsigned int sh_type = shdr.get_sh_type();
   1075 
   1076   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
   1077   // PRE_INIT_ARRAY, and NOTE sections.
   1078   // All others will be created from scratch and reallocated.
   1079   if (!can_incremental_update(sh_type))
   1080     return NULL;
   1081 
   1082   // If we're generating a .gdb_index section, we need to regenerate
   1083   // it from scratch.
   1084   if (parameters->options().gdb_index()
   1085       && sh_type == elfcpp::SHT_PROGBITS
   1086       && strcmp(name, ".gdb_index") == 0)
   1087     return NULL;
   1088 
   1089   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
   1090   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
   1091   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
   1092   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
   1093   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
   1094       shdr.get_sh_addralign();
   1095 
   1096   // Make the output section.
   1097   Stringpool::Key name_key;
   1098   name = this->namepool_.add(name, true, &name_key);
   1099   Output_section* os = this->get_output_section(name, name_key, sh_type,
   1100 						sh_flags, ORDER_INVALID, false);
   1101   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
   1102   if (sh_type != elfcpp::SHT_NOBITS)
   1103     this->free_list_.remove(sh_offset, sh_offset + sh_size);
   1104   return os;
   1105 }
   1106 
   1107 // Return the index by which an input section should be ordered.  This
   1108 // is used to sort some .text sections, for compatibility with GNU ld.
   1109 
   1110 int
   1111 Layout::special_ordering_of_input_section(const char* name)
   1112 {
   1113   // The GNU linker has some special handling for some sections that
   1114   // wind up in the .text section.  Sections that start with these
   1115   // prefixes must appear first, and must appear in the order listed
   1116   // here.
   1117   static const char* const text_section_sort[] =
   1118   {
   1119     ".text.unlikely",
   1120     ".text.exit",
   1121     ".text.startup",
   1122     ".text.hot"
   1123   };
   1124 
   1125   for (size_t i = 0;
   1126        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
   1127        i++)
   1128     if (is_prefix_of(text_section_sort[i], name))
   1129       return i;
   1130 
   1131   return -1;
   1132 }
   1133 
   1134 // Return the output section to use for input section SHNDX, with name
   1135 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
   1136 // index of a relocation section which applies to this section, or 0
   1137 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
   1138 // relocation section if there is one.  Set *OFF to the offset of this
   1139 // input section without the output section.  Return NULL if the
   1140 // section should be discarded.  Set *OFF to -1 if the section
   1141 // contents should not be written directly to the output file, but
   1142 // will instead receive special handling.
   1143 
   1144 template<int size, bool big_endian>
   1145 Output_section*
   1146 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
   1147 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
   1148 	       unsigned int reloc_shndx, unsigned int, off_t* off)
   1149 {
   1150   *off = 0;
   1151 
   1152   if (!this->include_section(object, name, shdr))
   1153     return NULL;
   1154 
   1155   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
   1156 
   1157   // In a relocatable link a grouped section must not be combined with
   1158   // any other sections.
   1159   Output_section* os;
   1160   if (parameters->options().relocatable()
   1161       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
   1162     {
   1163       // Some flags in the input section should not be automatically
   1164       // copied to the output section.
   1165       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
   1166 				 & ~ elfcpp::SHF_COMPRESSED);
   1167       name = this->namepool_.add(name, true, NULL);
   1168       os = this->make_output_section(name, sh_type, flags,
   1169 				     ORDER_INVALID, false);
   1170     }
   1171   else
   1172     {
   1173       // Plugins can choose to place one or more subsets of sections in
   1174       // unique segments and this is done by mapping these section subsets
   1175       // to unique output sections.  Check if this section needs to be
   1176       // remapped to a unique output section.
   1177       Section_segment_map::iterator it
   1178 	  = this->section_segment_map_.find(Const_section_id(object, shndx));
   1179       if (it == this->section_segment_map_.end())
   1180 	{
   1181 	  os = this->choose_output_section(object, name, sh_type,
   1182 					   shdr.get_sh_flags(), true,
   1183 					   ORDER_INVALID, false);
   1184 	}
   1185       else
   1186 	{
   1187 	  // We know the name of the output section, directly call
   1188 	  // get_output_section here by-passing choose_output_section.
   1189 	  elfcpp::Elf_Xword flags
   1190 	    = this->get_output_section_flags(shdr.get_sh_flags());
   1191 
   1192 	  const char* os_name = it->second->name;
   1193 	  Stringpool::Key name_key;
   1194 	  os_name = this->namepool_.add(os_name, true, &name_key);
   1195 	  os = this->get_output_section(os_name, name_key, sh_type, flags,
   1196 					ORDER_INVALID, false);
   1197 	  if (!os->is_unique_segment())
   1198 	    {
   1199 	      os->set_is_unique_segment();
   1200 	      os->set_extra_segment_flags(it->second->flags);
   1201 	      os->set_segment_alignment(it->second->align);
   1202 	    }
   1203 	}
   1204       if (os == NULL)
   1205 	return NULL;
   1206     }
   1207 
   1208   // By default the GNU linker sorts input sections whose names match
   1209   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
   1210   // sections are sorted by name.  This is used to implement
   1211   // constructor priority ordering.  We are compatible.  When we put
   1212   // .ctor sections in .init_array and .dtor sections in .fini_array,
   1213   // we must also sort plain .ctor and .dtor sections.
   1214   if (!this->script_options_->saw_sections_clause()
   1215       && !parameters->options().relocatable()
   1216       && (is_prefix_of(".ctors.", name)
   1217 	  || is_prefix_of(".dtors.", name)
   1218 	  || is_prefix_of(".init_array.", name)
   1219 	  || is_prefix_of(".fini_array.", name)
   1220 	  || (parameters->options().ctors_in_init_array()
   1221 	      && (strcmp(name, ".ctors") == 0
   1222 		  || strcmp(name, ".dtors") == 0))))
   1223     os->set_must_sort_attached_input_sections();
   1224 
   1225   // By default the GNU linker sorts some special text sections ahead
   1226   // of others.  We are compatible.
   1227   if (parameters->options().text_reorder()
   1228       && !this->script_options_->saw_sections_clause()
   1229       && !this->is_section_ordering_specified()
   1230       && !parameters->options().relocatable()
   1231       && Layout::special_ordering_of_input_section(name) >= 0)
   1232     os->set_must_sort_attached_input_sections();
   1233 
   1234   // If this is a .ctors or .ctors.* section being mapped to a
   1235   // .init_array section, or a .dtors or .dtors.* section being mapped
   1236   // to a .fini_array section, we will need to reverse the words if
   1237   // there is more than one.  Record this section for later.  See
   1238   // ctors_sections_in_init_array above.
   1239   if (!this->script_options_->saw_sections_clause()
   1240       && !parameters->options().relocatable()
   1241       && shdr.get_sh_size() > size / 8
   1242       && (((strcmp(name, ".ctors") == 0
   1243 	    || is_prefix_of(".ctors.", name))
   1244 	   && strcmp(os->name(), ".init_array") == 0)
   1245 	  || ((strcmp(name, ".dtors") == 0
   1246 	       || is_prefix_of(".dtors.", name))
   1247 	      && strcmp(os->name(), ".fini_array") == 0)))
   1248     ctors_sections_in_init_array.insert(Section_id(object, shndx));
   1249 
   1250   // FIXME: Handle SHF_LINK_ORDER somewhere.
   1251 
   1252   elfcpp::Elf_Xword orig_flags = os->flags();
   1253 
   1254   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
   1255 			       this->script_options_->saw_sections_clause());
   1256 
   1257   // If the flags changed, we may have to change the order.
   1258   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
   1259     {
   1260       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
   1261       elfcpp::Elf_Xword new_flags =
   1262 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
   1263       if (orig_flags != new_flags)
   1264 	os->set_order(this->default_section_order(os, false));
   1265     }
   1266 
   1267   this->have_added_input_section_ = true;
   1268 
   1269   return os;
   1270 }
   1271 
   1272 // Maps section SECN to SEGMENT s.
   1273 void
   1274 Layout::insert_section_segment_map(Const_section_id secn,
   1275 				   Unique_segment_info *s)
   1276 {
   1277   gold_assert(this->unique_segment_for_sections_specified_);
   1278   this->section_segment_map_[secn] = s;
   1279 }
   1280 
   1281 // Handle a relocation section when doing a relocatable link.
   1282 
   1283 template<int size, bool big_endian>
   1284 Output_section*
   1285 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
   1286 		     unsigned int,
   1287 		     const elfcpp::Shdr<size, big_endian>& shdr,
   1288 		     Output_section* data_section,
   1289 		     Relocatable_relocs* rr)
   1290 {
   1291   gold_assert(parameters->options().relocatable()
   1292 	      || parameters->options().emit_relocs());
   1293 
   1294   int sh_type = shdr.get_sh_type();
   1295 
   1296   std::string name;
   1297   if (sh_type == elfcpp::SHT_REL)
   1298     name = ".rel";
   1299   else if (sh_type == elfcpp::SHT_RELA)
   1300     name = ".rela";
   1301   else
   1302     gold_unreachable();
   1303   name += data_section->name();
   1304 
   1305   // In a relocatable link relocs for a grouped section must not be
   1306   // combined with other reloc sections.
   1307   Output_section* os;
   1308   if (!parameters->options().relocatable()
   1309       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
   1310     os = this->choose_output_section(object, name.c_str(), sh_type,
   1311 				     shdr.get_sh_flags(), false,
   1312 				     ORDER_INVALID, false);
   1313   else
   1314     {
   1315       const char* n = this->namepool_.add(name.c_str(), true, NULL);
   1316       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
   1317 				     ORDER_INVALID, false);
   1318     }
   1319 
   1320   os->set_should_link_to_symtab();
   1321   os->set_info_section(data_section);
   1322 
   1323   Output_section_data* posd;
   1324   if (sh_type == elfcpp::SHT_REL)
   1325     {
   1326       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
   1327       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
   1328 					   size,
   1329 					   big_endian>(rr);
   1330     }
   1331   else if (sh_type == elfcpp::SHT_RELA)
   1332     {
   1333       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
   1334       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
   1335 					   size,
   1336 					   big_endian>(rr);
   1337     }
   1338   else
   1339     gold_unreachable();
   1340 
   1341   os->add_output_section_data(posd);
   1342   rr->set_output_data(posd);
   1343 
   1344   return os;
   1345 }
   1346 
   1347 // Handle a group section when doing a relocatable link.
   1348 
   1349 template<int size, bool big_endian>
   1350 void
   1351 Layout::layout_group(Symbol_table* symtab,
   1352 		     Sized_relobj_file<size, big_endian>* object,
   1353 		     unsigned int,
   1354 		     const char* group_section_name,
   1355 		     const char* signature,
   1356 		     const elfcpp::Shdr<size, big_endian>& shdr,
   1357 		     elfcpp::Elf_Word flags,
   1358 		     std::vector<unsigned int>* shndxes)
   1359 {
   1360   gold_assert(parameters->options().relocatable());
   1361   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
   1362   group_section_name = this->namepool_.add(group_section_name, true, NULL);
   1363   Output_section* os = this->make_output_section(group_section_name,
   1364 						 elfcpp::SHT_GROUP,
   1365 						 shdr.get_sh_flags(),
   1366 						 ORDER_INVALID, false);
   1367 
   1368   // We need to find a symbol with the signature in the symbol table.
   1369   // If we don't find one now, we need to look again later.
   1370   Symbol* sym = symtab->lookup(signature, NULL);
   1371   if (sym != NULL)
   1372     os->set_info_symndx(sym);
   1373   else
   1374     {
   1375       // Reserve some space to minimize reallocations.
   1376       if (this->group_signatures_.empty())
   1377 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
   1378 
   1379       // We will wind up using a symbol whose name is the signature.
   1380       // So just put the signature in the symbol name pool to save it.
   1381       signature = symtab->canonicalize_name(signature);
   1382       this->group_signatures_.push_back(Group_signature(os, signature));
   1383     }
   1384 
   1385   os->set_should_link_to_symtab();
   1386   os->set_entsize(4);
   1387 
   1388   section_size_type entry_count =
   1389     convert_to_section_size_type(shdr.get_sh_size() / 4);
   1390   Output_section_data* posd =
   1391     new Output_data_group<size, big_endian>(object, entry_count, flags,
   1392 					    shndxes);
   1393   os->add_output_section_data(posd);
   1394 }
   1395 
   1396 // Special GNU handling of sections name .eh_frame.  They will
   1397 // normally hold exception frame data as defined by the C++ ABI
   1398 // (http://codesourcery.com/cxx-abi/).
   1399 
   1400 template<int size, bool big_endian>
   1401 Output_section*
   1402 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
   1403 			const unsigned char* symbols,
   1404 			off_t symbols_size,
   1405 			const unsigned char* symbol_names,
   1406 			off_t symbol_names_size,
   1407 			unsigned int shndx,
   1408 			const elfcpp::Shdr<size, big_endian>& shdr,
   1409 			unsigned int reloc_shndx, unsigned int reloc_type,
   1410 			off_t* off)
   1411 {
   1412   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
   1413 	      || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
   1414   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
   1415 
   1416   Output_section* os = this->make_eh_frame_section(object);
   1417   if (os == NULL)
   1418     return NULL;
   1419 
   1420   gold_assert(this->eh_frame_section_ == os);
   1421 
   1422   elfcpp::Elf_Xword orig_flags = os->flags();
   1423 
   1424   Eh_frame::Eh_frame_section_disposition disp =
   1425       Eh_frame::EH_UNRECOGNIZED_SECTION;
   1426   if (!parameters->incremental())
   1427     {
   1428       disp = this->eh_frame_data_->add_ehframe_input_section(object,
   1429 							     symbols,
   1430 							     symbols_size,
   1431 							     symbol_names,
   1432 							     symbol_names_size,
   1433 							     shndx,
   1434 							     reloc_shndx,
   1435 							     reloc_type);
   1436     }
   1437 
   1438   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
   1439     {
   1440       os->update_flags_for_input_section(shdr.get_sh_flags());
   1441 
   1442       // A writable .eh_frame section is a RELRO section.
   1443       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
   1444 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
   1445 	{
   1446 	  os->set_is_relro();
   1447 	  os->set_order(ORDER_RELRO);
   1448 	}
   1449 
   1450       *off = -1;
   1451       return os;
   1452     }
   1453 
   1454   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
   1455     {
   1456       // We found the end marker section, so now we can add the set of
   1457       // optimized sections to the output section.  We need to postpone
   1458       // adding this until we've found a section we can optimize so that
   1459       // the .eh_frame section in crtbeginT.o winds up at the start of
   1460       // the output section.
   1461       os->add_output_section_data(this->eh_frame_data_);
   1462       this->added_eh_frame_data_ = true;
   1463      }
   1464 
   1465   // We couldn't handle this .eh_frame section for some reason.
   1466   // Add it as a normal section.
   1467   bool saw_sections_clause = this->script_options_->saw_sections_clause();
   1468   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
   1469 			       reloc_shndx, saw_sections_clause);
   1470   this->have_added_input_section_ = true;
   1471 
   1472   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
   1473       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
   1474     os->set_order(this->default_section_order(os, false));
   1475 
   1476   return os;
   1477 }
   1478 
   1479 void
   1480 Layout::finalize_eh_frame_section()
   1481 {
   1482   // If we never found an end marker section, we need to add the
   1483   // optimized eh sections to the output section now.
   1484   if (!parameters->incremental()
   1485       && this->eh_frame_section_ != NULL
   1486       && !this->added_eh_frame_data_)
   1487     {
   1488       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
   1489       this->added_eh_frame_data_ = true;
   1490     }
   1491 }
   1492 
   1493 // Create and return the magic .eh_frame section.  Create
   1494 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
   1495 // input .eh_frame section; it may be NULL.
   1496 
   1497 Output_section*
   1498 Layout::make_eh_frame_section(const Relobj* object)
   1499 {
   1500   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
   1501   // SHT_PROGBITS.
   1502   Output_section* os = this->choose_output_section(object, ".eh_frame",
   1503 						   elfcpp::SHT_PROGBITS,
   1504 						   elfcpp::SHF_ALLOC, false,
   1505 						   ORDER_EHFRAME, false);
   1506   if (os == NULL)
   1507     return NULL;
   1508 
   1509   if (this->eh_frame_section_ == NULL)
   1510     {
   1511       this->eh_frame_section_ = os;
   1512       this->eh_frame_data_ = new Eh_frame();
   1513 
   1514       // For incremental linking, we do not optimize .eh_frame sections
   1515       // or create a .eh_frame_hdr section.
   1516       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
   1517 	{
   1518 	  Output_section* hdr_os =
   1519 	    this->choose_output_section(NULL, ".eh_frame_hdr",
   1520 					elfcpp::SHT_PROGBITS,
   1521 					elfcpp::SHF_ALLOC, false,
   1522 					ORDER_EHFRAME, false);
   1523 
   1524 	  if (hdr_os != NULL)
   1525 	    {
   1526 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
   1527 							this->eh_frame_data_);
   1528 	      hdr_os->add_output_section_data(hdr_posd);
   1529 
   1530 	      hdr_os->set_after_input_sections();
   1531 
   1532 	      if (!this->script_options_->saw_phdrs_clause())
   1533 		{
   1534 		  Output_segment* hdr_oseg;
   1535 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
   1536 						       elfcpp::PF_R);
   1537 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
   1538 							  elfcpp::PF_R);
   1539 		}
   1540 
   1541 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
   1542 	    }
   1543 	}
   1544     }
   1545 
   1546   return os;
   1547 }
   1548 
   1549 // Add an exception frame for a PLT.  This is called from target code.
   1550 
   1551 void
   1552 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
   1553 			     size_t cie_length, const unsigned char* fde_data,
   1554 			     size_t fde_length)
   1555 {
   1556   if (parameters->incremental())
   1557     {
   1558       // FIXME: Maybe this could work some day....
   1559       return;
   1560     }
   1561   Output_section* os = this->make_eh_frame_section(NULL);
   1562   if (os == NULL)
   1563     return;
   1564   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
   1565 					    fde_data, fde_length);
   1566   if (!this->added_eh_frame_data_)
   1567     {
   1568       os->add_output_section_data(this->eh_frame_data_);
   1569       this->added_eh_frame_data_ = true;
   1570     }
   1571 }
   1572 
   1573 // Scan a .debug_info or .debug_types section, and add summary
   1574 // information to the .gdb_index section.
   1575 
   1576 template<int size, bool big_endian>
   1577 void
   1578 Layout::add_to_gdb_index(bool is_type_unit,
   1579 			 Sized_relobj<size, big_endian>* object,
   1580 			 const unsigned char* symbols,
   1581 			 off_t symbols_size,
   1582 			 unsigned int shndx,
   1583 			 unsigned int reloc_shndx,
   1584 			 unsigned int reloc_type)
   1585 {
   1586   if (this->gdb_index_data_ == NULL)
   1587     {
   1588       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
   1589 						       elfcpp::SHT_PROGBITS, 0,
   1590 						       false, ORDER_INVALID,
   1591 						       false);
   1592       if (os == NULL)
   1593 	return;
   1594 
   1595       this->gdb_index_data_ = new Gdb_index(os);
   1596       os->add_output_section_data(this->gdb_index_data_);
   1597       os->set_after_input_sections();
   1598     }
   1599 
   1600   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
   1601 					 symbols_size, shndx, reloc_shndx,
   1602 					 reloc_type);
   1603 }
   1604 
   1605 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
   1606 // the output section.
   1607 
   1608 Output_section*
   1609 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
   1610 				elfcpp::Elf_Xword flags,
   1611 				Output_section_data* posd,
   1612 				Output_section_order order, bool is_relro)
   1613 {
   1614   Output_section* os = this->choose_output_section(NULL, name, type, flags,
   1615 						   false, order, is_relro);
   1616   if (os != NULL)
   1617     os->add_output_section_data(posd);
   1618   return os;
   1619 }
   1620 
   1621 // Map section flags to segment flags.
   1622 
   1623 elfcpp::Elf_Word
   1624 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
   1625 {
   1626   elfcpp::Elf_Word ret = elfcpp::PF_R;
   1627   if ((flags & elfcpp::SHF_WRITE) != 0)
   1628     ret |= elfcpp::PF_W;
   1629   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
   1630     ret |= elfcpp::PF_X;
   1631   return ret;
   1632 }
   1633 
   1634 // Make a new Output_section, and attach it to segments as
   1635 // appropriate.  ORDER is the order in which this section should
   1636 // appear in the output segment.  IS_RELRO is true if this is a relro
   1637 // (read-only after relocations) section.
   1638 
   1639 Output_section*
   1640 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
   1641 			    elfcpp::Elf_Xword flags,
   1642 			    Output_section_order order, bool is_relro)
   1643 {
   1644   Output_section* os;
   1645   if ((flags & elfcpp::SHF_ALLOC) == 0
   1646       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
   1647       && is_compressible_debug_section(name))
   1648     os = new Output_compressed_section(&parameters->options(), name, type,
   1649 				       flags);
   1650   else if ((flags & elfcpp::SHF_ALLOC) == 0
   1651 	   && parameters->options().strip_debug_non_line()
   1652 	   && strcmp(".debug_abbrev", name) == 0)
   1653     {
   1654       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
   1655 	  name, type, flags);
   1656       if (this->debug_info_)
   1657 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
   1658     }
   1659   else if ((flags & elfcpp::SHF_ALLOC) == 0
   1660 	   && parameters->options().strip_debug_non_line()
   1661 	   && strcmp(".debug_info", name) == 0)
   1662     {
   1663       os = this->debug_info_ = new Output_reduced_debug_info_section(
   1664 	  name, type, flags);
   1665       if (this->debug_abbrev_)
   1666 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
   1667     }
   1668   else
   1669     {
   1670       // Sometimes .init_array*, .preinit_array* and .fini_array* do
   1671       // not have correct section types.  Force them here.
   1672       if (type == elfcpp::SHT_PROGBITS)
   1673 	{
   1674 	  if (is_prefix_of(".init_array", name))
   1675 	    type = elfcpp::SHT_INIT_ARRAY;
   1676 	  else if (is_prefix_of(".preinit_array", name))
   1677 	    type = elfcpp::SHT_PREINIT_ARRAY;
   1678 	  else if (is_prefix_of(".fini_array", name))
   1679 	    type = elfcpp::SHT_FINI_ARRAY;
   1680 	}
   1681 
   1682       // FIXME: const_cast is ugly.
   1683       Target* target = const_cast<Target*>(&parameters->target());
   1684       os = target->make_output_section(name, type, flags);
   1685     }
   1686 
   1687   // With -z relro, we have to recognize the special sections by name.
   1688   // There is no other way.
   1689   bool is_relro_local = false;
   1690   if (!this->script_options_->saw_sections_clause()
   1691       && parameters->options().relro()
   1692       && (flags & elfcpp::SHF_ALLOC) != 0
   1693       && (flags & elfcpp::SHF_WRITE) != 0)
   1694     {
   1695       if (type == elfcpp::SHT_PROGBITS)
   1696 	{
   1697 	  if ((flags & elfcpp::SHF_TLS) != 0)
   1698 	    is_relro = true;
   1699 	  else if (strcmp(name, ".data.rel.ro") == 0)
   1700 	    is_relro = true;
   1701 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
   1702 	    {
   1703 	      is_relro = true;
   1704 	      is_relro_local = true;
   1705 	    }
   1706 	  else if (strcmp(name, ".ctors") == 0
   1707 		   || strcmp(name, ".dtors") == 0
   1708 		   || strcmp(name, ".jcr") == 0)
   1709 	    is_relro = true;
   1710 	}
   1711       else if (type == elfcpp::SHT_INIT_ARRAY
   1712 	       || type == elfcpp::SHT_FINI_ARRAY
   1713 	       || type == elfcpp::SHT_PREINIT_ARRAY)
   1714 	is_relro = true;
   1715     }
   1716 
   1717   if (is_relro)
   1718     os->set_is_relro();
   1719 
   1720   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
   1721     order = this->default_section_order(os, is_relro_local);
   1722 
   1723   os->set_order(order);
   1724 
   1725   parameters->target().new_output_section(os);
   1726 
   1727   this->section_list_.push_back(os);
   1728 
   1729   // The GNU linker by default sorts some sections by priority, so we
   1730   // do the same.  We need to know that this might happen before we
   1731   // attach any input sections.
   1732   if (!this->script_options_->saw_sections_clause()
   1733       && !parameters->options().relocatable()
   1734       && (strcmp(name, ".init_array") == 0
   1735 	  || strcmp(name, ".fini_array") == 0
   1736 	  || (!parameters->options().ctors_in_init_array()
   1737 	      && (strcmp(name, ".ctors") == 0
   1738 		  || strcmp(name, ".dtors") == 0))))
   1739     os->set_may_sort_attached_input_sections();
   1740 
   1741   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
   1742   // sections before other .text sections.  We are compatible.  We
   1743   // need to know that this might happen before we attach any input
   1744   // sections.
   1745   if (parameters->options().text_reorder()
   1746       && !this->script_options_->saw_sections_clause()
   1747       && !this->is_section_ordering_specified()
   1748       && !parameters->options().relocatable()
   1749       && strcmp(name, ".text") == 0)
   1750     os->set_may_sort_attached_input_sections();
   1751 
   1752   // GNU linker sorts section by name with --sort-section=name.
   1753   if (strcmp(parameters->options().sort_section(), "name") == 0)
   1754       os->set_must_sort_attached_input_sections();
   1755 
   1756   // Check for .stab*str sections, as .stab* sections need to link to
   1757   // them.
   1758   if (type == elfcpp::SHT_STRTAB
   1759       && !this->have_stabstr_section_
   1760       && strncmp(name, ".stab", 5) == 0
   1761       && strcmp(name + strlen(name) - 3, "str") == 0)
   1762     this->have_stabstr_section_ = true;
   1763 
   1764   // During a full incremental link, we add patch space to most
   1765   // PROGBITS and NOBITS sections.  Flag those that may be
   1766   // arbitrarily padded.
   1767   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
   1768       && order != ORDER_INTERP
   1769       && order != ORDER_INIT
   1770       && order != ORDER_PLT
   1771       && order != ORDER_FINI
   1772       && order != ORDER_RELRO_LAST
   1773       && order != ORDER_NON_RELRO_FIRST
   1774       && strcmp(name, ".eh_frame") != 0
   1775       && strcmp(name, ".ctors") != 0
   1776       && strcmp(name, ".dtors") != 0
   1777       && strcmp(name, ".jcr") != 0)
   1778     {
   1779       os->set_is_patch_space_allowed();
   1780 
   1781       // Certain sections require "holes" to be filled with
   1782       // specific fill patterns.  These fill patterns may have
   1783       // a minimum size, so we must prevent allocations from the
   1784       // free list that leave a hole smaller than the minimum.
   1785       if (strcmp(name, ".debug_info") == 0)
   1786 	os->set_free_space_fill(new Output_fill_debug_info(false));
   1787       else if (strcmp(name, ".debug_types") == 0)
   1788 	os->set_free_space_fill(new Output_fill_debug_info(true));
   1789       else if (strcmp(name, ".debug_line") == 0)
   1790 	os->set_free_space_fill(new Output_fill_debug_line());
   1791     }
   1792 
   1793   // If we have already attached the sections to segments, then we
   1794   // need to attach this one now.  This happens for sections created
   1795   // directly by the linker.
   1796   if (this->sections_are_attached_)
   1797     this->attach_section_to_segment(&parameters->target(), os);
   1798 
   1799   return os;
   1800 }
   1801 
   1802 // Return the default order in which a section should be placed in an
   1803 // output segment.  This function captures a lot of the ideas in
   1804 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
   1805 // linker created section is normally set when the section is created;
   1806 // this function is used for input sections.
   1807 
   1808 Output_section_order
   1809 Layout::default_section_order(Output_section* os, bool is_relro_local)
   1810 {
   1811   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
   1812   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
   1813   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
   1814   bool is_bss = false;
   1815 
   1816   switch (os->type())
   1817     {
   1818     default:
   1819     case elfcpp::SHT_PROGBITS:
   1820       break;
   1821     case elfcpp::SHT_NOBITS:
   1822       is_bss = true;
   1823       break;
   1824     case elfcpp::SHT_RELA:
   1825     case elfcpp::SHT_REL:
   1826       if (!is_write)
   1827 	return ORDER_DYNAMIC_RELOCS;
   1828       break;
   1829     case elfcpp::SHT_HASH:
   1830     case elfcpp::SHT_DYNAMIC:
   1831     case elfcpp::SHT_SHLIB:
   1832     case elfcpp::SHT_DYNSYM:
   1833     case elfcpp::SHT_GNU_HASH:
   1834     case elfcpp::SHT_GNU_verdef:
   1835     case elfcpp::SHT_GNU_verneed:
   1836     case elfcpp::SHT_GNU_versym:
   1837       if (!is_write)
   1838 	return ORDER_DYNAMIC_LINKER;
   1839       break;
   1840     case elfcpp::SHT_NOTE:
   1841       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
   1842     }
   1843 
   1844   if ((os->flags() & elfcpp::SHF_TLS) != 0)
   1845     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
   1846 
   1847   if (!is_bss && !is_write)
   1848     {
   1849       if (is_execinstr)
   1850 	{
   1851 	  if (strcmp(os->name(), ".init") == 0)
   1852 	    return ORDER_INIT;
   1853 	  else if (strcmp(os->name(), ".fini") == 0)
   1854 	    return ORDER_FINI;
   1855 	}
   1856       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
   1857     }
   1858 
   1859   if (os->is_relro())
   1860     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
   1861 
   1862   if (os->is_small_section())
   1863     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
   1864   if (os->is_large_section())
   1865     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
   1866 
   1867   return is_bss ? ORDER_BSS : ORDER_DATA;
   1868 }
   1869 
   1870 // Attach output sections to segments.  This is called after we have
   1871 // seen all the input sections.
   1872 
   1873 void
   1874 Layout::attach_sections_to_segments(const Target* target)
   1875 {
   1876   for (Section_list::iterator p = this->section_list_.begin();
   1877        p != this->section_list_.end();
   1878        ++p)
   1879     this->attach_section_to_segment(target, *p);
   1880 
   1881   this->sections_are_attached_ = true;
   1882 }
   1883 
   1884 // Attach an output section to a segment.
   1885 
   1886 void
   1887 Layout::attach_section_to_segment(const Target* target, Output_section* os)
   1888 {
   1889   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
   1890     this->unattached_section_list_.push_back(os);
   1891   else
   1892     this->attach_allocated_section_to_segment(target, os);
   1893 }
   1894 
   1895 // Attach an allocated output section to a segment.
   1896 
   1897 void
   1898 Layout::attach_allocated_section_to_segment(const Target* target,
   1899 					    Output_section* os)
   1900 {
   1901   elfcpp::Elf_Xword flags = os->flags();
   1902   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
   1903 
   1904   if (parameters->options().relocatable())
   1905     return;
   1906 
   1907   // If we have a SECTIONS clause, we can't handle the attachment to
   1908   // segments until after we've seen all the sections.
   1909   if (this->script_options_->saw_sections_clause())
   1910     return;
   1911 
   1912   gold_assert(!this->script_options_->saw_phdrs_clause());
   1913 
   1914   // This output section goes into a PT_LOAD segment.
   1915 
   1916   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
   1917 
   1918   // If this output section's segment has extra flags that need to be set,
   1919   // coming from a linker plugin, do that.
   1920   seg_flags |= os->extra_segment_flags();
   1921 
   1922   // Check for --section-start.
   1923   uint64_t addr;
   1924   bool is_address_set = parameters->options().section_start(os->name(), &addr);
   1925 
   1926   // In general the only thing we really care about for PT_LOAD
   1927   // segments is whether or not they are writable or executable,
   1928   // so that is how we search for them.
   1929   // Large data sections also go into their own PT_LOAD segment.
   1930   // People who need segments sorted on some other basis will
   1931   // have to use a linker script.
   1932 
   1933   Segment_list::const_iterator p;
   1934   if (!os->is_unique_segment())
   1935     {
   1936       for (p = this->segment_list_.begin();
   1937 	   p != this->segment_list_.end();
   1938 	   ++p)
   1939 	{
   1940 	  if ((*p)->type() != elfcpp::PT_LOAD)
   1941 	    continue;
   1942 	  if ((*p)->is_unique_segment())
   1943 	    continue;
   1944 	  if (!parameters->options().omagic()
   1945 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
   1946 	    continue;
   1947 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
   1948 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
   1949 	    continue;
   1950 	  // If -Tbss was specified, we need to separate the data and BSS
   1951 	  // segments.
   1952 	  if (parameters->options().user_set_Tbss())
   1953 	    {
   1954 	      if ((os->type() == elfcpp::SHT_NOBITS)
   1955 		  == (*p)->has_any_data_sections())
   1956 		continue;
   1957 	    }
   1958 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
   1959 	    continue;
   1960 
   1961 	  if (is_address_set)
   1962 	    {
   1963 	      if ((*p)->are_addresses_set())
   1964 		continue;
   1965 
   1966 	      (*p)->add_initial_output_data(os);
   1967 	      (*p)->update_flags_for_output_section(seg_flags);
   1968 	      (*p)->set_addresses(addr, addr);
   1969 	      break;
   1970 	    }
   1971 
   1972 	  (*p)->add_output_section_to_load(this, os, seg_flags);
   1973 	  break;
   1974 	}
   1975     }
   1976 
   1977   if (p == this->segment_list_.end()
   1978       || os->is_unique_segment())
   1979     {
   1980       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
   1981 						       seg_flags);
   1982       if (os->is_large_data_section())
   1983 	oseg->set_is_large_data_segment();
   1984       oseg->add_output_section_to_load(this, os, seg_flags);
   1985       if (is_address_set)
   1986 	oseg->set_addresses(addr, addr);
   1987       // Check if segment should be marked unique.  For segments marked
   1988       // unique by linker plugins, set the new alignment if specified.
   1989       if (os->is_unique_segment())
   1990 	{
   1991 	  oseg->set_is_unique_segment();
   1992 	  if (os->segment_alignment() != 0)
   1993 	    oseg->set_minimum_p_align(os->segment_alignment());
   1994 	}
   1995     }
   1996 
   1997   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
   1998   // segment.
   1999   if (os->type() == elfcpp::SHT_NOTE)
   2000     {
   2001       // See if we already have an equivalent PT_NOTE segment.
   2002       for (p = this->segment_list_.begin();
   2003 	   p != segment_list_.end();
   2004 	   ++p)
   2005 	{
   2006 	  if ((*p)->type() == elfcpp::PT_NOTE
   2007 	      && (((*p)->flags() & elfcpp::PF_W)
   2008 		  == (seg_flags & elfcpp::PF_W)))
   2009 	    {
   2010 	      (*p)->add_output_section_to_nonload(os, seg_flags);
   2011 	      break;
   2012 	    }
   2013 	}
   2014 
   2015       if (p == this->segment_list_.end())
   2016 	{
   2017 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
   2018 							   seg_flags);
   2019 	  oseg->add_output_section_to_nonload(os, seg_flags);
   2020 	}
   2021     }
   2022 
   2023   // If we see a loadable SHF_TLS section, we create a PT_TLS
   2024   // segment.  There can only be one such segment.
   2025   if ((flags & elfcpp::SHF_TLS) != 0)
   2026     {
   2027       if (this->tls_segment_ == NULL)
   2028 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
   2029       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
   2030     }
   2031 
   2032   // If -z relro is in effect, and we see a relro section, we create a
   2033   // PT_GNU_RELRO segment.  There can only be one such segment.
   2034   if (os->is_relro() && parameters->options().relro())
   2035     {
   2036       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
   2037       if (this->relro_segment_ == NULL)
   2038 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
   2039       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
   2040     }
   2041 
   2042   // If we see a section named .interp, put it into a PT_INTERP
   2043   // segment.  This seems broken to me, but this is what GNU ld does,
   2044   // and glibc expects it.
   2045   if (strcmp(os->name(), ".interp") == 0
   2046       && !this->script_options_->saw_phdrs_clause())
   2047     {
   2048       if (this->interp_segment_ == NULL)
   2049 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
   2050       else
   2051 	gold_warning(_("multiple '.interp' sections in input files "
   2052 		       "may cause confusing PT_INTERP segment"));
   2053       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
   2054     }
   2055 }
   2056 
   2057 // Make an output section for a script.
   2058 
   2059 Output_section*
   2060 Layout::make_output_section_for_script(
   2061     const char* name,
   2062     Script_sections::Section_type section_type)
   2063 {
   2064   name = this->namepool_.add(name, false, NULL);
   2065   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
   2066   if (section_type == Script_sections::ST_NOLOAD)
   2067     sh_flags = 0;
   2068   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
   2069 						 sh_flags, ORDER_INVALID,
   2070 						 false);
   2071   os->set_found_in_sections_clause();
   2072   if (section_type == Script_sections::ST_NOLOAD)
   2073     os->set_is_noload();
   2074   return os;
   2075 }
   2076 
   2077 // Return the number of segments we expect to see.
   2078 
   2079 size_t
   2080 Layout::expected_segment_count() const
   2081 {
   2082   size_t ret = this->segment_list_.size();
   2083 
   2084   // If we didn't see a SECTIONS clause in a linker script, we should
   2085   // already have the complete list of segments.  Otherwise we ask the
   2086   // SECTIONS clause how many segments it expects, and add in the ones
   2087   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
   2088 
   2089   if (!this->script_options_->saw_sections_clause())
   2090     return ret;
   2091   else
   2092     {
   2093       const Script_sections* ss = this->script_options_->script_sections();
   2094       return ret + ss->expected_segment_count(this);
   2095     }
   2096 }
   2097 
   2098 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
   2099 // is whether we saw a .note.GNU-stack section in the object file.
   2100 // GNU_STACK_FLAGS is the section flags.  The flags give the
   2101 // protection required for stack memory.  We record this in an
   2102 // executable as a PT_GNU_STACK segment.  If an object file does not
   2103 // have a .note.GNU-stack segment, we must assume that it is an old
   2104 // object.  On some targets that will force an executable stack.
   2105 
   2106 void
   2107 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
   2108 			 const Object* obj)
   2109 {
   2110   if (!seen_gnu_stack)
   2111     {
   2112       this->input_without_gnu_stack_note_ = true;
   2113       if (parameters->options().warn_execstack()
   2114 	  && parameters->target().is_default_stack_executable())
   2115 	gold_warning(_("%s: missing .note.GNU-stack section"
   2116 		       " implies executable stack"),
   2117 		     obj->name().c_str());
   2118     }
   2119   else
   2120     {
   2121       this->input_with_gnu_stack_note_ = true;
   2122       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
   2123 	{
   2124 	  this->input_requires_executable_stack_ = true;
   2125 	  if (parameters->options().warn_execstack())
   2126 	    gold_warning(_("%s: requires executable stack"),
   2127 			 obj->name().c_str());
   2128 	}
   2129     }
   2130 }
   2131 
   2132 // Create automatic note sections.
   2133 
   2134 void
   2135 Layout::create_notes()
   2136 {
   2137   this->create_gold_note();
   2138   this->create_stack_segment();
   2139   this->create_build_id();
   2140 }
   2141 
   2142 // Create the dynamic sections which are needed before we read the
   2143 // relocs.
   2144 
   2145 void
   2146 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
   2147 {
   2148   if (parameters->doing_static_link())
   2149     return;
   2150 
   2151   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
   2152 						       elfcpp::SHT_DYNAMIC,
   2153 						       (elfcpp::SHF_ALLOC
   2154 							| elfcpp::SHF_WRITE),
   2155 						       false, ORDER_RELRO,
   2156 						       true);
   2157 
   2158   // A linker script may discard .dynamic, so check for NULL.
   2159   if (this->dynamic_section_ != NULL)
   2160     {
   2161       this->dynamic_symbol_ =
   2162 	symtab->define_in_output_data("_DYNAMIC", NULL,
   2163 				      Symbol_table::PREDEFINED,
   2164 				      this->dynamic_section_, 0, 0,
   2165 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
   2166 				      elfcpp::STV_HIDDEN, 0, false, false);
   2167 
   2168       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
   2169 
   2170       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
   2171     }
   2172 }
   2173 
   2174 // For each output section whose name can be represented as C symbol,
   2175 // define __start and __stop symbols for the section.  This is a GNU
   2176 // extension.
   2177 
   2178 void
   2179 Layout::define_section_symbols(Symbol_table* symtab)
   2180 {
   2181   for (Section_list::const_iterator p = this->section_list_.begin();
   2182        p != this->section_list_.end();
   2183        ++p)
   2184     {
   2185       const char* const name = (*p)->name();
   2186       if (is_cident(name))
   2187 	{
   2188 	  const std::string name_string(name);
   2189 	  const std::string start_name(cident_section_start_prefix
   2190 				       + name_string);
   2191 	  const std::string stop_name(cident_section_stop_prefix
   2192 				      + name_string);
   2193 
   2194 	  symtab->define_in_output_data(start_name.c_str(),
   2195 					NULL, // version
   2196 					Symbol_table::PREDEFINED,
   2197 					*p,
   2198 					0, // value
   2199 					0, // symsize
   2200 					elfcpp::STT_NOTYPE,
   2201 					elfcpp::STB_GLOBAL,
   2202 					elfcpp::STV_DEFAULT,
   2203 					0, // nonvis
   2204 					false, // offset_is_from_end
   2205 					true); // only_if_ref
   2206 
   2207 	  symtab->define_in_output_data(stop_name.c_str(),
   2208 					NULL, // version
   2209 					Symbol_table::PREDEFINED,
   2210 					*p,
   2211 					0, // value
   2212 					0, // symsize
   2213 					elfcpp::STT_NOTYPE,
   2214 					elfcpp::STB_GLOBAL,
   2215 					elfcpp::STV_DEFAULT,
   2216 					0, // nonvis
   2217 					true, // offset_is_from_end
   2218 					true); // only_if_ref
   2219 	}
   2220     }
   2221 }
   2222 
   2223 // Define symbols for group signatures.
   2224 
   2225 void
   2226 Layout::define_group_signatures(Symbol_table* symtab)
   2227 {
   2228   for (Group_signatures::iterator p = this->group_signatures_.begin();
   2229        p != this->group_signatures_.end();
   2230        ++p)
   2231     {
   2232       Symbol* sym = symtab->lookup(p->signature, NULL);
   2233       if (sym != NULL)
   2234 	p->section->set_info_symndx(sym);
   2235       else
   2236 	{
   2237 	  // Force the name of the group section to the group
   2238 	  // signature, and use the group's section symbol as the
   2239 	  // signature symbol.
   2240 	  if (strcmp(p->section->name(), p->signature) != 0)
   2241 	    {
   2242 	      const char* name = this->namepool_.add(p->signature,
   2243 						     true, NULL);
   2244 	      p->section->set_name(name);
   2245 	    }
   2246 	  p->section->set_needs_symtab_index();
   2247 	  p->section->set_info_section_symndx(p->section);
   2248 	}
   2249     }
   2250 
   2251   this->group_signatures_.clear();
   2252 }
   2253 
   2254 // Find the first read-only PT_LOAD segment, creating one if
   2255 // necessary.
   2256 
   2257 Output_segment*
   2258 Layout::find_first_load_seg(const Target* target)
   2259 {
   2260   Output_segment* best = NULL;
   2261   for (Segment_list::const_iterator p = this->segment_list_.begin();
   2262        p != this->segment_list_.end();
   2263        ++p)
   2264     {
   2265       if ((*p)->type() == elfcpp::PT_LOAD
   2266 	  && ((*p)->flags() & elfcpp::PF_R) != 0
   2267 	  && (parameters->options().omagic()
   2268 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
   2269 	  && (!target->isolate_execinstr()
   2270 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
   2271 	{
   2272 	  if (best == NULL || this->segment_precedes(*p, best))
   2273 	    best = *p;
   2274 	}
   2275     }
   2276   if (best != NULL)
   2277     return best;
   2278 
   2279   gold_assert(!this->script_options_->saw_phdrs_clause());
   2280 
   2281   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
   2282 						       elfcpp::PF_R);
   2283   return load_seg;
   2284 }
   2285 
   2286 // Save states of all current output segments.  Store saved states
   2287 // in SEGMENT_STATES.
   2288 
   2289 void
   2290 Layout::save_segments(Segment_states* segment_states)
   2291 {
   2292   for (Segment_list::const_iterator p = this->segment_list_.begin();
   2293        p != this->segment_list_.end();
   2294        ++p)
   2295     {
   2296       Output_segment* segment = *p;
   2297       // Shallow copy.
   2298       Output_segment* copy = new Output_segment(*segment);
   2299       (*segment_states)[segment] = copy;
   2300     }
   2301 }
   2302 
   2303 // Restore states of output segments and delete any segment not found in
   2304 // SEGMENT_STATES.
   2305 
   2306 void
   2307 Layout::restore_segments(const Segment_states* segment_states)
   2308 {
   2309   // Go through the segment list and remove any segment added in the
   2310   // relaxation loop.
   2311   this->tls_segment_ = NULL;
   2312   this->relro_segment_ = NULL;
   2313   Segment_list::iterator list_iter = this->segment_list_.begin();
   2314   while (list_iter != this->segment_list_.end())
   2315     {
   2316       Output_segment* segment = *list_iter;
   2317       Segment_states::const_iterator states_iter =
   2318 	  segment_states->find(segment);
   2319       if (states_iter != segment_states->end())
   2320 	{
   2321 	  const Output_segment* copy = states_iter->second;
   2322 	  // Shallow copy to restore states.
   2323 	  *segment = *copy;
   2324 
   2325 	  // Also fix up TLS and RELRO segment pointers as appropriate.
   2326 	  if (segment->type() == elfcpp::PT_TLS)
   2327 	    this->tls_segment_ = segment;
   2328 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
   2329 	    this->relro_segment_ = segment;
   2330 
   2331 	  ++list_iter;
   2332 	}
   2333       else
   2334 	{
   2335 	  list_iter = this->segment_list_.erase(list_iter);
   2336 	  // This is a segment created during section layout.  It should be
   2337 	  // safe to remove it since we should have removed all pointers to it.
   2338 	  delete segment;
   2339 	}
   2340     }
   2341 }
   2342 
   2343 // Clean up after relaxation so that sections can be laid out again.
   2344 
   2345 void
   2346 Layout::clean_up_after_relaxation()
   2347 {
   2348   // Restore the segments to point state just prior to the relaxation loop.
   2349   Script_sections* script_section = this->script_options_->script_sections();
   2350   script_section->release_segments();
   2351   this->restore_segments(this->segment_states_);
   2352 
   2353   // Reset section addresses and file offsets
   2354   for (Section_list::iterator p = this->section_list_.begin();
   2355        p != this->section_list_.end();
   2356        ++p)
   2357     {
   2358       (*p)->restore_states();
   2359 
   2360       // If an input section changes size because of relaxation,
   2361       // we need to adjust the section offsets of all input sections.
   2362       // after such a section.
   2363       if ((*p)->section_offsets_need_adjustment())
   2364 	(*p)->adjust_section_offsets();
   2365 
   2366       (*p)->reset_address_and_file_offset();
   2367     }
   2368 
   2369   // Reset special output object address and file offsets.
   2370   for (Data_list::iterator p = this->special_output_list_.begin();
   2371        p != this->special_output_list_.end();
   2372        ++p)
   2373     (*p)->reset_address_and_file_offset();
   2374 
   2375   // A linker script may have created some output section data objects.
   2376   // They are useless now.
   2377   for (Output_section_data_list::const_iterator p =
   2378 	 this->script_output_section_data_list_.begin();
   2379        p != this->script_output_section_data_list_.end();
   2380        ++p)
   2381     delete *p;
   2382   this->script_output_section_data_list_.clear();
   2383 
   2384   // Special-case fill output objects are recreated each time through
   2385   // the relaxation loop.
   2386   this->reset_relax_output();
   2387 }
   2388 
   2389 void
   2390 Layout::reset_relax_output()
   2391 {
   2392   for (Data_list::const_iterator p = this->relax_output_list_.begin();
   2393        p != this->relax_output_list_.end();
   2394        ++p)
   2395     delete *p;
   2396   this->relax_output_list_.clear();
   2397 }
   2398 
   2399 // Prepare for relaxation.
   2400 
   2401 void
   2402 Layout::prepare_for_relaxation()
   2403 {
   2404   // Create an relaxation debug check if in debugging mode.
   2405   if (is_debugging_enabled(DEBUG_RELAXATION))
   2406     this->relaxation_debug_check_ = new Relaxation_debug_check();
   2407 
   2408   // Save segment states.
   2409   this->segment_states_ = new Segment_states();
   2410   this->save_segments(this->segment_states_);
   2411 
   2412   for(Section_list::const_iterator p = this->section_list_.begin();
   2413       p != this->section_list_.end();
   2414       ++p)
   2415     (*p)->save_states();
   2416 
   2417   if (is_debugging_enabled(DEBUG_RELAXATION))
   2418     this->relaxation_debug_check_->check_output_data_for_reset_values(
   2419 	this->section_list_, this->special_output_list_,
   2420 	this->relax_output_list_);
   2421 
   2422   // Also enable recording of output section data from scripts.
   2423   this->record_output_section_data_from_script_ = true;
   2424 }
   2425 
   2426 // If the user set the address of the text segment, that may not be
   2427 // compatible with putting the segment headers and file headers into
   2428 // that segment.  For isolate_execinstr() targets, it's the rodata
   2429 // segment rather than text where we might put the headers.
   2430 static inline bool
   2431 load_seg_unusable_for_headers(const Target* target)
   2432 {
   2433   const General_options& options = parameters->options();
   2434   if (target->isolate_execinstr())
   2435     return (options.user_set_Trodata_segment()
   2436 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
   2437   else
   2438     return (options.user_set_Ttext()
   2439 	    && options.Ttext() % target->abi_pagesize() != 0);
   2440 }
   2441 
   2442 // Relaxation loop body:  If target has no relaxation, this runs only once
   2443 // Otherwise, the target relaxation hook is called at the end of
   2444 // each iteration.  If the hook returns true, it means re-layout of
   2445 // section is required.
   2446 //
   2447 // The number of segments created by a linking script without a PHDRS
   2448 // clause may be affected by section sizes and alignments.  There is
   2449 // a remote chance that relaxation causes different number of PT_LOAD
   2450 // segments are created and sections are attached to different segments.
   2451 // Therefore, we always throw away all segments created during section
   2452 // layout.  In order to be able to restart the section layout, we keep
   2453 // a copy of the segment list right before the relaxation loop and use
   2454 // that to restore the segments.
   2455 //
   2456 // PASS is the current relaxation pass number.
   2457 // SYMTAB is a symbol table.
   2458 // PLOAD_SEG is the address of a pointer for the load segment.
   2459 // PHDR_SEG is a pointer to the PHDR segment.
   2460 // SEGMENT_HEADERS points to the output segment header.
   2461 // FILE_HEADER points to the output file header.
   2462 // PSHNDX is the address to store the output section index.
   2463 
   2464 off_t inline
   2465 Layout::relaxation_loop_body(
   2466     int pass,
   2467     Target* target,
   2468     Symbol_table* symtab,
   2469     Output_segment** pload_seg,
   2470     Output_segment* phdr_seg,
   2471     Output_segment_headers* segment_headers,
   2472     Output_file_header* file_header,
   2473     unsigned int* pshndx)
   2474 {
   2475   // If this is not the first iteration, we need to clean up after
   2476   // relaxation so that we can lay out the sections again.
   2477   if (pass != 0)
   2478     this->clean_up_after_relaxation();
   2479 
   2480   // If there is a SECTIONS clause, put all the input sections into
   2481   // the required order.
   2482   Output_segment* load_seg;
   2483   if (this->script_options_->saw_sections_clause())
   2484     load_seg = this->set_section_addresses_from_script(symtab);
   2485   else if (parameters->options().relocatable())
   2486     load_seg = NULL;
   2487   else
   2488     load_seg = this->find_first_load_seg(target);
   2489 
   2490   if (parameters->options().oformat_enum()
   2491       != General_options::OBJECT_FORMAT_ELF)
   2492     load_seg = NULL;
   2493 
   2494   if (load_seg_unusable_for_headers(target))
   2495     {
   2496       load_seg = NULL;
   2497       phdr_seg = NULL;
   2498     }
   2499 
   2500   gold_assert(phdr_seg == NULL
   2501 	      || load_seg != NULL
   2502 	      || this->script_options_->saw_sections_clause());
   2503 
   2504   // If the address of the load segment we found has been set by
   2505   // --section-start rather than by a script, then adjust the VMA and
   2506   // LMA downward if possible to include the file and section headers.
   2507   uint64_t header_gap = 0;
   2508   if (load_seg != NULL
   2509       && load_seg->are_addresses_set()
   2510       && !this->script_options_->saw_sections_clause()
   2511       && !parameters->options().relocatable())
   2512     {
   2513       file_header->finalize_data_size();
   2514       segment_headers->finalize_data_size();
   2515       size_t sizeof_headers = (file_header->data_size()
   2516 			       + segment_headers->data_size());
   2517       const uint64_t abi_pagesize = target->abi_pagesize();
   2518       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
   2519       hdr_paddr &= ~(abi_pagesize - 1);
   2520       uint64_t subtract = load_seg->paddr() - hdr_paddr;
   2521       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
   2522 	load_seg = NULL;
   2523       else
   2524 	{
   2525 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
   2526 				  load_seg->paddr() - subtract);
   2527 	  header_gap = subtract - sizeof_headers;
   2528 	}
   2529     }
   2530 
   2531   // Lay out the segment headers.
   2532   if (!parameters->options().relocatable())
   2533     {
   2534       gold_assert(segment_headers != NULL);
   2535       if (header_gap != 0 && load_seg != NULL)
   2536 	{
   2537 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
   2538 	  load_seg->add_initial_output_data(z);
   2539 	}
   2540       if (load_seg != NULL)
   2541 	load_seg->add_initial_output_data(segment_headers);
   2542       if (phdr_seg != NULL)
   2543 	phdr_seg->add_initial_output_data(segment_headers);
   2544     }
   2545 
   2546   // Lay out the file header.
   2547   if (load_seg != NULL)
   2548     load_seg->add_initial_output_data(file_header);
   2549 
   2550   if (this->script_options_->saw_phdrs_clause()
   2551       && !parameters->options().relocatable())
   2552     {
   2553       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
   2554       // clause in a linker script.
   2555       Script_sections* ss = this->script_options_->script_sections();
   2556       ss->put_headers_in_phdrs(file_header, segment_headers);
   2557     }
   2558 
   2559   // We set the output section indexes in set_segment_offsets and
   2560   // set_section_indexes.
   2561   *pshndx = 1;
   2562 
   2563   // Set the file offsets of all the segments, and all the sections
   2564   // they contain.
   2565   off_t off;
   2566   if (!parameters->options().relocatable())
   2567     off = this->set_segment_offsets(target, load_seg, pshndx);
   2568   else
   2569     off = this->set_relocatable_section_offsets(file_header, pshndx);
   2570 
   2571    // Verify that the dummy relaxation does not change anything.
   2572   if (is_debugging_enabled(DEBUG_RELAXATION))
   2573     {
   2574       if (pass == 0)
   2575 	this->relaxation_debug_check_->read_sections(this->section_list_);
   2576       else
   2577 	this->relaxation_debug_check_->verify_sections(this->section_list_);
   2578     }
   2579 
   2580   *pload_seg = load_seg;
   2581   return off;
   2582 }
   2583 
   2584 // Search the list of patterns and find the postion of the given section
   2585 // name in the output section.  If the section name matches a glob
   2586 // pattern and a non-glob name, then the non-glob position takes
   2587 // precedence.  Return 0 if no match is found.
   2588 
   2589 unsigned int
   2590 Layout::find_section_order_index(const std::string& section_name)
   2591 {
   2592   Unordered_map<std::string, unsigned int>::iterator map_it;
   2593   map_it = this->input_section_position_.find(section_name);
   2594   if (map_it != this->input_section_position_.end())
   2595     return map_it->second;
   2596 
   2597   // Absolute match failed.  Linear search the glob patterns.
   2598   std::vector<std::string>::iterator it;
   2599   for (it = this->input_section_glob_.begin();
   2600        it != this->input_section_glob_.end();
   2601        ++it)
   2602     {
   2603        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
   2604 	 {
   2605 	   map_it = this->input_section_position_.find(*it);
   2606 	   gold_assert(map_it != this->input_section_position_.end());
   2607 	   return map_it->second;
   2608 	 }
   2609     }
   2610   return 0;
   2611 }
   2612 
   2613 // Read the sequence of input sections from the file specified with
   2614 // option --section-ordering-file.
   2615 
   2616 void
   2617 Layout::read_layout_from_file()
   2618 {
   2619   const char* filename = parameters->options().section_ordering_file();
   2620   std::ifstream in;
   2621   std::string line;
   2622 
   2623   in.open(filename);
   2624   if (!in)
   2625     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
   2626 	       filename, strerror(errno));
   2627 
   2628   std::getline(in, line);   // this chops off the trailing \n, if any
   2629   unsigned int position = 1;
   2630   this->set_section_ordering_specified();
   2631 
   2632   while (in)
   2633     {
   2634       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
   2635 	line.resize(line.length() - 1);
   2636       // Ignore comments, beginning with '#'
   2637       if (line[0] == '#')
   2638 	{
   2639 	  std::getline(in, line);
   2640 	  continue;
   2641 	}
   2642       this->input_section_position_[line] = position;
   2643       // Store all glob patterns in a vector.
   2644       if (is_wildcard_string(line.c_str()))
   2645 	this->input_section_glob_.push_back(line);
   2646       position++;
   2647       std::getline(in, line);
   2648     }
   2649 }
   2650 
   2651 // Finalize the layout.  When this is called, we have created all the
   2652 // output sections and all the output segments which are based on
   2653 // input sections.  We have several things to do, and we have to do
   2654 // them in the right order, so that we get the right results correctly
   2655 // and efficiently.
   2656 
   2657 // 1) Finalize the list of output segments and create the segment
   2658 // table header.
   2659 
   2660 // 2) Finalize the dynamic symbol table and associated sections.
   2661 
   2662 // 3) Determine the final file offset of all the output segments.
   2663 
   2664 // 4) Determine the final file offset of all the SHF_ALLOC output
   2665 // sections.
   2666 
   2667 // 5) Create the symbol table sections and the section name table
   2668 // section.
   2669 
   2670 // 6) Finalize the symbol table: set symbol values to their final
   2671 // value and make a final determination of which symbols are going
   2672 // into the output symbol table.
   2673 
   2674 // 7) Create the section table header.
   2675 
   2676 // 8) Determine the final file offset of all the output sections which
   2677 // are not SHF_ALLOC, including the section table header.
   2678 
   2679 // 9) Finalize the ELF file header.
   2680 
   2681 // This function returns the size of the output file.
   2682 
   2683 off_t
   2684 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
   2685 		 Target* target, const Task* task)
   2686 {
   2687   target->finalize_sections(this, input_objects, symtab);
   2688 
   2689   this->count_local_symbols(task, input_objects);
   2690 
   2691   this->link_stabs_sections();
   2692 
   2693   Output_segment* phdr_seg = NULL;
   2694   if (!parameters->options().relocatable() && !parameters->doing_static_link())
   2695     {
   2696       // There was a dynamic object in the link.  We need to create
   2697       // some information for the dynamic linker.
   2698 
   2699       // Create the PT_PHDR segment which will hold the program
   2700       // headers.
   2701       if (!this->script_options_->saw_phdrs_clause())
   2702 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
   2703 
   2704       // Create the dynamic symbol table, including the hash table.
   2705       Output_section* dynstr;
   2706       std::vector<Symbol*> dynamic_symbols;
   2707       unsigned int local_dynamic_count;
   2708       Versions versions(*this->script_options()->version_script_info(),
   2709 			&this->dynpool_);
   2710       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
   2711 				  &local_dynamic_count, &dynamic_symbols,
   2712 				  &versions);
   2713 
   2714       // Create the .interp section to hold the name of the
   2715       // interpreter, and put it in a PT_INTERP segment.  Don't do it
   2716       // if we saw a .interp section in an input file.
   2717       if ((!parameters->options().shared()
   2718 	   || parameters->options().dynamic_linker() != NULL)
   2719 	  && this->interp_segment_ == NULL)
   2720 	this->create_interp(target);
   2721 
   2722       // Finish the .dynamic section to hold the dynamic data, and put
   2723       // it in a PT_DYNAMIC segment.
   2724       this->finish_dynamic_section(input_objects, symtab);
   2725 
   2726       // We should have added everything we need to the dynamic string
   2727       // table.
   2728       this->dynpool_.set_string_offsets();
   2729 
   2730       // Create the version sections.  We can't do this until the
   2731       // dynamic string table is complete.
   2732       this->create_version_sections(&versions, symtab, local_dynamic_count,
   2733 				    dynamic_symbols, dynstr);
   2734 
   2735       // Set the size of the _DYNAMIC symbol.  We can't do this until
   2736       // after we call create_version_sections.
   2737       this->set_dynamic_symbol_size(symtab);
   2738     }
   2739 
   2740   // Create segment headers.
   2741   Output_segment_headers* segment_headers =
   2742     (parameters->options().relocatable()
   2743      ? NULL
   2744      : new Output_segment_headers(this->segment_list_));
   2745 
   2746   // Lay out the file header.
   2747   Output_file_header* file_header = new Output_file_header(target, symtab,
   2748 							   segment_headers);
   2749 
   2750   this->special_output_list_.push_back(file_header);
   2751   if (segment_headers != NULL)
   2752     this->special_output_list_.push_back(segment_headers);
   2753 
   2754   // Find approriate places for orphan output sections if we are using
   2755   // a linker script.
   2756   if (this->script_options_->saw_sections_clause())
   2757     this->place_orphan_sections_in_script();
   2758 
   2759   Output_segment* load_seg;
   2760   off_t off;
   2761   unsigned int shndx;
   2762   int pass = 0;
   2763 
   2764   // Take a snapshot of the section layout as needed.
   2765   if (target->may_relax())
   2766     this->prepare_for_relaxation();
   2767 
   2768   // Run the relaxation loop to lay out sections.
   2769   do
   2770     {
   2771       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
   2772 				       phdr_seg, segment_headers, file_header,
   2773 				       &shndx);
   2774       pass++;
   2775     }
   2776   while (target->may_relax()
   2777 	 && target->relax(pass, input_objects, symtab, this, task));
   2778 
   2779   // Check if data segment size is less than the safe value with PIE links.
   2780   if (parameters->options().pie() && target->max_pie_data_segment_size())
   2781     {
   2782       Segment_list::const_iterator p;
   2783       uint64_t re_vaddr = 0, re_memsz = 0, rw_vaddr = 0, rw_memsz = 0;
   2784       uint64_t data_seg_size = 0;
   2785       for (p = this->segment_list_.begin();
   2786 	   p != this->segment_list_.end();
   2787 	   ++p)
   2788 	{
   2789 	  // With -Wl,--rosegment, note the end addr of "R E" segment.
   2790 	  if (parameters->options().rosegment()
   2791 	      && (*p)->type() == elfcpp::PT_LOAD
   2792 	      && ((*p)->flags() & elfcpp::PF_X) != 0
   2793 	      && ((*p)->flags() & elfcpp::PF_R) != 0)
   2794 	    {
   2795 	      re_vaddr = (*p)->vaddr();
   2796 	      re_memsz = (*p)->memsz();
   2797 	      continue;
   2798 	    }
   2799 	  if ((*p)->type() == elfcpp::PT_LOAD
   2800 	      && ((*p)->flags() & elfcpp::PF_W) != 0
   2801 	      && ((*p)->flags() & elfcpp::PF_R) != 0)
   2802 	    {
   2803 	      rw_vaddr = (*p)->vaddr();
   2804 	      rw_memsz = (*p)->memsz();
   2805 	      break;
   2806 	    }
   2807 	}
   2808 
   2809       // With -Wl,--rosegment, report data segment size as delta of end of
   2810       // "RW" segment and end of "R E" segment.  Otherwise, data segment
   2811       // size is just the memsz of "RW" segment.
   2812       if (parameters->options().rosegment())
   2813         data_seg_size = (rw_vaddr + rw_memsz) - (re_vaddr + re_memsz);
   2814       else
   2815         data_seg_size = rw_memsz;
   2816 
   2817       if (data_seg_size >= target->max_pie_data_segment_size())
   2818 	gold_warning(
   2819 	  _("Unsafe PIE data segment size (%" PRIu64 " > %" PRIu64 "). "
   2820 	    "For kernels with CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, "
   2821 	    "load_elf_binary() attempts to map a PIE binary into an address "
   2822 	    "range immediately below mm->mmap_base. The first PT_LOAD segment "
   2823 	    "is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) "
   2824 	    "end up being mapped above mm->mmap_base into the area that is "
   2825 	    "supposed to be the \"gap\" between the stack and the binary. Since"
   2826 	    " the size of the \"gap\" on x86_64 is only guaranteed to be 128MB "
   2827 	    "this means that binaries with large data segments > 128MB can end "
   2828 	    "up mapping part of their data segment over their stack resulting "
   2829 	    "in corruption of the stack. Any PIE binary with a data segment > "
   2830 	    "128MB is vulnerable to this. It is suggested to turn off PIE."),
   2831 	  data_seg_size,
   2832 	  target->max_pie_data_segment_size());
   2833     }
   2834 
   2835   // If there is a load segment that contains the file and program headers,
   2836   // provide a symbol __ehdr_start pointing there.
   2837   // A program can use this to examine itself robustly.
   2838   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
   2839   if (ehdr_start != NULL && ehdr_start->is_predefined())
   2840     {
   2841       if (load_seg != NULL)
   2842 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
   2843       else
   2844 	ehdr_start->set_undefined();
   2845     }
   2846 
   2847   // Set the file offsets of all the non-data sections we've seen so
   2848   // far which don't have to wait for the input sections.  We need
   2849   // this in order to finalize local symbols in non-allocated
   2850   // sections.
   2851   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
   2852 
   2853   // Set the section indexes of all unallocated sections seen so far,
   2854   // in case any of them are somehow referenced by a symbol.
   2855   shndx = this->set_section_indexes(shndx);
   2856 
   2857   // Create the symbol table sections.
   2858   this->create_symtab_sections(input_objects, symtab, shndx, &off);
   2859   if (!parameters->doing_static_link())
   2860     this->assign_local_dynsym_offsets(input_objects);
   2861 
   2862   // Process any symbol assignments from a linker script.  This must
   2863   // be called after the symbol table has been finalized.
   2864   this->script_options_->finalize_symbols(symtab, this);
   2865 
   2866   // Create the incremental inputs sections.
   2867   if (this->incremental_inputs_)
   2868     {
   2869       this->incremental_inputs_->finalize();
   2870       this->create_incremental_info_sections(symtab);
   2871     }
   2872 
   2873   // Create the .shstrtab section.
   2874   Output_section* shstrtab_section = this->create_shstrtab();
   2875 
   2876   // Set the file offsets of the rest of the non-data sections which
   2877   // don't have to wait for the input sections.
   2878   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
   2879 
   2880   // Now that all sections have been created, set the section indexes
   2881   // for any sections which haven't been done yet.
   2882   shndx = this->set_section_indexes(shndx);
   2883 
   2884   // Create the section table header.
   2885   this->create_shdrs(shstrtab_section, &off);
   2886 
   2887   // If there are no sections which require postprocessing, we can
   2888   // handle the section names now, and avoid a resize later.
   2889   if (!this->any_postprocessing_sections_)
   2890     {
   2891       off = this->set_section_offsets(off,
   2892 				      POSTPROCESSING_SECTIONS_PASS);
   2893       off =
   2894 	  this->set_section_offsets(off,
   2895 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
   2896     }
   2897 
   2898   file_header->set_section_info(this->section_headers_, shstrtab_section);
   2899 
   2900   // Now we know exactly where everything goes in the output file
   2901   // (except for non-allocated sections which require postprocessing).
   2902   Output_data::layout_complete();
   2903 
   2904   this->output_file_size_ = off;
   2905 
   2906   return off;
   2907 }
   2908 
   2909 // Create a note header following the format defined in the ELF ABI.
   2910 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
   2911 // of the section to create, DESCSZ is the size of the descriptor.
   2912 // ALLOCATE is true if the section should be allocated in memory.
   2913 // This returns the new note section.  It sets *TRAILING_PADDING to
   2914 // the number of trailing zero bytes required.
   2915 
   2916 Output_section*
   2917 Layout::create_note(const char* name, int note_type,
   2918 		    const char* section_name, size_t descsz,
   2919 		    bool allocate, size_t* trailing_padding)
   2920 {
   2921   // Authorities all agree that the values in a .note field should
   2922   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
   2923   // they differ on what the alignment is for 64-bit binaries.
   2924   // The GABI says unambiguously they take 8-byte alignment:
   2925   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
   2926   // Other documentation says alignment should always be 4 bytes:
   2927   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
   2928   // GNU ld and GNU readelf both support the latter (at least as of
   2929   // version 2.16.91), and glibc always generates the latter for
   2930   // .note.ABI-tag (as of version 1.6), so that's the one we go with
   2931   // here.
   2932 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
   2933   const int size = parameters->target().get_size();
   2934 #else
   2935   const int size = 32;
   2936 #endif
   2937 
   2938   // The contents of the .note section.
   2939   size_t namesz = strlen(name) + 1;
   2940   size_t aligned_namesz = align_address(namesz, size / 8);
   2941   size_t aligned_descsz = align_address(descsz, size / 8);
   2942 
   2943   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
   2944 
   2945   unsigned char* buffer = new unsigned char[notehdrsz];
   2946   memset(buffer, 0, notehdrsz);
   2947 
   2948   bool is_big_endian = parameters->target().is_big_endian();
   2949 
   2950   if (size == 32)
   2951     {
   2952       if (!is_big_endian)
   2953 	{
   2954 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
   2955 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
   2956 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
   2957 	}
   2958       else
   2959 	{
   2960 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
   2961 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
   2962 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
   2963 	}
   2964     }
   2965   else if (size == 64)
   2966     {
   2967       if (!is_big_endian)
   2968 	{
   2969 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
   2970 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
   2971 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
   2972 	}
   2973       else
   2974 	{
   2975 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
   2976 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
   2977 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
   2978 	}
   2979     }
   2980   else
   2981     gold_unreachable();
   2982 
   2983   memcpy(buffer + 3 * (size / 8), name, namesz);
   2984 
   2985   elfcpp::Elf_Xword flags = 0;
   2986   Output_section_order order = ORDER_INVALID;
   2987   if (allocate)
   2988     {
   2989       flags = elfcpp::SHF_ALLOC;
   2990       order = ORDER_RO_NOTE;
   2991     }
   2992   Output_section* os = this->choose_output_section(NULL, section_name,
   2993 						   elfcpp::SHT_NOTE,
   2994 						   flags, false, order, false);
   2995   if (os == NULL)
   2996     return NULL;
   2997 
   2998   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
   2999 							   size / 8,
   3000 							   "** note header");
   3001   os->add_output_section_data(posd);
   3002 
   3003   *trailing_padding = aligned_descsz - descsz;
   3004 
   3005   return os;
   3006 }
   3007 
   3008 // For an executable or shared library, create a note to record the
   3009 // version of gold used to create the binary.
   3010 
   3011 void
   3012 Layout::create_gold_note()
   3013 {
   3014   if (parameters->options().relocatable()
   3015       || parameters->incremental_update())
   3016     return;
   3017 
   3018   std::string desc = std::string("gold ") + gold::get_version_string();
   3019 
   3020   size_t trailing_padding;
   3021   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
   3022 					 ".note.gnu.gold-version", desc.size(),
   3023 					 false, &trailing_padding);
   3024   if (os == NULL)
   3025     return;
   3026 
   3027   Output_section_data* posd = new Output_data_const(desc, 4);
   3028   os->add_output_section_data(posd);
   3029 
   3030   if (trailing_padding > 0)
   3031     {
   3032       posd = new Output_data_zero_fill(trailing_padding, 0);
   3033       os->add_output_section_data(posd);
   3034     }
   3035 }
   3036 
   3037 // Record whether the stack should be executable.  This can be set
   3038 // from the command line using the -z execstack or -z noexecstack
   3039 // options.  Otherwise, if any input file has a .note.GNU-stack
   3040 // section with the SHF_EXECINSTR flag set, the stack should be
   3041 // executable.  Otherwise, if at least one input file a
   3042 // .note.GNU-stack section, and some input file has no .note.GNU-stack
   3043 // section, we use the target default for whether the stack should be
   3044 // executable.  If -z stack-size was used to set a p_memsz value for
   3045 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
   3046 // don't generate a stack note.  When generating a object file, we
   3047 // create a .note.GNU-stack section with the appropriate marking.
   3048 // When generating an executable or shared library, we create a
   3049 // PT_GNU_STACK segment.
   3050 
   3051 void
   3052 Layout::create_stack_segment()
   3053 {
   3054   bool is_stack_executable;
   3055   if (parameters->options().is_execstack_set())
   3056     {
   3057       is_stack_executable = parameters->options().is_stack_executable();
   3058       if (!is_stack_executable
   3059 	  && this->input_requires_executable_stack_
   3060 	  && parameters->options().warn_execstack())
   3061 	gold_warning(_("one or more inputs require executable stack, "
   3062 		       "but -z noexecstack was given"));
   3063     }
   3064   else if (!this->input_with_gnu_stack_note_
   3065 	   && (!parameters->options().user_set_stack_size()
   3066 	       || parameters->options().relocatable()))
   3067     return;
   3068   else
   3069     {
   3070       if (this->input_requires_executable_stack_)
   3071 	is_stack_executable = true;
   3072       else if (this->input_without_gnu_stack_note_)
   3073 	is_stack_executable =
   3074 	  parameters->target().is_default_stack_executable();
   3075       else
   3076 	is_stack_executable = false;
   3077     }
   3078 
   3079   if (parameters->options().relocatable())
   3080     {
   3081       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
   3082       elfcpp::Elf_Xword flags = 0;
   3083       if (is_stack_executable)
   3084 	flags |= elfcpp::SHF_EXECINSTR;
   3085       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
   3086 				ORDER_INVALID, false);
   3087     }
   3088   else
   3089     {
   3090       if (this->script_options_->saw_phdrs_clause())
   3091 	return;
   3092       int flags = elfcpp::PF_R | elfcpp::PF_W;
   3093       if (is_stack_executable)
   3094 	flags |= elfcpp::PF_X;
   3095       Output_segment* seg =
   3096 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
   3097       seg->set_size(parameters->options().stack_size());
   3098       // BFD lets targets override this default alignment, but the only
   3099       // targets that do so are ones that Gold does not support so far.
   3100       seg->set_minimum_p_align(16);
   3101     }
   3102 }
   3103 
   3104 // If --build-id was used, set up the build ID note.
   3105 
   3106 void
   3107 Layout::create_build_id()
   3108 {
   3109   if (!parameters->options().user_set_build_id())
   3110     return;
   3111 
   3112   const char* style = parameters->options().build_id();
   3113   if (strcmp(style, "none") == 0)
   3114     return;
   3115 
   3116   // Set DESCSZ to the size of the note descriptor.  When possible,
   3117   // set DESC to the note descriptor contents.
   3118   size_t descsz;
   3119   std::string desc;
   3120   if (strcmp(style, "md5") == 0)
   3121     descsz = 128 / 8;
   3122   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
   3123     descsz = 160 / 8;
   3124   else if (strcmp(style, "uuid") == 0)
   3125     {
   3126       const size_t uuidsz = 128 / 8;
   3127 
   3128       char buffer[uuidsz];
   3129       memset(buffer, 0, uuidsz);
   3130 
   3131       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
   3132       if (descriptor < 0)
   3133 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
   3134 		   strerror(errno));
   3135       else
   3136 	{
   3137 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
   3138 	  release_descriptor(descriptor, true);
   3139 	  if (got < 0)
   3140 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
   3141 	  else if (static_cast<size_t>(got) != uuidsz)
   3142 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
   3143 		       uuidsz, got);
   3144 	}
   3145 
   3146       desc.assign(buffer, uuidsz);
   3147       descsz = uuidsz;
   3148     }
   3149   else if (strncmp(style, "0x", 2) == 0)
   3150     {
   3151       hex_init();
   3152       const char* p = style + 2;
   3153       while (*p != '\0')
   3154 	{
   3155 	  if (hex_p(p[0]) && hex_p(p[1]))
   3156 	    {
   3157 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
   3158 	      desc += c;
   3159 	      p += 2;
   3160 	    }
   3161 	  else if (*p == '-' || *p == ':')
   3162 	    ++p;
   3163 	  else
   3164 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
   3165 		       style);
   3166 	}
   3167       descsz = desc.size();
   3168     }
   3169   else
   3170     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
   3171 
   3172   // Create the note.
   3173   size_t trailing_padding;
   3174   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
   3175 					 ".note.gnu.build-id", descsz, true,
   3176 					 &trailing_padding);
   3177   if (os == NULL)
   3178     return;
   3179 
   3180   if (!desc.empty())
   3181     {
   3182       // We know the value already, so we fill it in now.
   3183       gold_assert(desc.size() == descsz);
   3184 
   3185       Output_section_data* posd = new Output_data_const(desc, 4);
   3186       os->add_output_section_data(posd);
   3187 
   3188       if (trailing_padding != 0)
   3189 	{
   3190 	  posd = new Output_data_zero_fill(trailing_padding, 0);
   3191 	  os->add_output_section_data(posd);
   3192 	}
   3193     }
   3194   else
   3195     {
   3196       // We need to compute a checksum after we have completed the
   3197       // link.
   3198       gold_assert(trailing_padding == 0);
   3199       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
   3200       os->add_output_section_data(this->build_id_note_);
   3201     }
   3202 }
   3203 
   3204 // If we have both .stabXX and .stabXXstr sections, then the sh_link
   3205 // field of the former should point to the latter.  I'm not sure who
   3206 // started this, but the GNU linker does it, and some tools depend
   3207 // upon it.
   3208 
   3209 void
   3210 Layout::link_stabs_sections()
   3211 {
   3212   if (!this->have_stabstr_section_)
   3213     return;
   3214 
   3215   for (Section_list::iterator p = this->section_list_.begin();
   3216        p != this->section_list_.end();
   3217        ++p)
   3218     {
   3219       if ((*p)->type() != elfcpp::SHT_STRTAB)
   3220 	continue;
   3221 
   3222       const char* name = (*p)->name();
   3223       if (strncmp(name, ".stab", 5) != 0)
   3224 	continue;
   3225 
   3226       size_t len = strlen(name);
   3227       if (strcmp(name + len - 3, "str") != 0)
   3228 	continue;
   3229 
   3230       std::string stab_name(name, len - 3);
   3231       Output_section* stab_sec;
   3232       stab_sec = this->find_output_section(stab_name.c_str());
   3233       if (stab_sec != NULL)
   3234 	stab_sec->set_link_section(*p);
   3235     }
   3236 }
   3237 
   3238 // Create .gnu_incremental_inputs and related sections needed
   3239 // for the next run of incremental linking to check what has changed.
   3240 
   3241 void
   3242 Layout::create_incremental_info_sections(Symbol_table* symtab)
   3243 {
   3244   Incremental_inputs* incr = this->incremental_inputs_;
   3245 
   3246   gold_assert(incr != NULL);
   3247 
   3248   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
   3249   incr->create_data_sections(symtab);
   3250 
   3251   // Add the .gnu_incremental_inputs section.
   3252   const char* incremental_inputs_name =
   3253     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
   3254   Output_section* incremental_inputs_os =
   3255     this->make_output_section(incremental_inputs_name,
   3256 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
   3257 			      ORDER_INVALID, false);
   3258   incremental_inputs_os->add_output_section_data(incr->inputs_section());
   3259 
   3260   // Add the .gnu_incremental_symtab section.
   3261   const char* incremental_symtab_name =
   3262     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
   3263   Output_section* incremental_symtab_os =
   3264     this->make_output_section(incremental_symtab_name,
   3265 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
   3266 			      ORDER_INVALID, false);
   3267   incremental_symtab_os->add_output_section_data(incr->symtab_section());
   3268   incremental_symtab_os->set_entsize(4);
   3269 
   3270   // Add the .gnu_incremental_relocs section.
   3271   const char* incremental_relocs_name =
   3272     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
   3273   Output_section* incremental_relocs_os =
   3274     this->make_output_section(incremental_relocs_name,
   3275 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
   3276 			      ORDER_INVALID, false);
   3277   incremental_relocs_os->add_output_section_data(incr->relocs_section());
   3278   incremental_relocs_os->set_entsize(incr->relocs_entsize());
   3279 
   3280   // Add the .gnu_incremental_got_plt section.
   3281   const char* incremental_got_plt_name =
   3282     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
   3283   Output_section* incremental_got_plt_os =
   3284     this->make_output_section(incremental_got_plt_name,
   3285 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
   3286 			      ORDER_INVALID, false);
   3287   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
   3288 
   3289   // Add the .gnu_incremental_strtab section.
   3290   const char* incremental_strtab_name =
   3291     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
   3292   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
   3293 							elfcpp::SHT_STRTAB, 0,
   3294 							ORDER_INVALID, false);
   3295   Output_data_strtab* strtab_data =
   3296       new Output_data_strtab(incr->get_stringpool());
   3297   incremental_strtab_os->add_output_section_data(strtab_data);
   3298 
   3299   incremental_inputs_os->set_after_input_sections();
   3300   incremental_symtab_os->set_after_input_sections();
   3301   incremental_relocs_os->set_after_input_sections();
   3302   incremental_got_plt_os->set_after_input_sections();
   3303 
   3304   incremental_inputs_os->set_link_section(incremental_strtab_os);
   3305   incremental_symtab_os->set_link_section(incremental_inputs_os);
   3306   incremental_relocs_os->set_link_section(incremental_inputs_os);
   3307   incremental_got_plt_os->set_link_section(incremental_inputs_os);
   3308 }
   3309 
   3310 // Return whether SEG1 should be before SEG2 in the output file.  This
   3311 // is based entirely on the segment type and flags.  When this is
   3312 // called the segment addresses have normally not yet been set.
   3313 
   3314 bool
   3315 Layout::segment_precedes(const Output_segment* seg1,
   3316 			 const Output_segment* seg2)
   3317 {
   3318   elfcpp::Elf_Word type1 = seg1->type();
   3319   elfcpp::Elf_Word type2 = seg2->type();
   3320 
   3321   // The single PT_PHDR segment is required to precede any loadable
   3322   // segment.  We simply make it always first.
   3323   if (type1 == elfcpp::PT_PHDR)
   3324     {
   3325       gold_assert(type2 != elfcpp::PT_PHDR);
   3326       return true;
   3327     }
   3328   if (type2 == elfcpp::PT_PHDR)
   3329     return false;
   3330 
   3331   // The single PT_INTERP segment is required to precede any loadable
   3332   // segment.  We simply make it always second.
   3333   if (type1 == elfcpp::PT_INTERP)
   3334     {
   3335       gold_assert(type2 != elfcpp::PT_INTERP);
   3336       return true;
   3337     }
   3338   if (type2 == elfcpp::PT_INTERP)
   3339     return false;
   3340 
   3341   // We then put PT_LOAD segments before any other segments.
   3342   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
   3343     return true;
   3344   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
   3345     return false;
   3346 
   3347   // We put the PT_TLS segment last except for the PT_GNU_RELRO
   3348   // segment, because that is where the dynamic linker expects to find
   3349   // it (this is just for efficiency; other positions would also work
   3350   // correctly).
   3351   if (type1 == elfcpp::PT_TLS
   3352       && type2 != elfcpp::PT_TLS
   3353       && type2 != elfcpp::PT_GNU_RELRO)
   3354     return false;
   3355   if (type2 == elfcpp::PT_TLS
   3356       && type1 != elfcpp::PT_TLS
   3357       && type1 != elfcpp::PT_GNU_RELRO)
   3358     return true;
   3359 
   3360   // We put the PT_GNU_RELRO segment last, because that is where the
   3361   // dynamic linker expects to find it (as with PT_TLS, this is just
   3362   // for efficiency).
   3363   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
   3364     return false;
   3365   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
   3366     return true;
   3367 
   3368   const elfcpp::Elf_Word flags1 = seg1->flags();
   3369   const elfcpp::Elf_Word flags2 = seg2->flags();
   3370 
   3371   // The order of non-PT_LOAD segments is unimportant.  We simply sort
   3372   // by the numeric segment type and flags values.  There should not
   3373   // be more than one segment with the same type and flags, except
   3374   // when a linker script specifies such.
   3375   if (type1 != elfcpp::PT_LOAD)
   3376     {
   3377       if (type1 != type2)
   3378 	return type1 < type2;
   3379       gold_assert(flags1 != flags2
   3380 		  || this->script_options_->saw_phdrs_clause());
   3381       return flags1 < flags2;
   3382     }
   3383 
   3384   // If the addresses are set already, sort by load address.
   3385   if (seg1->are_addresses_set())
   3386     {
   3387       if (!seg2->are_addresses_set())
   3388 	return true;
   3389 
   3390       unsigned int section_count1 = seg1->output_section_count();
   3391       unsigned int section_count2 = seg2->output_section_count();
   3392       if (section_count1 == 0 && section_count2 > 0)
   3393 	return true;
   3394       if (section_count1 > 0 && section_count2 == 0)
   3395 	return false;
   3396 
   3397       uint64_t paddr1 =	(seg1->are_addresses_set()
   3398 			 ? seg1->paddr()
   3399 			 : seg1->first_section_load_address());
   3400       uint64_t paddr2 =	(seg2->are_addresses_set()
   3401 			 ? seg2->paddr()
   3402 			 : seg2->first_section_load_address());
   3403 
   3404       if (paddr1 != paddr2)
   3405 	return paddr1 < paddr2;
   3406     }
   3407   else if (seg2->are_addresses_set())
   3408     return false;
   3409 
   3410   // A segment which holds large data comes after a segment which does
   3411   // not hold large data.
   3412   if (seg1->is_large_data_segment())
   3413     {
   3414       if (!seg2->is_large_data_segment())
   3415 	return false;
   3416     }
   3417   else if (seg2->is_large_data_segment())
   3418     return true;
   3419 
   3420   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
   3421   // segments come before writable segments.  Then writable segments
   3422   // with data come before writable segments without data.  Then
   3423   // executable segments come before non-executable segments.  Then
   3424   // the unlikely case of a non-readable segment comes before the
   3425   // normal case of a readable segment.  If there are multiple
   3426   // segments with the same type and flags, we require that the
   3427   // address be set, and we sort by virtual address and then physical
   3428   // address.
   3429   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
   3430     return (flags1 & elfcpp::PF_W) == 0;
   3431   if ((flags1 & elfcpp::PF_W) != 0
   3432       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
   3433     return seg1->has_any_data_sections();
   3434   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
   3435     return (flags1 & elfcpp::PF_X) != 0;
   3436   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
   3437     return (flags1 & elfcpp::PF_R) == 0;
   3438 
   3439   // We shouldn't get here--we shouldn't create segments which we
   3440   // can't distinguish.  Unless of course we are using a weird linker
   3441   // script or overlapping --section-start options.  We could also get
   3442   // here if plugins want unique segments for subsets of sections.
   3443   gold_assert(this->script_options_->saw_phdrs_clause()
   3444 	      || parameters->options().any_section_start()
   3445 	      || this->is_unique_segment_for_sections_specified());
   3446   return false;
   3447 }
   3448 
   3449 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
   3450 
   3451 static off_t
   3452 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
   3453 {
   3454   uint64_t unsigned_off = off;
   3455   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
   3456 			  | (addr & (abi_pagesize - 1)));
   3457   if (aligned_off < unsigned_off)
   3458     aligned_off += abi_pagesize;
   3459   return aligned_off;
   3460 }
   3461 
   3462 // On targets where the text segment contains only executable code,
   3463 // a non-executable segment is never the text segment.
   3464 
   3465 static inline bool
   3466 is_text_segment(const Target* target, const Output_segment* seg)
   3467 {
   3468   elfcpp::Elf_Xword flags = seg->flags();
   3469   if ((flags & elfcpp::PF_W) != 0)
   3470     return false;
   3471   if ((flags & elfcpp::PF_X) == 0)
   3472     return !target->isolate_execinstr();
   3473   return true;
   3474 }
   3475 
   3476 // Set the file offsets of all the segments, and all the sections they
   3477 // contain.  They have all been created.  LOAD_SEG must be be laid out
   3478 // first.  Return the offset of the data to follow.
   3479 
   3480 off_t
   3481 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
   3482 			    unsigned int* pshndx)
   3483 {
   3484   // Sort them into the final order.  We use a stable sort so that we
   3485   // don't randomize the order of indistinguishable segments created
   3486   // by linker scripts.
   3487   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
   3488 		   Layout::Compare_segments(this));
   3489 
   3490   // Find the PT_LOAD segments, and set their addresses and offsets
   3491   // and their section's addresses and offsets.
   3492   uint64_t start_addr;
   3493   if (parameters->options().user_set_Ttext())
   3494     start_addr = parameters->options().Ttext();
   3495   else if (parameters->options().output_is_position_independent())
   3496     start_addr = 0;
   3497   else
   3498     start_addr = target->default_text_segment_address();
   3499 
   3500   uint64_t addr = start_addr;
   3501   off_t off = 0;
   3502 
   3503   // If LOAD_SEG is NULL, then the file header and segment headers
   3504   // will not be loadable.  But they still need to be at offset 0 in
   3505   // the file.  Set their offsets now.
   3506   if (load_seg == NULL)
   3507     {
   3508       for (Data_list::iterator p = this->special_output_list_.begin();
   3509 	   p != this->special_output_list_.end();
   3510 	   ++p)
   3511 	{
   3512 	  off = align_address(off, (*p)->addralign());
   3513 	  (*p)->set_address_and_file_offset(0, off);
   3514 	  off += (*p)->data_size();
   3515 	}
   3516     }
   3517 
   3518   unsigned int increase_relro = this->increase_relro_;
   3519   if (this->script_options_->saw_sections_clause())
   3520     increase_relro = 0;
   3521 
   3522   const bool check_sections = parameters->options().check_sections();
   3523   Output_segment* last_load_segment = NULL;
   3524 
   3525   unsigned int shndx_begin = *pshndx;
   3526   unsigned int shndx_load_seg = *pshndx;
   3527 
   3528   for (Segment_list::iterator p = this->segment_list_.begin();
   3529        p != this->segment_list_.end();
   3530        ++p)
   3531     {
   3532       if ((*p)->type() == elfcpp::PT_LOAD)
   3533 	{
   3534 	  if (target->isolate_execinstr())
   3535 	    {
   3536 	      // When we hit the segment that should contain the
   3537 	      // file headers, reset the file offset so we place
   3538 	      // it and subsequent segments appropriately.
   3539 	      // We'll fix up the preceding segments below.
   3540 	      if (load_seg == *p)
   3541 		{
   3542 		  if (off == 0)
   3543 		    load_seg = NULL;
   3544 		  else
   3545 		    {
   3546 		      off = 0;
   3547 		      shndx_load_seg = *pshndx;
   3548 		    }
   3549 		}
   3550 	    }
   3551 	  else
   3552 	    {
   3553 	      // Verify that the file headers fall into the first segment.
   3554 	      if (load_seg != NULL && load_seg != *p)
   3555 		gold_unreachable();
   3556 	      load_seg = NULL;
   3557 	    }
   3558 
   3559 	  bool are_addresses_set = (*p)->are_addresses_set();
   3560 	  if (are_addresses_set)
   3561 	    {
   3562 	      // When it comes to setting file offsets, we care about
   3563 	      // the physical address.
   3564 	      addr = (*p)->paddr();
   3565 	    }
   3566 	  else if (parameters->options().user_set_Ttext()
   3567 		   && (parameters->options().omagic()
   3568 		       || is_text_segment(target, *p)))
   3569 	    {
   3570 	      are_addresses_set = true;
   3571 	    }
   3572 	  else if (parameters->options().user_set_Trodata_segment()
   3573 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
   3574 	    {
   3575 	      addr = parameters->options().Trodata_segment();
   3576 	      are_addresses_set = true;
   3577 	    }
   3578 	  else if (parameters->options().user_set_Tdata()
   3579 		   && ((*p)->flags() & elfcpp::PF_W) != 0
   3580 		   && (!parameters->options().user_set_Tbss()
   3581 		       || (*p)->has_any_data_sections()))
   3582 	    {
   3583 	      addr = parameters->options().Tdata();
   3584 	      are_addresses_set = true;
   3585 	    }
   3586 	  else if (parameters->options().user_set_Tbss()
   3587 		   && ((*p)->flags() & elfcpp::PF_W) != 0
   3588 		   && !(*p)->has_any_data_sections())
   3589 	    {
   3590 	      addr = parameters->options().Tbss();
   3591 	      are_addresses_set = true;
   3592 	    }
   3593 
   3594 	  uint64_t orig_addr = addr;
   3595 	  uint64_t orig_off = off;
   3596 
   3597 	  uint64_t aligned_addr = 0;
   3598 	  uint64_t abi_pagesize = target->abi_pagesize();
   3599 	  uint64_t common_pagesize = target->common_pagesize();
   3600 
   3601 	  if (!parameters->options().nmagic()
   3602 	      && !parameters->options().omagic())
   3603 	    (*p)->set_minimum_p_align(abi_pagesize);
   3604 
   3605 	  if (!are_addresses_set)
   3606 	    {
   3607 	      // Skip the address forward one page, maintaining the same
   3608 	      // position within the page.  This lets us store both segments
   3609 	      // overlapping on a single page in the file, but the loader will
   3610 	      // put them on different pages in memory. We will revisit this
   3611 	      // decision once we know the size of the segment.
   3612 
   3613 	      uint64_t max_align = (*p)->maximum_alignment();
   3614 	      if (max_align > abi_pagesize)
   3615 		addr = align_address(addr, max_align);
   3616 	      aligned_addr = addr;
   3617 
   3618 	      if (load_seg == *p)
   3619 		{
   3620 		  // This is the segment that will contain the file
   3621 		  // headers, so its offset will have to be exactly zero.
   3622 		  gold_assert(orig_off == 0);
   3623 
   3624 		  // If the target wants a fixed minimum distance from the
   3625 		  // text segment to the read-only segment, move up now.
   3626 		  uint64_t min_addr =
   3627 		    start_addr + (parameters->options().user_set_rosegment_gap()
   3628 				  ? parameters->options().rosegment_gap()
   3629 				  : target->rosegment_gap());
   3630 		  if (addr < min_addr)
   3631 		    addr = min_addr;
   3632 
   3633 		  // But this is not the first segment!  To make its
   3634 		  // address congruent with its offset, that address better
   3635 		  // be aligned to the ABI-mandated page size.
   3636 		  addr = align_address(addr, abi_pagesize);
   3637 		  aligned_addr = addr;
   3638 		}
   3639 	      else
   3640 		{
   3641 		  if ((addr & (abi_pagesize - 1)) != 0)
   3642 		    addr = addr + abi_pagesize;
   3643 
   3644 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
   3645 		}
   3646 	    }
   3647 
   3648 	  if (!parameters->options().nmagic()
   3649 	      && !parameters->options().omagic())
   3650 	    {
   3651 	      // Here we are also taking care of the case when
   3652 	      // the maximum segment alignment is larger than the page size.
   3653 	      off = align_file_offset(off, addr,
   3654 				      std::max(abi_pagesize,
   3655 					       (*p)->maximum_alignment()));
   3656 	    }
   3657 	  else
   3658 	    {
   3659 	      // This is -N or -n with a section script which prevents
   3660 	      // us from using a load segment.  We need to ensure that
   3661 	      // the file offset is aligned to the alignment of the
   3662 	      // segment.  This is because the linker script
   3663 	      // implicitly assumed a zero offset.  If we don't align
   3664 	      // here, then the alignment of the sections in the
   3665 	      // linker script may not match the alignment of the
   3666 	      // sections in the set_section_addresses call below,
   3667 	      // causing an error about dot moving backward.
   3668 	      off = align_address(off, (*p)->maximum_alignment());
   3669 	    }
   3670 
   3671 	  unsigned int shndx_hold = *pshndx;
   3672 	  bool has_relro = false;
   3673 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
   3674 							  false, addr,
   3675 							  &increase_relro,
   3676 							  &has_relro,
   3677 							  &off, pshndx);
   3678 
   3679 	  // Now that we know the size of this segment, we may be able
   3680 	  // to save a page in memory, at the cost of wasting some
   3681 	  // file space, by instead aligning to the start of a new
   3682 	  // page.  Here we use the real machine page size rather than
   3683 	  // the ABI mandated page size.  If the segment has been
   3684 	  // aligned so that the relro data ends at a page boundary,
   3685 	  // we do not try to realign it.
   3686 
   3687 	  if (!are_addresses_set
   3688 	      && !has_relro
   3689 	      && aligned_addr != addr
   3690 	      && !parameters->incremental())
   3691 	    {
   3692 	      uint64_t first_off = (common_pagesize
   3693 				    - (aligned_addr
   3694 				       & (common_pagesize - 1)));
   3695 	      uint64_t last_off = new_addr & (common_pagesize - 1);
   3696 	      if (first_off > 0
   3697 		  && last_off > 0
   3698 		  && ((aligned_addr & ~ (common_pagesize - 1))
   3699 		      != (new_addr & ~ (common_pagesize - 1)))
   3700 		  && first_off + last_off <= common_pagesize)
   3701 		{
   3702 		  *pshndx = shndx_hold;
   3703 		  addr = align_address(aligned_addr, common_pagesize);
   3704 		  addr = align_address(addr, (*p)->maximum_alignment());
   3705 		  if ((addr & (abi_pagesize - 1)) != 0)
   3706 		    addr = addr + abi_pagesize;
   3707 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
   3708 		  off = align_file_offset(off, addr, abi_pagesize);
   3709 
   3710 		  increase_relro = this->increase_relro_;
   3711 		  if (this->script_options_->saw_sections_clause())
   3712 		    increase_relro = 0;
   3713 		  has_relro = false;
   3714 
   3715 		  new_addr = (*p)->set_section_addresses(target, this,
   3716 							 true, addr,
   3717 							 &increase_relro,
   3718 							 &has_relro,
   3719 							 &off, pshndx);
   3720 		}
   3721 	    }
   3722 
   3723 	  addr = new_addr;
   3724 
   3725 	  // Implement --check-sections.  We know that the segments
   3726 	  // are sorted by LMA.
   3727 	  if (check_sections && last_load_segment != NULL)
   3728 	    {
   3729 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
   3730 	      if (last_load_segment->paddr() + last_load_segment->memsz()
   3731 		  > (*p)->paddr())
   3732 		{
   3733 		  unsigned long long lb1 = last_load_segment->paddr();
   3734 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
   3735 		  unsigned long long lb2 = (*p)->paddr();
   3736 		  unsigned long long le2 = lb2 + (*p)->memsz();
   3737 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
   3738 			       "[0x%llx -> 0x%llx]"),
   3739 			     lb1, le1, lb2, le2);
   3740 		}
   3741 	    }
   3742 	  last_load_segment = *p;
   3743 	}
   3744     }
   3745 
   3746   if (load_seg != NULL && target->isolate_execinstr())
   3747     {
   3748       // Process the early segments again, setting their file offsets
   3749       // so they land after the segments starting at LOAD_SEG.
   3750       off = align_file_offset(off, 0, target->abi_pagesize());
   3751 
   3752       this->reset_relax_output();
   3753 
   3754       for (Segment_list::iterator p = this->segment_list_.begin();
   3755 	   *p != load_seg;
   3756 	   ++p)
   3757 	{
   3758 	  if ((*p)->type() == elfcpp::PT_LOAD)
   3759 	    {
   3760 	      // We repeat the whole job of assigning addresses and
   3761 	      // offsets, but we really only want to change the offsets and
   3762 	      // must ensure that the addresses all come out the same as
   3763 	      // they did the first time through.
   3764 	      bool has_relro = false;
   3765 	      const uint64_t old_addr = (*p)->vaddr();
   3766 	      const uint64_t old_end = old_addr + (*p)->memsz();
   3767 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
   3768 							      true, old_addr,
   3769 							      &increase_relro,
   3770 							      &has_relro,
   3771 							      &off,
   3772 							      &shndx_begin);
   3773 	      gold_assert(new_addr == old_end);
   3774 	    }
   3775 	}
   3776 
   3777       gold_assert(shndx_begin == shndx_load_seg);
   3778     }
   3779 
   3780   // Handle the non-PT_LOAD segments, setting their offsets from their
   3781   // section's offsets.
   3782   for (Segment_list::iterator p = this->segment_list_.begin();
   3783        p != this->segment_list_.end();
   3784        ++p)
   3785     {
   3786       // PT_GNU_STACK was set up correctly when it was created.
   3787       if ((*p)->type() != elfcpp::PT_LOAD
   3788 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
   3789 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
   3790 			 ? increase_relro
   3791 			 : 0);
   3792     }
   3793 
   3794   // Set the TLS offsets for each section in the PT_TLS segment.
   3795   if (this->tls_segment_ != NULL)
   3796     this->tls_segment_->set_tls_offsets();
   3797 
   3798   return off;
   3799 }
   3800 
   3801 // Set the offsets of all the allocated sections when doing a
   3802 // relocatable link.  This does the same jobs as set_segment_offsets,
   3803 // only for a relocatable link.
   3804 
   3805 off_t
   3806 Layout::set_relocatable_section_offsets(Output_data* file_header,
   3807 					unsigned int* pshndx)
   3808 {
   3809   off_t off = 0;
   3810 
   3811   file_header->set_address_and_file_offset(0, 0);
   3812   off += file_header->data_size();
   3813 
   3814   for (Section_list::iterator p = this->section_list_.begin();
   3815        p != this->section_list_.end();
   3816        ++p)
   3817     {
   3818       // We skip unallocated sections here, except that group sections
   3819       // have to come first.
   3820       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
   3821 	  && (*p)->type() != elfcpp::SHT_GROUP)
   3822 	continue;
   3823 
   3824       off = align_address(off, (*p)->addralign());
   3825 
   3826       // The linker script might have set the address.
   3827       if (!(*p)->is_address_valid())
   3828 	(*p)->set_address(0);
   3829       (*p)->set_file_offset(off);
   3830       (*p)->finalize_data_size();
   3831       if ((*p)->type() != elfcpp::SHT_NOBITS)
   3832 	off += (*p)->data_size();
   3833 
   3834       (*p)->set_out_shndx(*pshndx);
   3835       ++*pshndx;
   3836     }
   3837 
   3838   return off;
   3839 }
   3840 
   3841 // Set the file offset of all the sections not associated with a
   3842 // segment.
   3843 
   3844 off_t
   3845 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
   3846 {
   3847   off_t startoff = off;
   3848   off_t maxoff = off;
   3849 
   3850   for (Section_list::iterator p = this->unattached_section_list_.begin();
   3851        p != this->unattached_section_list_.end();
   3852        ++p)
   3853     {
   3854       // The symtab section is handled in create_symtab_sections.
   3855       if (*p == this->symtab_section_)
   3856 	continue;
   3857 
   3858       // If we've already set the data size, don't set it again.
   3859       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
   3860 	continue;
   3861 
   3862       if (pass == BEFORE_INPUT_SECTIONS_PASS
   3863 	  && (*p)->requires_postprocessing())
   3864 	{
   3865 	  (*p)->create_postprocessing_buffer();
   3866 	  this->any_postprocessing_sections_ = true;
   3867 	}
   3868 
   3869       if (pass == BEFORE_INPUT_SECTIONS_PASS
   3870 	  && (*p)->after_input_sections())
   3871 	continue;
   3872       else if (pass == POSTPROCESSING_SECTIONS_PASS
   3873 	       && (!(*p)->after_input_sections()
   3874 		   || (*p)->type() == elfcpp::SHT_STRTAB))
   3875 	continue;
   3876       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
   3877 	       && (!(*p)->after_input_sections()
   3878 		   || (*p)->type() != elfcpp::SHT_STRTAB))
   3879 	continue;
   3880 
   3881       if (!parameters->incremental_update())
   3882 	{
   3883 	  off = align_address(off, (*p)->addralign());
   3884 	  (*p)->set_file_offset(off);
   3885 	  (*p)->finalize_data_size();
   3886 	}
   3887       else
   3888 	{
   3889 	  // Incremental update: allocate file space from free list.
   3890 	  (*p)->pre_finalize_data_size();
   3891 	  off_t current_size = (*p)->current_data_size();
   3892 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
   3893 	  if (off == -1)
   3894 	    {
   3895 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
   3896 		this->free_list_.dump();
   3897 	      gold_assert((*p)->output_section() != NULL);
   3898 	      gold_fallback(_("out of patch space for section %s; "
   3899 			      "relink with --incremental-full"),
   3900 			    (*p)->output_section()->name());
   3901 	    }
   3902 	  (*p)->set_file_offset(off);
   3903 	  (*p)->finalize_data_size();
   3904 	  if ((*p)->data_size() > current_size)
   3905 	    {
   3906 	      gold_assert((*p)->output_section() != NULL);
   3907 	      gold_fallback(_("%s: section changed size; "
   3908 			      "relink with --incremental-full"),
   3909 			    (*p)->output_section()->name());
   3910 	    }
   3911 	  gold_debug(DEBUG_INCREMENTAL,
   3912 		     "set_section_offsets: %08lx %08lx %s",
   3913 		     static_cast<long>(off),
   3914 		     static_cast<long>((*p)->data_size()),
   3915 		     ((*p)->output_section() != NULL
   3916 		      ? (*p)->output_section()->name() : "(special)"));
   3917 	}
   3918 
   3919       off += (*p)->data_size();
   3920       if (off > maxoff)
   3921 	maxoff = off;
   3922 
   3923       // At this point the name must be set.
   3924       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
   3925 	this->namepool_.add((*p)->name(), false, NULL);
   3926     }
   3927   return maxoff;
   3928 }
   3929 
   3930 // Set the section indexes of all the sections not associated with a
   3931 // segment.
   3932 
   3933 unsigned int
   3934 Layout::set_section_indexes(unsigned int shndx)
   3935 {
   3936   for (Section_list::iterator p = this->unattached_section_list_.begin();
   3937        p != this->unattached_section_list_.end();
   3938        ++p)
   3939     {
   3940       if (!(*p)->has_out_shndx())
   3941 	{
   3942 	  (*p)->set_out_shndx(shndx);
   3943 	  ++shndx;
   3944 	}
   3945     }
   3946   return shndx;
   3947 }
   3948 
   3949 // Set the section addresses according to the linker script.  This is
   3950 // only called when we see a SECTIONS clause.  This returns the
   3951 // program segment which should hold the file header and segment
   3952 // headers, if any.  It will return NULL if they should not be in a
   3953 // segment.
   3954 
   3955 Output_segment*
   3956 Layout::set_section_addresses_from_script(Symbol_table* symtab)
   3957 {
   3958   Script_sections* ss = this->script_options_->script_sections();
   3959   gold_assert(ss->saw_sections_clause());
   3960   return this->script_options_->set_section_addresses(symtab, this);
   3961 }
   3962 
   3963 // Place the orphan sections in the linker script.
   3964 
   3965 void
   3966 Layout::place_orphan_sections_in_script()
   3967 {
   3968   Script_sections* ss = this->script_options_->script_sections();
   3969   gold_assert(ss->saw_sections_clause());
   3970 
   3971   // Place each orphaned output section in the script.
   3972   for (Section_list::iterator p = this->section_list_.begin();
   3973        p != this->section_list_.end();
   3974        ++p)
   3975     {
   3976       if (!(*p)->found_in_sections_clause())
   3977 	ss->place_orphan(*p);
   3978     }
   3979 }
   3980 
   3981 // Count the local symbols in the regular symbol table and the dynamic
   3982 // symbol table, and build the respective string pools.
   3983 
   3984 void
   3985 Layout::count_local_symbols(const Task* task,
   3986 			    const Input_objects* input_objects)
   3987 {
   3988   // First, figure out an upper bound on the number of symbols we'll
   3989   // be inserting into each pool.  This helps us create the pools with
   3990   // the right size, to avoid unnecessary hashtable resizing.
   3991   unsigned int symbol_count = 0;
   3992   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
   3993        p != input_objects->relobj_end();
   3994        ++p)
   3995     symbol_count += (*p)->local_symbol_count();
   3996 
   3997   // Go from "upper bound" to "estimate."  We overcount for two
   3998   // reasons: we double-count symbols that occur in more than one
   3999   // object file, and we count symbols that are dropped from the
   4000   // output.  Add it all together and assume we overcount by 100%.
   4001   symbol_count /= 2;
   4002 
   4003   // We assume all symbols will go into both the sympool and dynpool.
   4004   this->sympool_.reserve(symbol_count);
   4005   this->dynpool_.reserve(symbol_count);
   4006 
   4007   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
   4008        p != input_objects->relobj_end();
   4009        ++p)
   4010     {
   4011       Task_lock_obj<Object> tlo(task, *p);
   4012       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
   4013     }
   4014 }
   4015 
   4016 // Create the symbol table sections.  Here we also set the final
   4017 // values of the symbols.  At this point all the loadable sections are
   4018 // fully laid out.  SHNUM is the number of sections so far.
   4019 
   4020 void
   4021 Layout::create_symtab_sections(const Input_objects* input_objects,
   4022 			       Symbol_table* symtab,
   4023 			       unsigned int shnum,
   4024 			       off_t* poff)
   4025 {
   4026   int symsize;
   4027   unsigned int align;
   4028   if (parameters->target().get_size() == 32)
   4029     {
   4030       symsize = elfcpp::Elf_sizes<32>::sym_size;
   4031       align = 4;
   4032     }
   4033   else if (parameters->target().get_size() == 64)
   4034     {
   4035       symsize = elfcpp::Elf_sizes<64>::sym_size;
   4036       align = 8;
   4037     }
   4038   else
   4039     gold_unreachable();
   4040 
   4041   // Compute file offsets relative to the start of the symtab section.
   4042   off_t off = 0;
   4043 
   4044   // Save space for the dummy symbol at the start of the section.  We
   4045   // never bother to write this out--it will just be left as zero.
   4046   off += symsize;
   4047   unsigned int local_symbol_index = 1;
   4048 
   4049   // Add STT_SECTION symbols for each Output section which needs one.
   4050   for (Section_list::iterator p = this->section_list_.begin();
   4051        p != this->section_list_.end();
   4052        ++p)
   4053     {
   4054       if (!(*p)->needs_symtab_index())
   4055 	(*p)->set_symtab_index(-1U);
   4056       else
   4057 	{
   4058 	  (*p)->set_symtab_index(local_symbol_index);
   4059 	  ++local_symbol_index;
   4060 	  off += symsize;
   4061 	}
   4062     }
   4063 
   4064   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
   4065        p != input_objects->relobj_end();
   4066        ++p)
   4067     {
   4068       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
   4069 							off, symtab);
   4070       off += (index - local_symbol_index) * symsize;
   4071       local_symbol_index = index;
   4072     }
   4073 
   4074   unsigned int local_symcount = local_symbol_index;
   4075   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
   4076 
   4077   off_t dynoff;
   4078   size_t dyn_global_index;
   4079   size_t dyncount;
   4080   if (this->dynsym_section_ == NULL)
   4081     {
   4082       dynoff = 0;
   4083       dyn_global_index = 0;
   4084       dyncount = 0;
   4085     }
   4086   else
   4087     {
   4088       dyn_global_index = this->dynsym_section_->info();
   4089       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
   4090       dynoff = this->dynsym_section_->offset() + locsize;
   4091       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
   4092       gold_assert(static_cast<off_t>(dyncount * symsize)
   4093 		  == this->dynsym_section_->data_size() - locsize);
   4094     }
   4095 
   4096   off_t global_off = off;
   4097   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
   4098 			 &this->sympool_, &local_symcount);
   4099 
   4100   if (!parameters->options().strip_all())
   4101     {
   4102       this->sympool_.set_string_offsets();
   4103 
   4104       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
   4105       Output_section* osymtab = this->make_output_section(symtab_name,
   4106 							  elfcpp::SHT_SYMTAB,
   4107 							  0, ORDER_INVALID,
   4108 							  false);
   4109       this->symtab_section_ = osymtab;
   4110 
   4111       Output_section_data* pos = new Output_data_fixed_space(off, align,
   4112 							     "** symtab");
   4113       osymtab->add_output_section_data(pos);
   4114 
   4115       // We generate a .symtab_shndx section if we have more than
   4116       // SHN_LORESERVE sections.  Technically it is possible that we
   4117       // don't need one, because it is possible that there are no
   4118       // symbols in any of sections with indexes larger than
   4119       // SHN_LORESERVE.  That is probably unusual, though, and it is
   4120       // easier to always create one than to compute section indexes
   4121       // twice (once here, once when writing out the symbols).
   4122       if (shnum >= elfcpp::SHN_LORESERVE)
   4123 	{
   4124 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
   4125 							       false, NULL);
   4126 	  Output_section* osymtab_xindex =
   4127 	    this->make_output_section(symtab_xindex_name,
   4128 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
   4129 				      ORDER_INVALID, false);
   4130 
   4131 	  size_t symcount = off / symsize;
   4132 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
   4133 
   4134 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
   4135 
   4136 	  osymtab_xindex->set_link_section(osymtab);
   4137 	  osymtab_xindex->set_addralign(4);
   4138 	  osymtab_xindex->set_entsize(4);
   4139 
   4140 	  osymtab_xindex->set_after_input_sections();
   4141 
   4142 	  // This tells the driver code to wait until the symbol table
   4143 	  // has written out before writing out the postprocessing
   4144 	  // sections, including the .symtab_shndx section.
   4145 	  this->any_postprocessing_sections_ = true;
   4146 	}
   4147 
   4148       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
   4149       Output_section* ostrtab = this->make_output_section(strtab_name,
   4150 							  elfcpp::SHT_STRTAB,
   4151 							  0, ORDER_INVALID,
   4152 							  false);
   4153 
   4154       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
   4155       ostrtab->add_output_section_data(pstr);
   4156 
   4157       off_t symtab_off;
   4158       if (!parameters->incremental_update())
   4159 	symtab_off = align_address(*poff, align);
   4160       else
   4161 	{
   4162 	  symtab_off = this->allocate(off, align, *poff);
   4163 	  if (off == -1)
   4164 	    gold_fallback(_("out of patch space for symbol table; "
   4165 			    "relink with --incremental-full"));
   4166 	  gold_debug(DEBUG_INCREMENTAL,
   4167 		     "create_symtab_sections: %08lx %08lx .symtab",
   4168 		     static_cast<long>(symtab_off),
   4169 		     static_cast<long>(off));
   4170 	}
   4171 
   4172       symtab->set_file_offset(symtab_off + global_off);
   4173       osymtab->set_file_offset(symtab_off);
   4174       osymtab->finalize_data_size();
   4175       osymtab->set_link_section(ostrtab);
   4176       osymtab->set_info(local_symcount);
   4177       osymtab->set_entsize(symsize);
   4178 
   4179       if (symtab_off + off > *poff)
   4180 	*poff = symtab_off + off;
   4181     }
   4182 }
   4183 
   4184 // Create the .shstrtab section, which holds the names of the
   4185 // sections.  At the time this is called, we have created all the
   4186 // output sections except .shstrtab itself.
   4187 
   4188 Output_section*
   4189 Layout::create_shstrtab()
   4190 {
   4191   // FIXME: We don't need to create a .shstrtab section if we are
   4192   // stripping everything.
   4193 
   4194   const char* name = this->namepool_.add(".shstrtab", false, NULL);
   4195 
   4196   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
   4197 						 ORDER_INVALID, false);
   4198 
   4199   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
   4200     {
   4201       // We can't write out this section until we've set all the
   4202       // section names, and we don't set the names of compressed
   4203       // output sections until relocations are complete.  FIXME: With
   4204       // the current names we use, this is unnecessary.
   4205       os->set_after_input_sections();
   4206     }
   4207 
   4208   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
   4209   os->add_output_section_data(posd);
   4210 
   4211   return os;
   4212 }
   4213 
   4214 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
   4215 // offset.
   4216 
   4217 void
   4218 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
   4219 {
   4220   Output_section_headers* oshdrs;
   4221   oshdrs = new Output_section_headers(this,
   4222 				      &this->segment_list_,
   4223 				      &this->section_list_,
   4224 				      &this->unattached_section_list_,
   4225 				      &this->namepool_,
   4226 				      shstrtab_section);
   4227   off_t off;
   4228   if (!parameters->incremental_update())
   4229     off = align_address(*poff, oshdrs->addralign());
   4230   else
   4231     {
   4232       oshdrs->pre_finalize_data_size();
   4233       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
   4234       if (off == -1)
   4235 	  gold_fallback(_("out of patch space for section header table; "
   4236 			  "relink with --incremental-full"));
   4237       gold_debug(DEBUG_INCREMENTAL,
   4238 		 "create_shdrs: %08lx %08lx (section header table)",
   4239 		 static_cast<long>(off),
   4240 		 static_cast<long>(off + oshdrs->data_size()));
   4241     }
   4242   oshdrs->set_address_and_file_offset(0, off);
   4243   off += oshdrs->data_size();
   4244   if (off > *poff)
   4245     *poff = off;
   4246   this->section_headers_ = oshdrs;
   4247 }
   4248 
   4249 // Count the allocated sections.
   4250 
   4251 size_t
   4252 Layout::allocated_output_section_count() const
   4253 {
   4254   size_t section_count = 0;
   4255   for (Segment_list::const_iterator p = this->segment_list_.begin();
   4256        p != this->segment_list_.end();
   4257        ++p)
   4258     section_count += (*p)->output_section_count();
   4259   return section_count;
   4260 }
   4261 
   4262 // Create the dynamic symbol table.
   4263 
   4264 void
   4265 Layout::create_dynamic_symtab(const Input_objects* input_objects,
   4266 			      Symbol_table* symtab,
   4267 			      Output_section** pdynstr,
   4268 			      unsigned int* plocal_dynamic_count,
   4269 			      std::vector<Symbol*>* pdynamic_symbols,
   4270 			      Versions* pversions)
   4271 {
   4272   // Count all the symbols in the dynamic symbol table, and set the
   4273   // dynamic symbol indexes.
   4274 
   4275   // Skip symbol 0, which is always all zeroes.
   4276   unsigned int index = 1;
   4277 
   4278   // Add STT_SECTION symbols for each Output section which needs one.
   4279   for (Section_list::iterator p = this->section_list_.begin();
   4280        p != this->section_list_.end();
   4281        ++p)
   4282     {
   4283       if (!(*p)->needs_dynsym_index())
   4284 	(*p)->set_dynsym_index(-1U);
   4285       else
   4286 	{
   4287 	  (*p)->set_dynsym_index(index);
   4288 	  ++index;
   4289 	}
   4290     }
   4291 
   4292   // Count the local symbols that need to go in the dynamic symbol table,
   4293   // and set the dynamic symbol indexes.
   4294   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
   4295        p != input_objects->relobj_end();
   4296        ++p)
   4297     {
   4298       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
   4299       index = new_index;
   4300     }
   4301 
   4302   unsigned int local_symcount = index;
   4303   *plocal_dynamic_count = local_symcount;
   4304 
   4305   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
   4306 				     &this->dynpool_, pversions);
   4307 
   4308   int symsize;
   4309   unsigned int align;
   4310   const int size = parameters->target().get_size();
   4311   if (size == 32)
   4312     {
   4313       symsize = elfcpp::Elf_sizes<32>::sym_size;
   4314       align = 4;
   4315     }
   4316   else if (size == 64)
   4317     {
   4318       symsize = elfcpp::Elf_sizes<64>::sym_size;
   4319       align = 8;
   4320     }
   4321   else
   4322     gold_unreachable();
   4323 
   4324   // Create the dynamic symbol table section.
   4325 
   4326   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
   4327 						       elfcpp::SHT_DYNSYM,
   4328 						       elfcpp::SHF_ALLOC,
   4329 						       false,
   4330 						       ORDER_DYNAMIC_LINKER,
   4331 						       false);
   4332 
   4333   // Check for NULL as a linker script may discard .dynsym.
   4334   if (dynsym != NULL)
   4335     {
   4336       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
   4337 							       align,
   4338 							       "** dynsym");
   4339       dynsym->add_output_section_data(odata);
   4340 
   4341       dynsym->set_info(local_symcount);
   4342       dynsym->set_entsize(symsize);
   4343       dynsym->set_addralign(align);
   4344 
   4345       this->dynsym_section_ = dynsym;
   4346     }
   4347 
   4348   Output_data_dynamic* const odyn = this->dynamic_data_;
   4349   if (odyn != NULL)
   4350     {
   4351       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
   4352       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
   4353     }
   4354 
   4355   // If there are more than SHN_LORESERVE allocated sections, we
   4356   // create a .dynsym_shndx section.  It is possible that we don't
   4357   // need one, because it is possible that there are no dynamic
   4358   // symbols in any of the sections with indexes larger than
   4359   // SHN_LORESERVE.  This is probably unusual, though, and at this
   4360   // time we don't know the actual section indexes so it is
   4361   // inconvenient to check.
   4362   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
   4363     {
   4364       Output_section* dynsym_xindex =
   4365 	this->choose_output_section(NULL, ".dynsym_shndx",
   4366 				    elfcpp::SHT_SYMTAB_SHNDX,
   4367 				    elfcpp::SHF_ALLOC,
   4368 				    false, ORDER_DYNAMIC_LINKER, false);
   4369 
   4370       if (dynsym_xindex != NULL)
   4371 	{
   4372 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
   4373 
   4374 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
   4375 
   4376 	  dynsym_xindex->set_link_section(dynsym);
   4377 	  dynsym_xindex->set_addralign(4);
   4378 	  dynsym_xindex->set_entsize(4);
   4379 
   4380 	  dynsym_xindex->set_after_input_sections();
   4381 
   4382 	  // This tells the driver code to wait until the symbol table
   4383 	  // has written out before writing out the postprocessing
   4384 	  // sections, including the .dynsym_shndx section.
   4385 	  this->any_postprocessing_sections_ = true;
   4386 	}
   4387     }
   4388 
   4389   // Create the dynamic string table section.
   4390 
   4391   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
   4392 						       elfcpp::SHT_STRTAB,
   4393 						       elfcpp::SHF_ALLOC,
   4394 						       false,
   4395 						       ORDER_DYNAMIC_LINKER,
   4396 						       false);
   4397   *pdynstr = dynstr;
   4398   if (dynstr != NULL)
   4399     {
   4400       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
   4401       dynstr->add_output_section_data(strdata);
   4402 
   4403       if (dynsym != NULL)
   4404 	dynsym->set_link_section(dynstr);
   4405       if (this->dynamic_section_ != NULL)
   4406 	this->dynamic_section_->set_link_section(dynstr);
   4407 
   4408       if (odyn != NULL)
   4409 	{
   4410 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
   4411 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
   4412 	}
   4413     }
   4414 
   4415   // Create the hash tables.  The Gnu-style hash table must be
   4416   // built first, because it changes the order of the symbols
   4417   // in the dynamic symbol table.
   4418 
   4419   if (strcmp(parameters->options().hash_style(), "gnu") == 0
   4420       || strcmp(parameters->options().hash_style(), "both") == 0)
   4421     {
   4422       unsigned char* phash;
   4423       unsigned int hashlen;
   4424       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
   4425 				    &phash, &hashlen);
   4426 
   4427       Output_section* hashsec =
   4428 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
   4429 				    elfcpp::SHF_ALLOC, false,
   4430 				    ORDER_DYNAMIC_LINKER, false);
   4431 
   4432       Output_section_data* hashdata = new Output_data_const_buffer(phash,
   4433 								   hashlen,
   4434 								   align,
   4435 								   "** hash");
   4436       if (hashsec != NULL && hashdata != NULL)
   4437 	hashsec->add_output_section_data(hashdata);
   4438 
   4439       if (hashsec != NULL)
   4440 	{
   4441 	  if (dynsym != NULL)
   4442 	    hashsec->set_link_section(dynsym);
   4443 
   4444 	  // For a 64-bit target, the entries in .gnu.hash do not have
   4445 	  // a uniform size, so we only set the entry size for a
   4446 	  // 32-bit target.
   4447 	  if (parameters->target().get_size() == 32)
   4448 	    hashsec->set_entsize(4);
   4449 
   4450 	  if (odyn != NULL)
   4451 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
   4452 	}
   4453     }
   4454 
   4455   if (strcmp(parameters->options().hash_style(), "sysv") == 0
   4456       || strcmp(parameters->options().hash_style(), "both") == 0)
   4457     {
   4458       unsigned char* phash;
   4459       unsigned int hashlen;
   4460       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
   4461 				    &phash, &hashlen);
   4462 
   4463       Output_section* hashsec =
   4464 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
   4465 				    elfcpp::SHF_ALLOC, false,
   4466 				    ORDER_DYNAMIC_LINKER, false);
   4467 
   4468       Output_section_data* hashdata = new Output_data_const_buffer(phash,
   4469 								   hashlen,
   4470 								   align,
   4471 								   "** hash");
   4472       if (hashsec != NULL && hashdata != NULL)
   4473 	hashsec->add_output_section_data(hashdata);
   4474 
   4475       if (hashsec != NULL)
   4476 	{
   4477 	  if (dynsym != NULL)
   4478 	    hashsec->set_link_section(dynsym);
   4479 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
   4480 	}
   4481 
   4482       if (odyn != NULL)
   4483 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
   4484     }
   4485 }
   4486 
   4487 // Assign offsets to each local portion of the dynamic symbol table.
   4488 
   4489 void
   4490 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
   4491 {
   4492   Output_section* dynsym = this->dynsym_section_;
   4493   if (dynsym == NULL)
   4494     return;
   4495 
   4496   off_t off = dynsym->offset();
   4497 
   4498   // Skip the dummy symbol at the start of the section.
   4499   off += dynsym->entsize();
   4500 
   4501   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
   4502        p != input_objects->relobj_end();
   4503        ++p)
   4504     {
   4505       unsigned int count = (*p)->set_local_dynsym_offset(off);
   4506       off += count * dynsym->entsize();
   4507     }
   4508 }
   4509 
   4510 // Create the version sections.
   4511 
   4512 void
   4513 Layout::create_version_sections(const Versions* versions,
   4514 				const Symbol_table* symtab,
   4515 				unsigned int local_symcount,
   4516 				const std::vector<Symbol*>& dynamic_symbols,
   4517 				const Output_section* dynstr)
   4518 {
   4519   if (!versions->any_defs() && !versions->any_needs())
   4520     return;
   4521 
   4522   switch (parameters->size_and_endianness())
   4523     {
   4524 #ifdef HAVE_TARGET_32_LITTLE
   4525     case Parameters::TARGET_32_LITTLE:
   4526       this->sized_create_version_sections<32, false>(versions, symtab,
   4527 						     local_symcount,
   4528 						     dynamic_symbols, dynstr);
   4529       break;
   4530 #endif
   4531 #ifdef HAVE_TARGET_32_BIG
   4532     case Parameters::TARGET_32_BIG:
   4533       this->sized_create_version_sections<32, true>(versions, symtab,
   4534 						    local_symcount,
   4535 						    dynamic_symbols, dynstr);
   4536       break;
   4537 #endif
   4538 #ifdef HAVE_TARGET_64_LITTLE
   4539     case Parameters::TARGET_64_LITTLE:
   4540       this->sized_create_version_sections<64, false>(versions, symtab,
   4541 						     local_symcount,
   4542 						     dynamic_symbols, dynstr);
   4543       break;
   4544 #endif
   4545 #ifdef HAVE_TARGET_64_BIG
   4546     case Parameters::TARGET_64_BIG:
   4547       this->sized_create_version_sections<64, true>(versions, symtab,
   4548 						    local_symcount,
   4549 						    dynamic_symbols, dynstr);
   4550       break;
   4551 #endif
   4552     default:
   4553       gold_unreachable();
   4554     }
   4555 }
   4556 
   4557 // Create the version sections, sized version.
   4558 
   4559 template<int size, bool big_endian>
   4560 void
   4561 Layout::sized_create_version_sections(
   4562     const Versions* versions,
   4563     const Symbol_table* symtab,
   4564     unsigned int local_symcount,
   4565     const std::vector<Symbol*>& dynamic_symbols,
   4566     const Output_section* dynstr)
   4567 {
   4568   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
   4569 						     elfcpp::SHT_GNU_versym,
   4570 						     elfcpp::SHF_ALLOC,
   4571 						     false,
   4572 						     ORDER_DYNAMIC_LINKER,
   4573 						     false);
   4574 
   4575   // Check for NULL since a linker script may discard this section.
   4576   if (vsec != NULL)
   4577     {
   4578       unsigned char* vbuf;
   4579       unsigned int vsize;
   4580       versions->symbol_section_contents<size, big_endian>(symtab,
   4581 							  &this->dynpool_,
   4582 							  local_symcount,
   4583 							  dynamic_symbols,
   4584 							  &vbuf, &vsize);
   4585 
   4586       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
   4587 								"** versions");
   4588 
   4589       vsec->add_output_section_data(vdata);
   4590       vsec->set_entsize(2);
   4591       vsec->set_link_section(this->dynsym_section_);
   4592     }
   4593 
   4594   Output_data_dynamic* const odyn = this->dynamic_data_;
   4595   if (odyn != NULL && vsec != NULL)
   4596     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
   4597 
   4598   if (versions->any_defs())
   4599     {
   4600       Output_section* vdsec;
   4601       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
   4602 					  elfcpp::SHT_GNU_verdef,
   4603 					  elfcpp::SHF_ALLOC,
   4604 					  false, ORDER_DYNAMIC_LINKER, false);
   4605 
   4606       if (vdsec != NULL)
   4607 	{
   4608 	  unsigned char* vdbuf;
   4609 	  unsigned int vdsize;
   4610 	  unsigned int vdentries;
   4611 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
   4612 							   &vdbuf, &vdsize,
   4613 							   &vdentries);
   4614 
   4615 	  Output_section_data* vddata =
   4616 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
   4617 
   4618 	  vdsec->add_output_section_data(vddata);
   4619 	  vdsec->set_link_section(dynstr);
   4620 	  vdsec->set_info(vdentries);
   4621 
   4622 	  if (odyn != NULL)
   4623 	    {
   4624 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
   4625 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
   4626 	    }
   4627 	}
   4628     }
   4629 
   4630   if (versions->any_needs())
   4631     {
   4632       Output_section* vnsec;
   4633       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
   4634 					  elfcpp::SHT_GNU_verneed,
   4635 					  elfcpp::SHF_ALLOC,
   4636 					  false, ORDER_DYNAMIC_LINKER, false);
   4637 
   4638       if (vnsec != NULL)
   4639 	{
   4640 	  unsigned char* vnbuf;
   4641 	  unsigned int vnsize;
   4642 	  unsigned int vnentries;
   4643 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
   4644 							    &vnbuf, &vnsize,
   4645 							    &vnentries);
   4646 
   4647 	  Output_section_data* vndata =
   4648 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
   4649 
   4650 	  vnsec->add_output_section_data(vndata);
   4651 	  vnsec->set_link_section(dynstr);
   4652 	  vnsec->set_info(vnentries);
   4653 
   4654 	  if (odyn != NULL)
   4655 	    {
   4656 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
   4657 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
   4658 	    }
   4659 	}
   4660     }
   4661 }
   4662 
   4663 // Create the .interp section and PT_INTERP segment.
   4664 
   4665 void
   4666 Layout::create_interp(const Target* target)
   4667 {
   4668   gold_assert(this->interp_segment_ == NULL);
   4669 
   4670   const char* interp = parameters->options().dynamic_linker();
   4671   if (interp == NULL)
   4672     {
   4673       interp = target->dynamic_linker();
   4674       gold_assert(interp != NULL);
   4675     }
   4676 
   4677   size_t len = strlen(interp) + 1;
   4678 
   4679   Output_section_data* odata = new Output_data_const(interp, len, 1);
   4680 
   4681   Output_section* osec = this->choose_output_section(NULL, ".interp",
   4682 						     elfcpp::SHT_PROGBITS,
   4683 						     elfcpp::SHF_ALLOC,
   4684 						     false, ORDER_INTERP,
   4685 						     false);
   4686   if (osec != NULL)
   4687     osec->add_output_section_data(odata);
   4688 }
   4689 
   4690 // Add dynamic tags for the PLT and the dynamic relocs.  This is
   4691 // called by the target-specific code.  This does nothing if not doing
   4692 // a dynamic link.
   4693 
   4694 // USE_REL is true for REL relocs rather than RELA relocs.
   4695 
   4696 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
   4697 
   4698 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
   4699 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
   4700 // some targets have multiple reloc sections in PLT_REL.
   4701 
   4702 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
   4703 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
   4704 // section.
   4705 
   4706 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
   4707 // executable.
   4708 
   4709 void
   4710 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
   4711 				const Output_data* plt_rel,
   4712 				const Output_data_reloc_generic* dyn_rel,
   4713 				bool add_debug, bool dynrel_includes_plt,
   4714 				const Output_data_reloc_generic* dyn_relr)
   4715 {
   4716   Output_data_dynamic* odyn = this->dynamic_data_;
   4717   if (odyn == NULL)
   4718     return;
   4719 
   4720   if (plt_got != NULL && plt_got->output_section() != NULL)
   4721     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
   4722 
   4723   if (plt_rel != NULL && plt_rel->output_section() != NULL)
   4724     {
   4725       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
   4726       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
   4727       odyn->add_constant(elfcpp::DT_PLTREL,
   4728 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
   4729     }
   4730 
   4731   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
   4732       || (dynrel_includes_plt
   4733 	  && plt_rel != NULL
   4734 	  && plt_rel->output_section() != NULL))
   4735     {
   4736       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
   4737       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
   4738       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
   4739 				(have_dyn_rel
   4740 				 ? dyn_rel->output_section()
   4741 				 : plt_rel->output_section()));
   4742       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
   4743       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
   4744 	odyn->add_section_size(size_tag,
   4745 			       dyn_rel->output_section(),
   4746 			       plt_rel->output_section());
   4747       else if (have_dyn_rel)
   4748 	odyn->add_section_size(size_tag, dyn_rel->output_section());
   4749       else
   4750 	odyn->add_section_size(size_tag, plt_rel->output_section());
   4751       const int size = parameters->target().get_size();
   4752       elfcpp::DT rel_tag;
   4753       int rel_size;
   4754       if (use_rel)
   4755 	{
   4756 	  rel_tag = elfcpp::DT_RELENT;
   4757 	  if (size == 32)
   4758 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
   4759 	  else if (size == 64)
   4760 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
   4761 	  else
   4762 	    gold_unreachable();
   4763 	}
   4764       else
   4765 	{
   4766 	  rel_tag = elfcpp::DT_RELAENT;
   4767 	  if (size == 32)
   4768 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
   4769 	  else if (size == 64)
   4770 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
   4771 	  else
   4772 	    gold_unreachable();
   4773 	}
   4774       odyn->add_constant(rel_tag, rel_size);
   4775 
   4776       if (parameters->options().combreloc() && have_dyn_rel)
   4777 	{
   4778 	  size_t c = dyn_rel->relative_reloc_count();
   4779 	  if (c > 0)
   4780 	    odyn->add_constant((use_rel
   4781 				? elfcpp::DT_RELCOUNT
   4782 				: elfcpp::DT_RELACOUNT),
   4783 			       c);
   4784 	}
   4785     }
   4786 
   4787   if (dyn_relr != NULL && dyn_relr->output_section() != NULL)
   4788     {
   4789       const int size = parameters->target().get_size();
   4790       odyn->add_section_address(elfcpp::DT_RELR, dyn_relr->output_section());
   4791       odyn->add_section_size(elfcpp::DT_RELRSZ, dyn_relr->output_section());
   4792       odyn->add_constant(elfcpp::DT_RELRENT, size / 8);
   4793       if (parameters->options().combreloc())
   4794         odyn->add_constant(elfcpp::DT_RELRCOUNT,
   4795 			   dyn_relr->relative_reloc_count());
   4796     }
   4797 
   4798   if (add_debug && !parameters->options().shared())
   4799     {
   4800       // The value of the DT_DEBUG tag is filled in by the dynamic
   4801       // linker at run time, and used by the debugger.
   4802       odyn->add_constant(elfcpp::DT_DEBUG, 0);
   4803     }
   4804 }
   4805 
   4806 void
   4807 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
   4808 {
   4809   Output_data_dynamic* odyn = this->dynamic_data_;
   4810   if (odyn == NULL)
   4811     return;
   4812   odyn->add_constant(tag, val);
   4813 }
   4814 
   4815 // Finish the .dynamic section and PT_DYNAMIC segment.
   4816 
   4817 void
   4818 Layout::finish_dynamic_section(const Input_objects* input_objects,
   4819 			       const Symbol_table* symtab)
   4820 {
   4821   if (!this->script_options_->saw_phdrs_clause()
   4822       && this->dynamic_section_ != NULL)
   4823     {
   4824       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
   4825 						       (elfcpp::PF_R
   4826 							| elfcpp::PF_W));
   4827       oseg->add_output_section_to_nonload(this->dynamic_section_,
   4828 					  elfcpp::PF_R | elfcpp::PF_W);
   4829     }
   4830 
   4831   Output_data_dynamic* const odyn = this->dynamic_data_;
   4832   if (odyn == NULL)
   4833     return;
   4834 
   4835   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
   4836        p != input_objects->dynobj_end();
   4837        ++p)
   4838     {
   4839       if (!(*p)->is_needed() && (*p)->as_needed())
   4840 	{
   4841 	  // This dynamic object was linked with --as-needed, but it
   4842 	  // is not needed.
   4843 	  continue;
   4844 	}
   4845 
   4846       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
   4847     }
   4848 
   4849   if (parameters->options().shared())
   4850     {
   4851       const char* soname = parameters->options().soname();
   4852       if (soname != NULL)
   4853 	odyn->add_string(elfcpp::DT_SONAME, soname);
   4854     }
   4855 
   4856   Symbol* sym = symtab->lookup(parameters->options().init());
   4857   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
   4858     odyn->add_symbol(elfcpp::DT_INIT, sym);
   4859 
   4860   sym = symtab->lookup(parameters->options().fini());
   4861   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
   4862     odyn->add_symbol(elfcpp::DT_FINI, sym);
   4863 
   4864   // Look for .init_array, .preinit_array and .fini_array by checking
   4865   // section types.
   4866   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
   4867       p != this->section_list_.end();
   4868       ++p)
   4869     switch((*p)->type())
   4870       {
   4871       case elfcpp::SHT_FINI_ARRAY:
   4872 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
   4873 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
   4874 	break;
   4875       case elfcpp::SHT_INIT_ARRAY:
   4876 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
   4877 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
   4878 	break;
   4879       case elfcpp::SHT_PREINIT_ARRAY:
   4880 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
   4881 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
   4882 	break;
   4883       default:
   4884 	break;
   4885       }
   4886 
   4887   // Add a DT_RPATH entry if needed.
   4888   const General_options::Dir_list& rpath(parameters->options().rpath());
   4889   if (!rpath.empty())
   4890     {
   4891       std::string rpath_val;
   4892       for (General_options::Dir_list::const_iterator p = rpath.begin();
   4893 	   p != rpath.end();
   4894 	   ++p)
   4895 	{
   4896 	  if (rpath_val.empty())
   4897 	    rpath_val = p->name();
   4898 	  else
   4899 	    {
   4900 	      // Eliminate duplicates.
   4901 	      General_options::Dir_list::const_iterator q;
   4902 	      for (q = rpath.begin(); q != p; ++q)
   4903 		if (q->name() == p->name())
   4904 		  break;
   4905 	      if (q == p)
   4906 		{
   4907 		  rpath_val += ':';
   4908 		  rpath_val += p->name();
   4909 		}
   4910 	    }
   4911 	}
   4912 
   4913       if (!parameters->options().enable_new_dtags())
   4914 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
   4915       else
   4916 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
   4917     }
   4918 
   4919   // Look for text segments that have dynamic relocations.
   4920   bool have_textrel = false;
   4921   if (!this->script_options_->saw_sections_clause())
   4922     {
   4923       for (Segment_list::const_iterator p = this->segment_list_.begin();
   4924 	   p != this->segment_list_.end();
   4925 	   ++p)
   4926 	{
   4927 	  if ((*p)->type() == elfcpp::PT_LOAD
   4928 	      && ((*p)->flags() & elfcpp::PF_W) == 0
   4929 	      && (*p)->has_dynamic_reloc())
   4930 	    {
   4931 	      have_textrel = true;
   4932 	      break;
   4933 	    }
   4934 	}
   4935     }
   4936   else
   4937     {
   4938       // We don't know the section -> segment mapping, so we are
   4939       // conservative and just look for readonly sections with
   4940       // relocations.  If those sections wind up in writable segments,
   4941       // then we have created an unnecessary DT_TEXTREL entry.
   4942       for (Section_list::const_iterator p = this->section_list_.begin();
   4943 	   p != this->section_list_.end();
   4944 	   ++p)
   4945 	{
   4946 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
   4947 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
   4948 	      && (*p)->has_dynamic_reloc())
   4949 	    {
   4950 	      have_textrel = true;
   4951 	      break;
   4952 	    }
   4953 	}
   4954     }
   4955 
   4956   if (parameters->options().filter() != NULL)
   4957     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
   4958   if (parameters->options().any_auxiliary())
   4959     {
   4960       for (options::String_set::const_iterator p =
   4961 	     parameters->options().auxiliary_begin();
   4962 	   p != parameters->options().auxiliary_end();
   4963 	   ++p)
   4964 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
   4965     }
   4966 
   4967   // Add a DT_FLAGS entry if necessary.
   4968   unsigned int flags = 0;
   4969   if (have_textrel)
   4970     {
   4971       // Add a DT_TEXTREL for compatibility with older loaders.
   4972       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
   4973       flags |= elfcpp::DF_TEXTREL;
   4974 
   4975       if (parameters->options().text())
   4976 	gold_error(_("read-only segment has dynamic relocations"));
   4977       else if (parameters->options().warn_shared_textrel()
   4978 	       && parameters->options().shared())
   4979 	gold_warning(_("shared library text segment is not shareable"));
   4980     }
   4981   if (parameters->options().shared() && this->has_static_tls())
   4982     flags |= elfcpp::DF_STATIC_TLS;
   4983   if (parameters->options().origin())
   4984     flags |= elfcpp::DF_ORIGIN;
   4985   if (parameters->options().Bsymbolic()
   4986       && !parameters->options().have_dynamic_list())
   4987     {
   4988       flags |= elfcpp::DF_SYMBOLIC;
   4989       // Add DT_SYMBOLIC for compatibility with older loaders.
   4990       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
   4991     }
   4992   if (parameters->options().now())
   4993     flags |= elfcpp::DF_BIND_NOW;
   4994   if (flags != 0)
   4995     odyn->add_constant(elfcpp::DT_FLAGS, flags);
   4996 
   4997   flags = 0;
   4998   if (parameters->options().global())
   4999     flags |= elfcpp::DF_1_GLOBAL;
   5000   if (parameters->options().initfirst())
   5001     flags |= elfcpp::DF_1_INITFIRST;
   5002   if (parameters->options().interpose())
   5003     flags |= elfcpp::DF_1_INTERPOSE;
   5004   if (parameters->options().loadfltr())
   5005     flags |= elfcpp::DF_1_LOADFLTR;
   5006   if (parameters->options().nodefaultlib())
   5007     flags |= elfcpp::DF_1_NODEFLIB;
   5008   if (parameters->options().nodelete())
   5009     flags |= elfcpp::DF_1_NODELETE;
   5010   if (parameters->options().nodlopen())
   5011     flags |= elfcpp::DF_1_NOOPEN;
   5012   if (parameters->options().nodump())
   5013     flags |= elfcpp::DF_1_NODUMP;
   5014   if (!parameters->options().shared())
   5015     flags &= ~(elfcpp::DF_1_INITFIRST
   5016 	       | elfcpp::DF_1_NODELETE
   5017 	       | elfcpp::DF_1_NOOPEN);
   5018   if (parameters->options().origin())
   5019     flags |= elfcpp::DF_1_ORIGIN;
   5020   if (parameters->options().now())
   5021     flags |= elfcpp::DF_1_NOW;
   5022   if (parameters->options().Bgroup())
   5023     flags |= elfcpp::DF_1_GROUP;
   5024   if (flags != 0)
   5025     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
   5026 }
   5027 
   5028 // Set the size of the _DYNAMIC symbol table to be the size of the
   5029 // dynamic data.
   5030 
   5031 void
   5032 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
   5033 {
   5034   Output_data_dynamic* const odyn = this->dynamic_data_;
   5035   if (odyn == NULL)
   5036     return;
   5037   odyn->finalize_data_size();
   5038   if (this->dynamic_symbol_ == NULL)
   5039     return;
   5040   off_t data_size = odyn->data_size();
   5041   const int size = parameters->target().get_size();
   5042   if (size == 32)
   5043     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
   5044   else if (size == 64)
   5045     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
   5046   else
   5047     gold_unreachable();
   5048 }
   5049 
   5050 // The mapping of input section name prefixes to output section names.
   5051 // In some cases one prefix is itself a prefix of another prefix; in
   5052 // such a case the longer prefix must come first.  These prefixes are
   5053 // based on the GNU linker default ELF linker script.
   5054 
   5055 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
   5056 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
   5057 const Layout::Section_name_mapping Layout::section_name_mapping[] =
   5058 {
   5059   MAPPING_INIT(".text.", ".text"),
   5060   MAPPING_INIT(".rodata.", ".rodata"),
   5061   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
   5062   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
   5063   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
   5064   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
   5065   MAPPING_INIT(".data.", ".data"),
   5066   MAPPING_INIT(".bss.", ".bss"),
   5067   MAPPING_INIT(".tdata.", ".tdata"),
   5068   MAPPING_INIT(".tbss.", ".tbss"),
   5069   MAPPING_INIT(".init_array.", ".init_array"),
   5070   MAPPING_INIT(".fini_array.", ".fini_array"),
   5071   MAPPING_INIT(".sdata.", ".sdata"),
   5072   MAPPING_INIT(".sbss.", ".sbss"),
   5073   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
   5074   // differently depending on whether it is creating a shared library.
   5075   MAPPING_INIT(".sdata2.", ".sdata"),
   5076   MAPPING_INIT(".sbss2.", ".sbss"),
   5077   MAPPING_INIT(".lrodata.", ".lrodata"),
   5078   MAPPING_INIT(".ldata.", ".ldata"),
   5079   MAPPING_INIT(".lbss.", ".lbss"),
   5080   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
   5081   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
   5082   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
   5083   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
   5084   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
   5085   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
   5086   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
   5087   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
   5088   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
   5089   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
   5090   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
   5091   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
   5092   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
   5093   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
   5094   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
   5095   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
   5096   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
   5097   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
   5098   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
   5099   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
   5100   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
   5101   MAPPING_INIT("_function_patch_prologue.", "_function_patch_prologue"),
   5102   MAPPING_INIT("_function_patch_epilogue.", "_function_patch_epilogue"),
   5103 };
   5104 #undef MAPPING_INIT
   5105 #undef MAPPING_INIT_EXACT
   5106 
   5107 const int Layout::section_name_mapping_count =
   5108   (sizeof(Layout::section_name_mapping)
   5109    / sizeof(Layout::section_name_mapping[0]));
   5110 
   5111 // Choose the output section name to use given an input section name.
   5112 // Set *PLEN to the length of the name.  *PLEN is initialized to the
   5113 // length of NAME.
   5114 
   5115 const char*
   5116 Layout::output_section_name(const Relobj* relobj, const char* name,
   5117 			    size_t* plen)
   5118 {
   5119   // gcc 4.3 generates the following sorts of section names when it
   5120   // needs a section name specific to a function:
   5121   //   .text.FN
   5122   //   .rodata.FN
   5123   //   .sdata2.FN
   5124   //   .data.FN
   5125   //   .data.rel.FN
   5126   //   .data.rel.local.FN
   5127   //   .data.rel.ro.FN
   5128   //   .data.rel.ro.local.FN
   5129   //   .sdata.FN
   5130   //   .bss.FN
   5131   //   .sbss.FN
   5132   //   .tdata.FN
   5133   //   .tbss.FN
   5134 
   5135   // The GNU linker maps all of those to the part before the .FN,
   5136   // except that .data.rel.local.FN is mapped to .data, and
   5137   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
   5138   // beginning with .data.rel.ro.local are grouped together.
   5139 
   5140   // For an anonymous namespace, the string FN can contain a '.'.
   5141 
   5142   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
   5143   // GNU linker maps to .rodata.
   5144 
   5145   // The .data.rel.ro sections are used with -z relro.  The sections
   5146   // are recognized by name.  We use the same names that the GNU
   5147   // linker does for these sections.
   5148 
   5149   // It is hard to handle this in a principled way, so we don't even
   5150   // try.  We use a table of mappings.  If the input section name is
   5151   // not found in the table, we simply use it as the output section
   5152   // name.
   5153 
   5154   const Section_name_mapping* psnm = section_name_mapping;
   5155   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
   5156     {
   5157       if (psnm->fromlen > 0)
   5158 	{
   5159 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
   5160 	    {
   5161 	      *plen = psnm->tolen;
   5162 	      return psnm->to;
   5163 	    }
   5164 	}
   5165       else
   5166 	{
   5167 	  if (strcmp(name, psnm->from) == 0)
   5168 	    {
   5169 	      *plen = psnm->tolen;
   5170 	      return psnm->to;
   5171 	    }
   5172 	}
   5173     }
   5174 
   5175   // As an additional complication, .ctors sections are output in
   5176   // either .ctors or .init_array sections, and .dtors sections are
   5177   // output in either .dtors or .fini_array sections.
   5178   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
   5179     {
   5180       if (parameters->options().ctors_in_init_array())
   5181 	{
   5182 	  *plen = 11;
   5183 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
   5184 	}
   5185       else
   5186 	{
   5187 	  *plen = 6;
   5188 	  return name[1] == 'c' ? ".ctors" : ".dtors";
   5189 	}
   5190     }
   5191   if (parameters->options().ctors_in_init_array()
   5192       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
   5193     {
   5194       // To make .init_array/.fini_array work with gcc we must exclude
   5195       // .ctors and .dtors sections from the crtbegin and crtend
   5196       // files.
   5197       if (relobj == NULL
   5198 	  || (!Layout::match_file_name(relobj, "crtbegin")
   5199 	      && !Layout::match_file_name(relobj, "crtend")))
   5200 	{
   5201 	  *plen = 11;
   5202 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
   5203 	}
   5204     }
   5205 
   5206   return name;
   5207 }
   5208 
   5209 // Return true if RELOBJ is an input file whose base name matches
   5210 // FILE_NAME.  The base name must have an extension of ".o", and must
   5211 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
   5212 // to match crtbegin.o as well as crtbeginS.o without getting confused
   5213 // by other possibilities.  Overall matching the file name this way is
   5214 // a dreadful hack, but the GNU linker does it in order to better
   5215 // support gcc, and we need to be compatible.
   5216 
   5217 bool
   5218 Layout::match_file_name(const Relobj* relobj, const char* match)
   5219 {
   5220   const std::string& file_name(relobj->name());
   5221   const char* base_name = lbasename(file_name.c_str());
   5222   size_t match_len = strlen(match);
   5223   if (strncmp(base_name, match, match_len) != 0)
   5224     return false;
   5225   size_t base_len = strlen(base_name);
   5226   if (base_len != match_len + 2 && base_len != match_len + 3)
   5227     return false;
   5228   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
   5229 }
   5230 
   5231 // Check if a comdat group or .gnu.linkonce section with the given
   5232 // NAME is selected for the link.  If there is already a section,
   5233 // *KEPT_SECTION is set to point to the existing section and the
   5234 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
   5235 // IS_GROUP_NAME are recorded for this NAME in the layout object,
   5236 // *KEPT_SECTION is set to the internal copy and the function returns
   5237 // true.
   5238 
   5239 bool
   5240 Layout::find_or_add_kept_section(const std::string& name,
   5241 				 Relobj* object,
   5242 				 unsigned int shndx,
   5243 				 bool is_comdat,
   5244 				 bool is_group_name,
   5245 				 Kept_section** kept_section)
   5246 {
   5247   // It's normal to see a couple of entries here, for the x86 thunk
   5248   // sections.  If we see more than a few, we're linking a C++
   5249   // program, and we resize to get more space to minimize rehashing.
   5250   if (this->signatures_.size() > 4
   5251       && !this->resized_signatures_)
   5252     {
   5253       reserve_unordered_map(&this->signatures_,
   5254 			    this->number_of_input_files_ * 64);
   5255       this->resized_signatures_ = true;
   5256     }
   5257 
   5258   Kept_section candidate;
   5259   std::pair<Signatures::iterator, bool> ins =
   5260     this->signatures_.insert(std::make_pair(name, candidate));
   5261 
   5262   if (kept_section != NULL)
   5263     *kept_section = &ins.first->second;
   5264   if (ins.second)
   5265     {
   5266       // This is the first time we've seen this signature.
   5267       ins.first->second.set_object(object);
   5268       ins.first->second.set_shndx(shndx);
   5269       if (is_comdat)
   5270 	ins.first->second.set_is_comdat();
   5271       if (is_group_name)
   5272 	ins.first->second.set_is_group_name();
   5273       return true;
   5274     }
   5275 
   5276   // We have already seen this signature.
   5277 
   5278   if (ins.first->second.is_group_name())
   5279     {
   5280       // We've already seen a real section group with this signature.
   5281       // If the kept group is from a plugin object, and we're in the
   5282       // replacement phase, accept the new one as a replacement.
   5283       if (ins.first->second.object() == NULL
   5284 	  && parameters->options().plugins()->in_replacement_phase())
   5285 	{
   5286 	  ins.first->second.set_object(object);
   5287 	  ins.first->second.set_shndx(shndx);
   5288 	  return true;
   5289 	}
   5290       return false;
   5291     }
   5292   else if (is_group_name)
   5293     {
   5294       // This is a real section group, and we've already seen a
   5295       // linkonce section with this signature.  Record that we've seen
   5296       // a section group, and don't include this section group.
   5297       ins.first->second.set_is_group_name();
   5298       return false;
   5299     }
   5300   else
   5301     {
   5302       // We've already seen a linkonce section and this is a linkonce
   5303       // section.  These don't block each other--this may be the same
   5304       // symbol name with different section types.
   5305       return true;
   5306     }
   5307 }
   5308 
   5309 // Store the allocated sections into the section list.
   5310 
   5311 void
   5312 Layout::get_allocated_sections(Section_list* section_list) const
   5313 {
   5314   for (Section_list::const_iterator p = this->section_list_.begin();
   5315        p != this->section_list_.end();
   5316        ++p)
   5317     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
   5318       section_list->push_back(*p);
   5319 }
   5320 
   5321 // Store the executable sections into the section list.
   5322 
   5323 void
   5324 Layout::get_executable_sections(Section_list* section_list) const
   5325 {
   5326   for (Section_list::const_iterator p = this->section_list_.begin();
   5327        p != this->section_list_.end();
   5328        ++p)
   5329     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
   5330 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
   5331       section_list->push_back(*p);
   5332 }
   5333 
   5334 // Create an output segment.
   5335 
   5336 Output_segment*
   5337 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
   5338 {
   5339   gold_assert(!parameters->options().relocatable());
   5340   Output_segment* oseg = new Output_segment(type, flags);
   5341   this->segment_list_.push_back(oseg);
   5342 
   5343   if (type == elfcpp::PT_TLS)
   5344     this->tls_segment_ = oseg;
   5345   else if (type == elfcpp::PT_GNU_RELRO)
   5346     this->relro_segment_ = oseg;
   5347   else if (type == elfcpp::PT_INTERP)
   5348     this->interp_segment_ = oseg;
   5349 
   5350   return oseg;
   5351 }
   5352 
   5353 // Return the file offset of the normal symbol table.
   5354 
   5355 off_t
   5356 Layout::symtab_section_offset() const
   5357 {
   5358   if (this->symtab_section_ != NULL)
   5359     return this->symtab_section_->offset();
   5360   return 0;
   5361 }
   5362 
   5363 // Return the section index of the normal symbol table.  It may have
   5364 // been stripped by the -s/--strip-all option.
   5365 
   5366 unsigned int
   5367 Layout::symtab_section_shndx() const
   5368 {
   5369   if (this->symtab_section_ != NULL)
   5370     return this->symtab_section_->out_shndx();
   5371   return 0;
   5372 }
   5373 
   5374 // Write out the Output_sections.  Most won't have anything to write,
   5375 // since most of the data will come from input sections which are
   5376 // handled elsewhere.  But some Output_sections do have Output_data.
   5377 
   5378 void
   5379 Layout::write_output_sections(Output_file* of) const
   5380 {
   5381   for (Section_list::const_iterator p = this->section_list_.begin();
   5382        p != this->section_list_.end();
   5383        ++p)
   5384     {
   5385       if (!(*p)->after_input_sections())
   5386 	(*p)->write(of);
   5387     }
   5388 }
   5389 
   5390 // Write out data not associated with a section or the symbol table.
   5391 
   5392 void
   5393 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
   5394 {
   5395   if (!parameters->options().strip_all())
   5396     {
   5397       const Output_section* symtab_section = this->symtab_section_;
   5398       for (Section_list::const_iterator p = this->section_list_.begin();
   5399 	   p != this->section_list_.end();
   5400 	   ++p)
   5401 	{
   5402 	  if ((*p)->needs_symtab_index())
   5403 	    {
   5404 	      gold_assert(symtab_section != NULL);
   5405 	      unsigned int index = (*p)->symtab_index();
   5406 	      gold_assert(index > 0 && index != -1U);
   5407 	      off_t off = (symtab_section->offset()
   5408 			   + index * symtab_section->entsize());
   5409 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
   5410 	    }
   5411 	}
   5412     }
   5413 
   5414   const Output_section* dynsym_section = this->dynsym_section_;
   5415   for (Section_list::const_iterator p = this->section_list_.begin();
   5416        p != this->section_list_.end();
   5417        ++p)
   5418     {
   5419       if ((*p)->needs_dynsym_index())
   5420 	{
   5421 	  gold_assert(dynsym_section != NULL);
   5422 	  unsigned int index = (*p)->dynsym_index();
   5423 	  gold_assert(index > 0 && index != -1U);
   5424 	  off_t off = (dynsym_section->offset()
   5425 		       + index * dynsym_section->entsize());
   5426 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
   5427 	}
   5428     }
   5429 
   5430   // Write out the Output_data which are not in an Output_section.
   5431   for (Data_list::const_iterator p = this->special_output_list_.begin();
   5432        p != this->special_output_list_.end();
   5433        ++p)
   5434     (*p)->write(of);
   5435 
   5436   // Write out the Output_data which are not in an Output_section
   5437   // and are regenerated in each iteration of relaxation.
   5438   for (Data_list::const_iterator p = this->relax_output_list_.begin();
   5439        p != this->relax_output_list_.end();
   5440        ++p)
   5441     (*p)->write(of);
   5442 }
   5443 
   5444 // Write out the Output_sections which can only be written after the
   5445 // input sections are complete.
   5446 
   5447 void
   5448 Layout::write_sections_after_input_sections(Output_file* of)
   5449 {
   5450   // Determine the final section offsets, and thus the final output
   5451   // file size.  Note we finalize the .shstrab last, to allow the
   5452   // after_input_section sections to modify their section-names before
   5453   // writing.
   5454   if (this->any_postprocessing_sections_)
   5455     {
   5456       off_t off = this->output_file_size_;
   5457       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
   5458 
   5459       // Now that we've finalized the names, we can finalize the shstrab.
   5460       off =
   5461 	this->set_section_offsets(off,
   5462 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
   5463 
   5464       if (off > this->output_file_size_)
   5465 	{
   5466 	  of->resize(off);
   5467 	  this->output_file_size_ = off;
   5468 	}
   5469     }
   5470 
   5471   for (Section_list::const_iterator p = this->section_list_.begin();
   5472        p != this->section_list_.end();
   5473        ++p)
   5474     {
   5475       if ((*p)->after_input_sections())
   5476 	(*p)->write(of);
   5477     }
   5478 
   5479   this->section_headers_->write(of);
   5480 }
   5481 
   5482 // If a tree-style build ID was requested, the parallel part of that computation
   5483 // is already done, and the final hash-of-hashes is computed here.  For other
   5484 // types of build IDs, all the work is done here.
   5485 
   5486 void
   5487 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
   5488 		       size_t size_of_hashes) const
   5489 {
   5490   if (this->build_id_note_ == NULL)
   5491     return;
   5492 
   5493   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
   5494 					  this->build_id_note_->data_size());
   5495 
   5496   if (array_of_hashes == NULL)
   5497     {
   5498       const size_t output_file_size = this->output_file_size();
   5499       const unsigned char* iv = of->get_input_view(0, output_file_size);
   5500       const char* style = parameters->options().build_id();
   5501 
   5502       // If we get here with style == "tree" then the output must be
   5503       // too small for chunking, and we use SHA-1 in that case.
   5504       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
   5505 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
   5506       else if (strcmp(style, "md5") == 0)
   5507 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
   5508       else
   5509 	gold_unreachable();
   5510 
   5511       of->free_input_view(0, output_file_size, iv);
   5512     }
   5513   else
   5514     {
   5515       // Non-overlapping substrings of the output file have been hashed.
   5516       // Compute SHA-1 hash of the hashes.
   5517       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
   5518 		  size_of_hashes, ov);
   5519       delete[] array_of_hashes;
   5520     }
   5521 
   5522   of->write_output_view(this->build_id_note_->offset(),
   5523 			this->build_id_note_->data_size(),
   5524 			ov);
   5525 }
   5526 
   5527 // Write out a binary file.  This is called after the link is
   5528 // complete.  IN is the temporary output file we used to generate the
   5529 // ELF code.  We simply walk through the segments, read them from
   5530 // their file offset in IN, and write them to their load address in
   5531 // the output file.  FIXME: with a bit more work, we could support
   5532 // S-records and/or Intel hex format here.
   5533 
   5534 void
   5535 Layout::write_binary(Output_file* in) const
   5536 {
   5537   gold_assert(parameters->options().oformat_enum()
   5538 	      == General_options::OBJECT_FORMAT_BINARY);
   5539 
   5540   // Get the size of the binary file.
   5541   uint64_t max_load_address = 0;
   5542   for (Segment_list::const_iterator p = this->segment_list_.begin();
   5543        p != this->segment_list_.end();
   5544        ++p)
   5545     {
   5546       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
   5547 	{
   5548 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
   5549 	  if (max_paddr > max_load_address)
   5550 	    max_load_address = max_paddr;
   5551 	}
   5552     }
   5553 
   5554   Output_file out(parameters->options().output_file_name());
   5555   out.open(max_load_address);
   5556 
   5557   for (Segment_list::const_iterator p = this->segment_list_.begin();
   5558        p != this->segment_list_.end();
   5559        ++p)
   5560     {
   5561       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
   5562 	{
   5563 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
   5564 							(*p)->filesz());
   5565 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
   5566 						    (*p)->filesz());
   5567 	  memcpy(vout, vin, (*p)->filesz());
   5568 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
   5569 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
   5570 	}
   5571     }
   5572 
   5573   out.close();
   5574 }
   5575 
   5576 // Print the output sections to the map file.
   5577 
   5578 void
   5579 Layout::print_to_mapfile(Mapfile* mapfile) const
   5580 {
   5581   for (Segment_list::const_iterator p = this->segment_list_.begin();
   5582        p != this->segment_list_.end();
   5583        ++p)
   5584     (*p)->print_sections_to_mapfile(mapfile);
   5585   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
   5586        p != this->unattached_section_list_.end();
   5587        ++p)
   5588     (*p)->print_to_mapfile(mapfile);
   5589 }
   5590 
   5591 // Print statistical information to stderr.  This is used for --stats.
   5592 
   5593 void
   5594 Layout::print_stats() const
   5595 {
   5596   this->namepool_.print_stats("section name pool");
   5597   this->sympool_.print_stats("output symbol name pool");
   5598   this->dynpool_.print_stats("dynamic name pool");
   5599 
   5600   for (Section_list::const_iterator p = this->section_list_.begin();
   5601        p != this->section_list_.end();
   5602        ++p)
   5603     (*p)->print_merge_stats();
   5604 }
   5605 
   5606 // Write_sections_task methods.
   5607 
   5608 // We can always run this task.
   5609 
   5610 Task_token*
   5611 Write_sections_task::is_runnable()
   5612 {
   5613   return NULL;
   5614 }
   5615 
   5616 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
   5617 // when finished.
   5618 
   5619 void
   5620 Write_sections_task::locks(Task_locker* tl)
   5621 {
   5622   tl->add(this, this->output_sections_blocker_);
   5623   if (this->input_sections_blocker_ != NULL)
   5624     tl->add(this, this->input_sections_blocker_);
   5625   tl->add(this, this->final_blocker_);
   5626 }
   5627 
   5628 // Run the task--write out the data.
   5629 
   5630 void
   5631 Write_sections_task::run(Workqueue*)
   5632 {
   5633   this->layout_->write_output_sections(this->of_);
   5634 }
   5635 
   5636 // Write_data_task methods.
   5637 
   5638 // We can always run this task.
   5639 
   5640 Task_token*
   5641 Write_data_task::is_runnable()
   5642 {
   5643   return NULL;
   5644 }
   5645 
   5646 // We need to unlock FINAL_BLOCKER when finished.
   5647 
   5648 void
   5649 Write_data_task::locks(Task_locker* tl)
   5650 {
   5651   tl->add(this, this->final_blocker_);
   5652 }
   5653 
   5654 // Run the task--write out the data.
   5655 
   5656 void
   5657 Write_data_task::run(Workqueue*)
   5658 {
   5659   this->layout_->write_data(this->symtab_, this->of_);
   5660 }
   5661 
   5662 // Write_symbols_task methods.
   5663 
   5664 // We can always run this task.
   5665 
   5666 Task_token*
   5667 Write_symbols_task::is_runnable()
   5668 {
   5669   return NULL;
   5670 }
   5671 
   5672 // We need to unlock FINAL_BLOCKER when finished.
   5673 
   5674 void
   5675 Write_symbols_task::locks(Task_locker* tl)
   5676 {
   5677   tl->add(this, this->final_blocker_);
   5678 }
   5679 
   5680 // Run the task--write out the symbols.
   5681 
   5682 void
   5683 Write_symbols_task::run(Workqueue*)
   5684 {
   5685   this->symtab_->write_globals(this->sympool_, this->dynpool_,
   5686 			       this->layout_->symtab_xindex(),
   5687 			       this->layout_->dynsym_xindex(), this->of_);
   5688 }
   5689 
   5690 // Write_after_input_sections_task methods.
   5691 
   5692 // We can only run this task after the input sections have completed.
   5693 
   5694 Task_token*
   5695 Write_after_input_sections_task::is_runnable()
   5696 {
   5697   if (this->input_sections_blocker_->is_blocked())
   5698     return this->input_sections_blocker_;
   5699   return NULL;
   5700 }
   5701 
   5702 // We need to unlock FINAL_BLOCKER when finished.
   5703 
   5704 void
   5705 Write_after_input_sections_task::locks(Task_locker* tl)
   5706 {
   5707   tl->add(this, this->final_blocker_);
   5708 }
   5709 
   5710 // Run the task.
   5711 
   5712 void
   5713 Write_after_input_sections_task::run(Workqueue*)
   5714 {
   5715   this->layout_->write_sections_after_input_sections(this->of_);
   5716 }
   5717 
   5718 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
   5719 // or as a "tree" where each chunk of the string is hashed and then those
   5720 // hashes are put into a (much smaller) string which is hashed with sha1.
   5721 // We compute a checksum over the entire file because that is simplest.
   5722 
   5723 void
   5724 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
   5725 {
   5726   Task_token* post_hash_tasks_blocker = new Task_token(true);
   5727   const Layout* layout = this->layout_;
   5728   Output_file* of = this->of_;
   5729   const size_t filesize = (layout->output_file_size() <= 0 ? 0
   5730 			   : static_cast<size_t>(layout->output_file_size()));
   5731   unsigned char* array_of_hashes = NULL;
   5732   size_t size_of_hashes = 0;
   5733 
   5734   if (strcmp(this->options_->build_id(), "tree") == 0
   5735       && this->options_->build_id_chunk_size_for_treehash() > 0
   5736       && filesize > 0
   5737       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
   5738     {
   5739       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
   5740       const size_t chunk_size =
   5741 	  this->options_->build_id_chunk_size_for_treehash();
   5742       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
   5743       post_hash_tasks_blocker->add_blockers(num_hashes);
   5744       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
   5745       array_of_hashes = new unsigned char[size_of_hashes];
   5746       unsigned char *dst = array_of_hashes;
   5747       for (size_t i = 0, src_offset = 0; i < num_hashes;
   5748 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
   5749 	{
   5750 	  size_t size = std::min(chunk_size, filesize - src_offset);
   5751 	  workqueue->queue(new Hash_task(of,
   5752 					 src_offset,
   5753 					 size,
   5754 					 dst,
   5755 					 post_hash_tasks_blocker));
   5756 	}
   5757     }
   5758 
   5759   // Queue the final task to write the build id and close the output file.
   5760   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
   5761 							   layout,
   5762 							   of,
   5763 							   array_of_hashes,
   5764 							   size_of_hashes),
   5765 				     post_hash_tasks_blocker,
   5766 				     "Task_function Close_task_runner"));
   5767 }
   5768 
   5769 // Close_task_runner methods.
   5770 
   5771 // Finish up the build ID computation, if necessary, and write a binary file,
   5772 // if necessary.  Then close the output file.
   5773 
   5774 void
   5775 Close_task_runner::run(Workqueue*, const Task*)
   5776 {
   5777   // At this point the multi-threaded part of the build ID computation,
   5778   // if any, is done.  See Build_id_task_runner.
   5779   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
   5780 				this->size_of_hashes_);
   5781 
   5782   // If we've been asked to create a binary file, we do so here.
   5783   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
   5784     this->layout_->write_binary(this->of_);
   5785 
   5786   this->of_->close();
   5787 }
   5788 
   5789 // Instantiate the templates we need.  We could use the configure
   5790 // script to restrict this to only the ones for implemented targets.
   5791 
   5792 #ifdef HAVE_TARGET_32_LITTLE
   5793 template
   5794 Output_section*
   5795 Layout::init_fixed_output_section<32, false>(
   5796     const char* name,
   5797     elfcpp::Shdr<32, false>& shdr);
   5798 #endif
   5799 
   5800 #ifdef HAVE_TARGET_32_BIG
   5801 template
   5802 Output_section*
   5803 Layout::init_fixed_output_section<32, true>(
   5804     const char* name,
   5805     elfcpp::Shdr<32, true>& shdr);
   5806 #endif
   5807 
   5808 #ifdef HAVE_TARGET_64_LITTLE
   5809 template
   5810 Output_section*
   5811 Layout::init_fixed_output_section<64, false>(
   5812     const char* name,
   5813     elfcpp::Shdr<64, false>& shdr);
   5814 #endif
   5815 
   5816 #ifdef HAVE_TARGET_64_BIG
   5817 template
   5818 Output_section*
   5819 Layout::init_fixed_output_section<64, true>(
   5820     const char* name,
   5821     elfcpp::Shdr<64, true>& shdr);
   5822 #endif
   5823 
   5824 #ifdef HAVE_TARGET_32_LITTLE
   5825 template
   5826 Output_section*
   5827 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
   5828 			  unsigned int shndx,
   5829 			  const char* name,
   5830 			  const elfcpp::Shdr<32, false>& shdr,
   5831 			  unsigned int, unsigned int, off_t*);
   5832 #endif
   5833 
   5834 #ifdef HAVE_TARGET_32_BIG
   5835 template
   5836 Output_section*
   5837 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
   5838 			 unsigned int shndx,
   5839 			 const char* name,
   5840 			 const elfcpp::Shdr<32, true>& shdr,
   5841 			 unsigned int, unsigned int, off_t*);
   5842 #endif
   5843 
   5844 #ifdef HAVE_TARGET_64_LITTLE
   5845 template
   5846 Output_section*
   5847 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
   5848 			  unsigned int shndx,
   5849 			  const char* name,
   5850 			  const elfcpp::Shdr<64, false>& shdr,
   5851 			  unsigned int, unsigned int, off_t*);
   5852 #endif
   5853 
   5854 #ifdef HAVE_TARGET_64_BIG
   5855 template
   5856 Output_section*
   5857 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
   5858 			 unsigned int shndx,
   5859 			 const char* name,
   5860 			 const elfcpp::Shdr<64, true>& shdr,
   5861 			 unsigned int, unsigned int, off_t*);
   5862 #endif
   5863 
   5864 #ifdef HAVE_TARGET_32_LITTLE
   5865 template
   5866 Output_section*
   5867 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
   5868 				unsigned int reloc_shndx,
   5869 				const elfcpp::Shdr<32, false>& shdr,
   5870 				Output_section* data_section,
   5871 				Relocatable_relocs* rr);
   5872 #endif
   5873 
   5874 #ifdef HAVE_TARGET_32_BIG
   5875 template
   5876 Output_section*
   5877 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
   5878 			       unsigned int reloc_shndx,
   5879 			       const elfcpp::Shdr<32, true>& shdr,
   5880 			       Output_section* data_section,
   5881 			       Relocatable_relocs* rr);
   5882 #endif
   5883 
   5884 #ifdef HAVE_TARGET_64_LITTLE
   5885 template
   5886 Output_section*
   5887 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
   5888 				unsigned int reloc_shndx,
   5889 				const elfcpp::Shdr<64, false>& shdr,
   5890 				Output_section* data_section,
   5891 				Relocatable_relocs* rr);
   5892 #endif
   5893 
   5894 #ifdef HAVE_TARGET_64_BIG
   5895 template
   5896 Output_section*
   5897 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
   5898 			       unsigned int reloc_shndx,
   5899 			       const elfcpp::Shdr<64, true>& shdr,
   5900 			       Output_section* data_section,
   5901 			       Relocatable_relocs* rr);
   5902 #endif
   5903 
   5904 #ifdef HAVE_TARGET_32_LITTLE
   5905 template
   5906 void
   5907 Layout::layout_group<32, false>(Symbol_table* symtab,
   5908 				Sized_relobj_file<32, false>* object,
   5909 				unsigned int,
   5910 				const char* group_section_name,
   5911 				const char* signature,
   5912 				const elfcpp::Shdr<32, false>& shdr,
   5913 				elfcpp::Elf_Word flags,
   5914 				std::vector<unsigned int>* shndxes);
   5915 #endif
   5916 
   5917 #ifdef HAVE_TARGET_32_BIG
   5918 template
   5919 void
   5920 Layout::layout_group<32, true>(Symbol_table* symtab,
   5921 			       Sized_relobj_file<32, true>* object,
   5922 			       unsigned int,
   5923 			       const char* group_section_name,
   5924 			       const char* signature,
   5925 			       const elfcpp::Shdr<32, true>& shdr,
   5926 			       elfcpp::Elf_Word flags,
   5927 			       std::vector<unsigned int>* shndxes);
   5928 #endif
   5929 
   5930 #ifdef HAVE_TARGET_64_LITTLE
   5931 template
   5932 void
   5933 Layout::layout_group<64, false>(Symbol_table* symtab,
   5934 				Sized_relobj_file<64, false>* object,
   5935 				unsigned int,
   5936 				const char* group_section_name,
   5937 				const char* signature,
   5938 				const elfcpp::Shdr<64, false>& shdr,
   5939 				elfcpp::Elf_Word flags,
   5940 				std::vector<unsigned int>* shndxes);
   5941 #endif
   5942 
   5943 #ifdef HAVE_TARGET_64_BIG
   5944 template
   5945 void
   5946 Layout::layout_group<64, true>(Symbol_table* symtab,
   5947 			       Sized_relobj_file<64, true>* object,
   5948 			       unsigned int,
   5949 			       const char* group_section_name,
   5950 			       const char* signature,
   5951 			       const elfcpp::Shdr<64, true>& shdr,
   5952 			       elfcpp::Elf_Word flags,
   5953 			       std::vector<unsigned int>* shndxes);
   5954 #endif
   5955 
   5956 #ifdef HAVE_TARGET_32_LITTLE
   5957 template
   5958 Output_section*
   5959 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
   5960 				   const unsigned char* symbols,
   5961 				   off_t symbols_size,
   5962 				   const unsigned char* symbol_names,
   5963 				   off_t symbol_names_size,
   5964 				   unsigned int shndx,
   5965 				   const elfcpp::Shdr<32, false>& shdr,
   5966 				   unsigned int reloc_shndx,
   5967 				   unsigned int reloc_type,
   5968 				   off_t* off);
   5969 #endif
   5970 
   5971 #ifdef HAVE_TARGET_32_BIG
   5972 template
   5973 Output_section*
   5974 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
   5975 				  const unsigned char* symbols,
   5976 				  off_t symbols_size,
   5977 				  const unsigned char* symbol_names,
   5978 				  off_t symbol_names_size,
   5979 				  unsigned int shndx,
   5980 				  const elfcpp::Shdr<32, true>& shdr,
   5981 				  unsigned int reloc_shndx,
   5982 				  unsigned int reloc_type,
   5983 				  off_t* off);
   5984 #endif
   5985 
   5986 #ifdef HAVE_TARGET_64_LITTLE
   5987 template
   5988 Output_section*
   5989 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
   5990 				   const unsigned char* symbols,
   5991 				   off_t symbols_size,
   5992 				   const unsigned char* symbol_names,
   5993 				   off_t symbol_names_size,
   5994 				   unsigned int shndx,
   5995 				   const elfcpp::Shdr<64, false>& shdr,
   5996 				   unsigned int reloc_shndx,
   5997 				   unsigned int reloc_type,
   5998 				   off_t* off);
   5999 #endif
   6000 
   6001 #ifdef HAVE_TARGET_64_BIG
   6002 template
   6003 Output_section*
   6004 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
   6005 				  const unsigned char* symbols,
   6006 				  off_t symbols_size,
   6007 				  const unsigned char* symbol_names,
   6008 				  off_t symbol_names_size,
   6009 				  unsigned int shndx,
   6010 				  const elfcpp::Shdr<64, true>& shdr,
   6011 				  unsigned int reloc_shndx,
   6012 				  unsigned int reloc_type,
   6013 				  off_t* off);
   6014 #endif
   6015 
   6016 #ifdef HAVE_TARGET_32_LITTLE
   6017 template
   6018 void
   6019 Layout::add_to_gdb_index(bool is_type_unit,
   6020 			 Sized_relobj<32, false>* object,
   6021 			 const unsigned char* symbols,
   6022 			 off_t symbols_size,
   6023 			 unsigned int shndx,
   6024 			 unsigned int reloc_shndx,
   6025 			 unsigned int reloc_type);
   6026 #endif
   6027 
   6028 #ifdef HAVE_TARGET_32_BIG
   6029 template
   6030 void
   6031 Layout::add_to_gdb_index(bool is_type_unit,
   6032 			 Sized_relobj<32, true>* object,
   6033 			 const unsigned char* symbols,
   6034 			 off_t symbols_size,
   6035 			 unsigned int shndx,
   6036 			 unsigned int reloc_shndx,
   6037 			 unsigned int reloc_type);
   6038 #endif
   6039 
   6040 #ifdef HAVE_TARGET_64_LITTLE
   6041 template
   6042 void
   6043 Layout::add_to_gdb_index(bool is_type_unit,
   6044 			 Sized_relobj<64, false>* object,
   6045 			 const unsigned char* symbols,
   6046 			 off_t symbols_size,
   6047 			 unsigned int shndx,
   6048 			 unsigned int reloc_shndx,
   6049 			 unsigned int reloc_type);
   6050 #endif
   6051 
   6052 #ifdef HAVE_TARGET_64_BIG
   6053 template
   6054 void
   6055 Layout::add_to_gdb_index(bool is_type_unit,
   6056 			 Sized_relobj<64, true>* object,
   6057 			 const unsigned char* symbols,
   6058 			 off_t symbols_size,
   6059 			 unsigned int shndx,
   6060 			 unsigned int reloc_shndx,
   6061 			 unsigned int reloc_type);
   6062 #endif
   6063 
   6064 } // End namespace gold.
   6065