Home | History | Annotate | Download | only in gold
      1 // object.cc -- support for an object file for linking in gold
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cerrno>
     26 #include <cstring>
     27 #include <cstdarg>
     28 #include "demangle.h"
     29 #include "libiberty.h"
     30 
     31 #include "gc.h"
     32 #include "target-select.h"
     33 #include "dwarf_reader.h"
     34 #include "layout.h"
     35 #include "output.h"
     36 #include "symtab.h"
     37 #include "cref.h"
     38 #include "reloc.h"
     39 #include "object.h"
     40 #include "dynobj.h"
     41 #include "plugin.h"
     42 #include "compressed_output.h"
     43 #include "incremental.h"
     44 #include "merge.h"
     45 
     46 namespace gold
     47 {
     48 
     49 // Struct Read_symbols_data.
     50 
     51 // Destroy any remaining File_view objects and buffers of decompressed
     52 // sections.
     53 
     54 Read_symbols_data::~Read_symbols_data()
     55 {
     56   if (this->section_headers != NULL)
     57     delete this->section_headers;
     58   if (this->section_names != NULL)
     59     delete this->section_names;
     60   if (this->symbols != NULL)
     61     delete this->symbols;
     62   if (this->symbol_names != NULL)
     63     delete this->symbol_names;
     64   if (this->versym != NULL)
     65     delete this->versym;
     66   if (this->verdef != NULL)
     67     delete this->verdef;
     68   if (this->verneed != NULL)
     69     delete this->verneed;
     70 }
     71 
     72 // Class Xindex.
     73 
     74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
     75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
     76 // table we care about.
     77 
     78 template<int size, bool big_endian>
     79 void
     80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
     81 {
     82   if (!this->symtab_xindex_.empty())
     83     return;
     84 
     85   gold_assert(symtab_shndx != 0);
     86 
     87   // Look through the sections in reverse order, on the theory that it
     88   // is more likely to be near the end than the beginning.
     89   unsigned int i = object->shnum();
     90   while (i > 0)
     91     {
     92       --i;
     93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
     94 	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
     95 	{
     96 	  this->read_symtab_xindex<size, big_endian>(object, i, NULL);
     97 	  return;
     98 	}
     99     }
    100 
    101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
    102 }
    103 
    104 // Read in the symtab_xindex_ array, given the section index of the
    105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
    106 // section headers.
    107 
    108 template<int size, bool big_endian>
    109 void
    110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
    111 			   const unsigned char* pshdrs)
    112 {
    113   section_size_type bytecount;
    114   const unsigned char* contents;
    115   if (pshdrs == NULL)
    116     contents = object->section_contents(xindex_shndx, &bytecount, false);
    117   else
    118     {
    119       const unsigned char* p = (pshdrs
    120 				+ (xindex_shndx
    121 				   * elfcpp::Elf_sizes<size>::shdr_size));
    122       typename elfcpp::Shdr<size, big_endian> shdr(p);
    123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
    124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
    125     }
    126 
    127   gold_assert(this->symtab_xindex_.empty());
    128   this->symtab_xindex_.reserve(bytecount / 4);
    129   for (section_size_type i = 0; i < bytecount; i += 4)
    130     {
    131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
    132       // We preadjust the section indexes we save.
    133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
    134     }
    135 }
    136 
    137 // Symbol symndx has a section of SHN_XINDEX; return the real section
    138 // index.
    139 
    140 unsigned int
    141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
    142 {
    143   if (symndx >= this->symtab_xindex_.size())
    144     {
    145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
    146 		    symndx);
    147       return elfcpp::SHN_UNDEF;
    148     }
    149   unsigned int shndx = this->symtab_xindex_[symndx];
    150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
    151     {
    152       object->error(_("extended index for symbol %u out of range: %u"),
    153 		    symndx, shndx);
    154       return elfcpp::SHN_UNDEF;
    155     }
    156   return shndx;
    157 }
    158 
    159 // Class Object.
    160 
    161 // Report an error for this object file.  This is used by the
    162 // elfcpp::Elf_file interface, and also called by the Object code
    163 // itself.
    164 
    165 void
    166 Object::error(const char* format, ...) const
    167 {
    168   va_list args;
    169   va_start(args, format);
    170   char* buf = NULL;
    171   if (vasprintf(&buf, format, args) < 0)
    172     gold_nomem();
    173   va_end(args);
    174   gold_error(_("%s: %s"), this->name().c_str(), buf);
    175   free(buf);
    176 }
    177 
    178 // Return a view of the contents of a section.
    179 
    180 const unsigned char*
    181 Object::section_contents(unsigned int shndx, section_size_type* plen,
    182 			 bool cache)
    183 { return this->do_section_contents(shndx, plen, cache); }
    184 
    185 // Read the section data into SD.  This is code common to Sized_relobj_file
    186 // and Sized_dynobj, so we put it into Object.
    187 
    188 template<int size, bool big_endian>
    189 void
    190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
    191 			  Read_symbols_data* sd)
    192 {
    193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
    194 
    195   // Read the section headers.
    196   const off_t shoff = elf_file->shoff();
    197   const unsigned int shnum = this->shnum();
    198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
    199 					       true, true);
    200 
    201   // Read the section names.
    202   const unsigned char* pshdrs = sd->section_headers->data();
    203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
    204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
    205 
    206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
    207     this->error(_("section name section has wrong type: %u"),
    208 		static_cast<unsigned int>(shdrnames.get_sh_type()));
    209 
    210   sd->section_names_size =
    211     convert_to_section_size_type(shdrnames.get_sh_size());
    212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
    213 					     sd->section_names_size, false,
    214 					     false);
    215 }
    216 
    217 // If NAME is the name of a special .gnu.warning section, arrange for
    218 // the warning to be issued.  SHNDX is the section index.  Return
    219 // whether it is a warning section.
    220 
    221 bool
    222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
    223 				   Symbol_table* symtab)
    224 {
    225   const char warn_prefix[] = ".gnu.warning.";
    226   const int warn_prefix_len = sizeof warn_prefix - 1;
    227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
    228     {
    229       // Read the section contents to get the warning text.  It would
    230       // be nicer if we only did this if we have to actually issue a
    231       // warning.  Unfortunately, warnings are issued as we relocate
    232       // sections.  That means that we can not lock the object then,
    233       // as we might try to issue the same warning multiple times
    234       // simultaneously.
    235       section_size_type len;
    236       const unsigned char* contents = this->section_contents(shndx, &len,
    237 							     false);
    238       if (len == 0)
    239 	{
    240 	  const char* warning = name + warn_prefix_len;
    241 	  contents = reinterpret_cast<const unsigned char*>(warning);
    242 	  len = strlen(warning);
    243 	}
    244       std::string warning(reinterpret_cast<const char*>(contents), len);
    245       symtab->add_warning(name + warn_prefix_len, this, warning);
    246       return true;
    247     }
    248   return false;
    249 }
    250 
    251 // If NAME is the name of the special section which indicates that
    252 // this object was compiled with -fsplit-stack, mark it accordingly.
    253 
    254 bool
    255 Object::handle_split_stack_section(const char* name)
    256 {
    257   if (strcmp(name, ".note.GNU-split-stack") == 0)
    258     {
    259       this->uses_split_stack_ = true;
    260       return true;
    261     }
    262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
    263     {
    264       this->has_no_split_stack_ = true;
    265       return true;
    266     }
    267   return false;
    268 }
    269 
    270 // Class Relobj
    271 
    272 template<int size>
    273 void
    274 Relobj::initialize_input_to_output_map(unsigned int shndx,
    275 	  typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
    276 	  Unordered_map<section_offset_type,
    277 	  typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
    278   Object_merge_map *map = this->object_merge_map_;
    279   map->initialize_input_to_output_map<size>(shndx, starting_address,
    280 					    output_addresses);
    281 }
    282 
    283 void
    284 Relobj::add_merge_mapping(Output_section_data *output_data,
    285                           unsigned int shndx, section_offset_type offset,
    286                           section_size_type length,
    287                           section_offset_type output_offset) {
    288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
    289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
    290 }
    291 
    292 bool
    293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
    294                             section_offset_type *poutput) const {
    295   Object_merge_map* object_merge_map = this->object_merge_map_;
    296   if (object_merge_map == NULL)
    297     return false;
    298   return object_merge_map->get_output_offset(shndx, offset, poutput);
    299 }
    300 
    301 const Output_section_data*
    302 Relobj::find_merge_section(unsigned int shndx) const {
    303   Object_merge_map* object_merge_map = this->object_merge_map_;
    304   if (object_merge_map == NULL)
    305     return NULL;
    306   return object_merge_map->find_merge_section(shndx);
    307 }
    308 
    309 // To copy the symbols data read from the file to a local data structure.
    310 // This function is called from do_layout only while doing garbage
    311 // collection.
    312 
    313 void
    314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
    315 			  unsigned int section_header_size)
    316 {
    317   gc_sd->section_headers_data =
    318 	 new unsigned char[(section_header_size)];
    319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
    320 	 section_header_size);
    321   gc_sd->section_names_data =
    322 	 new unsigned char[sd->section_names_size];
    323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
    324 	 sd->section_names_size);
    325   gc_sd->section_names_size = sd->section_names_size;
    326   if (sd->symbols != NULL)
    327     {
    328       gc_sd->symbols_data =
    329 	     new unsigned char[sd->symbols_size];
    330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
    331 	    sd->symbols_size);
    332     }
    333   else
    334     {
    335       gc_sd->symbols_data = NULL;
    336     }
    337   gc_sd->symbols_size = sd->symbols_size;
    338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
    339   if (sd->symbol_names != NULL)
    340     {
    341       gc_sd->symbol_names_data =
    342 	     new unsigned char[sd->symbol_names_size];
    343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
    344 	    sd->symbol_names_size);
    345     }
    346   else
    347     {
    348       gc_sd->symbol_names_data = NULL;
    349     }
    350   gc_sd->symbol_names_size = sd->symbol_names_size;
    351 }
    352 
    353 // This function determines if a particular section name must be included
    354 // in the link.  This is used during garbage collection to determine the
    355 // roots of the worklist.
    356 
    357 bool
    358 Relobj::is_section_name_included(const char* name)
    359 {
    360   if (is_prefix_of(".ctors", name)
    361       || is_prefix_of(".dtors", name)
    362       || is_prefix_of(".note", name)
    363       || is_prefix_of(".init", name)
    364       || is_prefix_of(".fini", name)
    365       || is_prefix_of(".gcc_except_table", name)
    366       || is_prefix_of(".jcr", name)
    367       || is_prefix_of(".preinit_array", name)
    368       || (is_prefix_of(".text", name)
    369 	  && strstr(name, "personality"))
    370       || (is_prefix_of(".data", name)
    371 	  && strstr(name, "personality"))
    372       || (is_prefix_of(".sdata", name)
    373 	  && strstr(name, "personality"))
    374       || (is_prefix_of(".gnu.linkonce.d", name)
    375 	  && strstr(name, "personality"))
    376       || (is_prefix_of(".rodata", name)
    377 	  && strstr(name, "nptl_version")))
    378     {
    379       return true;
    380     }
    381   return false;
    382 }
    383 
    384 // Finalize the incremental relocation information.  Allocates a block
    385 // of relocation entries for each symbol, and sets the reloc_bases_
    386 // array to point to the first entry in each block.  If CLEAR_COUNTS
    387 // is TRUE, also clear the per-symbol relocation counters.
    388 
    389 void
    390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
    391 {
    392   unsigned int nsyms = this->get_global_symbols()->size();
    393   this->reloc_bases_ = new unsigned int[nsyms];
    394 
    395   gold_assert(this->reloc_bases_ != NULL);
    396   gold_assert(layout->incremental_inputs() != NULL);
    397 
    398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
    399   for (unsigned int i = 0; i < nsyms; ++i)
    400     {
    401       this->reloc_bases_[i] = rindex;
    402       rindex += this->reloc_counts_[i];
    403       if (clear_counts)
    404 	this->reloc_counts_[i] = 0;
    405     }
    406   layout->incremental_inputs()->set_reloc_count(rindex);
    407 }
    408 
    409 Object_merge_map*
    410 Relobj::get_or_create_merge_map()
    411 {
    412   if (!this->object_merge_map_)
    413     this->object_merge_map_ = new Object_merge_map();
    414   return this->object_merge_map_;
    415 }
    416 
    417 // Class Sized_relobj.
    418 
    419 // Iterate over local symbols, calling a visitor class V for each GOT offset
    420 // associated with a local symbol.
    421 
    422 template<int size, bool big_endian>
    423 void
    424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
    425     Got_offset_list::Visitor* v) const
    426 {
    427   unsigned int nsyms = this->local_symbol_count();
    428   for (unsigned int i = 0; i < nsyms; i++)
    429     {
    430       Local_got_entry_key key(i, 0);
    431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
    432       if (p != this->local_got_offsets_.end())
    433 	{
    434 	  const Got_offset_list* got_offsets = p->second;
    435 	  got_offsets->for_all_got_offsets(v);
    436 	}
    437     }
    438 }
    439 
    440 // Get the address of an output section.
    441 
    442 template<int size, bool big_endian>
    443 uint64_t
    444 Sized_relobj<size, big_endian>::do_output_section_address(
    445     unsigned int shndx)
    446 {
    447   // If the input file is linked as --just-symbols, the output
    448   // section address is the input section address.
    449   if (this->just_symbols())
    450     return this->section_address(shndx);
    451 
    452   const Output_section* os = this->do_output_section(shndx);
    453   gold_assert(os != NULL);
    454   return os->address();
    455 }
    456 
    457 // Class Sized_relobj_file.
    458 
    459 template<int size, bool big_endian>
    460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
    461     const std::string& name,
    462     Input_file* input_file,
    463     off_t offset,
    464     const elfcpp::Ehdr<size, big_endian>& ehdr)
    465   : Sized_relobj<size, big_endian>(name, input_file, offset),
    466     elf_file_(this, ehdr),
    467     symtab_shndx_(-1U),
    468     local_symbol_count_(0),
    469     output_local_symbol_count_(0),
    470     output_local_dynsym_count_(0),
    471     symbols_(),
    472     defined_count_(0),
    473     local_symbol_offset_(0),
    474     local_dynsym_offset_(0),
    475     local_values_(),
    476     local_plt_offsets_(),
    477     kept_comdat_sections_(),
    478     has_eh_frame_(false),
    479     discarded_eh_frame_shndx_(-1U),
    480     is_deferred_layout_(false),
    481     deferred_layout_(),
    482     deferred_layout_relocs_(),
    483     output_views_(NULL)
    484 {
    485   this->e_type_ = ehdr.get_e_type();
    486 }
    487 
    488 template<int size, bool big_endian>
    489 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
    490 {
    491 }
    492 
    493 // Set up an object file based on the file header.  This sets up the
    494 // section information.
    495 
    496 template<int size, bool big_endian>
    497 void
    498 Sized_relobj_file<size, big_endian>::do_setup()
    499 {
    500   const unsigned int shnum = this->elf_file_.shnum();
    501   this->set_shnum(shnum);
    502 }
    503 
    504 // Find the SHT_SYMTAB section, given the section headers.  The ELF
    505 // standard says that maybe in the future there can be more than one
    506 // SHT_SYMTAB section.  Until somebody figures out how that could
    507 // work, we assume there is only one.
    508 
    509 template<int size, bool big_endian>
    510 void
    511 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
    512 {
    513   const unsigned int shnum = this->shnum();
    514   this->symtab_shndx_ = 0;
    515   if (shnum > 0)
    516     {
    517       // Look through the sections in reverse order, since gas tends
    518       // to put the symbol table at the end.
    519       const unsigned char* p = pshdrs + shnum * This::shdr_size;
    520       unsigned int i = shnum;
    521       unsigned int xindex_shndx = 0;
    522       unsigned int xindex_link = 0;
    523       while (i > 0)
    524 	{
    525 	  --i;
    526 	  p -= This::shdr_size;
    527 	  typename This::Shdr shdr(p);
    528 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
    529 	    {
    530 	      this->symtab_shndx_ = i;
    531 	      if (xindex_shndx > 0 && xindex_link == i)
    532 		{
    533 		  Xindex* xindex =
    534 		    new Xindex(this->elf_file_.large_shndx_offset());
    535 		  xindex->read_symtab_xindex<size, big_endian>(this,
    536 							       xindex_shndx,
    537 							       pshdrs);
    538 		  this->set_xindex(xindex);
    539 		}
    540 	      break;
    541 	    }
    542 
    543 	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
    544 	  // one.  This will work if it follows the SHT_SYMTAB
    545 	  // section.
    546 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
    547 	    {
    548 	      xindex_shndx = i;
    549 	      xindex_link = this->adjust_shndx(shdr.get_sh_link());
    550 	    }
    551 	}
    552     }
    553 }
    554 
    555 // Return the Xindex structure to use for object with lots of
    556 // sections.
    557 
    558 template<int size, bool big_endian>
    559 Xindex*
    560 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
    561 {
    562   gold_assert(this->symtab_shndx_ != -1U);
    563   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
    564   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
    565   return xindex;
    566 }
    567 
    568 // Return whether SHDR has the right type and flags to be a GNU
    569 // .eh_frame section.
    570 
    571 template<int size, bool big_endian>
    572 bool
    573 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
    574     const elfcpp::Shdr<size, big_endian>* shdr) const
    575 {
    576   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
    577   return ((sh_type == elfcpp::SHT_PROGBITS
    578 	   || sh_type == elfcpp::SHT_X86_64_UNWIND)
    579 	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
    580 }
    581 
    582 // Find the section header with the given name.
    583 
    584 template<int size, bool big_endian>
    585 const unsigned char*
    586 Object::find_shdr(
    587     const unsigned char* pshdrs,
    588     const char* name,
    589     const char* names,
    590     section_size_type names_size,
    591     const unsigned char* hdr) const
    592 {
    593   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
    594   const unsigned int shnum = this->shnum();
    595   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
    596   size_t sh_name = 0;
    597 
    598   while (1)
    599     {
    600       if (hdr)
    601 	{
    602 	  // We found HDR last time we were called, continue looking.
    603 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
    604 	  sh_name = shdr.get_sh_name();
    605 	}
    606       else
    607 	{
    608 	  // Look for the next occurrence of NAME in NAMES.
    609 	  // The fact that .shstrtab produced by current GNU tools is
    610 	  // string merged means we shouldn't have both .not.foo and
    611 	  // .foo in .shstrtab, and multiple .foo sections should all
    612 	  // have the same sh_name.  However, this is not guaranteed
    613 	  // by the ELF spec and not all ELF object file producers may
    614 	  // be so clever.
    615 	  size_t len = strlen(name) + 1;
    616 	  const char *p = sh_name ? names + sh_name + len : names;
    617 	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
    618 						   name, len));
    619 	  if (p == NULL)
    620 	    return NULL;
    621 	  sh_name = p - names;
    622 	  hdr = pshdrs;
    623 	  if (sh_name == 0)
    624 	    return hdr;
    625 	}
    626 
    627       hdr += shdr_size;
    628       while (hdr < hdr_end)
    629 	{
    630 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
    631 	  if (shdr.get_sh_name() == sh_name)
    632 	    return hdr;
    633 	  hdr += shdr_size;
    634 	}
    635       hdr = NULL;
    636       if (sh_name == 0)
    637 	return hdr;
    638     }
    639 }
    640 
    641 // Return whether there is a GNU .eh_frame section, given the section
    642 // headers and the section names.
    643 
    644 template<int size, bool big_endian>
    645 bool
    646 Sized_relobj_file<size, big_endian>::find_eh_frame(
    647     const unsigned char* pshdrs,
    648     const char* names,
    649     section_size_type names_size) const
    650 {
    651   const unsigned char* s = NULL;
    652 
    653   while (1)
    654     {
    655       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
    656 						     names, names_size, s);
    657       if (s == NULL)
    658 	return false;
    659 
    660       typename This::Shdr shdr(s);
    661       if (this->check_eh_frame_flags(&shdr))
    662 	return true;
    663     }
    664 }
    665 
    666 // Return TRUE if this is a section whose contents will be needed in the
    667 // Add_symbols task.  This function is only called for sections that have
    668 // already passed the test in is_compressed_debug_section() and the debug
    669 // section name prefix, ".debug"/".zdebug", has been skipped.
    670 
    671 static bool
    672 need_decompressed_section(const char* name)
    673 {
    674   if (*name++ != '_')
    675     return false;
    676 
    677 #ifdef ENABLE_THREADS
    678   // Decompressing these sections now will help only if we're
    679   // multithreaded.
    680   if (parameters->options().threads())
    681     {
    682       // We will need .zdebug_str if this is not an incremental link
    683       // (i.e., we are processing string merge sections) or if we need
    684       // to build a gdb index.
    685       if ((!parameters->incremental() || parameters->options().gdb_index())
    686 	  && strcmp(name, "str") == 0)
    687 	return true;
    688 
    689       // We will need these other sections when building a gdb index.
    690       if (parameters->options().gdb_index()
    691 	  && (strcmp(name, "info") == 0
    692 	      || strcmp(name, "types") == 0
    693 	      || strcmp(name, "pubnames") == 0
    694 	      || strcmp(name, "pubtypes") == 0
    695 	      || strcmp(name, "ranges") == 0
    696 	      || strcmp(name, "abbrev") == 0))
    697 	return true;
    698     }
    699 #endif
    700 
    701   // Even when single-threaded, we will need .zdebug_str if this is
    702   // not an incremental link and we are building a gdb index.
    703   // Otherwise, we would decompress the section twice: once for
    704   // string merge processing, and once for building the gdb index.
    705   if (!parameters->incremental()
    706       && parameters->options().gdb_index()
    707       && strcmp(name, "str") == 0)
    708     return true;
    709 
    710   return false;
    711 }
    712 
    713 // Build a table for any compressed debug sections, mapping each section index
    714 // to the uncompressed size and (if needed) the decompressed contents.
    715 
    716 template<int size, bool big_endian>
    717 Compressed_section_map*
    718 build_compressed_section_map(
    719     const unsigned char* pshdrs,
    720     unsigned int shnum,
    721     const char* names,
    722     section_size_type names_size,
    723     Object* obj,
    724     bool decompress_if_needed)
    725 {
    726   Compressed_section_map* uncompressed_map = new Compressed_section_map();
    727   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
    728   const unsigned char* p = pshdrs + shdr_size;
    729 
    730   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
    731     {
    732       typename elfcpp::Shdr<size, big_endian> shdr(p);
    733       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
    734 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
    735 	{
    736 	  if (shdr.get_sh_name() >= names_size)
    737 	    {
    738 	      obj->error(_("bad section name offset for section %u: %lu"),
    739 			 i, static_cast<unsigned long>(shdr.get_sh_name()));
    740 	      continue;
    741 	    }
    742 
    743 	  const char* name = names + shdr.get_sh_name();
    744 	  bool is_compressed = ((shdr.get_sh_flags()
    745 				 & elfcpp::SHF_COMPRESSED) != 0);
    746 	  bool is_zcompressed = (!is_compressed
    747 				 && is_compressed_debug_section(name));
    748 
    749 	  if (is_zcompressed || is_compressed)
    750 	    {
    751 	      section_size_type len;
    752 	      const unsigned char* contents =
    753 		  obj->section_contents(i, &len, false);
    754 	      uint64_t uncompressed_size;
    755 	      if (is_zcompressed)
    756 		{
    757 		  // Skip over the ".zdebug" prefix.
    758 		  name += 7;
    759 		  uncompressed_size = get_uncompressed_size(contents, len);
    760 		}
    761 	      else
    762 		{
    763 		  // Skip over the ".debug" prefix.
    764 		  name += 6;
    765 		  elfcpp::Chdr<size, big_endian> chdr(contents);
    766 		  uncompressed_size = chdr.get_ch_size();
    767 		}
    768 	      Compressed_section_info info;
    769 	      info.size = convert_to_section_size_type(uncompressed_size);
    770 	      info.flag = shdr.get_sh_flags();
    771 	      info.contents = NULL;
    772 	      if (uncompressed_size != -1ULL)
    773 		{
    774 		  unsigned char* uncompressed_data = NULL;
    775 		  if (decompress_if_needed && need_decompressed_section(name))
    776 		    {
    777 		      uncompressed_data = new unsigned char[uncompressed_size];
    778 		      if (decompress_input_section(contents, len,
    779 						   uncompressed_data,
    780 						   uncompressed_size,
    781 						   size, big_endian,
    782 						   shdr.get_sh_flags()))
    783 			info.contents = uncompressed_data;
    784 		      else
    785 			delete[] uncompressed_data;
    786 		    }
    787 		  (*uncompressed_map)[i] = info;
    788 		}
    789 	    }
    790 	}
    791     }
    792   return uncompressed_map;
    793 }
    794 
    795 // Stash away info for a number of special sections.
    796 // Return true if any of the sections found require local symbols to be read.
    797 
    798 template<int size, bool big_endian>
    799 bool
    800 Sized_relobj_file<size, big_endian>::do_find_special_sections(
    801     Read_symbols_data* sd)
    802 {
    803   const unsigned char* const pshdrs = sd->section_headers->data();
    804   const unsigned char* namesu = sd->section_names->data();
    805   const char* names = reinterpret_cast<const char*>(namesu);
    806 
    807   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
    808     this->has_eh_frame_ = true;
    809 
    810   Compressed_section_map* compressed_sections =
    811     build_compressed_section_map<size, big_endian>(
    812       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
    813   if (compressed_sections != NULL)
    814     this->set_compressed_sections(compressed_sections);
    815 
    816   return (this->has_eh_frame_
    817 	  || (!parameters->options().relocatable()
    818 	      && parameters->options().gdb_index()
    819 	      && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
    820 		  || memmem(names, sd->section_names_size, "debug_types",
    821 			    13) == 0)));
    822 }
    823 
    824 // Read the sections and symbols from an object file.
    825 
    826 template<int size, bool big_endian>
    827 void
    828 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
    829 {
    830   this->base_read_symbols(sd);
    831 }
    832 
    833 // Read the sections and symbols from an object file.  This is common
    834 // code for all target-specific overrides of do_read_symbols().
    835 
    836 template<int size, bool big_endian>
    837 void
    838 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
    839 {
    840   this->read_section_data(&this->elf_file_, sd);
    841 
    842   const unsigned char* const pshdrs = sd->section_headers->data();
    843 
    844   this->find_symtab(pshdrs);
    845 
    846   bool need_local_symbols = this->do_find_special_sections(sd);
    847 
    848   sd->symbols = NULL;
    849   sd->symbols_size = 0;
    850   sd->external_symbols_offset = 0;
    851   sd->symbol_names = NULL;
    852   sd->symbol_names_size = 0;
    853 
    854   if (this->symtab_shndx_ == 0)
    855     {
    856       // No symbol table.  Weird but legal.
    857       return;
    858     }
    859 
    860   // Get the symbol table section header.
    861   typename This::Shdr symtabshdr(pshdrs
    862 				 + this->symtab_shndx_ * This::shdr_size);
    863   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
    864 
    865   // If this object has a .eh_frame section, or if building a .gdb_index
    866   // section and there is debug info, we need all the symbols.
    867   // Otherwise we only need the external symbols.  While it would be
    868   // simpler to just always read all the symbols, I've seen object
    869   // files with well over 2000 local symbols, which for a 64-bit
    870   // object file format is over 5 pages that we don't need to read
    871   // now.
    872 
    873   const int sym_size = This::sym_size;
    874   const unsigned int loccount = symtabshdr.get_sh_info();
    875   this->local_symbol_count_ = loccount;
    876   this->local_values_.resize(loccount);
    877   section_offset_type locsize = loccount * sym_size;
    878   off_t dataoff = symtabshdr.get_sh_offset();
    879   section_size_type datasize =
    880     convert_to_section_size_type(symtabshdr.get_sh_size());
    881   off_t extoff = dataoff + locsize;
    882   section_size_type extsize = datasize - locsize;
    883 
    884   off_t readoff = need_local_symbols ? dataoff : extoff;
    885   section_size_type readsize = need_local_symbols ? datasize : extsize;
    886 
    887   if (readsize == 0)
    888     {
    889       // No external symbols.  Also weird but also legal.
    890       return;
    891     }
    892 
    893   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
    894 
    895   // Read the section header for the symbol names.
    896   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
    897   if (strtab_shndx >= this->shnum())
    898     {
    899       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
    900       return;
    901     }
    902   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
    903   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
    904     {
    905       this->error(_("symbol table name section has wrong type: %u"),
    906 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
    907       return;
    908     }
    909 
    910   // Read the symbol names.
    911   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
    912 					       strtabshdr.get_sh_size(),
    913 					       false, true);
    914 
    915   sd->symbols = fvsymtab;
    916   sd->symbols_size = readsize;
    917   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
    918   sd->symbol_names = fvstrtab;
    919   sd->symbol_names_size =
    920     convert_to_section_size_type(strtabshdr.get_sh_size());
    921 }
    922 
    923 // Return the section index of symbol SYM.  Set *VALUE to its value in
    924 // the object file.  Set *IS_ORDINARY if this is an ordinary section
    925 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
    926 // Note that for a symbol which is not defined in this object file,
    927 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
    928 // the final value of the symbol in the link.
    929 
    930 template<int size, bool big_endian>
    931 unsigned int
    932 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
    933 							      Address* value,
    934 							      bool* is_ordinary)
    935 {
    936   section_size_type symbols_size;
    937   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
    938 							&symbols_size,
    939 							false);
    940 
    941   const size_t count = symbols_size / This::sym_size;
    942   gold_assert(sym < count);
    943 
    944   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
    945   *value = elfsym.get_st_value();
    946 
    947   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
    948 }
    949 
    950 // Return whether to include a section group in the link.  LAYOUT is
    951 // used to keep track of which section groups we have already seen.
    952 // INDEX is the index of the section group and SHDR is the section
    953 // header.  If we do not want to include this group, we set bits in
    954 // OMIT for each section which should be discarded.
    955 
    956 template<int size, bool big_endian>
    957 bool
    958 Sized_relobj_file<size, big_endian>::include_section_group(
    959     Symbol_table* symtab,
    960     Layout* layout,
    961     unsigned int index,
    962     const char* name,
    963     const unsigned char* shdrs,
    964     const char* section_names,
    965     section_size_type section_names_size,
    966     std::vector<bool>* omit)
    967 {
    968   // Read the section contents.
    969   typename This::Shdr shdr(shdrs + index * This::shdr_size);
    970   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
    971 					     shdr.get_sh_size(), true, false);
    972   const elfcpp::Elf_Word* pword =
    973     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
    974 
    975   // The first word contains flags.  We only care about COMDAT section
    976   // groups.  Other section groups are always included in the link
    977   // just like ordinary sections.
    978   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
    979 
    980   // Look up the group signature, which is the name of a symbol.  ELF
    981   // uses a symbol name because some group signatures are long, and
    982   // the name is generally already in the symbol table, so it makes
    983   // sense to put the long string just once in .strtab rather than in
    984   // both .strtab and .shstrtab.
    985 
    986   // Get the appropriate symbol table header (this will normally be
    987   // the single SHT_SYMTAB section, but in principle it need not be).
    988   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
    989   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
    990 
    991   // Read the symbol table entry.
    992   unsigned int symndx = shdr.get_sh_info();
    993   if (symndx >= symshdr.get_sh_size() / This::sym_size)
    994     {
    995       this->error(_("section group %u info %u out of range"),
    996 		  index, symndx);
    997       return false;
    998     }
    999   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
   1000   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
   1001 					     false);
   1002   elfcpp::Sym<size, big_endian> sym(psym);
   1003 
   1004   // Read the symbol table names.
   1005   section_size_type symnamelen;
   1006   const unsigned char* psymnamesu;
   1007   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
   1008 				      &symnamelen, true);
   1009   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
   1010 
   1011   // Get the section group signature.
   1012   if (sym.get_st_name() >= symnamelen)
   1013     {
   1014       this->error(_("symbol %u name offset %u out of range"),
   1015 		  symndx, sym.get_st_name());
   1016       return false;
   1017     }
   1018 
   1019   std::string signature(psymnames + sym.get_st_name());
   1020 
   1021   // It seems that some versions of gas will create a section group
   1022   // associated with a section symbol, and then fail to give a name to
   1023   // the section symbol.  In such a case, use the name of the section.
   1024   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
   1025     {
   1026       bool is_ordinary;
   1027       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
   1028 						      sym.get_st_shndx(),
   1029 						      &is_ordinary);
   1030       if (!is_ordinary || sym_shndx >= this->shnum())
   1031 	{
   1032 	  this->error(_("symbol %u invalid section index %u"),
   1033 		      symndx, sym_shndx);
   1034 	  return false;
   1035 	}
   1036       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
   1037       if (member_shdr.get_sh_name() < section_names_size)
   1038 	signature = section_names + member_shdr.get_sh_name();
   1039     }
   1040 
   1041   // Record this section group in the layout, and see whether we've already
   1042   // seen one with the same signature.
   1043   bool include_group;
   1044   bool is_comdat;
   1045   Kept_section* kept_section = NULL;
   1046 
   1047   if ((flags & elfcpp::GRP_COMDAT) == 0)
   1048     {
   1049       include_group = true;
   1050       is_comdat = false;
   1051     }
   1052   else
   1053     {
   1054       include_group = layout->find_or_add_kept_section(signature,
   1055 						       this, index, true,
   1056 						       true, &kept_section);
   1057       is_comdat = true;
   1058     }
   1059 
   1060   if (is_comdat && include_group)
   1061     {
   1062       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
   1063       if (incremental_inputs != NULL)
   1064 	incremental_inputs->report_comdat_group(this, signature.c_str());
   1065     }
   1066 
   1067   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
   1068 
   1069   std::vector<unsigned int> shndxes;
   1070   bool relocate_group = include_group && parameters->options().relocatable();
   1071   if (relocate_group)
   1072     shndxes.reserve(count - 1);
   1073 
   1074   for (size_t i = 1; i < count; ++i)
   1075     {
   1076       elfcpp::Elf_Word shndx =
   1077 	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
   1078 
   1079       if (relocate_group)
   1080 	shndxes.push_back(shndx);
   1081 
   1082       if (shndx >= this->shnum())
   1083 	{
   1084 	  this->error(_("section %u in section group %u out of range"),
   1085 		      shndx, index);
   1086 	  continue;
   1087 	}
   1088 
   1089       // Check for an earlier section number, since we're going to get
   1090       // it wrong--we may have already decided to include the section.
   1091       if (shndx < index)
   1092 	this->error(_("invalid section group %u refers to earlier section %u"),
   1093 		    index, shndx);
   1094 
   1095       // Get the name of the member section.
   1096       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
   1097       if (member_shdr.get_sh_name() >= section_names_size)
   1098 	{
   1099 	  // This is an error, but it will be diagnosed eventually
   1100 	  // in do_layout, so we don't need to do anything here but
   1101 	  // ignore it.
   1102 	  continue;
   1103 	}
   1104       std::string mname(section_names + member_shdr.get_sh_name());
   1105 
   1106       if (include_group)
   1107 	{
   1108 	  if (is_comdat)
   1109 	    kept_section->add_comdat_section(mname, shndx,
   1110 					     member_shdr.get_sh_size());
   1111 	}
   1112       else
   1113 	{
   1114 	  (*omit)[shndx] = true;
   1115 
   1116 	  if (is_comdat)
   1117 	    {
   1118 	      Relobj* kept_object = kept_section->object();
   1119 	      if (kept_section->is_comdat())
   1120 		{
   1121 		  // Find the corresponding kept section, and store
   1122 		  // that info in the discarded section table.
   1123 		  unsigned int kept_shndx;
   1124 		  uint64_t kept_size;
   1125 		  if (kept_section->find_comdat_section(mname, &kept_shndx,
   1126 							&kept_size))
   1127 		    {
   1128 		      // We don't keep a mapping for this section if
   1129 		      // it has a different size.  The mapping is only
   1130 		      // used for relocation processing, and we don't
   1131 		      // want to treat the sections as similar if the
   1132 		      // sizes are different.  Checking the section
   1133 		      // size is the approach used by the GNU linker.
   1134 		      if (kept_size == member_shdr.get_sh_size())
   1135 			this->set_kept_comdat_section(shndx, kept_object,
   1136 						      kept_shndx);
   1137 		    }
   1138 		}
   1139 	      else
   1140 		{
   1141 		  // The existing section is a linkonce section.  Add
   1142 		  // a mapping if there is exactly one section in the
   1143 		  // group (which is true when COUNT == 2) and if it
   1144 		  // is the same size.
   1145 		  if (count == 2
   1146 		      && (kept_section->linkonce_size()
   1147 			  == member_shdr.get_sh_size()))
   1148 		    this->set_kept_comdat_section(shndx, kept_object,
   1149 						  kept_section->shndx());
   1150 		}
   1151 	    }
   1152 	}
   1153     }
   1154 
   1155   if (relocate_group)
   1156     layout->layout_group(symtab, this, index, name, signature.c_str(),
   1157 			 shdr, flags, &shndxes);
   1158 
   1159   return include_group;
   1160 }
   1161 
   1162 // Whether to include a linkonce section in the link.  NAME is the
   1163 // name of the section and SHDR is the section header.
   1164 
   1165 // Linkonce sections are a GNU extension implemented in the original
   1166 // GNU linker before section groups were defined.  The semantics are
   1167 // that we only include one linkonce section with a given name.  The
   1168 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
   1169 // where T is the type of section and SYMNAME is the name of a symbol.
   1170 // In an attempt to make linkonce sections interact well with section
   1171 // groups, we try to identify SYMNAME and use it like a section group
   1172 // signature.  We want to block section groups with that signature,
   1173 // but not other linkonce sections with that signature.  We also use
   1174 // the full name of the linkonce section as a normal section group
   1175 // signature.
   1176 
   1177 template<int size, bool big_endian>
   1178 bool
   1179 Sized_relobj_file<size, big_endian>::include_linkonce_section(
   1180     Layout* layout,
   1181     unsigned int index,
   1182     const char* name,
   1183     const elfcpp::Shdr<size, big_endian>& shdr)
   1184 {
   1185   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
   1186   // In general the symbol name we want will be the string following
   1187   // the last '.'.  However, we have to handle the case of
   1188   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
   1189   // some versions of gcc.  So we use a heuristic: if the name starts
   1190   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
   1191   // we look for the last '.'.  We can't always simply skip
   1192   // ".gnu.linkonce.X", because we have to deal with cases like
   1193   // ".gnu.linkonce.d.rel.ro.local".
   1194   const char* const linkonce_t = ".gnu.linkonce.t.";
   1195   const char* symname;
   1196   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
   1197     symname = name + strlen(linkonce_t);
   1198   else
   1199     symname = strrchr(name, '.') + 1;
   1200   std::string sig1(symname);
   1201   std::string sig2(name);
   1202   Kept_section* kept1;
   1203   Kept_section* kept2;
   1204   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
   1205 						   false, &kept1);
   1206   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
   1207 						   true, &kept2);
   1208 
   1209   if (!include2)
   1210     {
   1211       // We are not including this section because we already saw the
   1212       // name of the section as a signature.  This normally implies
   1213       // that the kept section is another linkonce section.  If it is
   1214       // the same size, record it as the section which corresponds to
   1215       // this one.
   1216       if (kept2->object() != NULL
   1217 	  && !kept2->is_comdat()
   1218 	  && kept2->linkonce_size() == sh_size)
   1219 	this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
   1220     }
   1221   else if (!include1)
   1222     {
   1223       // The section is being discarded on the basis of its symbol
   1224       // name.  This means that the corresponding kept section was
   1225       // part of a comdat group, and it will be difficult to identify
   1226       // the specific section within that group that corresponds to
   1227       // this linkonce section.  We'll handle the simple case where
   1228       // the group has only one member section.  Otherwise, it's not
   1229       // worth the effort.
   1230       unsigned int kept_shndx;
   1231       uint64_t kept_size;
   1232       if (kept1->object() != NULL
   1233 	  && kept1->is_comdat()
   1234 	  && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
   1235 	  && kept_size == sh_size)
   1236 	this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
   1237     }
   1238   else
   1239     {
   1240       kept1->set_linkonce_size(sh_size);
   1241       kept2->set_linkonce_size(sh_size);
   1242     }
   1243 
   1244   return include1 && include2;
   1245 }
   1246 
   1247 // Layout an input section.
   1248 
   1249 template<int size, bool big_endian>
   1250 inline void
   1251 Sized_relobj_file<size, big_endian>::layout_section(
   1252     Layout* layout,
   1253     unsigned int shndx,
   1254     const char* name,
   1255     const typename This::Shdr& shdr,
   1256     unsigned int reloc_shndx,
   1257     unsigned int reloc_type)
   1258 {
   1259   off_t offset;
   1260   Output_section* os = layout->layout(this, shndx, name, shdr,
   1261 					  reloc_shndx, reloc_type, &offset);
   1262 
   1263   this->output_sections()[shndx] = os;
   1264   if (offset == -1)
   1265     this->section_offsets()[shndx] = invalid_address;
   1266   else
   1267     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
   1268 
   1269   // If this section requires special handling, and if there are
   1270   // relocs that apply to it, then we must do the special handling
   1271   // before we apply the relocs.
   1272   if (offset == -1 && reloc_shndx != 0)
   1273     this->set_relocs_must_follow_section_writes();
   1274 }
   1275 
   1276 // Layout an input .eh_frame section.
   1277 
   1278 template<int size, bool big_endian>
   1279 void
   1280 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
   1281     Layout* layout,
   1282     const unsigned char* symbols_data,
   1283     section_size_type symbols_size,
   1284     const unsigned char* symbol_names_data,
   1285     section_size_type symbol_names_size,
   1286     unsigned int shndx,
   1287     const typename This::Shdr& shdr,
   1288     unsigned int reloc_shndx,
   1289     unsigned int reloc_type)
   1290 {
   1291   gold_assert(this->has_eh_frame_);
   1292 
   1293   off_t offset;
   1294   Output_section* os = layout->layout_eh_frame(this,
   1295 					       symbols_data,
   1296 					       symbols_size,
   1297 					       symbol_names_data,
   1298 					       symbol_names_size,
   1299 					       shndx,
   1300 					       shdr,
   1301 					       reloc_shndx,
   1302 					       reloc_type,
   1303 					       &offset);
   1304   this->output_sections()[shndx] = os;
   1305   if (os == NULL || offset == -1)
   1306     {
   1307       // An object can contain at most one section holding exception
   1308       // frame information.
   1309       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
   1310       this->discarded_eh_frame_shndx_ = shndx;
   1311       this->section_offsets()[shndx] = invalid_address;
   1312     }
   1313   else
   1314     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
   1315 
   1316   // If this section requires special handling, and if there are
   1317   // relocs that aply to it, then we must do the special handling
   1318   // before we apply the relocs.
   1319   if (os != NULL && offset == -1 && reloc_shndx != 0)
   1320     this->set_relocs_must_follow_section_writes();
   1321 }
   1322 
   1323 // Lay out the input sections.  We walk through the sections and check
   1324 // whether they should be included in the link.  If they should, we
   1325 // pass them to the Layout object, which will return an output section
   1326 // and an offset.
   1327 // This function is called twice sometimes, two passes, when mapping
   1328 // of input sections to output sections must be delayed.
   1329 // This is true for the following :
   1330 // * Garbage collection (--gc-sections): Some input sections will be
   1331 // discarded and hence the assignment must wait until the second pass.
   1332 // In the first pass,  it is for setting up some sections as roots to
   1333 // a work-list for --gc-sections and to do comdat processing.
   1334 // * Identical Code Folding (--icf=<safe,all>): Some input sections
   1335 // will be folded and hence the assignment must wait.
   1336 // * Using plugins to map some sections to unique segments: Mapping
   1337 // some sections to unique segments requires mapping them to unique
   1338 // output sections too.  This can be done via plugins now and this
   1339 // information is not available in the first pass.
   1340 
   1341 template<int size, bool big_endian>
   1342 void
   1343 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
   1344 					       Layout* layout,
   1345 					       Read_symbols_data* sd)
   1346 {
   1347   const unsigned int shnum = this->shnum();
   1348 
   1349   /* Should this function be called twice?  */
   1350   bool is_two_pass = (parameters->options().gc_sections()
   1351 		      || parameters->options().icf_enabled()
   1352 		      || layout->is_unique_segment_for_sections_specified());
   1353 
   1354   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
   1355      a two-pass approach is not needed.  */
   1356   bool is_pass_one = false;
   1357   bool is_pass_two = false;
   1358 
   1359   Symbols_data* gc_sd = NULL;
   1360 
   1361   /* Check if do_layout needs to be two-pass.  If so, find out which pass
   1362      should happen.  In the first pass, the data in sd is saved to be used
   1363      later in the second pass.  */
   1364   if (is_two_pass)
   1365     {
   1366       gc_sd = this->get_symbols_data();
   1367       if (gc_sd == NULL)
   1368 	{
   1369 	  gold_assert(sd != NULL);
   1370 	  is_pass_one = true;
   1371 	}
   1372       else
   1373 	{
   1374 	  if (parameters->options().gc_sections())
   1375 	    gold_assert(symtab->gc()->is_worklist_ready());
   1376 	  if (parameters->options().icf_enabled())
   1377 	    gold_assert(symtab->icf()->is_icf_ready());
   1378 	  is_pass_two = true;
   1379 	}
   1380     }
   1381 
   1382   if (shnum == 0)
   1383     return;
   1384 
   1385   if (is_pass_one)
   1386     {
   1387       // During garbage collection save the symbols data to use it when
   1388       // re-entering this function.
   1389       gc_sd = new Symbols_data;
   1390       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
   1391       this->set_symbols_data(gc_sd);
   1392     }
   1393 
   1394   const unsigned char* section_headers_data = NULL;
   1395   section_size_type section_names_size;
   1396   const unsigned char* symbols_data = NULL;
   1397   section_size_type symbols_size;
   1398   const unsigned char* symbol_names_data = NULL;
   1399   section_size_type symbol_names_size;
   1400 
   1401   if (is_two_pass)
   1402     {
   1403       section_headers_data = gc_sd->section_headers_data;
   1404       section_names_size = gc_sd->section_names_size;
   1405       symbols_data = gc_sd->symbols_data;
   1406       symbols_size = gc_sd->symbols_size;
   1407       symbol_names_data = gc_sd->symbol_names_data;
   1408       symbol_names_size = gc_sd->symbol_names_size;
   1409     }
   1410   else
   1411     {
   1412       section_headers_data = sd->section_headers->data();
   1413       section_names_size = sd->section_names_size;
   1414       if (sd->symbols != NULL)
   1415 	symbols_data = sd->symbols->data();
   1416       symbols_size = sd->symbols_size;
   1417       if (sd->symbol_names != NULL)
   1418 	symbol_names_data = sd->symbol_names->data();
   1419       symbol_names_size = sd->symbol_names_size;
   1420     }
   1421 
   1422   // Get the section headers.
   1423   const unsigned char* shdrs = section_headers_data;
   1424   const unsigned char* pshdrs;
   1425 
   1426   // Get the section names.
   1427   const unsigned char* pnamesu = (is_two_pass
   1428 				  ? gc_sd->section_names_data
   1429 				  : sd->section_names->data());
   1430 
   1431   const char* pnames = reinterpret_cast<const char*>(pnamesu);
   1432 
   1433   // If any input files have been claimed by plugins, we need to defer
   1434   // actual layout until the replacement files have arrived.
   1435   const bool should_defer_layout =
   1436       (parameters->options().has_plugins()
   1437        && parameters->options().plugins()->should_defer_layout());
   1438   unsigned int num_sections_to_defer = 0;
   1439 
   1440   // For each section, record the index of the reloc section if any.
   1441   // Use 0 to mean that there is no reloc section, -1U to mean that
   1442   // there is more than one.
   1443   std::vector<unsigned int> reloc_shndx(shnum, 0);
   1444   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
   1445   // Skip the first, dummy, section.
   1446   pshdrs = shdrs + This::shdr_size;
   1447   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
   1448     {
   1449       typename This::Shdr shdr(pshdrs);
   1450 
   1451       // Count the number of sections whose layout will be deferred.
   1452       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
   1453 	++num_sections_to_defer;
   1454 
   1455       unsigned int sh_type = shdr.get_sh_type();
   1456       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
   1457 	{
   1458 	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
   1459 	  if (target_shndx == 0 || target_shndx >= shnum)
   1460 	    {
   1461 	      this->error(_("relocation section %u has bad info %u"),
   1462 			  i, target_shndx);
   1463 	      continue;
   1464 	    }
   1465 
   1466 	  if (reloc_shndx[target_shndx] != 0)
   1467 	    reloc_shndx[target_shndx] = -1U;
   1468 	  else
   1469 	    {
   1470 	      reloc_shndx[target_shndx] = i;
   1471 	      reloc_type[target_shndx] = sh_type;
   1472 	    }
   1473 	}
   1474     }
   1475 
   1476   Output_sections& out_sections(this->output_sections());
   1477   std::vector<Address>& out_section_offsets(this->section_offsets());
   1478 
   1479   if (!is_pass_two)
   1480     {
   1481       out_sections.resize(shnum);
   1482       out_section_offsets.resize(shnum);
   1483     }
   1484 
   1485   // If we are only linking for symbols, then there is nothing else to
   1486   // do here.
   1487   if (this->input_file()->just_symbols())
   1488     {
   1489       if (!is_pass_two)
   1490 	{
   1491 	  delete sd->section_headers;
   1492 	  sd->section_headers = NULL;
   1493 	  delete sd->section_names;
   1494 	  sd->section_names = NULL;
   1495 	}
   1496       return;
   1497     }
   1498 
   1499   if (num_sections_to_defer > 0)
   1500     {
   1501       parameters->options().plugins()->add_deferred_layout_object(this);
   1502       this->deferred_layout_.reserve(num_sections_to_defer);
   1503       this->is_deferred_layout_ = true;
   1504     }
   1505 
   1506   // Whether we've seen a .note.GNU-stack section.
   1507   bool seen_gnu_stack = false;
   1508   // The flags of a .note.GNU-stack section.
   1509   uint64_t gnu_stack_flags = 0;
   1510 
   1511   // Keep track of which sections to omit.
   1512   std::vector<bool> omit(shnum, false);
   1513 
   1514   // Keep track of reloc sections when emitting relocations.
   1515   const bool relocatable = parameters->options().relocatable();
   1516   const bool emit_relocs = (relocatable
   1517 			    || parameters->options().emit_relocs());
   1518   std::vector<unsigned int> reloc_sections;
   1519 
   1520   // Keep track of .eh_frame sections.
   1521   std::vector<unsigned int> eh_frame_sections;
   1522 
   1523   // Keep track of .debug_info and .debug_types sections.
   1524   std::vector<unsigned int> debug_info_sections;
   1525   std::vector<unsigned int> debug_types_sections;
   1526 
   1527   // Skip the first, dummy, section.
   1528   pshdrs = shdrs + This::shdr_size;
   1529   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
   1530     {
   1531       typename This::Shdr shdr(pshdrs);
   1532 
   1533       if (shdr.get_sh_name() >= section_names_size)
   1534 	{
   1535 	  this->error(_("bad section name offset for section %u: %lu"),
   1536 		      i, static_cast<unsigned long>(shdr.get_sh_name()));
   1537 	  return;
   1538 	}
   1539 
   1540       const char* name = pnames + shdr.get_sh_name();
   1541 
   1542       if (!is_pass_two)
   1543 	{
   1544 	  if (this->handle_gnu_warning_section(name, i, symtab))
   1545 	    {
   1546 	      if (!relocatable && !parameters->options().shared())
   1547 		omit[i] = true;
   1548 	    }
   1549 
   1550 	  // The .note.GNU-stack section is special.  It gives the
   1551 	  // protection flags that this object file requires for the stack
   1552 	  // in memory.
   1553 	  if (strcmp(name, ".note.GNU-stack") == 0)
   1554 	    {
   1555 	      seen_gnu_stack = true;
   1556 	      gnu_stack_flags |= shdr.get_sh_flags();
   1557 	      omit[i] = true;
   1558 	    }
   1559 
   1560 	  // The .note.GNU-split-stack section is also special.  It
   1561 	  // indicates that the object was compiled with
   1562 	  // -fsplit-stack.
   1563 	  if (this->handle_split_stack_section(name))
   1564 	    {
   1565 	      if (!relocatable && !parameters->options().shared())
   1566 		omit[i] = true;
   1567 	    }
   1568 
   1569 	  // Skip attributes section.
   1570 	  if (parameters->target().is_attributes_section(name))
   1571 	    {
   1572 	      omit[i] = true;
   1573 	    }
   1574 
   1575 	  bool discard = omit[i];
   1576 	  if (!discard)
   1577 	    {
   1578 	      if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
   1579 		{
   1580 		  if (!this->include_section_group(symtab, layout, i, name,
   1581 						   shdrs, pnames,
   1582 						   section_names_size,
   1583 						   &omit))
   1584 		    discard = true;
   1585 		}
   1586 	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
   1587 		       && Layout::is_linkonce(name))
   1588 		{
   1589 		  if (!this->include_linkonce_section(layout, i, name, shdr))
   1590 		    discard = true;
   1591 		}
   1592 	    }
   1593 
   1594 	  // Add the section to the incremental inputs layout.
   1595 	  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
   1596 	  if (incremental_inputs != NULL
   1597 	      && !discard
   1598 	      && can_incremental_update(shdr.get_sh_type()))
   1599 	    {
   1600 	      off_t sh_size = shdr.get_sh_size();
   1601 	      section_size_type uncompressed_size;
   1602 	      if (this->section_is_compressed(i, &uncompressed_size))
   1603 		sh_size = uncompressed_size;
   1604 	      incremental_inputs->report_input_section(this, i, name, sh_size);
   1605 	    }
   1606 
   1607 	  if (discard)
   1608 	    {
   1609 	      // Do not include this section in the link.
   1610 	      out_sections[i] = NULL;
   1611 	      out_section_offsets[i] = invalid_address;
   1612 	      continue;
   1613 	    }
   1614 	}
   1615 
   1616       if (is_pass_one && parameters->options().gc_sections())
   1617 	{
   1618 	  if (this->is_section_name_included(name)
   1619 	      || layout->keep_input_section (this, name)
   1620 	      || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
   1621 	      || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
   1622 	    {
   1623 	      symtab->gc()->worklist().push_back(Section_id(this, i));
   1624 	    }
   1625 	  // If the section name XXX can be represented as a C identifier
   1626 	  // it cannot be discarded if there are references to
   1627 	  // __start_XXX and __stop_XXX symbols.  These need to be
   1628 	  // specially handled.
   1629 	  if (is_cident(name))
   1630 	    {
   1631 	      symtab->gc()->add_cident_section(name, Section_id(this, i));
   1632 	    }
   1633 	}
   1634 
   1635       // When doing a relocatable link we are going to copy input
   1636       // reloc sections into the output.  We only want to copy the
   1637       // ones associated with sections which are not being discarded.
   1638       // However, we don't know that yet for all sections.  So save
   1639       // reloc sections and process them later. Garbage collection is
   1640       // not triggered when relocatable code is desired.
   1641       if (emit_relocs
   1642 	  && (shdr.get_sh_type() == elfcpp::SHT_REL
   1643 	      || shdr.get_sh_type() == elfcpp::SHT_RELA))
   1644 	{
   1645 	  reloc_sections.push_back(i);
   1646 	  continue;
   1647 	}
   1648 
   1649       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
   1650 	continue;
   1651 
   1652       // The .eh_frame section is special.  It holds exception frame
   1653       // information that we need to read in order to generate the
   1654       // exception frame header.  We process these after all the other
   1655       // sections so that the exception frame reader can reliably
   1656       // determine which sections are being discarded, and discard the
   1657       // corresponding information.
   1658       if (!relocatable
   1659 	  && strcmp(name, ".eh_frame") == 0
   1660 	  && this->check_eh_frame_flags(&shdr))
   1661 	{
   1662 	  if (is_pass_one)
   1663 	    {
   1664 	      if (this->is_deferred_layout())
   1665 		out_sections[i] = reinterpret_cast<Output_section*>(2);
   1666 	      else
   1667 		out_sections[i] = reinterpret_cast<Output_section*>(1);
   1668 	      out_section_offsets[i] = invalid_address;
   1669 	    }
   1670 	  else if (this->is_deferred_layout())
   1671 	    this->deferred_layout_.push_back(Deferred_layout(i, name,
   1672 							     pshdrs,
   1673 							     reloc_shndx[i],
   1674 							     reloc_type[i]));
   1675 	  else
   1676 	    eh_frame_sections.push_back(i);
   1677 	  continue;
   1678 	}
   1679 
   1680       if (is_pass_two && parameters->options().gc_sections())
   1681 	{
   1682 	  // This is executed during the second pass of garbage
   1683 	  // collection. do_layout has been called before and some
   1684 	  // sections have been already discarded. Simply ignore
   1685 	  // such sections this time around.
   1686 	  if (out_sections[i] == NULL)
   1687 	    {
   1688 	      gold_assert(out_section_offsets[i] == invalid_address);
   1689 	      continue;
   1690 	    }
   1691 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
   1692 	      && symtab->gc()->is_section_garbage(this, i))
   1693 	      {
   1694 		if (parameters->options().print_gc_sections())
   1695 		  gold_info(_("%s: removing unused section from '%s'"
   1696 			      " in file '%s'"),
   1697 			    program_name, this->section_name(i).c_str(),
   1698 			    this->name().c_str());
   1699 		out_sections[i] = NULL;
   1700 		out_section_offsets[i] = invalid_address;
   1701 		continue;
   1702 	      }
   1703 	}
   1704 
   1705       if (is_pass_two && parameters->options().icf_enabled())
   1706 	{
   1707 	  if (out_sections[i] == NULL)
   1708 	    {
   1709 	      gold_assert(out_section_offsets[i] == invalid_address);
   1710 	      continue;
   1711 	    }
   1712 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
   1713 	      && symtab->icf()->is_section_folded(this, i))
   1714 	      {
   1715 		if (parameters->options().print_icf_sections())
   1716 		  {
   1717 		    Section_id folded =
   1718 				symtab->icf()->get_folded_section(this, i);
   1719 		    Relobj* folded_obj =
   1720 				reinterpret_cast<Relobj*>(folded.first);
   1721 		    gold_info(_("%s: ICF folding section '%s' in file '%s' "
   1722 				"into '%s' in file '%s'"),
   1723 			      program_name, this->section_name(i).c_str(),
   1724 			      this->name().c_str(),
   1725 			      folded_obj->section_name(folded.second).c_str(),
   1726 			      folded_obj->name().c_str());
   1727 		  }
   1728 		out_sections[i] = NULL;
   1729 		out_section_offsets[i] = invalid_address;
   1730 		continue;
   1731 	      }
   1732 	}
   1733 
   1734       // Defer layout here if input files are claimed by plugins.  When gc
   1735       // is turned on this function is called twice; we only want to do this
   1736       // on the first pass.
   1737       if (!is_pass_two
   1738           && this->is_deferred_layout()
   1739           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
   1740 	{
   1741 	  this->deferred_layout_.push_back(Deferred_layout(i, name,
   1742 							   pshdrs,
   1743 							   reloc_shndx[i],
   1744 							   reloc_type[i]));
   1745 	  // Put dummy values here; real values will be supplied by
   1746 	  // do_layout_deferred_sections.
   1747 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
   1748 	  out_section_offsets[i] = invalid_address;
   1749 	  continue;
   1750 	}
   1751 
   1752       // During gc_pass_two if a section that was previously deferred is
   1753       // found, do not layout the section as layout_deferred_sections will
   1754       // do it later from gold.cc.
   1755       if (is_pass_two
   1756 	  && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
   1757 	continue;
   1758 
   1759       if (is_pass_one)
   1760 	{
   1761 	  // This is during garbage collection. The out_sections are
   1762 	  // assigned in the second call to this function.
   1763 	  out_sections[i] = reinterpret_cast<Output_section*>(1);
   1764 	  out_section_offsets[i] = invalid_address;
   1765 	}
   1766       else
   1767 	{
   1768 	  // When garbage collection is switched on the actual layout
   1769 	  // only happens in the second call.
   1770 	  this->layout_section(layout, i, name, shdr, reloc_shndx[i],
   1771 			       reloc_type[i]);
   1772 
   1773 	  // When generating a .gdb_index section, we do additional
   1774 	  // processing of .debug_info and .debug_types sections after all
   1775 	  // the other sections for the same reason as above.
   1776 	  if (!relocatable
   1777 	      && parameters->options().gdb_index()
   1778 	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
   1779 	    {
   1780 	      if (strcmp(name, ".debug_info") == 0
   1781 		  || strcmp(name, ".zdebug_info") == 0)
   1782 		debug_info_sections.push_back(i);
   1783 	      else if (strcmp(name, ".debug_types") == 0
   1784 		       || strcmp(name, ".zdebug_types") == 0)
   1785 		debug_types_sections.push_back(i);
   1786 	    }
   1787 	}
   1788     }
   1789 
   1790   if (!is_pass_two)
   1791     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
   1792 
   1793   // Handle the .eh_frame sections after the other sections.
   1794   gold_assert(!is_pass_one || eh_frame_sections.empty());
   1795   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
   1796        p != eh_frame_sections.end();
   1797        ++p)
   1798     {
   1799       unsigned int i = *p;
   1800       const unsigned char* pshdr;
   1801       pshdr = section_headers_data + i * This::shdr_size;
   1802       typename This::Shdr shdr(pshdr);
   1803 
   1804       this->layout_eh_frame_section(layout,
   1805 				    symbols_data,
   1806 				    symbols_size,
   1807 				    symbol_names_data,
   1808 				    symbol_names_size,
   1809 				    i,
   1810 				    shdr,
   1811 				    reloc_shndx[i],
   1812 				    reloc_type[i]);
   1813     }
   1814 
   1815   // When doing a relocatable link handle the reloc sections at the
   1816   // end.  Garbage collection  and Identical Code Folding is not
   1817   // turned on for relocatable code.
   1818   if (emit_relocs)
   1819     this->size_relocatable_relocs();
   1820 
   1821   gold_assert(!is_two_pass || reloc_sections.empty());
   1822 
   1823   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
   1824        p != reloc_sections.end();
   1825        ++p)
   1826     {
   1827       unsigned int i = *p;
   1828       const unsigned char* pshdr;
   1829       pshdr = section_headers_data + i * This::shdr_size;
   1830       typename This::Shdr shdr(pshdr);
   1831 
   1832       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
   1833       if (data_shndx >= shnum)
   1834 	{
   1835 	  // We already warned about this above.
   1836 	  continue;
   1837 	}
   1838 
   1839       Output_section* data_section = out_sections[data_shndx];
   1840       if (data_section == reinterpret_cast<Output_section*>(2))
   1841 	{
   1842 	  if (is_pass_two)
   1843 	    continue;
   1844 	  // The layout for the data section was deferred, so we need
   1845 	  // to defer the relocation section, too.
   1846 	  const char* name = pnames + shdr.get_sh_name();
   1847 	  this->deferred_layout_relocs_.push_back(
   1848 	      Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
   1849 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
   1850 	  out_section_offsets[i] = invalid_address;
   1851 	  continue;
   1852 	}
   1853       if (data_section == NULL)
   1854 	{
   1855 	  out_sections[i] = NULL;
   1856 	  out_section_offsets[i] = invalid_address;
   1857 	  continue;
   1858 	}
   1859 
   1860       Relocatable_relocs* rr = new Relocatable_relocs();
   1861       this->set_relocatable_relocs(i, rr);
   1862 
   1863       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
   1864 						rr);
   1865       out_sections[i] = os;
   1866       out_section_offsets[i] = invalid_address;
   1867     }
   1868 
   1869   // When building a .gdb_index section, scan the .debug_info and
   1870   // .debug_types sections.
   1871   gold_assert(!is_pass_one
   1872 	      || (debug_info_sections.empty() && debug_types_sections.empty()));
   1873   for (std::vector<unsigned int>::const_iterator p
   1874 	   = debug_info_sections.begin();
   1875        p != debug_info_sections.end();
   1876        ++p)
   1877     {
   1878       unsigned int i = *p;
   1879       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
   1880 			       i, reloc_shndx[i], reloc_type[i]);
   1881     }
   1882   for (std::vector<unsigned int>::const_iterator p
   1883 	   = debug_types_sections.begin();
   1884        p != debug_types_sections.end();
   1885        ++p)
   1886     {
   1887       unsigned int i = *p;
   1888       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
   1889 			       i, reloc_shndx[i], reloc_type[i]);
   1890     }
   1891 
   1892   if (is_pass_two)
   1893     {
   1894       delete[] gc_sd->section_headers_data;
   1895       delete[] gc_sd->section_names_data;
   1896       delete[] gc_sd->symbols_data;
   1897       delete[] gc_sd->symbol_names_data;
   1898       this->set_symbols_data(NULL);
   1899     }
   1900   else
   1901     {
   1902       delete sd->section_headers;
   1903       sd->section_headers = NULL;
   1904       delete sd->section_names;
   1905       sd->section_names = NULL;
   1906     }
   1907 }
   1908 
   1909 // Layout sections whose layout was deferred while waiting for
   1910 // input files from a plugin.
   1911 
   1912 template<int size, bool big_endian>
   1913 void
   1914 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
   1915 {
   1916   typename std::vector<Deferred_layout>::iterator deferred;
   1917 
   1918   for (deferred = this->deferred_layout_.begin();
   1919        deferred != this->deferred_layout_.end();
   1920        ++deferred)
   1921     {
   1922       typename This::Shdr shdr(deferred->shdr_data_);
   1923 
   1924       if (!parameters->options().relocatable()
   1925 	  && deferred->name_ == ".eh_frame"
   1926 	  && this->check_eh_frame_flags(&shdr))
   1927 	{
   1928 	  // Checking is_section_included is not reliable for
   1929 	  // .eh_frame sections, because they do not have an output
   1930 	  // section.  This is not a problem normally because we call
   1931 	  // layout_eh_frame_section unconditionally, but when
   1932 	  // deferring sections that is not true.  We don't want to
   1933 	  // keep all .eh_frame sections because that will cause us to
   1934 	  // keep all sections that they refer to, which is the wrong
   1935 	  // way around.  Instead, the eh_frame code will discard
   1936 	  // .eh_frame sections that refer to discarded sections.
   1937 
   1938 	  // Reading the symbols again here may be slow.
   1939 	  Read_symbols_data sd;
   1940 	  this->base_read_symbols(&sd);
   1941 	  this->layout_eh_frame_section(layout,
   1942 					sd.symbols->data(),
   1943 					sd.symbols_size,
   1944 					sd.symbol_names->data(),
   1945 					sd.symbol_names_size,
   1946 					deferred->shndx_,
   1947 					shdr,
   1948 					deferred->reloc_shndx_,
   1949 					deferred->reloc_type_);
   1950 	  continue;
   1951 	}
   1952 
   1953       // If the section is not included, it is because the garbage collector
   1954       // decided it is not needed.  Avoid reverting that decision.
   1955       if (!this->is_section_included(deferred->shndx_))
   1956 	continue;
   1957 
   1958       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
   1959 			   shdr, deferred->reloc_shndx_,
   1960 			   deferred->reloc_type_);
   1961     }
   1962 
   1963   this->deferred_layout_.clear();
   1964 
   1965   // Now handle the deferred relocation sections.
   1966 
   1967   Output_sections& out_sections(this->output_sections());
   1968   std::vector<Address>& out_section_offsets(this->section_offsets());
   1969 
   1970   for (deferred = this->deferred_layout_relocs_.begin();
   1971        deferred != this->deferred_layout_relocs_.end();
   1972        ++deferred)
   1973     {
   1974       unsigned int shndx = deferred->shndx_;
   1975       typename This::Shdr shdr(deferred->shdr_data_);
   1976       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
   1977 
   1978       Output_section* data_section = out_sections[data_shndx];
   1979       if (data_section == NULL)
   1980 	{
   1981 	  out_sections[shndx] = NULL;
   1982 	  out_section_offsets[shndx] = invalid_address;
   1983 	  continue;
   1984 	}
   1985 
   1986       Relocatable_relocs* rr = new Relocatable_relocs();
   1987       this->set_relocatable_relocs(shndx, rr);
   1988 
   1989       Output_section* os = layout->layout_reloc(this, shndx, shdr,
   1990 						data_section, rr);
   1991       out_sections[shndx] = os;
   1992       out_section_offsets[shndx] = invalid_address;
   1993     }
   1994 }
   1995 
   1996 // Add the symbols to the symbol table.
   1997 
   1998 template<int size, bool big_endian>
   1999 void
   2000 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
   2001 						    Read_symbols_data* sd,
   2002 						    Layout*)
   2003 {
   2004   if (sd->symbols == NULL)
   2005     {
   2006       gold_assert(sd->symbol_names == NULL);
   2007       return;
   2008     }
   2009 
   2010   const int sym_size = This::sym_size;
   2011   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
   2012 		     / sym_size);
   2013   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
   2014     {
   2015       this->error(_("size of symbols is not multiple of symbol size"));
   2016       return;
   2017     }
   2018 
   2019   this->symbols_.resize(symcount);
   2020 
   2021   const char* sym_names =
   2022     reinterpret_cast<const char*>(sd->symbol_names->data());
   2023   symtab->add_from_relobj(this,
   2024 			  sd->symbols->data() + sd->external_symbols_offset,
   2025 			  symcount, this->local_symbol_count_,
   2026 			  sym_names, sd->symbol_names_size,
   2027 			  &this->symbols_,
   2028 			  &this->defined_count_);
   2029 
   2030   delete sd->symbols;
   2031   sd->symbols = NULL;
   2032   delete sd->symbol_names;
   2033   sd->symbol_names = NULL;
   2034 }
   2035 
   2036 // Find out if this object, that is a member of a lib group, should be included
   2037 // in the link. We check every symbol defined by this object. If the symbol
   2038 // table has a strong undefined reference to that symbol, we have to include
   2039 // the object.
   2040 
   2041 template<int size, bool big_endian>
   2042 Archive::Should_include
   2043 Sized_relobj_file<size, big_endian>::do_should_include_member(
   2044     Symbol_table* symtab,
   2045     Layout* layout,
   2046     Read_symbols_data* sd,
   2047     std::string* why)
   2048 {
   2049   char* tmpbuf = NULL;
   2050   size_t tmpbuflen = 0;
   2051   const char* sym_names =
   2052       reinterpret_cast<const char*>(sd->symbol_names->data());
   2053   const unsigned char* syms =
   2054       sd->symbols->data() + sd->external_symbols_offset;
   2055   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   2056   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
   2057 			 / sym_size);
   2058 
   2059   const unsigned char* p = syms;
   2060 
   2061   for (size_t i = 0; i < symcount; ++i, p += sym_size)
   2062     {
   2063       elfcpp::Sym<size, big_endian> sym(p);
   2064       unsigned int st_shndx = sym.get_st_shndx();
   2065       if (st_shndx == elfcpp::SHN_UNDEF)
   2066 	continue;
   2067 
   2068       unsigned int st_name = sym.get_st_name();
   2069       const char* name = sym_names + st_name;
   2070       Symbol* symbol;
   2071       Archive::Should_include t = Archive::should_include_member(symtab,
   2072 								 layout,
   2073 								 name,
   2074 								 &symbol, why,
   2075 								 &tmpbuf,
   2076 								 &tmpbuflen);
   2077       if (t == Archive::SHOULD_INCLUDE_YES)
   2078 	{
   2079 	  if (tmpbuf != NULL)
   2080 	    free(tmpbuf);
   2081 	  return t;
   2082 	}
   2083     }
   2084   if (tmpbuf != NULL)
   2085     free(tmpbuf);
   2086   return Archive::SHOULD_INCLUDE_UNKNOWN;
   2087 }
   2088 
   2089 // Iterate over global defined symbols, calling a visitor class V for each.
   2090 
   2091 template<int size, bool big_endian>
   2092 void
   2093 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
   2094     Read_symbols_data* sd,
   2095     Library_base::Symbol_visitor_base* v)
   2096 {
   2097   const char* sym_names =
   2098       reinterpret_cast<const char*>(sd->symbol_names->data());
   2099   const unsigned char* syms =
   2100       sd->symbols->data() + sd->external_symbols_offset;
   2101   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   2102   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
   2103 		     / sym_size);
   2104   const unsigned char* p = syms;
   2105 
   2106   for (size_t i = 0; i < symcount; ++i, p += sym_size)
   2107     {
   2108       elfcpp::Sym<size, big_endian> sym(p);
   2109       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
   2110 	v->visit(sym_names + sym.get_st_name());
   2111     }
   2112 }
   2113 
   2114 // Return whether the local symbol SYMNDX has a PLT offset.
   2115 
   2116 template<int size, bool big_endian>
   2117 bool
   2118 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
   2119     unsigned int symndx) const
   2120 {
   2121   typename Local_plt_offsets::const_iterator p =
   2122     this->local_plt_offsets_.find(symndx);
   2123   return p != this->local_plt_offsets_.end();
   2124 }
   2125 
   2126 // Get the PLT offset of a local symbol.
   2127 
   2128 template<int size, bool big_endian>
   2129 unsigned int
   2130 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
   2131     unsigned int symndx) const
   2132 {
   2133   typename Local_plt_offsets::const_iterator p =
   2134     this->local_plt_offsets_.find(symndx);
   2135   gold_assert(p != this->local_plt_offsets_.end());
   2136   return p->second;
   2137 }
   2138 
   2139 // Set the PLT offset of a local symbol.
   2140 
   2141 template<int size, bool big_endian>
   2142 void
   2143 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
   2144     unsigned int symndx, unsigned int plt_offset)
   2145 {
   2146   std::pair<typename Local_plt_offsets::iterator, bool> ins =
   2147     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
   2148   gold_assert(ins.second);
   2149 }
   2150 
   2151 // First pass over the local symbols.  Here we add their names to
   2152 // *POOL and *DYNPOOL, and we store the symbol value in
   2153 // THIS->LOCAL_VALUES_.  This function is always called from a
   2154 // singleton thread.  This is followed by a call to
   2155 // finalize_local_symbols.
   2156 
   2157 template<int size, bool big_endian>
   2158 void
   2159 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
   2160 							    Stringpool* dynpool)
   2161 {
   2162   gold_assert(this->symtab_shndx_ != -1U);
   2163   if (this->symtab_shndx_ == 0)
   2164     {
   2165       // This object has no symbols.  Weird but legal.
   2166       return;
   2167     }
   2168 
   2169   // Read the symbol table section header.
   2170   const unsigned int symtab_shndx = this->symtab_shndx_;
   2171   typename This::Shdr symtabshdr(this,
   2172 				 this->elf_file_.section_header(symtab_shndx));
   2173   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
   2174 
   2175   // Read the local symbols.
   2176   const int sym_size = This::sym_size;
   2177   const unsigned int loccount = this->local_symbol_count_;
   2178   gold_assert(loccount == symtabshdr.get_sh_info());
   2179   off_t locsize = loccount * sym_size;
   2180   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
   2181 					      locsize, true, true);
   2182 
   2183   // Read the symbol names.
   2184   const unsigned int strtab_shndx =
   2185     this->adjust_shndx(symtabshdr.get_sh_link());
   2186   section_size_type strtab_size;
   2187   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
   2188 							&strtab_size,
   2189 							true);
   2190   const char* pnames = reinterpret_cast<const char*>(pnamesu);
   2191 
   2192   // Loop over the local symbols.
   2193 
   2194   const Output_sections& out_sections(this->output_sections());
   2195   std::vector<Address>& out_section_offsets(this->section_offsets());
   2196   unsigned int shnum = this->shnum();
   2197   unsigned int count = 0;
   2198   unsigned int dyncount = 0;
   2199   // Skip the first, dummy, symbol.
   2200   psyms += sym_size;
   2201   bool strip_all = parameters->options().strip_all();
   2202   bool discard_all = parameters->options().discard_all();
   2203   bool discard_locals = parameters->options().discard_locals();
   2204   bool discard_sec_merge = parameters->options().discard_sec_merge();
   2205   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   2206     {
   2207       elfcpp::Sym<size, big_endian> sym(psyms);
   2208 
   2209       Symbol_value<size>& lv(this->local_values_[i]);
   2210 
   2211       bool is_ordinary;
   2212       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
   2213 						  &is_ordinary);
   2214       lv.set_input_shndx(shndx, is_ordinary);
   2215 
   2216       if (sym.get_st_type() == elfcpp::STT_SECTION)
   2217 	lv.set_is_section_symbol();
   2218       else if (sym.get_st_type() == elfcpp::STT_TLS)
   2219 	lv.set_is_tls_symbol();
   2220       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
   2221 	lv.set_is_ifunc_symbol();
   2222 
   2223       // Save the input symbol value for use in do_finalize_local_symbols().
   2224       lv.set_input_value(sym.get_st_value());
   2225 
   2226       // Decide whether this symbol should go into the output file.
   2227 
   2228       if ((shndx < shnum && out_sections[shndx] == NULL)
   2229 	  || shndx == this->discarded_eh_frame_shndx_)
   2230 	{
   2231 	  lv.set_no_output_symtab_entry();
   2232 	  gold_assert(!lv.needs_output_dynsym_entry());
   2233 	  continue;
   2234 	}
   2235 
   2236       if (sym.get_st_type() == elfcpp::STT_SECTION
   2237 	  || !this->adjust_local_symbol(&lv))
   2238 	{
   2239 	  lv.set_no_output_symtab_entry();
   2240 	  gold_assert(!lv.needs_output_dynsym_entry());
   2241 	  continue;
   2242 	}
   2243 
   2244       if (sym.get_st_name() >= strtab_size)
   2245 	{
   2246 	  this->error(_("local symbol %u section name out of range: %u >= %u"),
   2247 		      i, sym.get_st_name(),
   2248 		      static_cast<unsigned int>(strtab_size));
   2249 	  lv.set_no_output_symtab_entry();
   2250 	  continue;
   2251 	}
   2252 
   2253       const char* name = pnames + sym.get_st_name();
   2254 
   2255       // If needed, add the symbol to the dynamic symbol table string pool.
   2256       if (lv.needs_output_dynsym_entry())
   2257 	{
   2258 	  dynpool->add(name, true, NULL);
   2259 	  ++dyncount;
   2260 	}
   2261 
   2262       if (strip_all
   2263 	  || (discard_all && lv.may_be_discarded_from_output_symtab()))
   2264 	{
   2265 	  lv.set_no_output_symtab_entry();
   2266 	  continue;
   2267 	}
   2268 
   2269       // By default, discard temporary local symbols in merge sections.
   2270       // If --discard-locals option is used, discard all temporary local
   2271       // symbols.  These symbols start with system-specific local label
   2272       // prefixes, typically .L for ELF system.  We want to be compatible
   2273       // with GNU ld so here we essentially use the same check in
   2274       // bfd_is_local_label().  The code is different because we already
   2275       // know that:
   2276       //
   2277       //   - the symbol is local and thus cannot have global or weak binding.
   2278       //   - the symbol is not a section symbol.
   2279       //   - the symbol has a name.
   2280       //
   2281       // We do not discard a symbol if it needs a dynamic symbol entry.
   2282       if ((discard_locals
   2283 	   || (discard_sec_merge
   2284 	       && is_ordinary
   2285 	       && out_section_offsets[shndx] == invalid_address))
   2286 	  && sym.get_st_type() != elfcpp::STT_FILE
   2287 	  && !lv.needs_output_dynsym_entry()
   2288 	  && lv.may_be_discarded_from_output_symtab()
   2289 	  && parameters->target().is_local_label_name(name))
   2290 	{
   2291 	  lv.set_no_output_symtab_entry();
   2292 	  continue;
   2293 	}
   2294 
   2295       // Discard the local symbol if -retain_symbols_file is specified
   2296       // and the local symbol is not in that file.
   2297       if (!parameters->options().should_retain_symbol(name))
   2298 	{
   2299 	  lv.set_no_output_symtab_entry();
   2300 	  continue;
   2301 	}
   2302 
   2303       // Add the symbol to the symbol table string pool.
   2304       pool->add(name, true, NULL);
   2305       ++count;
   2306     }
   2307 
   2308   this->output_local_symbol_count_ = count;
   2309   this->output_local_dynsym_count_ = dyncount;
   2310 }
   2311 
   2312 // Compute the final value of a local symbol.
   2313 
   2314 template<int size, bool big_endian>
   2315 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
   2316 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
   2317     unsigned int r_sym,
   2318     const Symbol_value<size>* lv_in,
   2319     Symbol_value<size>* lv_out,
   2320     bool relocatable,
   2321     const Output_sections& out_sections,
   2322     const std::vector<Address>& out_offsets,
   2323     const Symbol_table* symtab)
   2324 {
   2325   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
   2326   // we may have a memory leak.
   2327   gold_assert(lv_out->has_output_value());
   2328 
   2329   bool is_ordinary;
   2330   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
   2331 
   2332   // Set the output symbol value.
   2333 
   2334   if (!is_ordinary)
   2335     {
   2336       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
   2337 	lv_out->set_output_value(lv_in->input_value());
   2338       else
   2339 	{
   2340 	  this->error(_("unknown section index %u for local symbol %u"),
   2341 		      shndx, r_sym);
   2342 	  lv_out->set_output_value(0);
   2343 	  return This::CFLV_ERROR;
   2344 	}
   2345     }
   2346   else
   2347     {
   2348       if (shndx >= this->shnum())
   2349 	{
   2350 	  this->error(_("local symbol %u section index %u out of range"),
   2351 		      r_sym, shndx);
   2352 	  lv_out->set_output_value(0);
   2353 	  return This::CFLV_ERROR;
   2354 	}
   2355 
   2356       Output_section* os = out_sections[shndx];
   2357       Address secoffset = out_offsets[shndx];
   2358       if (symtab->is_section_folded(this, shndx))
   2359 	{
   2360 	  gold_assert(os == NULL && secoffset == invalid_address);
   2361 	  // Get the os of the section it is folded onto.
   2362 	  Section_id folded = symtab->icf()->get_folded_section(this,
   2363 								shndx);
   2364 	  gold_assert(folded.first != NULL);
   2365 	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
   2366 	    <Sized_relobj_file<size, big_endian>*>(folded.first);
   2367 	  os = folded_obj->output_section(folded.second);
   2368 	  gold_assert(os != NULL);
   2369 	  secoffset = folded_obj->get_output_section_offset(folded.second);
   2370 
   2371 	  // This could be a relaxed input section.
   2372 	  if (secoffset == invalid_address)
   2373 	    {
   2374 	      const Output_relaxed_input_section* relaxed_section =
   2375 		os->find_relaxed_input_section(folded_obj, folded.second);
   2376 	      gold_assert(relaxed_section != NULL);
   2377 	      secoffset = relaxed_section->address() - os->address();
   2378 	    }
   2379 	}
   2380 
   2381       if (os == NULL)
   2382 	{
   2383 	  // This local symbol belongs to a section we are discarding.
   2384 	  // In some cases when applying relocations later, we will
   2385 	  // attempt to match it to the corresponding kept section,
   2386 	  // so we leave the input value unchanged here.
   2387 	  return This::CFLV_DISCARDED;
   2388 	}
   2389       else if (secoffset == invalid_address)
   2390 	{
   2391 	  uint64_t start;
   2392 
   2393 	  // This is a SHF_MERGE section or one which otherwise
   2394 	  // requires special handling.
   2395 	  if (shndx == this->discarded_eh_frame_shndx_)
   2396 	    {
   2397 	      // This local symbol belongs to a discarded .eh_frame
   2398 	      // section.  Just treat it like the case in which
   2399 	      // os == NULL above.
   2400 	      gold_assert(this->has_eh_frame_);
   2401 	      return This::CFLV_DISCARDED;
   2402 	    }
   2403 	  else if (!lv_in->is_section_symbol())
   2404 	    {
   2405 	      // This is not a section symbol.  We can determine
   2406 	      // the final value now.
   2407 	      lv_out->set_output_value(
   2408 		  os->output_address(this, shndx, lv_in->input_value()));
   2409 	    }
   2410 	  else if (!os->find_starting_output_address(this, shndx, &start))
   2411 	    {
   2412 	      // This is a section symbol, but apparently not one in a
   2413 	      // merged section.  First check to see if this is a relaxed
   2414 	      // input section.  If so, use its address.  Otherwise just
   2415 	      // use the start of the output section.  This happens with
   2416 	      // relocatable links when the input object has section
   2417 	      // symbols for arbitrary non-merge sections.
   2418 	      const Output_section_data* posd =
   2419 		os->find_relaxed_input_section(this, shndx);
   2420 	      if (posd != NULL)
   2421 		{
   2422 		  Address relocatable_link_adjustment =
   2423 		    relocatable ? os->address() : 0;
   2424 		  lv_out->set_output_value(posd->address()
   2425 					   - relocatable_link_adjustment);
   2426 		}
   2427 	      else
   2428 		lv_out->set_output_value(os->address());
   2429 	    }
   2430 	  else
   2431 	    {
   2432 	      // We have to consider the addend to determine the
   2433 	      // value to use in a relocation.  START is the start
   2434 	      // of this input section.  If we are doing a relocatable
   2435 	      // link, use offset from start output section instead of
   2436 	      // address.
   2437 	      Address adjusted_start =
   2438 		relocatable ? start - os->address() : start;
   2439 	      Merged_symbol_value<size>* msv =
   2440 		new Merged_symbol_value<size>(lv_in->input_value(),
   2441 					      adjusted_start);
   2442 	      lv_out->set_merged_symbol_value(msv);
   2443 	    }
   2444 	}
   2445       else if (lv_in->is_tls_symbol()
   2446                || (lv_in->is_section_symbol()
   2447                    && (os->flags() & elfcpp::SHF_TLS)))
   2448 	lv_out->set_output_value(os->tls_offset()
   2449 				 + secoffset
   2450 				 + lv_in->input_value());
   2451       else
   2452 	lv_out->set_output_value((relocatable ? 0 : os->address())
   2453 				 + secoffset
   2454 				 + lv_in->input_value());
   2455     }
   2456   return This::CFLV_OK;
   2457 }
   2458 
   2459 // Compute final local symbol value.  R_SYM is the index of a local
   2460 // symbol in symbol table.  LV points to a symbol value, which is
   2461 // expected to hold the input value and to be over-written by the
   2462 // final value.  SYMTAB points to a symbol table.  Some targets may want
   2463 // to know would-be-finalized local symbol values in relaxation.
   2464 // Hence we provide this method.  Since this method updates *LV, a
   2465 // callee should make a copy of the original local symbol value and
   2466 // use the copy instead of modifying an object's local symbols before
   2467 // everything is finalized.  The caller should also free up any allocated
   2468 // memory in the return value in *LV.
   2469 template<int size, bool big_endian>
   2470 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
   2471 Sized_relobj_file<size, big_endian>::compute_final_local_value(
   2472     unsigned int r_sym,
   2473     const Symbol_value<size>* lv_in,
   2474     Symbol_value<size>* lv_out,
   2475     const Symbol_table* symtab)
   2476 {
   2477   // This is just a wrapper of compute_final_local_value_internal.
   2478   const bool relocatable = parameters->options().relocatable();
   2479   const Output_sections& out_sections(this->output_sections());
   2480   const std::vector<Address>& out_offsets(this->section_offsets());
   2481   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
   2482 						  relocatable, out_sections,
   2483 						  out_offsets, symtab);
   2484 }
   2485 
   2486 // Finalize the local symbols.  Here we set the final value in
   2487 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
   2488 // This function is always called from a singleton thread.  The actual
   2489 // output of the local symbols will occur in a separate task.
   2490 
   2491 template<int size, bool big_endian>
   2492 unsigned int
   2493 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
   2494     unsigned int index,
   2495     off_t off,
   2496     Symbol_table* symtab)
   2497 {
   2498   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
   2499 
   2500   const unsigned int loccount = this->local_symbol_count_;
   2501   this->local_symbol_offset_ = off;
   2502 
   2503   const bool relocatable = parameters->options().relocatable();
   2504   const Output_sections& out_sections(this->output_sections());
   2505   const std::vector<Address>& out_offsets(this->section_offsets());
   2506 
   2507   for (unsigned int i = 1; i < loccount; ++i)
   2508     {
   2509       Symbol_value<size>* lv = &this->local_values_[i];
   2510 
   2511       Compute_final_local_value_status cflv_status =
   2512 	this->compute_final_local_value_internal(i, lv, lv, relocatable,
   2513 						 out_sections, out_offsets,
   2514 						 symtab);
   2515       switch (cflv_status)
   2516 	{
   2517 	case CFLV_OK:
   2518 	  if (!lv->is_output_symtab_index_set())
   2519 	    {
   2520 	      lv->set_output_symtab_index(index);
   2521 	      ++index;
   2522 	    }
   2523 	  break;
   2524 	case CFLV_DISCARDED:
   2525 	case CFLV_ERROR:
   2526 	  // Do nothing.
   2527 	  break;
   2528 	default:
   2529 	  gold_unreachable();
   2530 	}
   2531     }
   2532   return index;
   2533 }
   2534 
   2535 // Set the output dynamic symbol table indexes for the local variables.
   2536 
   2537 template<int size, bool big_endian>
   2538 unsigned int
   2539 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
   2540     unsigned int index)
   2541 {
   2542   const unsigned int loccount = this->local_symbol_count_;
   2543   for (unsigned int i = 1; i < loccount; ++i)
   2544     {
   2545       Symbol_value<size>& lv(this->local_values_[i]);
   2546       if (lv.needs_output_dynsym_entry())
   2547 	{
   2548 	  lv.set_output_dynsym_index(index);
   2549 	  ++index;
   2550 	}
   2551     }
   2552   return index;
   2553 }
   2554 
   2555 // Set the offset where local dynamic symbol information will be stored.
   2556 // Returns the count of local symbols contributed to the symbol table by
   2557 // this object.
   2558 
   2559 template<int size, bool big_endian>
   2560 unsigned int
   2561 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
   2562 {
   2563   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
   2564   this->local_dynsym_offset_ = off;
   2565   return this->output_local_dynsym_count_;
   2566 }
   2567 
   2568 // If Symbols_data is not NULL get the section flags from here otherwise
   2569 // get it from the file.
   2570 
   2571 template<int size, bool big_endian>
   2572 uint64_t
   2573 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
   2574 {
   2575   Symbols_data* sd = this->get_symbols_data();
   2576   if (sd != NULL)
   2577     {
   2578       const unsigned char* pshdrs = sd->section_headers_data
   2579 				    + This::shdr_size * shndx;
   2580       typename This::Shdr shdr(pshdrs);
   2581       return shdr.get_sh_flags();
   2582     }
   2583   // If sd is NULL, read the section header from the file.
   2584   return this->elf_file_.section_flags(shndx);
   2585 }
   2586 
   2587 // Get the section's ent size from Symbols_data.  Called by get_section_contents
   2588 // in icf.cc
   2589 
   2590 template<int size, bool big_endian>
   2591 uint64_t
   2592 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
   2593 {
   2594   Symbols_data* sd = this->get_symbols_data();
   2595   gold_assert(sd != NULL);
   2596 
   2597   const unsigned char* pshdrs = sd->section_headers_data
   2598 				+ This::shdr_size * shndx;
   2599   typename This::Shdr shdr(pshdrs);
   2600   return shdr.get_sh_entsize();
   2601 }
   2602 
   2603 // Write out the local symbols.
   2604 
   2605 template<int size, bool big_endian>
   2606 void
   2607 Sized_relobj_file<size, big_endian>::write_local_symbols(
   2608     Output_file* of,
   2609     const Stringpool* sympool,
   2610     const Stringpool* dynpool,
   2611     Output_symtab_xindex* symtab_xindex,
   2612     Output_symtab_xindex* dynsym_xindex,
   2613     off_t symtab_off)
   2614 {
   2615   const bool strip_all = parameters->options().strip_all();
   2616   if (strip_all)
   2617     {
   2618       if (this->output_local_dynsym_count_ == 0)
   2619 	return;
   2620       this->output_local_symbol_count_ = 0;
   2621     }
   2622 
   2623   gold_assert(this->symtab_shndx_ != -1U);
   2624   if (this->symtab_shndx_ == 0)
   2625     {
   2626       // This object has no symbols.  Weird but legal.
   2627       return;
   2628     }
   2629 
   2630   // Read the symbol table section header.
   2631   const unsigned int symtab_shndx = this->symtab_shndx_;
   2632   typename This::Shdr symtabshdr(this,
   2633 				 this->elf_file_.section_header(symtab_shndx));
   2634   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
   2635   const unsigned int loccount = this->local_symbol_count_;
   2636   gold_assert(loccount == symtabshdr.get_sh_info());
   2637 
   2638   // Read the local symbols.
   2639   const int sym_size = This::sym_size;
   2640   off_t locsize = loccount * sym_size;
   2641   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
   2642 					      locsize, true, false);
   2643 
   2644   // Read the symbol names.
   2645   const unsigned int strtab_shndx =
   2646     this->adjust_shndx(symtabshdr.get_sh_link());
   2647   section_size_type strtab_size;
   2648   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
   2649 							&strtab_size,
   2650 							false);
   2651   const char* pnames = reinterpret_cast<const char*>(pnamesu);
   2652 
   2653   // Get views into the output file for the portions of the symbol table
   2654   // and the dynamic symbol table that we will be writing.
   2655   off_t output_size = this->output_local_symbol_count_ * sym_size;
   2656   unsigned char* oview = NULL;
   2657   if (output_size > 0)
   2658     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
   2659 				output_size);
   2660 
   2661   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
   2662   unsigned char* dyn_oview = NULL;
   2663   if (dyn_output_size > 0)
   2664     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
   2665 				    dyn_output_size);
   2666 
   2667   const Output_sections& out_sections(this->output_sections());
   2668 
   2669   gold_assert(this->local_values_.size() == loccount);
   2670 
   2671   unsigned char* ov = oview;
   2672   unsigned char* dyn_ov = dyn_oview;
   2673   psyms += sym_size;
   2674   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   2675     {
   2676       elfcpp::Sym<size, big_endian> isym(psyms);
   2677 
   2678       Symbol_value<size>& lv(this->local_values_[i]);
   2679       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = lv.value(this, 0);
   2680 
   2681       bool is_ordinary;
   2682       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
   2683 						     &is_ordinary);
   2684       if (is_ordinary)
   2685 	{
   2686 	  gold_assert(st_shndx < out_sections.size());
   2687 	  if (out_sections[st_shndx] == NULL)
   2688 	    continue;
   2689 	  // In relocatable object files symbol values are section relative.
   2690 	  if (parameters->options().relocatable())
   2691 	    sym_value -= out_sections[st_shndx]->address();
   2692 	  st_shndx = out_sections[st_shndx]->out_shndx();
   2693 	  if (st_shndx >= elfcpp::SHN_LORESERVE)
   2694 	    {
   2695 	      if (lv.has_output_symtab_entry())
   2696 		symtab_xindex->add(lv.output_symtab_index(), st_shndx);
   2697 	      if (lv.has_output_dynsym_entry())
   2698 		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
   2699 	      st_shndx = elfcpp::SHN_XINDEX;
   2700 	    }
   2701 	}
   2702 
   2703       // Write the symbol to the output symbol table.
   2704       if (lv.has_output_symtab_entry())
   2705 	{
   2706 	  elfcpp::Sym_write<size, big_endian> osym(ov);
   2707 
   2708 	  gold_assert(isym.get_st_name() < strtab_size);
   2709 	  const char* name = pnames + isym.get_st_name();
   2710 	  osym.put_st_name(sympool->get_offset(name));
   2711 	  osym.put_st_value(sym_value);
   2712 	  osym.put_st_size(isym.get_st_size());
   2713 	  osym.put_st_info(isym.get_st_info());
   2714 	  osym.put_st_other(isym.get_st_other());
   2715 	  osym.put_st_shndx(st_shndx);
   2716 
   2717 	  ov += sym_size;
   2718 	}
   2719 
   2720       // Write the symbol to the output dynamic symbol table.
   2721       if (lv.has_output_dynsym_entry())
   2722 	{
   2723 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
   2724 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
   2725 
   2726 	  gold_assert(isym.get_st_name() < strtab_size);
   2727 	  const char* name = pnames + isym.get_st_name();
   2728 	  osym.put_st_name(dynpool->get_offset(name));
   2729 	  osym.put_st_value(sym_value);
   2730 	  osym.put_st_size(isym.get_st_size());
   2731 	  osym.put_st_info(isym.get_st_info());
   2732 	  osym.put_st_other(isym.get_st_other());
   2733 	  osym.put_st_shndx(st_shndx);
   2734 
   2735 	  dyn_ov += sym_size;
   2736 	}
   2737     }
   2738 
   2739 
   2740   if (output_size > 0)
   2741     {
   2742       gold_assert(ov - oview == output_size);
   2743       of->write_output_view(symtab_off + this->local_symbol_offset_,
   2744 			    output_size, oview);
   2745     }
   2746 
   2747   if (dyn_output_size > 0)
   2748     {
   2749       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
   2750       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
   2751 			    dyn_oview);
   2752     }
   2753 }
   2754 
   2755 // Set *INFO to symbolic information about the offset OFFSET in the
   2756 // section SHNDX.  Return true if we found something, false if we
   2757 // found nothing.
   2758 
   2759 template<int size, bool big_endian>
   2760 bool
   2761 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
   2762     unsigned int shndx,
   2763     off_t offset,
   2764     Symbol_location_info* info)
   2765 {
   2766   if (this->symtab_shndx_ == 0)
   2767     return false;
   2768 
   2769   section_size_type symbols_size;
   2770   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
   2771 							&symbols_size,
   2772 							false);
   2773 
   2774   unsigned int symbol_names_shndx =
   2775     this->adjust_shndx(this->section_link(this->symtab_shndx_));
   2776   section_size_type names_size;
   2777   const unsigned char* symbol_names_u =
   2778     this->section_contents(symbol_names_shndx, &names_size, false);
   2779   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
   2780 
   2781   const int sym_size = This::sym_size;
   2782   const size_t count = symbols_size / sym_size;
   2783 
   2784   const unsigned char* p = symbols;
   2785   for (size_t i = 0; i < count; ++i, p += sym_size)
   2786     {
   2787       elfcpp::Sym<size, big_endian> sym(p);
   2788 
   2789       if (sym.get_st_type() == elfcpp::STT_FILE)
   2790 	{
   2791 	  if (sym.get_st_name() >= names_size)
   2792 	    info->source_file = "(invalid)";
   2793 	  else
   2794 	    info->source_file = symbol_names + sym.get_st_name();
   2795 	  continue;
   2796 	}
   2797 
   2798       bool is_ordinary;
   2799       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
   2800 						     &is_ordinary);
   2801       if (is_ordinary
   2802 	  && st_shndx == shndx
   2803 	  && static_cast<off_t>(sym.get_st_value()) <= offset
   2804 	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
   2805 	      > offset))
   2806 	{
   2807 	  info->enclosing_symbol_type = sym.get_st_type();
   2808 	  if (sym.get_st_name() > names_size)
   2809 	    info->enclosing_symbol_name = "(invalid)";
   2810 	  else
   2811 	    {
   2812 	      info->enclosing_symbol_name = symbol_names + sym.get_st_name();
   2813 	      if (parameters->options().do_demangle())
   2814 		{
   2815 		  char* demangled_name = cplus_demangle(
   2816 		      info->enclosing_symbol_name.c_str(),
   2817 		      DMGL_ANSI | DMGL_PARAMS);
   2818 		  if (demangled_name != NULL)
   2819 		    {
   2820 		      info->enclosing_symbol_name.assign(demangled_name);
   2821 		      free(demangled_name);
   2822 		    }
   2823 		}
   2824 	    }
   2825 	  return true;
   2826 	}
   2827     }
   2828 
   2829   return false;
   2830 }
   2831 
   2832 // Look for a kept section corresponding to the given discarded section,
   2833 // and return its output address.  This is used only for relocations in
   2834 // debugging sections.  If we can't find the kept section, return 0.
   2835 
   2836 template<int size, bool big_endian>
   2837 typename Sized_relobj_file<size, big_endian>::Address
   2838 Sized_relobj_file<size, big_endian>::map_to_kept_section(
   2839     unsigned int shndx,
   2840     bool* found) const
   2841 {
   2842   Relobj* kept_object;
   2843   unsigned int kept_shndx;
   2844   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
   2845     {
   2846       Sized_relobj_file<size, big_endian>* kept_relobj =
   2847 	static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
   2848       Output_section* os = kept_relobj->output_section(kept_shndx);
   2849       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
   2850       if (os != NULL && offset != invalid_address)
   2851 	{
   2852 	  *found = true;
   2853 	  return os->address() + offset;
   2854 	}
   2855     }
   2856   *found = false;
   2857   return 0;
   2858 }
   2859 
   2860 // Get symbol counts.
   2861 
   2862 template<int size, bool big_endian>
   2863 void
   2864 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
   2865     const Symbol_table*,
   2866     size_t* defined,
   2867     size_t* used) const
   2868 {
   2869   *defined = this->defined_count_;
   2870   size_t count = 0;
   2871   for (typename Symbols::const_iterator p = this->symbols_.begin();
   2872        p != this->symbols_.end();
   2873        ++p)
   2874     if (*p != NULL
   2875 	&& (*p)->source() == Symbol::FROM_OBJECT
   2876 	&& (*p)->object() == this
   2877 	&& (*p)->is_defined())
   2878       ++count;
   2879   *used = count;
   2880 }
   2881 
   2882 // Return a view of the decompressed contents of a section.  Set *PLEN
   2883 // to the size.  Set *IS_NEW to true if the contents need to be freed
   2884 // by the caller.
   2885 
   2886 const unsigned char*
   2887 Object::decompressed_section_contents(
   2888     unsigned int shndx,
   2889     section_size_type* plen,
   2890     bool* is_new)
   2891 {
   2892   section_size_type buffer_size;
   2893   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
   2894 							  false);
   2895 
   2896   if (this->compressed_sections_ == NULL)
   2897     {
   2898       *plen = buffer_size;
   2899       *is_new = false;
   2900       return buffer;
   2901     }
   2902 
   2903   Compressed_section_map::const_iterator p =
   2904       this->compressed_sections_->find(shndx);
   2905   if (p == this->compressed_sections_->end())
   2906     {
   2907       *plen = buffer_size;
   2908       *is_new = false;
   2909       return buffer;
   2910     }
   2911 
   2912   section_size_type uncompressed_size = p->second.size;
   2913   if (p->second.contents != NULL)
   2914     {
   2915       *plen = uncompressed_size;
   2916       *is_new = false;
   2917       return p->second.contents;
   2918     }
   2919 
   2920   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
   2921   if (!decompress_input_section(buffer,
   2922 				buffer_size,
   2923 				uncompressed_data,
   2924 				uncompressed_size,
   2925 				elfsize(),
   2926 				is_big_endian(),
   2927 				p->second.flag))
   2928     this->error(_("could not decompress section %s"),
   2929 		this->do_section_name(shndx).c_str());
   2930 
   2931   // We could cache the results in p->second.contents and store
   2932   // false in *IS_NEW, but build_compressed_section_map() would
   2933   // have done so if it had expected it to be profitable.  If
   2934   // we reach this point, we expect to need the contents only
   2935   // once in this pass.
   2936   *plen = uncompressed_size;
   2937   *is_new = true;
   2938   return uncompressed_data;
   2939 }
   2940 
   2941 // Discard any buffers of uncompressed sections.  This is done
   2942 // at the end of the Add_symbols task.
   2943 
   2944 void
   2945 Object::discard_decompressed_sections()
   2946 {
   2947   if (this->compressed_sections_ == NULL)
   2948     return;
   2949 
   2950   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
   2951        p != this->compressed_sections_->end();
   2952        ++p)
   2953     {
   2954       if (p->second.contents != NULL)
   2955 	{
   2956 	  delete[] p->second.contents;
   2957 	  p->second.contents = NULL;
   2958 	}
   2959     }
   2960 }
   2961 
   2962 // Input_objects methods.
   2963 
   2964 // Add a regular relocatable object to the list.  Return false if this
   2965 // object should be ignored.
   2966 
   2967 bool
   2968 Input_objects::add_object(Object* obj)
   2969 {
   2970   // Print the filename if the -t/--trace option is selected.
   2971   if (parameters->options().trace())
   2972     gold_info("%s", obj->name().c_str());
   2973 
   2974   if (!obj->is_dynamic())
   2975     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
   2976   else
   2977     {
   2978       // See if this is a duplicate SONAME.
   2979       Dynobj* dynobj = static_cast<Dynobj*>(obj);
   2980       const char* soname = dynobj->soname();
   2981 
   2982       Unordered_map<std::string, Object*>::value_type val(soname, obj);
   2983       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
   2984 	this->sonames_.insert(val);
   2985       if (!ins.second)
   2986 	{
   2987 	  // We have already seen a dynamic object with this soname.
   2988 	  // If any instances of this object on the command line have
   2989 	  // the --no-as-needed flag, make sure the one we keep is
   2990 	  // marked so.
   2991 	  if (!obj->as_needed())
   2992 	    {
   2993 	      gold_assert(ins.first->second != NULL);
   2994 	      ins.first->second->clear_as_needed();
   2995 	    }
   2996 	  return false;
   2997 	}
   2998 
   2999       this->dynobj_list_.push_back(dynobj);
   3000     }
   3001 
   3002   // Add this object to the cross-referencer if requested.
   3003   if (parameters->options().user_set_print_symbol_counts()
   3004       || parameters->options().cref())
   3005     {
   3006       if (this->cref_ == NULL)
   3007 	this->cref_ = new Cref();
   3008       this->cref_->add_object(obj);
   3009     }
   3010 
   3011   return true;
   3012 }
   3013 
   3014 // For each dynamic object, record whether we've seen all of its
   3015 // explicit dependencies.
   3016 
   3017 void
   3018 Input_objects::check_dynamic_dependencies() const
   3019 {
   3020   bool issued_copy_dt_needed_error = false;
   3021   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
   3022        p != this->dynobj_list_.end();
   3023        ++p)
   3024     {
   3025       const Dynobj::Needed& needed((*p)->needed());
   3026       bool found_all = true;
   3027       Dynobj::Needed::const_iterator pneeded;
   3028       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
   3029 	{
   3030 	  if (this->sonames_.find(*pneeded) == this->sonames_.end())
   3031 	    {
   3032 	      found_all = false;
   3033 	      break;
   3034 	    }
   3035 	}
   3036       (*p)->set_has_unknown_needed_entries(!found_all);
   3037 
   3038       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
   3039       // that gold does not support.  However, they cause no trouble
   3040       // unless there is a DT_NEEDED entry that we don't know about;
   3041       // warn only in that case.
   3042       if (!found_all
   3043 	  && !issued_copy_dt_needed_error
   3044 	  && (parameters->options().copy_dt_needed_entries()
   3045 	      || parameters->options().add_needed()))
   3046 	{
   3047 	  const char* optname;
   3048 	  if (parameters->options().copy_dt_needed_entries())
   3049 	    optname = "--copy-dt-needed-entries";
   3050 	  else
   3051 	    optname = "--add-needed";
   3052 	  gold_error(_("%s is not supported but is required for %s in %s"),
   3053 		     optname, (*pneeded).c_str(), (*p)->name().c_str());
   3054 	  issued_copy_dt_needed_error = true;
   3055 	}
   3056     }
   3057 }
   3058 
   3059 // Start processing an archive.
   3060 
   3061 void
   3062 Input_objects::archive_start(Archive* archive)
   3063 {
   3064   if (parameters->options().user_set_print_symbol_counts()
   3065       || parameters->options().cref())
   3066     {
   3067       if (this->cref_ == NULL)
   3068 	this->cref_ = new Cref();
   3069       this->cref_->add_archive_start(archive);
   3070     }
   3071 }
   3072 
   3073 // Stop processing an archive.
   3074 
   3075 void
   3076 Input_objects::archive_stop(Archive* archive)
   3077 {
   3078   if (parameters->options().user_set_print_symbol_counts()
   3079       || parameters->options().cref())
   3080     this->cref_->add_archive_stop(archive);
   3081 }
   3082 
   3083 // Print symbol counts
   3084 
   3085 void
   3086 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
   3087 {
   3088   if (parameters->options().user_set_print_symbol_counts()
   3089       && this->cref_ != NULL)
   3090     this->cref_->print_symbol_counts(symtab);
   3091 }
   3092 
   3093 // Print a cross reference table.
   3094 
   3095 void
   3096 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
   3097 {
   3098   if (parameters->options().cref() && this->cref_ != NULL)
   3099     this->cref_->print_cref(symtab, f);
   3100 }
   3101 
   3102 // Relocate_info methods.
   3103 
   3104 // Return a string describing the location of a relocation when file
   3105 // and lineno information is not available.  This is only used in
   3106 // error messages.
   3107 
   3108 template<int size, bool big_endian>
   3109 std::string
   3110 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
   3111 {
   3112   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
   3113   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
   3114   if (!ret.empty())
   3115     return ret;
   3116 
   3117   ret = this->object->name();
   3118 
   3119   Symbol_location_info info;
   3120   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
   3121     {
   3122       if (!info.source_file.empty())
   3123 	{
   3124 	  ret += ":";
   3125 	  ret += info.source_file;
   3126 	}
   3127       ret += ":";
   3128       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
   3129 	ret += _("function ");
   3130       ret += info.enclosing_symbol_name;
   3131       return ret;
   3132     }
   3133 
   3134   ret += "(";
   3135   ret += this->object->section_name(this->data_shndx);
   3136   char buf[100];
   3137   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
   3138   ret += buf;
   3139   return ret;
   3140 }
   3141 
   3142 } // End namespace gold.
   3143 
   3144 namespace
   3145 {
   3146 
   3147 using namespace gold;
   3148 
   3149 // Read an ELF file with the header and return the appropriate
   3150 // instance of Object.
   3151 
   3152 template<int size, bool big_endian>
   3153 Object*
   3154 make_elf_sized_object(const std::string& name, Input_file* input_file,
   3155 		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
   3156 		      bool* punconfigured)
   3157 {
   3158   Target* target = select_target(input_file, offset,
   3159 				 ehdr.get_e_machine(), size, big_endian,
   3160 				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
   3161 				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
   3162   if (target == NULL)
   3163     gold_fatal(_("%s: unsupported ELF machine number %d"),
   3164 	       name.c_str(), ehdr.get_e_machine());
   3165 
   3166   if (!parameters->target_valid())
   3167     set_parameters_target(target);
   3168   else if (target != &parameters->target())
   3169     {
   3170       if (punconfigured != NULL)
   3171 	*punconfigured = true;
   3172       else
   3173 	gold_error(_("%s: incompatible target"), name.c_str());
   3174       return NULL;
   3175     }
   3176 
   3177   return target->make_elf_object<size, big_endian>(name, input_file, offset,
   3178 						   ehdr);
   3179 }
   3180 
   3181 } // End anonymous namespace.
   3182 
   3183 namespace gold
   3184 {
   3185 
   3186 // Return whether INPUT_FILE is an ELF object.
   3187 
   3188 bool
   3189 is_elf_object(Input_file* input_file, off_t offset,
   3190 	      const unsigned char** start, int* read_size)
   3191 {
   3192   off_t filesize = input_file->file().filesize();
   3193   int want = elfcpp::Elf_recognizer::max_header_size;
   3194   if (filesize - offset < want)
   3195     want = filesize - offset;
   3196 
   3197   const unsigned char* p = input_file->file().get_view(offset, 0, want,
   3198 						       true, false);
   3199   *start = p;
   3200   *read_size = want;
   3201 
   3202   return elfcpp::Elf_recognizer::is_elf_file(p, want);
   3203 }
   3204 
   3205 // Read an ELF file and return the appropriate instance of Object.
   3206 
   3207 Object*
   3208 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
   3209 		const unsigned char* p, section_offset_type bytes,
   3210 		bool* punconfigured)
   3211 {
   3212   if (punconfigured != NULL)
   3213     *punconfigured = false;
   3214 
   3215   std::string error;
   3216   bool big_endian = false;
   3217   int size = 0;
   3218   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
   3219 					       &big_endian, &error))
   3220     {
   3221       gold_error(_("%s: %s"), name.c_str(), error.c_str());
   3222       return NULL;
   3223     }
   3224 
   3225   if (size == 32)
   3226     {
   3227       if (big_endian)
   3228 	{
   3229 #ifdef HAVE_TARGET_32_BIG
   3230 	  elfcpp::Ehdr<32, true> ehdr(p);
   3231 	  return make_elf_sized_object<32, true>(name, input_file,
   3232 						 offset, ehdr, punconfigured);
   3233 #else
   3234 	  if (punconfigured != NULL)
   3235 	    *punconfigured = true;
   3236 	  else
   3237 	    gold_error(_("%s: not configured to support "
   3238 			 "32-bit big-endian object"),
   3239 		       name.c_str());
   3240 	  return NULL;
   3241 #endif
   3242 	}
   3243       else
   3244 	{
   3245 #ifdef HAVE_TARGET_32_LITTLE
   3246 	  elfcpp::Ehdr<32, false> ehdr(p);
   3247 	  return make_elf_sized_object<32, false>(name, input_file,
   3248 						  offset, ehdr, punconfigured);
   3249 #else
   3250 	  if (punconfigured != NULL)
   3251 	    *punconfigured = true;
   3252 	  else
   3253 	    gold_error(_("%s: not configured to support "
   3254 			 "32-bit little-endian object"),
   3255 		       name.c_str());
   3256 	  return NULL;
   3257 #endif
   3258 	}
   3259     }
   3260   else if (size == 64)
   3261     {
   3262       if (big_endian)
   3263 	{
   3264 #ifdef HAVE_TARGET_64_BIG
   3265 	  elfcpp::Ehdr<64, true> ehdr(p);
   3266 	  return make_elf_sized_object<64, true>(name, input_file,
   3267 						 offset, ehdr, punconfigured);
   3268 #else
   3269 	  if (punconfigured != NULL)
   3270 	    *punconfigured = true;
   3271 	  else
   3272 	    gold_error(_("%s: not configured to support "
   3273 			 "64-bit big-endian object"),
   3274 		       name.c_str());
   3275 	  return NULL;
   3276 #endif
   3277 	}
   3278       else
   3279 	{
   3280 #ifdef HAVE_TARGET_64_LITTLE
   3281 	  elfcpp::Ehdr<64, false> ehdr(p);
   3282 	  return make_elf_sized_object<64, false>(name, input_file,
   3283 						  offset, ehdr, punconfigured);
   3284 #else
   3285 	  if (punconfigured != NULL)
   3286 	    *punconfigured = true;
   3287 	  else
   3288 	    gold_error(_("%s: not configured to support "
   3289 			 "64-bit little-endian object"),
   3290 		       name.c_str());
   3291 	  return NULL;
   3292 #endif
   3293 	}
   3294     }
   3295   else
   3296     gold_unreachable();
   3297 }
   3298 
   3299 // Instantiate the templates we need.
   3300 
   3301 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   3302 template
   3303 void
   3304 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
   3305       elfcpp::Elf_types<64>::Elf_Addr starting_address,
   3306       Unordered_map<section_offset_type,
   3307       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
   3308 #endif
   3309 
   3310 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   3311 template
   3312 void
   3313 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
   3314       elfcpp::Elf_types<32>::Elf_Addr starting_address,
   3315       Unordered_map<section_offset_type,
   3316       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
   3317 #endif
   3318 
   3319 #ifdef HAVE_TARGET_32_LITTLE
   3320 template
   3321 void
   3322 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
   3323 				     Read_symbols_data*);
   3324 template
   3325 const unsigned char*
   3326 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
   3327 			    section_size_type, const unsigned char*) const;
   3328 #endif
   3329 
   3330 #ifdef HAVE_TARGET_32_BIG
   3331 template
   3332 void
   3333 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
   3334 				    Read_symbols_data*);
   3335 template
   3336 const unsigned char*
   3337 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
   3338 			   section_size_type, const unsigned char*) const;
   3339 #endif
   3340 
   3341 #ifdef HAVE_TARGET_64_LITTLE
   3342 template
   3343 void
   3344 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
   3345 				     Read_symbols_data*);
   3346 template
   3347 const unsigned char*
   3348 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
   3349 			    section_size_type, const unsigned char*) const;
   3350 #endif
   3351 
   3352 #ifdef HAVE_TARGET_64_BIG
   3353 template
   3354 void
   3355 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
   3356 				    Read_symbols_data*);
   3357 template
   3358 const unsigned char*
   3359 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
   3360 			   section_size_type, const unsigned char*) const;
   3361 #endif
   3362 
   3363 #ifdef HAVE_TARGET_32_LITTLE
   3364 template
   3365 class Sized_relobj<32, false>;
   3366 
   3367 template
   3368 class Sized_relobj_file<32, false>;
   3369 #endif
   3370 
   3371 #ifdef HAVE_TARGET_32_BIG
   3372 template
   3373 class Sized_relobj<32, true>;
   3374 
   3375 template
   3376 class Sized_relobj_file<32, true>;
   3377 #endif
   3378 
   3379 #ifdef HAVE_TARGET_64_LITTLE
   3380 template
   3381 class Sized_relobj<64, false>;
   3382 
   3383 template
   3384 class Sized_relobj_file<64, false>;
   3385 #endif
   3386 
   3387 #ifdef HAVE_TARGET_64_BIG
   3388 template
   3389 class Sized_relobj<64, true>;
   3390 
   3391 template
   3392 class Sized_relobj_file<64, true>;
   3393 #endif
   3394 
   3395 #ifdef HAVE_TARGET_32_LITTLE
   3396 template
   3397 struct Relocate_info<32, false>;
   3398 #endif
   3399 
   3400 #ifdef HAVE_TARGET_32_BIG
   3401 template
   3402 struct Relocate_info<32, true>;
   3403 #endif
   3404 
   3405 #ifdef HAVE_TARGET_64_LITTLE
   3406 template
   3407 struct Relocate_info<64, false>;
   3408 #endif
   3409 
   3410 #ifdef HAVE_TARGET_64_BIG
   3411 template
   3412 struct Relocate_info<64, true>;
   3413 #endif
   3414 
   3415 #ifdef HAVE_TARGET_32_LITTLE
   3416 template
   3417 void
   3418 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
   3419 
   3420 template
   3421 void
   3422 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
   3423 				      const unsigned char*);
   3424 #endif
   3425 
   3426 #ifdef HAVE_TARGET_32_BIG
   3427 template
   3428 void
   3429 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
   3430 
   3431 template
   3432 void
   3433 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
   3434 				     const unsigned char*);
   3435 #endif
   3436 
   3437 #ifdef HAVE_TARGET_64_LITTLE
   3438 template
   3439 void
   3440 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
   3441 
   3442 template
   3443 void
   3444 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
   3445 				      const unsigned char*);
   3446 #endif
   3447 
   3448 #ifdef HAVE_TARGET_64_BIG
   3449 template
   3450 void
   3451 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
   3452 
   3453 template
   3454 void
   3455 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
   3456 				     const unsigned char*);
   3457 #endif
   3458 
   3459 } // End namespace gold.
   3460