Home | History | Annotate | Download | only in gold
      1 // output.cc -- manage the output file for gold
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cstdlib>
     26 #include <cstring>
     27 #include <cerrno>
     28 #include <fcntl.h>
     29 #include <unistd.h>
     30 #include <sys/stat.h>
     31 #include <algorithm>
     32 
     33 #ifdef HAVE_SYS_MMAN_H
     34 #include <sys/mman.h>
     35 #endif
     36 
     37 #include "libiberty.h"
     38 
     39 #include "dwarf.h"
     40 #include "parameters.h"
     41 #include "object.h"
     42 #include "symtab.h"
     43 #include "reloc.h"
     44 #include "merge.h"
     45 #include "descriptors.h"
     46 #include "layout.h"
     47 #include "output.h"
     48 
     49 // For systems without mmap support.
     50 #ifndef HAVE_MMAP
     51 # define mmap gold_mmap
     52 # define munmap gold_munmap
     53 # define mremap gold_mremap
     54 # ifndef MAP_FAILED
     55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
     56 # endif
     57 # ifndef PROT_READ
     58 #  define PROT_READ 0
     59 # endif
     60 # ifndef PROT_WRITE
     61 #  define PROT_WRITE 0
     62 # endif
     63 # ifndef MAP_PRIVATE
     64 #  define MAP_PRIVATE 0
     65 # endif
     66 # ifndef MAP_ANONYMOUS
     67 #  define MAP_ANONYMOUS 0
     68 # endif
     69 # ifndef MAP_SHARED
     70 #  define MAP_SHARED 0
     71 # endif
     72 
     73 # ifndef ENOSYS
     74 #  define ENOSYS EINVAL
     75 # endif
     76 
     77 static void *
     78 gold_mmap(void *, size_t, int, int, int, off_t)
     79 {
     80   errno = ENOSYS;
     81   return MAP_FAILED;
     82 }
     83 
     84 static int
     85 gold_munmap(void *, size_t)
     86 {
     87   errno = ENOSYS;
     88   return -1;
     89 }
     90 
     91 static void *
     92 gold_mremap(void *, size_t, size_t, int)
     93 {
     94   errno = ENOSYS;
     95   return MAP_FAILED;
     96 }
     97 
     98 #endif
     99 
    100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
    101 # define mremap gold_mremap
    102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
    103 #endif
    104 
    105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
    106 #ifndef MAP_ANONYMOUS
    107 # define MAP_ANONYMOUS  MAP_ANON
    108 #endif
    109 
    110 #ifndef MREMAP_MAYMOVE
    111 # define MREMAP_MAYMOVE 1
    112 #endif
    113 
    114 // Mingw does not have S_ISLNK.
    115 #ifndef S_ISLNK
    116 # define S_ISLNK(mode) 0
    117 #endif
    118 
    119 namespace gold
    120 {
    121 
    122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
    123 // or the --no-posix-fallocate option is set, we try the fallocate
    124 // system call directly.  If that fails, we use ftruncate to set
    125 // the file size and hope that there is enough disk space.
    126 
    127 static int
    128 gold_fallocate(int o, off_t offset, off_t len)
    129 {
    130 #ifdef HAVE_POSIX_FALLOCATE
    131   if (parameters->options().posix_fallocate())
    132     return ::posix_fallocate(o, offset, len);
    133 #endif // defined(HAVE_POSIX_FALLOCATE)
    134 #ifdef HAVE_FALLOCATE
    135   if (::fallocate(o, 0, offset, len) == 0)
    136     return 0;
    137 #endif // defined(HAVE_FALLOCATE)
    138   if (::ftruncate(o, offset + len) < 0)
    139     return errno;
    140   return 0;
    141 }
    142 
    143 // Output_data variables.
    144 
    145 bool Output_data::allocated_sizes_are_fixed;
    146 
    147 // Output_data methods.
    148 
    149 Output_data::~Output_data()
    150 {
    151 }
    152 
    153 // Return the default alignment for the target size.
    154 
    155 uint64_t
    156 Output_data::default_alignment()
    157 {
    158   return Output_data::default_alignment_for_size(
    159       parameters->target().get_size());
    160 }
    161 
    162 // Return the default alignment for a size--32 or 64.
    163 
    164 uint64_t
    165 Output_data::default_alignment_for_size(int size)
    166 {
    167   if (size == 32)
    168     return 4;
    169   else if (size == 64)
    170     return 8;
    171   else
    172     gold_unreachable();
    173 }
    174 
    175 // Output_section_header methods.  This currently assumes that the
    176 // segment and section lists are complete at construction time.
    177 
    178 Output_section_headers::Output_section_headers(
    179     const Layout* layout,
    180     const Layout::Segment_list* segment_list,
    181     const Layout::Section_list* section_list,
    182     const Layout::Section_list* unattached_section_list,
    183     const Stringpool* secnamepool,
    184     const Output_section* shstrtab_section)
    185   : layout_(layout),
    186     segment_list_(segment_list),
    187     section_list_(section_list),
    188     unattached_section_list_(unattached_section_list),
    189     secnamepool_(secnamepool),
    190     shstrtab_section_(shstrtab_section)
    191 {
    192 }
    193 
    194 // Compute the current data size.
    195 
    196 off_t
    197 Output_section_headers::do_size() const
    198 {
    199   // Count all the sections.  Start with 1 for the null section.
    200   off_t count = 1;
    201   if (!parameters->options().relocatable())
    202     {
    203       for (Layout::Segment_list::const_iterator p =
    204 	     this->segment_list_->begin();
    205 	   p != this->segment_list_->end();
    206 	   ++p)
    207 	if ((*p)->type() == elfcpp::PT_LOAD)
    208 	  count += (*p)->output_section_count();
    209     }
    210   else
    211     {
    212       for (Layout::Section_list::const_iterator p =
    213 	     this->section_list_->begin();
    214 	   p != this->section_list_->end();
    215 	   ++p)
    216 	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
    217 	  ++count;
    218     }
    219   count += this->unattached_section_list_->size();
    220 
    221   const int size = parameters->target().get_size();
    222   int shdr_size;
    223   if (size == 32)
    224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
    225   else if (size == 64)
    226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
    227   else
    228     gold_unreachable();
    229 
    230   return count * shdr_size;
    231 }
    232 
    233 // Write out the section headers.
    234 
    235 void
    236 Output_section_headers::do_write(Output_file* of)
    237 {
    238   switch (parameters->size_and_endianness())
    239     {
    240 #ifdef HAVE_TARGET_32_LITTLE
    241     case Parameters::TARGET_32_LITTLE:
    242       this->do_sized_write<32, false>(of);
    243       break;
    244 #endif
    245 #ifdef HAVE_TARGET_32_BIG
    246     case Parameters::TARGET_32_BIG:
    247       this->do_sized_write<32, true>(of);
    248       break;
    249 #endif
    250 #ifdef HAVE_TARGET_64_LITTLE
    251     case Parameters::TARGET_64_LITTLE:
    252       this->do_sized_write<64, false>(of);
    253       break;
    254 #endif
    255 #ifdef HAVE_TARGET_64_BIG
    256     case Parameters::TARGET_64_BIG:
    257       this->do_sized_write<64, true>(of);
    258       break;
    259 #endif
    260     default:
    261       gold_unreachable();
    262     }
    263 }
    264 
    265 template<int size, bool big_endian>
    266 void
    267 Output_section_headers::do_sized_write(Output_file* of)
    268 {
    269   off_t all_shdrs_size = this->data_size();
    270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
    271 
    272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
    273   unsigned char* v = view;
    274 
    275   {
    276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
    277     oshdr.put_sh_name(0);
    278     oshdr.put_sh_type(elfcpp::SHT_NULL);
    279     oshdr.put_sh_flags(0);
    280     oshdr.put_sh_addr(0);
    281     oshdr.put_sh_offset(0);
    282 
    283     size_t section_count = (this->data_size()
    284 			    / elfcpp::Elf_sizes<size>::shdr_size);
    285     if (section_count < elfcpp::SHN_LORESERVE)
    286       oshdr.put_sh_size(0);
    287     else
    288       oshdr.put_sh_size(section_count);
    289 
    290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
    291     if (shstrndx < elfcpp::SHN_LORESERVE)
    292       oshdr.put_sh_link(0);
    293     else
    294       oshdr.put_sh_link(shstrndx);
    295 
    296     size_t segment_count = this->segment_list_->size();
    297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
    298 
    299     oshdr.put_sh_addralign(0);
    300     oshdr.put_sh_entsize(0);
    301   }
    302 
    303   v += shdr_size;
    304 
    305   unsigned int shndx = 1;
    306   if (!parameters->options().relocatable())
    307     {
    308       for (Layout::Segment_list::const_iterator p =
    309 	     this->segment_list_->begin();
    310 	   p != this->segment_list_->end();
    311 	   ++p)
    312 	v = (*p)->write_section_headers<size, big_endian>(this->layout_,
    313 							  this->secnamepool_,
    314 							  v,
    315 							  &shndx);
    316     }
    317   else
    318     {
    319       for (Layout::Section_list::const_iterator p =
    320 	     this->section_list_->begin();
    321 	   p != this->section_list_->end();
    322 	   ++p)
    323 	{
    324 	  // We do unallocated sections below, except that group
    325 	  // sections have to come first.
    326 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
    327 	      && (*p)->type() != elfcpp::SHT_GROUP)
    328 	    continue;
    329 	  gold_assert(shndx == (*p)->out_shndx());
    330 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
    331 	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
    332 	  v += shdr_size;
    333 	  ++shndx;
    334 	}
    335     }
    336 
    337   for (Layout::Section_list::const_iterator p =
    338 	 this->unattached_section_list_->begin();
    339        p != this->unattached_section_list_->end();
    340        ++p)
    341     {
    342       // For a relocatable link, we did unallocated group sections
    343       // above, since they have to come first.
    344       if ((*p)->type() == elfcpp::SHT_GROUP
    345 	  && parameters->options().relocatable())
    346 	continue;
    347       gold_assert(shndx == (*p)->out_shndx());
    348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
    349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
    350       v += shdr_size;
    351       ++shndx;
    352     }
    353 
    354   of->write_output_view(this->offset(), all_shdrs_size, view);
    355 }
    356 
    357 // Output_segment_header methods.
    358 
    359 Output_segment_headers::Output_segment_headers(
    360     const Layout::Segment_list& segment_list)
    361   : segment_list_(segment_list)
    362 {
    363   this->set_current_data_size_for_child(this->do_size());
    364 }
    365 
    366 void
    367 Output_segment_headers::do_write(Output_file* of)
    368 {
    369   switch (parameters->size_and_endianness())
    370     {
    371 #ifdef HAVE_TARGET_32_LITTLE
    372     case Parameters::TARGET_32_LITTLE:
    373       this->do_sized_write<32, false>(of);
    374       break;
    375 #endif
    376 #ifdef HAVE_TARGET_32_BIG
    377     case Parameters::TARGET_32_BIG:
    378       this->do_sized_write<32, true>(of);
    379       break;
    380 #endif
    381 #ifdef HAVE_TARGET_64_LITTLE
    382     case Parameters::TARGET_64_LITTLE:
    383       this->do_sized_write<64, false>(of);
    384       break;
    385 #endif
    386 #ifdef HAVE_TARGET_64_BIG
    387     case Parameters::TARGET_64_BIG:
    388       this->do_sized_write<64, true>(of);
    389       break;
    390 #endif
    391     default:
    392       gold_unreachable();
    393     }
    394 }
    395 
    396 template<int size, bool big_endian>
    397 void
    398 Output_segment_headers::do_sized_write(Output_file* of)
    399 {
    400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
    401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
    402   gold_assert(all_phdrs_size == this->data_size());
    403   unsigned char* view = of->get_output_view(this->offset(),
    404 					    all_phdrs_size);
    405   unsigned char* v = view;
    406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
    407        p != this->segment_list_.end();
    408        ++p)
    409     {
    410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
    411       (*p)->write_header(&ophdr);
    412       v += phdr_size;
    413     }
    414 
    415   gold_assert(v - view == all_phdrs_size);
    416 
    417   of->write_output_view(this->offset(), all_phdrs_size, view);
    418 }
    419 
    420 off_t
    421 Output_segment_headers::do_size() const
    422 {
    423   const int size = parameters->target().get_size();
    424   int phdr_size;
    425   if (size == 32)
    426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
    427   else if (size == 64)
    428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
    429   else
    430     gold_unreachable();
    431 
    432   return this->segment_list_.size() * phdr_size;
    433 }
    434 
    435 // Output_file_header methods.
    436 
    437 Output_file_header::Output_file_header(Target* target,
    438 				       const Symbol_table* symtab,
    439 				       const Output_segment_headers* osh)
    440   : target_(target),
    441     symtab_(symtab),
    442     segment_header_(osh),
    443     section_header_(NULL),
    444     shstrtab_(NULL)
    445 {
    446   this->set_data_size(this->do_size());
    447 }
    448 
    449 // Set the section table information for a file header.
    450 
    451 void
    452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
    453 				     const Output_section* shstrtab)
    454 {
    455   this->section_header_ = shdrs;
    456   this->shstrtab_ = shstrtab;
    457 }
    458 
    459 // Write out the file header.
    460 
    461 void
    462 Output_file_header::do_write(Output_file* of)
    463 {
    464   gold_assert(this->offset() == 0);
    465 
    466   switch (parameters->size_and_endianness())
    467     {
    468 #ifdef HAVE_TARGET_32_LITTLE
    469     case Parameters::TARGET_32_LITTLE:
    470       this->do_sized_write<32, false>(of);
    471       break;
    472 #endif
    473 #ifdef HAVE_TARGET_32_BIG
    474     case Parameters::TARGET_32_BIG:
    475       this->do_sized_write<32, true>(of);
    476       break;
    477 #endif
    478 #ifdef HAVE_TARGET_64_LITTLE
    479     case Parameters::TARGET_64_LITTLE:
    480       this->do_sized_write<64, false>(of);
    481       break;
    482 #endif
    483 #ifdef HAVE_TARGET_64_BIG
    484     case Parameters::TARGET_64_BIG:
    485       this->do_sized_write<64, true>(of);
    486       break;
    487 #endif
    488     default:
    489       gold_unreachable();
    490     }
    491 }
    492 
    493 // Write out the file header with appropriate size and endianness.
    494 
    495 template<int size, bool big_endian>
    496 void
    497 Output_file_header::do_sized_write(Output_file* of)
    498 {
    499   gold_assert(this->offset() == 0);
    500 
    501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
    502   unsigned char* view = of->get_output_view(0, ehdr_size);
    503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
    504 
    505   unsigned char e_ident[elfcpp::EI_NIDENT];
    506   memset(e_ident, 0, elfcpp::EI_NIDENT);
    507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
    508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
    509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
    510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
    511   if (size == 32)
    512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
    513   else if (size == 64)
    514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
    515   else
    516     gold_unreachable();
    517   e_ident[elfcpp::EI_DATA] = (big_endian
    518 			      ? elfcpp::ELFDATA2MSB
    519 			      : elfcpp::ELFDATA2LSB);
    520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
    521   oehdr.put_e_ident(e_ident);
    522 
    523   elfcpp::ET e_type;
    524   if (parameters->options().relocatable())
    525     e_type = elfcpp::ET_REL;
    526   else if (parameters->options().output_is_position_independent())
    527     e_type = elfcpp::ET_DYN;
    528   else
    529     e_type = elfcpp::ET_EXEC;
    530   oehdr.put_e_type(e_type);
    531 
    532   oehdr.put_e_machine(this->target_->machine_code());
    533   oehdr.put_e_version(elfcpp::EV_CURRENT);
    534 
    535   oehdr.put_e_entry(this->entry<size>());
    536 
    537   if (this->segment_header_ == NULL)
    538     oehdr.put_e_phoff(0);
    539   else
    540     oehdr.put_e_phoff(this->segment_header_->offset());
    541 
    542   oehdr.put_e_shoff(this->section_header_->offset());
    543   oehdr.put_e_flags(this->target_->processor_specific_flags());
    544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
    545 
    546   if (this->segment_header_ == NULL)
    547     {
    548       oehdr.put_e_phentsize(0);
    549       oehdr.put_e_phnum(0);
    550     }
    551   else
    552     {
    553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
    554       size_t phnum = (this->segment_header_->data_size()
    555 		      / elfcpp::Elf_sizes<size>::phdr_size);
    556       if (phnum > elfcpp::PN_XNUM)
    557 	phnum = elfcpp::PN_XNUM;
    558       oehdr.put_e_phnum(phnum);
    559     }
    560 
    561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
    562   size_t section_count = (this->section_header_->data_size()
    563 			  / elfcpp::Elf_sizes<size>::shdr_size);
    564 
    565   if (section_count < elfcpp::SHN_LORESERVE)
    566     oehdr.put_e_shnum(this->section_header_->data_size()
    567 		      / elfcpp::Elf_sizes<size>::shdr_size);
    568   else
    569     oehdr.put_e_shnum(0);
    570 
    571   unsigned int shstrndx = this->shstrtab_->out_shndx();
    572   if (shstrndx < elfcpp::SHN_LORESERVE)
    573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
    574   else
    575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
    576 
    577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
    578   // the e_ident field.
    579   this->target_->adjust_elf_header(view, ehdr_size);
    580 
    581   of->write_output_view(0, ehdr_size, view);
    582 }
    583 
    584 // Return the value to use for the entry address.
    585 
    586 template<int size>
    587 typename elfcpp::Elf_types<size>::Elf_Addr
    588 Output_file_header::entry()
    589 {
    590   const bool should_issue_warning = (parameters->options().entry() != NULL
    591 				     && !parameters->options().relocatable()
    592 				     && !parameters->options().shared());
    593   const char* entry = parameters->entry();
    594   Symbol* sym = this->symtab_->lookup(entry);
    595 
    596   typename Sized_symbol<size>::Value_type v;
    597   if (sym != NULL)
    598     {
    599       Sized_symbol<size>* ssym;
    600       ssym = this->symtab_->get_sized_symbol<size>(sym);
    601       if (!ssym->is_defined() && should_issue_warning)
    602 	gold_warning("entry symbol '%s' exists but is not defined", entry);
    603       v = ssym->value();
    604     }
    605   else
    606     {
    607       // We couldn't find the entry symbol.  See if we can parse it as
    608       // a number.  This supports, e.g., -e 0x1000.
    609       char* endptr;
    610       v = strtoull(entry, &endptr, 0);
    611       if (*endptr != '\0')
    612 	{
    613 	  if (should_issue_warning)
    614 	    gold_warning("cannot find entry symbol '%s'", entry);
    615 	  v = 0;
    616 	}
    617     }
    618 
    619   return v;
    620 }
    621 
    622 // Compute the current data size.
    623 
    624 off_t
    625 Output_file_header::do_size() const
    626 {
    627   const int size = parameters->target().get_size();
    628   if (size == 32)
    629     return elfcpp::Elf_sizes<32>::ehdr_size;
    630   else if (size == 64)
    631     return elfcpp::Elf_sizes<64>::ehdr_size;
    632   else
    633     gold_unreachable();
    634 }
    635 
    636 // Output_data_const methods.
    637 
    638 void
    639 Output_data_const::do_write(Output_file* of)
    640 {
    641   of->write(this->offset(), this->data_.data(), this->data_.size());
    642 }
    643 
    644 // Output_data_const_buffer methods.
    645 
    646 void
    647 Output_data_const_buffer::do_write(Output_file* of)
    648 {
    649   of->write(this->offset(), this->p_, this->data_size());
    650 }
    651 
    652 // Output_section_data methods.
    653 
    654 // Record the output section, and set the entry size and such.
    655 
    656 void
    657 Output_section_data::set_output_section(Output_section* os)
    658 {
    659   gold_assert(this->output_section_ == NULL);
    660   this->output_section_ = os;
    661   this->do_adjust_output_section(os);
    662 }
    663 
    664 // Return the section index of the output section.
    665 
    666 unsigned int
    667 Output_section_data::do_out_shndx() const
    668 {
    669   gold_assert(this->output_section_ != NULL);
    670   return this->output_section_->out_shndx();
    671 }
    672 
    673 // Set the alignment, which means we may need to update the alignment
    674 // of the output section.
    675 
    676 void
    677 Output_section_data::set_addralign(uint64_t addralign)
    678 {
    679   this->addralign_ = addralign;
    680   if (this->output_section_ != NULL
    681       && this->output_section_->addralign() < addralign)
    682     this->output_section_->set_addralign(addralign);
    683 }
    684 
    685 // Output_data_strtab methods.
    686 
    687 // Set the final data size.
    688 
    689 void
    690 Output_data_strtab::set_final_data_size()
    691 {
    692   this->strtab_->set_string_offsets();
    693   this->set_data_size(this->strtab_->get_strtab_size());
    694 }
    695 
    696 // Write out a string table.
    697 
    698 void
    699 Output_data_strtab::do_write(Output_file* of)
    700 {
    701   this->strtab_->write(of, this->offset());
    702 }
    703 
    704 // Output_reloc methods.
    705 
    706 // A reloc against a global symbol.
    707 
    708 template<bool dynamic, int size, bool big_endian>
    709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    710     Symbol* gsym,
    711     unsigned int type,
    712     Output_data* od,
    713     Address address,
    714     bool is_relative,
    715     bool is_symbolless,
    716     bool use_plt_offset)
    717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
    718     is_relative_(is_relative), is_symbolless_(is_symbolless),
    719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
    720 {
    721   // this->type_ is a bitfield; make sure TYPE fits.
    722   gold_assert(this->type_ == type);
    723   this->u1_.gsym = gsym;
    724   this->u2_.od = od;
    725   if (dynamic)
    726     this->set_needs_dynsym_index();
    727 }
    728 
    729 template<bool dynamic, int size, bool big_endian>
    730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    731     Symbol* gsym,
    732     unsigned int type,
    733     Sized_relobj<size, big_endian>* relobj,
    734     unsigned int shndx,
    735     Address address,
    736     bool is_relative,
    737     bool is_symbolless,
    738     bool use_plt_offset)
    739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
    740     is_relative_(is_relative), is_symbolless_(is_symbolless),
    741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
    742 {
    743   gold_assert(shndx != INVALID_CODE);
    744   // this->type_ is a bitfield; make sure TYPE fits.
    745   gold_assert(this->type_ == type);
    746   this->u1_.gsym = gsym;
    747   this->u2_.relobj = relobj;
    748   if (dynamic)
    749     this->set_needs_dynsym_index();
    750 }
    751 
    752 // A reloc against a local symbol.
    753 
    754 template<bool dynamic, int size, bool big_endian>
    755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    756     Sized_relobj<size, big_endian>* relobj,
    757     unsigned int local_sym_index,
    758     unsigned int type,
    759     Output_data* od,
    760     Address address,
    761     bool is_relative,
    762     bool is_symbolless,
    763     bool is_section_symbol,
    764     bool use_plt_offset)
    765   : address_(address), local_sym_index_(local_sym_index), type_(type),
    766     is_relative_(is_relative), is_symbolless_(is_symbolless),
    767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
    768     shndx_(INVALID_CODE)
    769 {
    770   gold_assert(local_sym_index != GSYM_CODE
    771 	      && local_sym_index != INVALID_CODE);
    772   // this->type_ is a bitfield; make sure TYPE fits.
    773   gold_assert(this->type_ == type);
    774   this->u1_.relobj = relobj;
    775   this->u2_.od = od;
    776   if (dynamic)
    777     this->set_needs_dynsym_index();
    778 }
    779 
    780 template<bool dynamic, int size, bool big_endian>
    781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    782     Sized_relobj<size, big_endian>* relobj,
    783     unsigned int local_sym_index,
    784     unsigned int type,
    785     unsigned int shndx,
    786     Address address,
    787     bool is_relative,
    788     bool is_symbolless,
    789     bool is_section_symbol,
    790     bool use_plt_offset)
    791   : address_(address), local_sym_index_(local_sym_index), type_(type),
    792     is_relative_(is_relative), is_symbolless_(is_symbolless),
    793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
    794     shndx_(shndx)
    795 {
    796   gold_assert(local_sym_index != GSYM_CODE
    797 	      && local_sym_index != INVALID_CODE);
    798   gold_assert(shndx != INVALID_CODE);
    799   // this->type_ is a bitfield; make sure TYPE fits.
    800   gold_assert(this->type_ == type);
    801   this->u1_.relobj = relobj;
    802   this->u2_.relobj = relobj;
    803   if (dynamic)
    804     this->set_needs_dynsym_index();
    805 }
    806 
    807 // A reloc against the STT_SECTION symbol of an output section.
    808 
    809 template<bool dynamic, int size, bool big_endian>
    810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    811     Output_section* os,
    812     unsigned int type,
    813     Output_data* od,
    814     Address address,
    815     bool is_relative)
    816   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
    817     is_relative_(is_relative), is_symbolless_(is_relative),
    818     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
    819 {
    820   // this->type_ is a bitfield; make sure TYPE fits.
    821   gold_assert(this->type_ == type);
    822   this->u1_.os = os;
    823   this->u2_.od = od;
    824   if (dynamic)
    825     this->set_needs_dynsym_index();
    826   else
    827     os->set_needs_symtab_index();
    828 }
    829 
    830 template<bool dynamic, int size, bool big_endian>
    831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    832     Output_section* os,
    833     unsigned int type,
    834     Sized_relobj<size, big_endian>* relobj,
    835     unsigned int shndx,
    836     Address address,
    837     bool is_relative)
    838   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
    839     is_relative_(is_relative), is_symbolless_(is_relative),
    840     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
    841 {
    842   gold_assert(shndx != INVALID_CODE);
    843   // this->type_ is a bitfield; make sure TYPE fits.
    844   gold_assert(this->type_ == type);
    845   this->u1_.os = os;
    846   this->u2_.relobj = relobj;
    847   if (dynamic)
    848     this->set_needs_dynsym_index();
    849   else
    850     os->set_needs_symtab_index();
    851 }
    852 
    853 // An absolute or relative relocation.
    854 
    855 template<bool dynamic, int size, bool big_endian>
    856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    857     unsigned int type,
    858     Output_data* od,
    859     Address address,
    860     bool is_relative)
    861   : address_(address), local_sym_index_(0), type_(type),
    862     is_relative_(is_relative), is_symbolless_(false),
    863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
    864 {
    865   // this->type_ is a bitfield; make sure TYPE fits.
    866   gold_assert(this->type_ == type);
    867   this->u1_.relobj = NULL;
    868   this->u2_.od = od;
    869 }
    870 
    871 template<bool dynamic, int size, bool big_endian>
    872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    873     unsigned int type,
    874     Sized_relobj<size, big_endian>* relobj,
    875     unsigned int shndx,
    876     Address address,
    877     bool is_relative)
    878   : address_(address), local_sym_index_(0), type_(type),
    879     is_relative_(is_relative), is_symbolless_(false),
    880     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
    881 {
    882   gold_assert(shndx != INVALID_CODE);
    883   // this->type_ is a bitfield; make sure TYPE fits.
    884   gold_assert(this->type_ == type);
    885   this->u1_.relobj = NULL;
    886   this->u2_.relobj = relobj;
    887 }
    888 
    889 // A target specific relocation.
    890 
    891 template<bool dynamic, int size, bool big_endian>
    892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    893     unsigned int type,
    894     void* arg,
    895     Output_data* od,
    896     Address address)
    897   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
    898     is_relative_(false), is_symbolless_(false),
    899     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
    900 {
    901   // this->type_ is a bitfield; make sure TYPE fits.
    902   gold_assert(this->type_ == type);
    903   this->u1_.arg = arg;
    904   this->u2_.od = od;
    905 }
    906 
    907 template<bool dynamic, int size, bool big_endian>
    908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    909     unsigned int type,
    910     void* arg,
    911     Sized_relobj<size, big_endian>* relobj,
    912     unsigned int shndx,
    913     Address address)
    914   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
    915     is_relative_(false), is_symbolless_(false),
    916     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
    917 {
    918   gold_assert(shndx != INVALID_CODE);
    919   // this->type_ is a bitfield; make sure TYPE fits.
    920   gold_assert(this->type_ == type);
    921   this->u1_.arg = arg;
    922   this->u2_.relobj = relobj;
    923 }
    924 
    925 // Record that we need a dynamic symbol index for this relocation.
    926 
    927 template<bool dynamic, int size, bool big_endian>
    928 void
    929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
    930 set_needs_dynsym_index()
    931 {
    932   if (this->is_symbolless_)
    933     return;
    934   switch (this->local_sym_index_)
    935     {
    936     case INVALID_CODE:
    937       gold_unreachable();
    938 
    939     case GSYM_CODE:
    940       this->u1_.gsym->set_needs_dynsym_entry();
    941       break;
    942 
    943     case SECTION_CODE:
    944       this->u1_.os->set_needs_dynsym_index();
    945       break;
    946 
    947     case TARGET_CODE:
    948       // The target must take care of this if necessary.
    949       break;
    950 
    951     case 0:
    952       break;
    953 
    954     default:
    955       {
    956 	const unsigned int lsi = this->local_sym_index_;
    957 	Sized_relobj_file<size, big_endian>* relobj =
    958 	    this->u1_.relobj->sized_relobj();
    959 	gold_assert(relobj != NULL);
    960 	if (!this->is_section_symbol_)
    961 	  relobj->set_needs_output_dynsym_entry(lsi);
    962 	else
    963 	  relobj->output_section(lsi)->set_needs_dynsym_index();
    964       }
    965       break;
    966     }
    967 }
    968 
    969 // Get the symbol index of a relocation.
    970 
    971 template<bool dynamic, int size, bool big_endian>
    972 unsigned int
    973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
    974   const
    975 {
    976   unsigned int index;
    977   if (this->is_symbolless_)
    978     return 0;
    979   switch (this->local_sym_index_)
    980     {
    981     case INVALID_CODE:
    982       gold_unreachable();
    983 
    984     case GSYM_CODE:
    985       if (this->u1_.gsym == NULL)
    986 	index = 0;
    987       else if (dynamic)
    988 	index = this->u1_.gsym->dynsym_index();
    989       else
    990 	index = this->u1_.gsym->symtab_index();
    991       break;
    992 
    993     case SECTION_CODE:
    994       if (dynamic)
    995 	index = this->u1_.os->dynsym_index();
    996       else
    997 	index = this->u1_.os->symtab_index();
    998       break;
    999 
   1000     case TARGET_CODE:
   1001       index = parameters->target().reloc_symbol_index(this->u1_.arg,
   1002 						      this->type_);
   1003       break;
   1004 
   1005     case 0:
   1006       // Relocations without symbols use a symbol index of 0.
   1007       index = 0;
   1008       break;
   1009 
   1010     default:
   1011       {
   1012 	const unsigned int lsi = this->local_sym_index_;
   1013 	Sized_relobj_file<size, big_endian>* relobj =
   1014 	    this->u1_.relobj->sized_relobj();
   1015 	gold_assert(relobj != NULL);
   1016 	if (!this->is_section_symbol_)
   1017 	  {
   1018 	    if (dynamic)
   1019 	      index = relobj->dynsym_index(lsi);
   1020 	    else
   1021 	      index = relobj->symtab_index(lsi);
   1022 	  }
   1023 	else
   1024 	  {
   1025 	    Output_section* os = relobj->output_section(lsi);
   1026 	    gold_assert(os != NULL);
   1027 	    if (dynamic)
   1028 	      index = os->dynsym_index();
   1029 	    else
   1030 	      index = os->symtab_index();
   1031 	  }
   1032       }
   1033       break;
   1034     }
   1035   gold_assert(index != -1U);
   1036   return index;
   1037 }
   1038 
   1039 // For a local section symbol, get the address of the offset ADDEND
   1040 // within the input section.
   1041 
   1042 template<bool dynamic, int size, bool big_endian>
   1043 typename elfcpp::Elf_types<size>::Elf_Addr
   1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
   1045   local_section_offset(Addend addend) const
   1046 {
   1047   gold_assert(this->local_sym_index_ != GSYM_CODE
   1048 	      && this->local_sym_index_ != SECTION_CODE
   1049 	      && this->local_sym_index_ != TARGET_CODE
   1050 	      && this->local_sym_index_ != INVALID_CODE
   1051 	      && this->local_sym_index_ != 0
   1052 	      && this->is_section_symbol_);
   1053   const unsigned int lsi = this->local_sym_index_;
   1054   Output_section* os = this->u1_.relobj->output_section(lsi);
   1055   gold_assert(os != NULL);
   1056   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
   1057   if (offset != invalid_address)
   1058     return offset + addend;
   1059   // This is a merge section.
   1060   Sized_relobj_file<size, big_endian>* relobj =
   1061       this->u1_.relobj->sized_relobj();
   1062   gold_assert(relobj != NULL);
   1063   offset = os->output_address(relobj, lsi, addend);
   1064   gold_assert(offset != invalid_address);
   1065   return offset;
   1066 }
   1067 
   1068 // Get the output address of a relocation.
   1069 
   1070 template<bool dynamic, int size, bool big_endian>
   1071 typename elfcpp::Elf_types<size>::Elf_Addr
   1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
   1073 {
   1074   Address address = this->address_;
   1075   if (this->shndx_ != INVALID_CODE)
   1076     {
   1077       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
   1078       gold_assert(os != NULL);
   1079       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
   1080       if (off != invalid_address)
   1081 	address += os->address() + off;
   1082       else
   1083 	{
   1084 	  Sized_relobj_file<size, big_endian>* relobj =
   1085 	      this->u2_.relobj->sized_relobj();
   1086 	  gold_assert(relobj != NULL);
   1087 	  address = os->output_address(relobj, this->shndx_, address);
   1088 	  gold_assert(address != invalid_address);
   1089 	}
   1090     }
   1091   else if (this->u2_.od != NULL)
   1092     address += this->u2_.od->address();
   1093   return address;
   1094 }
   1095 
   1096 // Write out the offset and info fields of a Rel or Rela relocation
   1097 // entry.
   1098 
   1099 template<bool dynamic, int size, bool big_endian>
   1100 template<typename Write_rel>
   1101 void
   1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
   1103     Write_rel* wr) const
   1104 {
   1105   wr->put_r_offset(this->get_address());
   1106   unsigned int sym_index = this->get_symbol_index();
   1107   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
   1108 }
   1109 
   1110 // Write out a Rel relocation.
   1111 
   1112 template<bool dynamic, int size, bool big_endian>
   1113 void
   1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
   1115     unsigned char* pov) const
   1116 {
   1117   elfcpp::Rel_write<size, big_endian> orel(pov);
   1118   this->write_rel(&orel);
   1119 }
   1120 
   1121 // Get the value of the symbol referred to by a Rel relocation.
   1122 
   1123 template<bool dynamic, int size, bool big_endian>
   1124 typename elfcpp::Elf_types<size>::Elf_Addr
   1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
   1126     Addend addend) const
   1127 {
   1128   if (this->local_sym_index_ == GSYM_CODE)
   1129     {
   1130       const Sized_symbol<size>* sym;
   1131       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
   1132       if (this->use_plt_offset_ && sym->has_plt_offset())
   1133 	return parameters->target().plt_address_for_global(sym);
   1134       else
   1135 	return sym->value() + addend;
   1136     }
   1137   if (this->local_sym_index_ == SECTION_CODE)
   1138     {
   1139       gold_assert(!this->use_plt_offset_);
   1140       return this->u1_.os->address() + addend;
   1141     }
   1142   gold_assert(this->local_sym_index_ != TARGET_CODE
   1143 	      && this->local_sym_index_ != INVALID_CODE
   1144 	      && this->local_sym_index_ != 0
   1145 	      && !this->is_section_symbol_);
   1146   const unsigned int lsi = this->local_sym_index_;
   1147   Sized_relobj_file<size, big_endian>* relobj =
   1148       this->u1_.relobj->sized_relobj();
   1149   gold_assert(relobj != NULL);
   1150   if (this->use_plt_offset_)
   1151     return parameters->target().plt_address_for_local(relobj, lsi);
   1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
   1153   return symval->value(relobj, addend);
   1154 }
   1155 
   1156 // Reloc comparison.  This function sorts the dynamic relocs for the
   1157 // benefit of the dynamic linker.  First we sort all relative relocs
   1158 // to the front.  Among relative relocs, we sort by output address.
   1159 // Among non-relative relocs, we sort by symbol index, then by output
   1160 // address.
   1161 
   1162 template<bool dynamic, int size, bool big_endian>
   1163 int
   1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
   1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
   1166     const
   1167 {
   1168   if (this->is_relative_)
   1169     {
   1170       if (!r2.is_relative_)
   1171 	return -1;
   1172       // Otherwise sort by reloc address below.
   1173     }
   1174   else if (r2.is_relative_)
   1175     return 1;
   1176   else
   1177     {
   1178       unsigned int sym1 = this->get_symbol_index();
   1179       unsigned int sym2 = r2.get_symbol_index();
   1180       if (sym1 < sym2)
   1181 	return -1;
   1182       else if (sym1 > sym2)
   1183 	return 1;
   1184       // Otherwise sort by reloc address.
   1185     }
   1186 
   1187   section_offset_type addr1 = this->get_address();
   1188   section_offset_type addr2 = r2.get_address();
   1189   if (addr1 < addr2)
   1190     return -1;
   1191   else if (addr1 > addr2)
   1192     return 1;
   1193 
   1194   // Final tie breaker, in order to generate the same output on any
   1195   // host: reloc type.
   1196   unsigned int type1 = this->type_;
   1197   unsigned int type2 = r2.type_;
   1198   if (type1 < type2)
   1199     return -1;
   1200   else if (type1 > type2)
   1201     return 1;
   1202 
   1203   // These relocs appear to be exactly the same.
   1204   return 0;
   1205 }
   1206 
   1207 // Write out a Rela relocation.
   1208 
   1209 template<bool dynamic, int size, bool big_endian>
   1210 void
   1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
   1212     unsigned char* pov) const
   1213 {
   1214   elfcpp::Rela_write<size, big_endian> orel(pov);
   1215   this->rel_.write_rel(&orel);
   1216   Addend addend = this->addend_;
   1217   if (this->rel_.is_target_specific())
   1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
   1219 					       this->rel_.type(), addend);
   1220   else if (this->rel_.is_symbolless())
   1221     addend = this->rel_.symbol_value(addend);
   1222   else if (this->rel_.is_local_section_symbol())
   1223     addend = this->rel_.local_section_offset(addend);
   1224   orel.put_r_addend(addend);
   1225 }
   1226 
   1227 // Write out a Relr relocation.
   1228 
   1229 template<bool dynamic, int size, bool big_endian>
   1230 void
   1231 Output_reloc<elfcpp::SHT_RELR, dynamic, size, big_endian>::write(
   1232     unsigned char* pov) const
   1233 {
   1234   elfcpp::Relr_write<size, big_endian> orel(pov);
   1235   if (this->bits_ == 0)
   1236     {
   1237       // This is not a continuation entry. Output full address.
   1238       orel.put_r_data(this->rel_.get_address());
   1239     }
   1240   else
   1241     {
   1242       // This is a continuation entry. Output the bitmap.
   1243       orel.put_r_data((this->bits_<<1)|1);
   1244     }
   1245 }
   1246 
   1247 // Output_data_reloc_base methods.
   1248 
   1249 // Adjust the output section.
   1250 
   1251 template<int sh_type, bool dynamic, int size, bool big_endian>
   1252 void
   1253 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
   1254     ::do_adjust_output_section(Output_section* os)
   1255 {
   1256   if (sh_type == elfcpp::SHT_REL)
   1257     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
   1258   else if (sh_type == elfcpp::SHT_RELA)
   1259     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
   1260   else if (sh_type == elfcpp::SHT_RELR)
   1261     os->set_entsize(elfcpp::Elf_sizes<size>::relr_size);
   1262   else
   1263     gold_unreachable();
   1264 
   1265   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
   1266   // static link.  The backends will generate a dynamic reloc section
   1267   // to hold this.  In that case we don't want to link to the dynsym
   1268   // section, because there isn't one.
   1269   if (!dynamic)
   1270     os->set_should_link_to_symtab();
   1271   else if (parameters->doing_static_link())
   1272     ;
   1273   else
   1274     os->set_should_link_to_dynsym();
   1275 }
   1276 
   1277 // Standard relocation writer, which just calls Output_reloc::write().
   1278 
   1279 template<int sh_type, bool dynamic, int size, bool big_endian>
   1280 struct Output_reloc_writer
   1281 {
   1282   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
   1283   typedef std::vector<Output_reloc_type> Relocs;
   1284 
   1285   static void
   1286   write(typename Relocs::const_iterator p, unsigned char* pov)
   1287   { p->write(pov); }
   1288 };
   1289 
   1290 // Write out relocation data.
   1291 
   1292 template<int sh_type, bool dynamic, int size, bool big_endian>
   1293 void
   1294 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
   1295     Output_file* of)
   1296 {
   1297   typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
   1298   this->do_write_generic<Writer>(of);
   1299 }
   1300 
   1301 template<bool dynamic, int size, bool big_endian>
   1302 void
   1303 Output_data_reloc<elfcpp::SHT_RELR, dynamic, size, big_endian>::do_write(
   1304     Output_file* of)
   1305 {
   1306   typedef Output_reloc_writer<elfcpp::SHT_RELR, dynamic, size, big_endian> Writer;
   1307   this->template do_write_generic<Writer>(of);
   1308 }
   1309 
   1310 // Class Output_relocatable_relocs.
   1311 
   1312 template<int sh_type, int size, bool big_endian>
   1313 void
   1314 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
   1315 {
   1316   this->set_data_size(this->rr_->output_reloc_count()
   1317 		      * Reloc_types<sh_type, size, big_endian>::reloc_size);
   1318 }
   1319 
   1320 // class Output_data_group.
   1321 
   1322 template<int size, bool big_endian>
   1323 Output_data_group<size, big_endian>::Output_data_group(
   1324     Sized_relobj_file<size, big_endian>* relobj,
   1325     section_size_type entry_count,
   1326     elfcpp::Elf_Word flags,
   1327     std::vector<unsigned int>* input_shndxes)
   1328   : Output_section_data(entry_count * 4, 4, false),
   1329     relobj_(relobj),
   1330     flags_(flags)
   1331 {
   1332   this->input_shndxes_.swap(*input_shndxes);
   1333 }
   1334 
   1335 // Write out the section group, which means translating the section
   1336 // indexes to apply to the output file.
   1337 
   1338 template<int size, bool big_endian>
   1339 void
   1340 Output_data_group<size, big_endian>::do_write(Output_file* of)
   1341 {
   1342   const off_t off = this->offset();
   1343   const section_size_type oview_size =
   1344     convert_to_section_size_type(this->data_size());
   1345   unsigned char* const oview = of->get_output_view(off, oview_size);
   1346 
   1347   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
   1348   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
   1349   ++contents;
   1350 
   1351   for (std::vector<unsigned int>::const_iterator p =
   1352 	 this->input_shndxes_.begin();
   1353        p != this->input_shndxes_.end();
   1354        ++p, ++contents)
   1355     {
   1356       Output_section* os = this->relobj_->output_section(*p);
   1357 
   1358       unsigned int output_shndx;
   1359       if (os != NULL)
   1360 	output_shndx = os->out_shndx();
   1361       else
   1362 	{
   1363 	  this->relobj_->error(_("section group retained but "
   1364 				 "group element discarded"));
   1365 	  output_shndx = 0;
   1366 	}
   1367 
   1368       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
   1369     }
   1370 
   1371   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
   1372   gold_assert(wrote == oview_size);
   1373 
   1374   of->write_output_view(off, oview_size, oview);
   1375 
   1376   // We no longer need this information.
   1377   this->input_shndxes_.clear();
   1378 }
   1379 
   1380 // Output_data_got::Got_entry methods.
   1381 
   1382 // Write out the entry.
   1383 
   1384 template<int got_size, bool big_endian>
   1385 void
   1386 Output_data_got<got_size, big_endian>::Got_entry::write(
   1387     unsigned int got_indx,
   1388     unsigned char* pov) const
   1389 {
   1390   Valtype val = 0;
   1391 
   1392   switch (this->local_sym_index_)
   1393     {
   1394     case GSYM_CODE:
   1395       {
   1396 	// If the symbol is resolved locally, we need to write out the
   1397 	// link-time value, which will be relocated dynamically by a
   1398 	// RELATIVE relocation.
   1399 	Symbol* gsym = this->u_.gsym;
   1400 	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
   1401 	  val = parameters->target().plt_address_for_global(gsym);
   1402 	else
   1403 	  {
   1404 	    switch (parameters->size_and_endianness())
   1405 	      {
   1406 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1407 	      case Parameters::TARGET_32_LITTLE:
   1408 	      case Parameters::TARGET_32_BIG:
   1409 		{
   1410 		  // This cast is ugly.  We don't want to put a
   1411 		  // virtual method in Symbol, because we want Symbol
   1412 		  // to be as small as possible.
   1413 		  Sized_symbol<32>::Value_type v;
   1414 		  v = static_cast<Sized_symbol<32>*>(gsym)->value();
   1415 		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
   1416 		}
   1417 		break;
   1418 #endif
   1419 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1420 	      case Parameters::TARGET_64_LITTLE:
   1421 	      case Parameters::TARGET_64_BIG:
   1422 		{
   1423 		  Sized_symbol<64>::Value_type v;
   1424 		  v = static_cast<Sized_symbol<64>*>(gsym)->value();
   1425 		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
   1426 		}
   1427 		break;
   1428 #endif
   1429 	      default:
   1430 		gold_unreachable();
   1431 	      }
   1432 	    if (this->use_plt_or_tls_offset_
   1433 		&& gsym->type() == elfcpp::STT_TLS)
   1434 	      val += parameters->target().tls_offset_for_global(gsym,
   1435 								got_indx);
   1436 	  }
   1437       }
   1438       break;
   1439 
   1440     case CONSTANT_CODE:
   1441       val = this->u_.constant;
   1442       break;
   1443 
   1444     case RESERVED_CODE:
   1445       // If we're doing an incremental update, don't touch this GOT entry.
   1446       if (parameters->incremental_update())
   1447 	return;
   1448       val = this->u_.constant;
   1449       break;
   1450 
   1451     default:
   1452       {
   1453 	const Relobj* object = this->u_.object;
   1454 	const unsigned int lsi = this->local_sym_index_;
   1455 	bool is_tls = object->local_is_tls(lsi);
   1456 	if (this->use_plt_or_tls_offset_ && !is_tls)
   1457 	  val = parameters->target().plt_address_for_local(object, lsi);
   1458 	else
   1459 	  {
   1460 	    uint64_t lval = object->local_symbol_value(lsi, this->addend_);
   1461 	    val = convert_types<Valtype, uint64_t>(lval);
   1462 	    if (this->use_plt_or_tls_offset_ && is_tls)
   1463 	      val += parameters->target().tls_offset_for_local(object, lsi,
   1464 							       got_indx);
   1465 	  }
   1466       }
   1467       break;
   1468     }
   1469 
   1470   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
   1471 }
   1472 
   1473 // Output_data_got methods.
   1474 
   1475 // Add an entry for a global symbol to the GOT.  This returns true if
   1476 // this is a new GOT entry, false if the symbol already had a GOT
   1477 // entry.
   1478 
   1479 template<int got_size, bool big_endian>
   1480 bool
   1481 Output_data_got<got_size, big_endian>::add_global(
   1482     Symbol* gsym,
   1483     unsigned int got_type)
   1484 {
   1485   if (gsym->has_got_offset(got_type))
   1486     return false;
   1487 
   1488   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
   1489   gsym->set_got_offset(got_type, got_offset);
   1490   return true;
   1491 }
   1492 
   1493 // Like add_global, but use the PLT offset.
   1494 
   1495 template<int got_size, bool big_endian>
   1496 bool
   1497 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
   1498 						      unsigned int got_type)
   1499 {
   1500   if (gsym->has_got_offset(got_type))
   1501     return false;
   1502 
   1503   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
   1504   gsym->set_got_offset(got_type, got_offset);
   1505   return true;
   1506 }
   1507 
   1508 // Add an entry for a global symbol to the GOT, and add a dynamic
   1509 // relocation of type R_TYPE for the GOT entry.
   1510 
   1511 template<int got_size, bool big_endian>
   1512 void
   1513 Output_data_got<got_size, big_endian>::add_global_with_rel(
   1514     Symbol* gsym,
   1515     unsigned int got_type,
   1516     Output_data_reloc_generic* rel_dyn,
   1517     unsigned int r_type)
   1518 {
   1519   if (gsym->has_got_offset(got_type))
   1520     return;
   1521 
   1522   unsigned int got_offset = this->add_got_entry(Got_entry());
   1523   gsym->set_got_offset(got_type, got_offset);
   1524   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
   1525 }
   1526 
   1527 // Add a pair of entries for a global symbol to the GOT, and add
   1528 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
   1529 // If R_TYPE_2 == 0, add the second entry with no relocation.
   1530 template<int got_size, bool big_endian>
   1531 void
   1532 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
   1533     Symbol* gsym,
   1534     unsigned int got_type,
   1535     Output_data_reloc_generic* rel_dyn,
   1536     unsigned int r_type_1,
   1537     unsigned int r_type_2)
   1538 {
   1539   if (gsym->has_got_offset(got_type))
   1540     return;
   1541 
   1542   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
   1543   gsym->set_got_offset(got_type, got_offset);
   1544   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
   1545 
   1546   if (r_type_2 != 0)
   1547     rel_dyn->add_global_generic(gsym, r_type_2, this,
   1548 				got_offset + got_size / 8, 0);
   1549 }
   1550 
   1551 // Add an entry for a local symbol to the GOT.  This returns true if
   1552 // this is a new GOT entry, false if the symbol already has a GOT
   1553 // entry.
   1554 
   1555 template<int got_size, bool big_endian>
   1556 bool
   1557 Output_data_got<got_size, big_endian>::add_local(
   1558     Relobj* object,
   1559     unsigned int symndx,
   1560     unsigned int got_type)
   1561 {
   1562   if (object->local_has_got_offset(symndx, got_type))
   1563     return false;
   1564 
   1565   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
   1566 							  false));
   1567   object->set_local_got_offset(symndx, got_type, got_offset);
   1568   return true;
   1569 }
   1570 
   1571 // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
   1572 // true if this is a new GOT entry, false if the symbol already has a GOT
   1573 // entry.
   1574 
   1575 template<int got_size, bool big_endian>
   1576 bool
   1577 Output_data_got<got_size, big_endian>::add_local(
   1578     Relobj* object,
   1579     unsigned int symndx,
   1580     unsigned int got_type,
   1581     uint64_t addend)
   1582 {
   1583   if (object->local_has_got_offset(symndx, got_type, addend))
   1584     return false;
   1585 
   1586   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
   1587 							  false, addend));
   1588   object->set_local_got_offset(symndx, got_type, got_offset, addend);
   1589   return true;
   1590 }
   1591 
   1592 // Like add_local, but use the PLT offset.
   1593 
   1594 template<int got_size, bool big_endian>
   1595 bool
   1596 Output_data_got<got_size, big_endian>::add_local_plt(
   1597     Relobj* object,
   1598     unsigned int symndx,
   1599     unsigned int got_type)
   1600 {
   1601   if (object->local_has_got_offset(symndx, got_type))
   1602     return false;
   1603 
   1604   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
   1605 							  true));
   1606   object->set_local_got_offset(symndx, got_type, got_offset);
   1607   return true;
   1608 }
   1609 
   1610 // Add an entry for a local symbol to the GOT, and add a dynamic
   1611 // relocation of type R_TYPE for the GOT entry.
   1612 
   1613 template<int got_size, bool big_endian>
   1614 void
   1615 Output_data_got<got_size, big_endian>::add_local_with_rel(
   1616     Relobj* object,
   1617     unsigned int symndx,
   1618     unsigned int got_type,
   1619     Output_data_reloc_generic* rel_dyn,
   1620     unsigned int r_type)
   1621 {
   1622   if (object->local_has_got_offset(symndx, got_type))
   1623     return;
   1624 
   1625   unsigned int got_offset = this->add_got_entry(Got_entry());
   1626   object->set_local_got_offset(symndx, got_type, got_offset);
   1627   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
   1628 }
   1629 
   1630 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
   1631 // relocation of type R_TYPE for the GOT entry.
   1632 
   1633 template<int got_size, bool big_endian>
   1634 void
   1635 Output_data_got<got_size, big_endian>::add_local_with_rel(
   1636     Relobj* object,
   1637     unsigned int symndx,
   1638     unsigned int got_type,
   1639     Output_data_reloc_generic* rel_dyn,
   1640     unsigned int r_type, uint64_t addend)
   1641 {
   1642   if (object->local_has_got_offset(symndx, got_type, addend))
   1643     return;
   1644 
   1645   unsigned int got_offset = this->add_got_entry(Got_entry());
   1646   object->set_local_got_offset(symndx, got_type, got_offset, addend);
   1647   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
   1648                              addend);
   1649 }
   1650 
   1651 // Add a pair of entries for a local symbol to the GOT, and add
   1652 // a dynamic relocation of type R_TYPE using the section symbol of
   1653 // the output section to which input section SHNDX maps, on the first.
   1654 // The first got entry will have a value of zero, the second the
   1655 // value of the local symbol.
   1656 template<int got_size, bool big_endian>
   1657 void
   1658 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
   1659     Relobj* object,
   1660     unsigned int symndx,
   1661     unsigned int shndx,
   1662     unsigned int got_type,
   1663     Output_data_reloc_generic* rel_dyn,
   1664     unsigned int r_type)
   1665 {
   1666   if (object->local_has_got_offset(symndx, got_type))
   1667     return;
   1668 
   1669   unsigned int got_offset =
   1670       this->add_got_entry_pair(Got_entry(),
   1671 			       Got_entry(object, symndx, false));
   1672   object->set_local_got_offset(symndx, got_type, got_offset);
   1673   Output_section* os = object->output_section(shndx);
   1674   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
   1675 }
   1676 
   1677 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
   1678 // a dynamic relocation of type R_TYPE using the section symbol of
   1679 // the output section to which input section SHNDX maps, on the first.
   1680 // The first got entry will have a value of zero, the second the
   1681 // value of the local symbol.
   1682 template<int got_size, bool big_endian>
   1683 void
   1684 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
   1685     Relobj* object,
   1686     unsigned int symndx,
   1687     unsigned int shndx,
   1688     unsigned int got_type,
   1689     Output_data_reloc_generic* rel_dyn,
   1690     unsigned int r_type, uint64_t addend)
   1691 {
   1692   if (object->local_has_got_offset(symndx, got_type, addend))
   1693     return;
   1694 
   1695   unsigned int got_offset =
   1696       this->add_got_entry_pair(Got_entry(),
   1697 			       Got_entry(object, symndx, false, addend));
   1698   object->set_local_got_offset(symndx, got_type, got_offset, addend);
   1699   Output_section* os = object->output_section(shndx);
   1700   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
   1701 }
   1702 
   1703 // Add a pair of entries for a local symbol to the GOT, and add
   1704 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
   1705 // The first got entry will have a value of zero, the second the
   1706 // value of the local symbol offset by Target::tls_offset_for_local.
   1707 template<int got_size, bool big_endian>
   1708 void
   1709 Output_data_got<got_size, big_endian>::add_local_tls_pair(
   1710     Relobj* object,
   1711     unsigned int symndx,
   1712     unsigned int got_type,
   1713     Output_data_reloc_generic* rel_dyn,
   1714     unsigned int r_type)
   1715 {
   1716   if (object->local_has_got_offset(symndx, got_type))
   1717     return;
   1718 
   1719   unsigned int got_offset
   1720     = this->add_got_entry_pair(Got_entry(),
   1721 			       Got_entry(object, symndx, true));
   1722   object->set_local_got_offset(symndx, got_type, got_offset);
   1723   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
   1724 }
   1725 
   1726 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
   1727 
   1728 template<int got_size, bool big_endian>
   1729 void
   1730 Output_data_got<got_size, big_endian>::reserve_local(
   1731     unsigned int i,
   1732     Relobj* object,
   1733     unsigned int sym_index,
   1734     unsigned int got_type)
   1735 {
   1736   this->do_reserve_slot(i);
   1737   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
   1738 }
   1739 
   1740 // Reserve a slot in the GOT for a global symbol.
   1741 
   1742 template<int got_size, bool big_endian>
   1743 void
   1744 Output_data_got<got_size, big_endian>::reserve_global(
   1745     unsigned int i,
   1746     Symbol* gsym,
   1747     unsigned int got_type)
   1748 {
   1749   this->do_reserve_slot(i);
   1750   gsym->set_got_offset(got_type, this->got_offset(i));
   1751 }
   1752 
   1753 // Write out the GOT.
   1754 
   1755 template<int got_size, bool big_endian>
   1756 void
   1757 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
   1758 {
   1759   const int add = got_size / 8;
   1760 
   1761   const off_t off = this->offset();
   1762   const off_t oview_size = this->data_size();
   1763   unsigned char* const oview = of->get_output_view(off, oview_size);
   1764 
   1765   unsigned char* pov = oview;
   1766   for (unsigned int i = 0; i < this->entries_.size(); ++i)
   1767     {
   1768       this->entries_[i].write(i, pov);
   1769       pov += add;
   1770     }
   1771 
   1772   gold_assert(pov - oview == oview_size);
   1773 
   1774   of->write_output_view(off, oview_size, oview);
   1775 
   1776   // We no longer need the GOT entries.
   1777   this->entries_.clear();
   1778 }
   1779 
   1780 // Create a new GOT entry and return its offset.
   1781 
   1782 template<int got_size, bool big_endian>
   1783 unsigned int
   1784 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
   1785 {
   1786   if (!this->is_data_size_valid())
   1787     {
   1788       this->entries_.push_back(got_entry);
   1789       this->set_got_size();
   1790       return this->last_got_offset();
   1791     }
   1792   else
   1793     {
   1794       // For an incremental update, find an available slot.
   1795       off_t got_offset = this->free_list_.allocate(got_size / 8,
   1796 						   got_size / 8, 0);
   1797       if (got_offset == -1)
   1798 	gold_fallback(_("out of patch space (GOT);"
   1799 			" relink with --incremental-full"));
   1800       unsigned int got_index = got_offset / (got_size / 8);
   1801       gold_assert(got_index < this->entries_.size());
   1802       this->entries_[got_index] = got_entry;
   1803       return static_cast<unsigned int>(got_offset);
   1804     }
   1805 }
   1806 
   1807 // Create a pair of new GOT entries and return the offset of the first.
   1808 
   1809 template<int got_size, bool big_endian>
   1810 unsigned int
   1811 Output_data_got<got_size, big_endian>::add_got_entry_pair(
   1812     Got_entry got_entry_1,
   1813     Got_entry got_entry_2)
   1814 {
   1815   if (!this->is_data_size_valid())
   1816     {
   1817       unsigned int got_offset;
   1818       this->entries_.push_back(got_entry_1);
   1819       got_offset = this->last_got_offset();
   1820       this->entries_.push_back(got_entry_2);
   1821       this->set_got_size();
   1822       return got_offset;
   1823     }
   1824   else
   1825     {
   1826       // For an incremental update, find an available pair of slots.
   1827       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
   1828 						   got_size / 8, 0);
   1829       if (got_offset == -1)
   1830 	gold_fallback(_("out of patch space (GOT);"
   1831 			" relink with --incremental-full"));
   1832       unsigned int got_index = got_offset / (got_size / 8);
   1833       gold_assert(got_index < this->entries_.size());
   1834       this->entries_[got_index] = got_entry_1;
   1835       this->entries_[got_index + 1] = got_entry_2;
   1836       return static_cast<unsigned int>(got_offset);
   1837     }
   1838 }
   1839 
   1840 // Replace GOT entry I with a new value.
   1841 
   1842 template<int got_size, bool big_endian>
   1843 void
   1844 Output_data_got<got_size, big_endian>::replace_got_entry(
   1845     unsigned int i,
   1846     Got_entry got_entry)
   1847 {
   1848   gold_assert(i < this->entries_.size());
   1849   this->entries_[i] = got_entry;
   1850 }
   1851 
   1852 // Output_data_dynamic::Dynamic_entry methods.
   1853 
   1854 // Write out the entry.
   1855 
   1856 template<int size, bool big_endian>
   1857 void
   1858 Output_data_dynamic::Dynamic_entry::write(
   1859     unsigned char* pov,
   1860     const Stringpool* pool) const
   1861 {
   1862   typename elfcpp::Elf_types<size>::Elf_WXword val;
   1863   switch (this->offset_)
   1864     {
   1865     case DYNAMIC_NUMBER:
   1866       val = this->u_.val;
   1867       break;
   1868 
   1869     case DYNAMIC_SECTION_SIZE:
   1870       val = this->u_.od->data_size();
   1871       if (this->od2 != NULL)
   1872 	val += this->od2->data_size();
   1873       break;
   1874 
   1875     case DYNAMIC_SYMBOL:
   1876       {
   1877 	const Sized_symbol<size>* s =
   1878 	  static_cast<const Sized_symbol<size>*>(this->u_.sym);
   1879 	val = s->value();
   1880       }
   1881       break;
   1882 
   1883     case DYNAMIC_STRING:
   1884       val = pool->get_offset(this->u_.str);
   1885       break;
   1886 
   1887     case DYNAMIC_CUSTOM:
   1888       val = parameters->target().dynamic_tag_custom_value(this->tag_);
   1889       break;
   1890 
   1891     default:
   1892       val = this->u_.od->address() + this->offset_;
   1893       break;
   1894     }
   1895 
   1896   elfcpp::Dyn_write<size, big_endian> dw(pov);
   1897   dw.put_d_tag(this->tag_);
   1898   dw.put_d_val(val);
   1899 }
   1900 
   1901 // Output_data_dynamic methods.
   1902 
   1903 // Adjust the output section to set the entry size.
   1904 
   1905 void
   1906 Output_data_dynamic::do_adjust_output_section(Output_section* os)
   1907 {
   1908   if (parameters->target().get_size() == 32)
   1909     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
   1910   else if (parameters->target().get_size() == 64)
   1911     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
   1912   else
   1913     gold_unreachable();
   1914 }
   1915 
   1916 // Get a dynamic entry offset.
   1917 
   1918 unsigned int
   1919 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
   1920 {
   1921   int dyn_size;
   1922 
   1923   if (parameters->target().get_size() == 32)
   1924     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
   1925   else if (parameters->target().get_size() == 64)
   1926     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
   1927   else
   1928     gold_unreachable();
   1929 
   1930   for (size_t i = 0; i < entries_.size(); ++i)
   1931     if (entries_[i].tag() == tag)
   1932       return i * dyn_size;
   1933 
   1934   return -1U;
   1935 }
   1936 
   1937 // Set the final data size.
   1938 
   1939 void
   1940 Output_data_dynamic::set_final_data_size()
   1941 {
   1942   // Add the terminating entry if it hasn't been added.
   1943   // Because of relaxation, we can run this multiple times.
   1944   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
   1945     {
   1946       int extra = parameters->options().spare_dynamic_tags();
   1947       for (int i = 0; i < extra; ++i)
   1948 	this->add_constant(elfcpp::DT_NULL, 0);
   1949       this->add_constant(elfcpp::DT_NULL, 0);
   1950     }
   1951 
   1952   int dyn_size;
   1953   if (parameters->target().get_size() == 32)
   1954     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
   1955   else if (parameters->target().get_size() == 64)
   1956     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
   1957   else
   1958     gold_unreachable();
   1959   this->set_data_size(this->entries_.size() * dyn_size);
   1960 }
   1961 
   1962 // Write out the dynamic entries.
   1963 
   1964 void
   1965 Output_data_dynamic::do_write(Output_file* of)
   1966 {
   1967   switch (parameters->size_and_endianness())
   1968     {
   1969 #ifdef HAVE_TARGET_32_LITTLE
   1970     case Parameters::TARGET_32_LITTLE:
   1971       this->sized_write<32, false>(of);
   1972       break;
   1973 #endif
   1974 #ifdef HAVE_TARGET_32_BIG
   1975     case Parameters::TARGET_32_BIG:
   1976       this->sized_write<32, true>(of);
   1977       break;
   1978 #endif
   1979 #ifdef HAVE_TARGET_64_LITTLE
   1980     case Parameters::TARGET_64_LITTLE:
   1981       this->sized_write<64, false>(of);
   1982       break;
   1983 #endif
   1984 #ifdef HAVE_TARGET_64_BIG
   1985     case Parameters::TARGET_64_BIG:
   1986       this->sized_write<64, true>(of);
   1987       break;
   1988 #endif
   1989     default:
   1990       gold_unreachable();
   1991     }
   1992 }
   1993 
   1994 template<int size, bool big_endian>
   1995 void
   1996 Output_data_dynamic::sized_write(Output_file* of)
   1997 {
   1998   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
   1999 
   2000   const off_t offset = this->offset();
   2001   const off_t oview_size = this->data_size();
   2002   unsigned char* const oview = of->get_output_view(offset, oview_size);
   2003 
   2004   unsigned char* pov = oview;
   2005   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
   2006        p != this->entries_.end();
   2007        ++p)
   2008     {
   2009       p->write<size, big_endian>(pov, this->pool_);
   2010       pov += dyn_size;
   2011     }
   2012 
   2013   gold_assert(pov - oview == oview_size);
   2014 
   2015   of->write_output_view(offset, oview_size, oview);
   2016 
   2017   // We no longer need the dynamic entries.
   2018   this->entries_.clear();
   2019 }
   2020 
   2021 // Class Output_symtab_xindex.
   2022 
   2023 void
   2024 Output_symtab_xindex::do_write(Output_file* of)
   2025 {
   2026   const off_t offset = this->offset();
   2027   const off_t oview_size = this->data_size();
   2028   unsigned char* const oview = of->get_output_view(offset, oview_size);
   2029 
   2030   memset(oview, 0, oview_size);
   2031 
   2032   if (parameters->target().is_big_endian())
   2033     this->endian_do_write<true>(oview);
   2034   else
   2035     this->endian_do_write<false>(oview);
   2036 
   2037   of->write_output_view(offset, oview_size, oview);
   2038 
   2039   // We no longer need the data.
   2040   this->entries_.clear();
   2041 }
   2042 
   2043 template<bool big_endian>
   2044 void
   2045 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
   2046 {
   2047   for (Xindex_entries::const_iterator p = this->entries_.begin();
   2048        p != this->entries_.end();
   2049        ++p)
   2050     {
   2051       unsigned int symndx = p->first;
   2052       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
   2053       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
   2054     }
   2055 }
   2056 
   2057 // Output_fill_debug_info methods.
   2058 
   2059 // Return the minimum size needed for a dummy compilation unit header.
   2060 
   2061 size_t
   2062 Output_fill_debug_info::do_minimum_hole_size() const
   2063 {
   2064   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
   2065   // address_size.
   2066   const size_t len = 4 + 2 + 4 + 1;
   2067   // For type units, add type_signature, type_offset.
   2068   if (this->is_debug_types_)
   2069     return len + 8 + 4;
   2070   return len;
   2071 }
   2072 
   2073 // Write a dummy compilation unit header to fill a hole in the
   2074 // .debug_info or .debug_types section.
   2075 
   2076 void
   2077 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
   2078 {
   2079   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
   2080 	     static_cast<long>(off), static_cast<long>(len));
   2081 
   2082   gold_assert(len >= this->do_minimum_hole_size());
   2083 
   2084   unsigned char* const oview = of->get_output_view(off, len);
   2085   unsigned char* pov = oview;
   2086 
   2087   // Write header fields: unit_length, version, debug_abbrev_offset,
   2088   // address_size.
   2089   if (this->is_big_endian())
   2090     {
   2091       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
   2092       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
   2093       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
   2094     }
   2095   else
   2096     {
   2097       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
   2098       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
   2099       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
   2100     }
   2101   pov += 4 + 2 + 4;
   2102   *pov++ = 4;
   2103 
   2104   // For type units, the additional header fields -- type_signature,
   2105   // type_offset -- can be filled with zeroes.
   2106 
   2107   // Fill the remainder of the free space with zeroes.  The first
   2108   // zero should tell the consumer there are no DIEs to read in this
   2109   // compilation unit.
   2110   if (pov < oview + len)
   2111     memset(pov, 0, oview + len - pov);
   2112 
   2113   of->write_output_view(off, len, oview);
   2114 }
   2115 
   2116 // Output_fill_debug_line methods.
   2117 
   2118 // Return the minimum size needed for a dummy line number program header.
   2119 
   2120 size_t
   2121 Output_fill_debug_line::do_minimum_hole_size() const
   2122 {
   2123   // Line number program header fields: unit_length, version, header_length,
   2124   // minimum_instruction_length, default_is_stmt, line_base, line_range,
   2125   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
   2126   const size_t len = 4 + 2 + 4 + this->header_length;
   2127   return len;
   2128 }
   2129 
   2130 // Write a dummy line number program header to fill a hole in the
   2131 // .debug_line section.
   2132 
   2133 void
   2134 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
   2135 {
   2136   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
   2137 	     static_cast<long>(off), static_cast<long>(len));
   2138 
   2139   gold_assert(len >= this->do_minimum_hole_size());
   2140 
   2141   unsigned char* const oview = of->get_output_view(off, len);
   2142   unsigned char* pov = oview;
   2143 
   2144   // Write header fields: unit_length, version, header_length,
   2145   // minimum_instruction_length, default_is_stmt, line_base, line_range,
   2146   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
   2147   // We set the header_length field to cover the entire hole, so the
   2148   // line number program is empty.
   2149   if (this->is_big_endian())
   2150     {
   2151       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
   2152       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
   2153       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
   2154     }
   2155   else
   2156     {
   2157       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
   2158       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
   2159       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
   2160     }
   2161   pov += 4 + 2 + 4;
   2162   *pov++ = 1;	// minimum_instruction_length
   2163   *pov++ = 0;	// default_is_stmt
   2164   *pov++ = 0;	// line_base
   2165   *pov++ = 5;	// line_range
   2166   *pov++ = 13;	// opcode_base
   2167   *pov++ = 0;	// standard_opcode_lengths[1]
   2168   *pov++ = 1;	// standard_opcode_lengths[2]
   2169   *pov++ = 1;	// standard_opcode_lengths[3]
   2170   *pov++ = 1;	// standard_opcode_lengths[4]
   2171   *pov++ = 1;	// standard_opcode_lengths[5]
   2172   *pov++ = 0;	// standard_opcode_lengths[6]
   2173   *pov++ = 0;	// standard_opcode_lengths[7]
   2174   *pov++ = 0;	// standard_opcode_lengths[8]
   2175   *pov++ = 1;	// standard_opcode_lengths[9]
   2176   *pov++ = 0;	// standard_opcode_lengths[10]
   2177   *pov++ = 0;	// standard_opcode_lengths[11]
   2178   *pov++ = 1;	// standard_opcode_lengths[12]
   2179   *pov++ = 0;	// include_directories (empty)
   2180   *pov++ = 0;	// filenames (empty)
   2181 
   2182   // Some consumers don't check the header_length field, and simply
   2183   // start reading the line number program immediately following the
   2184   // header.  For those consumers, we fill the remainder of the free
   2185   // space with DW_LNS_set_basic_block opcodes.  These are effectively
   2186   // no-ops: the resulting line table program will not create any rows.
   2187   if (pov < oview + len)
   2188     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
   2189 
   2190   of->write_output_view(off, len, oview);
   2191 }
   2192 
   2193 // Output_section::Input_section methods.
   2194 
   2195 // Return the current data size.  For an input section we store the size here.
   2196 // For an Output_section_data, we have to ask it for the size.
   2197 
   2198 off_t
   2199 Output_section::Input_section::current_data_size() const
   2200 {
   2201   if (this->is_input_section())
   2202     return this->u1_.data_size;
   2203   else
   2204     {
   2205       this->u2_.posd->pre_finalize_data_size();
   2206       return this->u2_.posd->current_data_size();
   2207     }
   2208 }
   2209 
   2210 // Return the data size.  For an input section we store the size here.
   2211 // For an Output_section_data, we have to ask it for the size.
   2212 
   2213 off_t
   2214 Output_section::Input_section::data_size() const
   2215 {
   2216   if (this->is_input_section())
   2217     return this->u1_.data_size;
   2218   else
   2219     return this->u2_.posd->data_size();
   2220 }
   2221 
   2222 // Return the object for an input section.
   2223 
   2224 Relobj*
   2225 Output_section::Input_section::relobj() const
   2226 {
   2227   if (this->is_input_section())
   2228     return this->u2_.object;
   2229   else if (this->is_merge_section())
   2230     {
   2231       gold_assert(this->u2_.pomb->first_relobj() != NULL);
   2232       return this->u2_.pomb->first_relobj();
   2233     }
   2234   else if (this->is_relaxed_input_section())
   2235     return this->u2_.poris->relobj();
   2236   else
   2237     gold_unreachable();
   2238 }
   2239 
   2240 // Return the input section index for an input section.
   2241 
   2242 unsigned int
   2243 Output_section::Input_section::shndx() const
   2244 {
   2245   if (this->is_input_section())
   2246     return this->shndx_;
   2247   else if (this->is_merge_section())
   2248     {
   2249       gold_assert(this->u2_.pomb->first_relobj() != NULL);
   2250       return this->u2_.pomb->first_shndx();
   2251     }
   2252   else if (this->is_relaxed_input_section())
   2253     return this->u2_.poris->shndx();
   2254   else
   2255     gold_unreachable();
   2256 }
   2257 
   2258 // Set the address and file offset.
   2259 
   2260 void
   2261 Output_section::Input_section::set_address_and_file_offset(
   2262     uint64_t address,
   2263     off_t file_offset,
   2264     off_t section_file_offset)
   2265 {
   2266   if (this->is_input_section())
   2267     this->u2_.object->set_section_offset(this->shndx_,
   2268 					 file_offset - section_file_offset);
   2269   else
   2270     this->u2_.posd->set_address_and_file_offset(address, file_offset);
   2271 }
   2272 
   2273 // Reset the address and file offset.
   2274 
   2275 void
   2276 Output_section::Input_section::reset_address_and_file_offset()
   2277 {
   2278   if (!this->is_input_section())
   2279     this->u2_.posd->reset_address_and_file_offset();
   2280 }
   2281 
   2282 // Finalize the data size.
   2283 
   2284 void
   2285 Output_section::Input_section::finalize_data_size()
   2286 {
   2287   if (!this->is_input_section())
   2288     this->u2_.posd->finalize_data_size();
   2289 }
   2290 
   2291 // Try to turn an input offset into an output offset.  We want to
   2292 // return the output offset relative to the start of this
   2293 // Input_section in the output section.
   2294 
   2295 inline bool
   2296 Output_section::Input_section::output_offset(
   2297     const Relobj* object,
   2298     unsigned int shndx,
   2299     section_offset_type offset,
   2300     section_offset_type* poutput) const
   2301 {
   2302   if (!this->is_input_section())
   2303     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
   2304   else
   2305     {
   2306       if (this->shndx_ != shndx || this->u2_.object != object)
   2307 	return false;
   2308       *poutput = offset;
   2309       return true;
   2310     }
   2311 }
   2312 
   2313 // Write out the data.  We don't have to do anything for an input
   2314 // section--they are handled via Object::relocate--but this is where
   2315 // we write out the data for an Output_section_data.
   2316 
   2317 void
   2318 Output_section::Input_section::write(Output_file* of)
   2319 {
   2320   if (!this->is_input_section())
   2321     this->u2_.posd->write(of);
   2322 }
   2323 
   2324 // Write the data to a buffer.  As for write(), we don't have to do
   2325 // anything for an input section.
   2326 
   2327 void
   2328 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
   2329 {
   2330   if (!this->is_input_section())
   2331     this->u2_.posd->write_to_buffer(buffer);
   2332 }
   2333 
   2334 // Print to a map file.
   2335 
   2336 void
   2337 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
   2338 {
   2339   switch (this->shndx_)
   2340     {
   2341     case OUTPUT_SECTION_CODE:
   2342     case MERGE_DATA_SECTION_CODE:
   2343     case MERGE_STRING_SECTION_CODE:
   2344       this->u2_.posd->print_to_mapfile(mapfile);
   2345       break;
   2346 
   2347     case RELAXED_INPUT_SECTION_CODE:
   2348       {
   2349 	Output_relaxed_input_section* relaxed_section =
   2350 	  this->relaxed_input_section();
   2351 	mapfile->print_input_section(relaxed_section->relobj(),
   2352 				     relaxed_section->shndx());
   2353       }
   2354       break;
   2355     default:
   2356       mapfile->print_input_section(this->u2_.object, this->shndx_);
   2357       break;
   2358     }
   2359 }
   2360 
   2361 // Output_section methods.
   2362 
   2363 // Construct an Output_section.  NAME will point into a Stringpool.
   2364 
   2365 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
   2366 			       elfcpp::Elf_Xword flags)
   2367   : name_(name),
   2368     addralign_(0),
   2369     entsize_(0),
   2370     load_address_(0),
   2371     link_section_(NULL),
   2372     link_(0),
   2373     info_section_(NULL),
   2374     info_symndx_(NULL),
   2375     info_(0),
   2376     type_(type),
   2377     flags_(flags),
   2378     order_(ORDER_INVALID),
   2379     out_shndx_(-1U),
   2380     symtab_index_(0),
   2381     dynsym_index_(0),
   2382     input_sections_(),
   2383     first_input_offset_(0),
   2384     fills_(),
   2385     postprocessing_buffer_(NULL),
   2386     needs_symtab_index_(false),
   2387     needs_dynsym_index_(false),
   2388     should_link_to_symtab_(false),
   2389     should_link_to_dynsym_(false),
   2390     after_input_sections_(false),
   2391     requires_postprocessing_(false),
   2392     found_in_sections_clause_(false),
   2393     has_load_address_(false),
   2394     info_uses_section_index_(false),
   2395     input_section_order_specified_(false),
   2396     may_sort_attached_input_sections_(false),
   2397     must_sort_attached_input_sections_(false),
   2398     attached_input_sections_are_sorted_(false),
   2399     is_relro_(false),
   2400     is_small_section_(false),
   2401     is_large_section_(false),
   2402     generate_code_fills_at_write_(false),
   2403     is_entsize_zero_(false),
   2404     section_offsets_need_adjustment_(false),
   2405     is_noload_(false),
   2406     always_keeps_input_sections_(false),
   2407     has_fixed_layout_(false),
   2408     is_patch_space_allowed_(false),
   2409     is_unique_segment_(false),
   2410     tls_offset_(0),
   2411     extra_segment_flags_(0),
   2412     segment_alignment_(0),
   2413     checkpoint_(NULL),
   2414     lookup_maps_(new Output_section_lookup_maps),
   2415     free_list_(),
   2416     free_space_fill_(NULL),
   2417     patch_space_(0)
   2418 {
   2419   // An unallocated section has no address.  Forcing this means that
   2420   // we don't need special treatment for symbols defined in debug
   2421   // sections.
   2422   if ((flags & elfcpp::SHF_ALLOC) == 0)
   2423     this->set_address(0);
   2424 }
   2425 
   2426 Output_section::~Output_section()
   2427 {
   2428   delete this->checkpoint_;
   2429 }
   2430 
   2431 // Set the entry size.
   2432 
   2433 void
   2434 Output_section::set_entsize(uint64_t v)
   2435 {
   2436   if (this->is_entsize_zero_)
   2437     ;
   2438   else if (this->entsize_ == 0)
   2439     this->entsize_ = v;
   2440   else if (this->entsize_ != v)
   2441     {
   2442       this->entsize_ = 0;
   2443       this->is_entsize_zero_ = 1;
   2444     }
   2445 }
   2446 
   2447 // Add the input section SHNDX, with header SHDR, named SECNAME, in
   2448 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
   2449 // relocation section which applies to this section, or 0 if none, or
   2450 // -1U if more than one.  Return the offset of the input section
   2451 // within the output section.  Return -1 if the input section will
   2452 // receive special handling.  In the normal case we don't always keep
   2453 // track of input sections for an Output_section.  Instead, each
   2454 // Object keeps track of the Output_section for each of its input
   2455 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
   2456 // track of input sections here; this is used when SECTIONS appears in
   2457 // a linker script.
   2458 
   2459 template<int size, bool big_endian>
   2460 off_t
   2461 Output_section::add_input_section(Layout* layout,
   2462 				  Sized_relobj_file<size, big_endian>* object,
   2463 				  unsigned int shndx,
   2464 				  const char* secname,
   2465 				  const elfcpp::Shdr<size, big_endian>& shdr,
   2466 				  unsigned int reloc_shndx,
   2467 				  bool have_sections_script)
   2468 {
   2469   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
   2470   if ((addralign & (addralign - 1)) != 0)
   2471     {
   2472       object->error(_("invalid alignment %lu for section \"%s\""),
   2473 		    static_cast<unsigned long>(addralign), secname);
   2474       addralign = 1;
   2475     }
   2476 
   2477   if (addralign > this->addralign_)
   2478     this->addralign_ = addralign;
   2479 
   2480   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
   2481   uint64_t entsize = shdr.get_sh_entsize();
   2482 
   2483   // .debug_str is a mergeable string section, but is not always so
   2484   // marked by compilers.  Mark manually here so we can optimize.
   2485   if (strcmp(secname, ".debug_str") == 0)
   2486     {
   2487       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
   2488       entsize = 1;
   2489     }
   2490 
   2491   this->update_flags_for_input_section(sh_flags);
   2492   this->set_entsize(entsize);
   2493 
   2494   // If this is a SHF_MERGE section, we pass all the input sections to
   2495   // a Output_data_merge.  We don't try to handle relocations for such
   2496   // a section.  We don't try to handle empty merge sections--they
   2497   // mess up the mappings, and are useless anyhow.
   2498   // FIXME: Need to handle merge sections during incremental update.
   2499   if ((sh_flags & elfcpp::SHF_MERGE) != 0
   2500       && reloc_shndx == 0
   2501       && shdr.get_sh_size() > 0
   2502       && !parameters->incremental())
   2503     {
   2504       // Keep information about merged input sections for rebuilding fast
   2505       // lookup maps if we have sections-script or we do relaxation.
   2506       bool keeps_input_sections = (this->always_keeps_input_sections_
   2507 				   || have_sections_script
   2508 				   || parameters->target().may_relax());
   2509 
   2510       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
   2511 					addralign, keeps_input_sections))
   2512 	{
   2513 	  // Tell the relocation routines that they need to call the
   2514 	  // output_offset method to determine the final address.
   2515 	  return -1;
   2516 	}
   2517     }
   2518 
   2519   section_size_type input_section_size = shdr.get_sh_size();
   2520   section_size_type uncompressed_size;
   2521   if (object->section_is_compressed(shndx, &uncompressed_size))
   2522     input_section_size = uncompressed_size;
   2523 
   2524   off_t offset_in_section;
   2525 
   2526   if (this->has_fixed_layout())
   2527     {
   2528       // For incremental updates, find a chunk of unused space in the section.
   2529       offset_in_section = this->free_list_.allocate(input_section_size,
   2530 						    addralign, 0);
   2531       if (offset_in_section == -1)
   2532 	gold_fallback(_("out of patch space in section %s; "
   2533 			"relink with --incremental-full"),
   2534 		      this->name());
   2535       return offset_in_section;
   2536     }
   2537 
   2538   offset_in_section = this->current_data_size_for_child();
   2539   off_t aligned_offset_in_section = align_address(offset_in_section,
   2540 						  addralign);
   2541   this->set_current_data_size_for_child(aligned_offset_in_section
   2542 					+ input_section_size);
   2543 
   2544   // Determine if we want to delay code-fill generation until the output
   2545   // section is written.  When the target is relaxing, we want to delay fill
   2546   // generating to avoid adjusting them during relaxation.  Also, if we are
   2547   // sorting input sections we must delay fill generation.
   2548   if (!this->generate_code_fills_at_write_
   2549       && !have_sections_script
   2550       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
   2551       && parameters->target().has_code_fill()
   2552       && (parameters->target().may_relax()
   2553 	  || layout->is_section_ordering_specified()))
   2554     {
   2555       gold_assert(this->fills_.empty());
   2556       this->generate_code_fills_at_write_ = true;
   2557     }
   2558 
   2559   if (aligned_offset_in_section > offset_in_section
   2560       && !this->generate_code_fills_at_write_
   2561       && !have_sections_script
   2562       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
   2563       && parameters->target().has_code_fill())
   2564     {
   2565       // We need to add some fill data.  Using fill_list_ when
   2566       // possible is an optimization, since we will often have fill
   2567       // sections without input sections.
   2568       off_t fill_len = aligned_offset_in_section - offset_in_section;
   2569       if (this->input_sections_.empty())
   2570 	this->fills_.push_back(Fill(offset_in_section, fill_len));
   2571       else
   2572 	{
   2573 	  std::string fill_data(parameters->target().code_fill(fill_len));
   2574 	  Output_data_const* odc = new Output_data_const(fill_data, 1);
   2575 	  this->input_sections_.push_back(Input_section(odc));
   2576 	}
   2577     }
   2578 
   2579   // We need to keep track of this section if we are already keeping
   2580   // track of sections, or if we are relaxing.  Also, if this is a
   2581   // section which requires sorting, or which may require sorting in
   2582   // the future, we keep track of the sections.  If the
   2583   // --section-ordering-file option is used to specify the order of
   2584   // sections, we need to keep track of sections.
   2585   if (this->always_keeps_input_sections_
   2586       || have_sections_script
   2587       || !this->input_sections_.empty()
   2588       || this->may_sort_attached_input_sections()
   2589       || this->must_sort_attached_input_sections()
   2590       || parameters->options().user_set_Map()
   2591       || parameters->target().may_relax()
   2592       || layout->is_section_ordering_specified())
   2593     {
   2594       Input_section isecn(object, shndx, input_section_size, addralign);
   2595       /* If section ordering is requested by specifying a ordering file,
   2596 	 using --section-ordering-file, match the section name with
   2597 	 a pattern.  */
   2598       if (parameters->options().section_ordering_file())
   2599 	{
   2600 	  unsigned int section_order_index =
   2601 	    layout->find_section_order_index(std::string(secname));
   2602 	  if (section_order_index != 0)
   2603 	    {
   2604 	      isecn.set_section_order_index(section_order_index);
   2605 	      this->set_input_section_order_specified();
   2606 	    }
   2607 	}
   2608       this->input_sections_.push_back(isecn);
   2609     }
   2610 
   2611   return aligned_offset_in_section;
   2612 }
   2613 
   2614 // Add arbitrary data to an output section.
   2615 
   2616 void
   2617 Output_section::add_output_section_data(Output_section_data* posd)
   2618 {
   2619   Input_section inp(posd);
   2620   this->add_output_section_data(&inp);
   2621 
   2622   if (posd->is_data_size_valid())
   2623     {
   2624       off_t offset_in_section;
   2625       if (this->has_fixed_layout())
   2626 	{
   2627 	  // For incremental updates, find a chunk of unused space.
   2628 	  offset_in_section = this->free_list_.allocate(posd->data_size(),
   2629 							posd->addralign(), 0);
   2630 	  if (offset_in_section == -1)
   2631 	    gold_fallback(_("out of patch space in section %s; "
   2632 			    "relink with --incremental-full"),
   2633 			  this->name());
   2634 	  // Finalize the address and offset now.
   2635 	  uint64_t addr = this->address();
   2636 	  off_t offset = this->offset();
   2637 	  posd->set_address_and_file_offset(addr + offset_in_section,
   2638 					    offset + offset_in_section);
   2639 	}
   2640       else
   2641 	{
   2642 	  offset_in_section = this->current_data_size_for_child();
   2643 	  off_t aligned_offset_in_section = align_address(offset_in_section,
   2644 							  posd->addralign());
   2645 	  this->set_current_data_size_for_child(aligned_offset_in_section
   2646 						+ posd->data_size());
   2647 	}
   2648     }
   2649   else if (this->has_fixed_layout())
   2650     {
   2651       // For incremental updates, arrange for the data to have a fixed layout.
   2652       // This will mean that additions to the data must be allocated from
   2653       // free space within the containing output section.
   2654       uint64_t addr = this->address();
   2655       posd->set_address(addr);
   2656       posd->set_file_offset(0);
   2657       // FIXME: This should eventually be unreachable.
   2658       // gold_unreachable();
   2659     }
   2660 }
   2661 
   2662 // Add a relaxed input section.
   2663 
   2664 void
   2665 Output_section::add_relaxed_input_section(Layout* layout,
   2666 					  Output_relaxed_input_section* poris,
   2667 					  const std::string& name)
   2668 {
   2669   Input_section inp(poris);
   2670 
   2671   // If the --section-ordering-file option is used to specify the order of
   2672   // sections, we need to keep track of sections.
   2673   if (layout->is_section_ordering_specified())
   2674     {
   2675       unsigned int section_order_index =
   2676 	layout->find_section_order_index(name);
   2677       if (section_order_index != 0)
   2678 	{
   2679 	  inp.set_section_order_index(section_order_index);
   2680 	  this->set_input_section_order_specified();
   2681 	}
   2682     }
   2683 
   2684   this->add_output_section_data(&inp);
   2685   if (this->lookup_maps_->is_valid())
   2686     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   2687 						  poris->shndx(), poris);
   2688 
   2689   // For a relaxed section, we use the current data size.  Linker scripts
   2690   // get all the input sections, including relaxed one from an output
   2691   // section and add them back to the same output section to compute the
   2692   // output section size.  If we do not account for sizes of relaxed input
   2693   // sections, an output section would be incorrectly sized.
   2694   off_t offset_in_section = this->current_data_size_for_child();
   2695   off_t aligned_offset_in_section = align_address(offset_in_section,
   2696 						  poris->addralign());
   2697   this->set_current_data_size_for_child(aligned_offset_in_section
   2698 					+ poris->current_data_size());
   2699 }
   2700 
   2701 // Add arbitrary data to an output section by Input_section.
   2702 
   2703 void
   2704 Output_section::add_output_section_data(Input_section* inp)
   2705 {
   2706   if (this->input_sections_.empty())
   2707     this->first_input_offset_ = this->current_data_size_for_child();
   2708 
   2709   this->input_sections_.push_back(*inp);
   2710 
   2711   uint64_t addralign = inp->addralign();
   2712   if (addralign > this->addralign_)
   2713     this->addralign_ = addralign;
   2714 
   2715   inp->set_output_section(this);
   2716 }
   2717 
   2718 // Add a merge section to an output section.
   2719 
   2720 void
   2721 Output_section::add_output_merge_section(Output_section_data* posd,
   2722 					 bool is_string, uint64_t entsize)
   2723 {
   2724   Input_section inp(posd, is_string, entsize);
   2725   this->add_output_section_data(&inp);
   2726 }
   2727 
   2728 // Add an input section to a SHF_MERGE section.
   2729 
   2730 bool
   2731 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
   2732 					uint64_t flags, uint64_t entsize,
   2733 					uint64_t addralign,
   2734 					bool keeps_input_sections)
   2735 {
   2736   // We cannot merge sections with entsize == 0.
   2737   if (entsize == 0)
   2738     return false;
   2739 
   2740   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
   2741 
   2742   // We cannot restore merged input section states.
   2743   gold_assert(this->checkpoint_ == NULL);
   2744 
   2745   // Look up merge sections by required properties.
   2746   // Currently, we only invalidate the lookup maps in script processing
   2747   // and relaxation.  We should not have done either when we reach here.
   2748   // So we assume that the lookup maps are valid to simply code.
   2749   gold_assert(this->lookup_maps_->is_valid());
   2750   Merge_section_properties msp(is_string, entsize, addralign);
   2751   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
   2752   bool is_new = false;
   2753   if (pomb != NULL)
   2754     {
   2755       gold_assert(pomb->is_string() == is_string
   2756 		  && pomb->entsize() == entsize
   2757 		  && pomb->addralign() == addralign);
   2758     }
   2759   else
   2760     {
   2761       // Create a new Output_merge_data or Output_merge_string_data.
   2762       if (!is_string)
   2763 	pomb = new Output_merge_data(entsize, addralign);
   2764       else
   2765 	{
   2766 	  switch (entsize)
   2767 	    {
   2768 	    case 1:
   2769 	      pomb = new Output_merge_string<char>(addralign);
   2770 	      break;
   2771 	    case 2:
   2772 	      pomb = new Output_merge_string<uint16_t>(addralign);
   2773 	      break;
   2774 	    case 4:
   2775 	      pomb = new Output_merge_string<uint32_t>(addralign);
   2776 	      break;
   2777 	    default:
   2778 	      return false;
   2779 	    }
   2780 	}
   2781       // If we need to do script processing or relaxation, we need to keep
   2782       // the original input sections to rebuild the fast lookup maps.
   2783       if (keeps_input_sections)
   2784 	pomb->set_keeps_input_sections();
   2785       is_new = true;
   2786     }
   2787 
   2788   if (pomb->add_input_section(object, shndx))
   2789     {
   2790       // Add new merge section to this output section and link merge
   2791       // section properties to new merge section in map.
   2792       if (is_new)
   2793 	{
   2794 	  this->add_output_merge_section(pomb, is_string, entsize);
   2795 	  this->lookup_maps_->add_merge_section(msp, pomb);
   2796 	}
   2797 
   2798       return true;
   2799     }
   2800   else
   2801     {
   2802       // If add_input_section failed, delete new merge section to avoid
   2803       // exporting empty merge sections in Output_section::get_input_section.
   2804       if (is_new)
   2805 	delete pomb;
   2806       return false;
   2807     }
   2808 }
   2809 
   2810 // Build a relaxation map to speed up relaxation of existing input sections.
   2811 // Look up to the first LIMIT elements in INPUT_SECTIONS.
   2812 
   2813 void
   2814 Output_section::build_relaxation_map(
   2815   const Input_section_list& input_sections,
   2816   size_t limit,
   2817   Relaxation_map* relaxation_map) const
   2818 {
   2819   for (size_t i = 0; i < limit; ++i)
   2820     {
   2821       const Input_section& is(input_sections[i]);
   2822       if (is.is_input_section() || is.is_relaxed_input_section())
   2823 	{
   2824 	  Section_id sid(is.relobj(), is.shndx());
   2825 	  (*relaxation_map)[sid] = i;
   2826 	}
   2827     }
   2828 }
   2829 
   2830 // Convert regular input sections in INPUT_SECTIONS into relaxed input
   2831 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
   2832 // indices of INPUT_SECTIONS.
   2833 
   2834 void
   2835 Output_section::convert_input_sections_in_list_to_relaxed_sections(
   2836   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
   2837   const Relaxation_map& map,
   2838   Input_section_list* input_sections)
   2839 {
   2840   for (size_t i = 0; i < relaxed_sections.size(); ++i)
   2841     {
   2842       Output_relaxed_input_section* poris = relaxed_sections[i];
   2843       Section_id sid(poris->relobj(), poris->shndx());
   2844       Relaxation_map::const_iterator p = map.find(sid);
   2845       gold_assert(p != map.end());
   2846       gold_assert((*input_sections)[p->second].is_input_section());
   2847 
   2848       // Remember section order index of original input section
   2849       // if it is set.  Copy it to the relaxed input section.
   2850       unsigned int soi =
   2851 	(*input_sections)[p->second].section_order_index();
   2852       (*input_sections)[p->second] = Input_section(poris);
   2853       (*input_sections)[p->second].set_section_order_index(soi);
   2854     }
   2855 }
   2856 
   2857 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
   2858 // is a vector of pointers to Output_relaxed_input_section or its derived
   2859 // classes.  The relaxed sections must correspond to existing input sections.
   2860 
   2861 void
   2862 Output_section::convert_input_sections_to_relaxed_sections(
   2863   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
   2864 {
   2865   gold_assert(parameters->target().may_relax());
   2866 
   2867   // We want to make sure that restore_states does not undo the effect of
   2868   // this.  If there is no checkpoint active, just search the current
   2869   // input section list and replace the sections there.  If there is
   2870   // a checkpoint, also replace the sections there.
   2871 
   2872   // By default, we look at the whole list.
   2873   size_t limit = this->input_sections_.size();
   2874 
   2875   if (this->checkpoint_ != NULL)
   2876     {
   2877       // Replace input sections with relaxed input section in the saved
   2878       // copy of the input section list.
   2879       if (this->checkpoint_->input_sections_saved())
   2880 	{
   2881 	  Relaxation_map map;
   2882 	  this->build_relaxation_map(
   2883 		    *(this->checkpoint_->input_sections()),
   2884 		    this->checkpoint_->input_sections()->size(),
   2885 		    &map);
   2886 	  this->convert_input_sections_in_list_to_relaxed_sections(
   2887 		    relaxed_sections,
   2888 		    map,
   2889 		    this->checkpoint_->input_sections());
   2890 	}
   2891       else
   2892 	{
   2893 	  // We have not copied the input section list yet.  Instead, just
   2894 	  // look at the portion that would be saved.
   2895 	  limit = this->checkpoint_->input_sections_size();
   2896 	}
   2897     }
   2898 
   2899   // Convert input sections in input_section_list.
   2900   Relaxation_map map;
   2901   this->build_relaxation_map(this->input_sections_, limit, &map);
   2902   this->convert_input_sections_in_list_to_relaxed_sections(
   2903 	    relaxed_sections,
   2904 	    map,
   2905 	    &this->input_sections_);
   2906 
   2907   // Update fast look-up map.
   2908   if (this->lookup_maps_->is_valid())
   2909     for (size_t i = 0; i < relaxed_sections.size(); ++i)
   2910       {
   2911 	Output_relaxed_input_section* poris = relaxed_sections[i];
   2912 	this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   2913 						      poris->shndx(), poris);
   2914       }
   2915 }
   2916 
   2917 // Update the output section flags based on input section flags.
   2918 
   2919 void
   2920 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
   2921 {
   2922   // If we created the section with SHF_ALLOC clear, we set the
   2923   // address.  If we are now setting the SHF_ALLOC flag, we need to
   2924   // undo that.
   2925   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
   2926       && (flags & elfcpp::SHF_ALLOC) != 0)
   2927     this->mark_address_invalid();
   2928 
   2929   this->flags_ |= (flags
   2930 		   & (elfcpp::SHF_WRITE
   2931 		      | elfcpp::SHF_ALLOC
   2932 		      | elfcpp::SHF_EXECINSTR));
   2933 
   2934   if ((flags & elfcpp::SHF_MERGE) == 0)
   2935     this->flags_ &=~ elfcpp::SHF_MERGE;
   2936   else
   2937     {
   2938       if (this->current_data_size_for_child() == 0)
   2939 	this->flags_ |= elfcpp::SHF_MERGE;
   2940     }
   2941 
   2942   if ((flags & elfcpp::SHF_STRINGS) == 0)
   2943     this->flags_ &=~ elfcpp::SHF_STRINGS;
   2944   else
   2945     {
   2946       if (this->current_data_size_for_child() == 0)
   2947 	this->flags_ |= elfcpp::SHF_STRINGS;
   2948     }
   2949 }
   2950 
   2951 // Find the merge section into which an input section with index SHNDX in
   2952 // OBJECT has been added.  Return NULL if none found.
   2953 
   2954 const Output_section_data*
   2955 Output_section::find_merge_section(const Relobj* object,
   2956 				   unsigned int shndx) const
   2957 {
   2958   return object->find_merge_section(shndx);
   2959 }
   2960 
   2961 // Build the lookup maps for relaxed sections.  This needs
   2962 // to be declared as a const method so that it is callable with a const
   2963 // Output_section pointer.  The method only updates states of the maps.
   2964 
   2965 void
   2966 Output_section::build_lookup_maps() const
   2967 {
   2968   this->lookup_maps_->clear();
   2969   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   2970        p != this->input_sections_.end();
   2971        ++p)
   2972     {
   2973       if (p->is_relaxed_input_section())
   2974 	{
   2975 	  Output_relaxed_input_section* poris = p->relaxed_input_section();
   2976 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   2977 							poris->shndx(), poris);
   2978 	}
   2979     }
   2980 }
   2981 
   2982 // Find an relaxed input section corresponding to an input section
   2983 // in OBJECT with index SHNDX.
   2984 
   2985 const Output_relaxed_input_section*
   2986 Output_section::find_relaxed_input_section(const Relobj* object,
   2987 					   unsigned int shndx) const
   2988 {
   2989   if (!this->lookup_maps_->is_valid())
   2990     this->build_lookup_maps();
   2991   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
   2992 }
   2993 
   2994 // Given an address OFFSET relative to the start of input section
   2995 // SHNDX in OBJECT, return whether this address is being included in
   2996 // the final link.  This should only be called if SHNDX in OBJECT has
   2997 // a special mapping.
   2998 
   2999 bool
   3000 Output_section::is_input_address_mapped(const Relobj* object,
   3001 					unsigned int shndx,
   3002 					off_t offset) const
   3003 {
   3004   // Look at the Output_section_data_maps first.
   3005   const Output_section_data* posd = this->find_merge_section(object, shndx);
   3006   if (posd == NULL)
   3007     posd = this->find_relaxed_input_section(object, shndx);
   3008 
   3009   if (posd != NULL)
   3010     {
   3011       section_offset_type output_offset;
   3012       bool found = posd->output_offset(object, shndx, offset, &output_offset);
   3013       // By default we assume that the address is mapped. See comment at the
   3014       // end.
   3015       if (!found)
   3016         return true;
   3017       return output_offset != -1;
   3018     }
   3019 
   3020   // Fall back to the slow look-up.
   3021   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3022        p != this->input_sections_.end();
   3023        ++p)
   3024     {
   3025       section_offset_type output_offset;
   3026       if (p->output_offset(object, shndx, offset, &output_offset))
   3027 	return output_offset != -1;
   3028     }
   3029 
   3030   // By default we assume that the address is mapped.  This should
   3031   // only be called after we have passed all sections to Layout.  At
   3032   // that point we should know what we are discarding.
   3033   return true;
   3034 }
   3035 
   3036 // Given an address OFFSET relative to the start of input section
   3037 // SHNDX in object OBJECT, return the output offset relative to the
   3038 // start of the input section in the output section.  This should only
   3039 // be called if SHNDX in OBJECT has a special mapping.
   3040 
   3041 section_offset_type
   3042 Output_section::output_offset(const Relobj* object, unsigned int shndx,
   3043 			      section_offset_type offset) const
   3044 {
   3045   // This can only be called meaningfully when we know the data size
   3046   // of this.
   3047   gold_assert(this->is_data_size_valid());
   3048 
   3049   // Look at the Output_section_data_maps first.
   3050   const Output_section_data* posd = this->find_merge_section(object, shndx);
   3051   if (posd == NULL)
   3052     posd = this->find_relaxed_input_section(object, shndx);
   3053   if (posd != NULL)
   3054     {
   3055       section_offset_type output_offset;
   3056       bool found = posd->output_offset(object, shndx, offset, &output_offset);
   3057       gold_assert(found);
   3058       return output_offset;
   3059     }
   3060 
   3061   // Fall back to the slow look-up.
   3062   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3063        p != this->input_sections_.end();
   3064        ++p)
   3065     {
   3066       section_offset_type output_offset;
   3067       if (p->output_offset(object, shndx, offset, &output_offset))
   3068 	return output_offset;
   3069     }
   3070   gold_unreachable();
   3071 }
   3072 
   3073 // Return the output virtual address of OFFSET relative to the start
   3074 // of input section SHNDX in object OBJECT.
   3075 
   3076 uint64_t
   3077 Output_section::output_address(const Relobj* object, unsigned int shndx,
   3078 			       off_t offset) const
   3079 {
   3080   uint64_t addr = this->address() + this->first_input_offset_;
   3081 
   3082   // Look at the Output_section_data_maps first.
   3083   const Output_section_data* posd = this->find_merge_section(object, shndx);
   3084   if (posd == NULL)
   3085     posd = this->find_relaxed_input_section(object, shndx);
   3086   if (posd != NULL && posd->is_address_valid())
   3087     {
   3088       section_offset_type output_offset;
   3089       bool found = posd->output_offset(object, shndx, offset, &output_offset);
   3090       gold_assert(found);
   3091       return posd->address() + output_offset;
   3092     }
   3093 
   3094   // Fall back to the slow look-up.
   3095   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3096        p != this->input_sections_.end();
   3097        ++p)
   3098     {
   3099       addr = align_address(addr, p->addralign());
   3100       section_offset_type output_offset;
   3101       if (p->output_offset(object, shndx, offset, &output_offset))
   3102 	{
   3103 	  if (output_offset == -1)
   3104 	    return -1ULL;
   3105 	  return addr + output_offset;
   3106 	}
   3107       addr += p->data_size();
   3108     }
   3109 
   3110   // If we get here, it means that we don't know the mapping for this
   3111   // input section.  This might happen in principle if
   3112   // add_input_section were called before add_output_section_data.
   3113   // But it should never actually happen.
   3114 
   3115   gold_unreachable();
   3116 }
   3117 
   3118 // Find the output address of the start of the merged section for
   3119 // input section SHNDX in object OBJECT.
   3120 
   3121 bool
   3122 Output_section::find_starting_output_address(const Relobj* object,
   3123 					     unsigned int shndx,
   3124 					     uint64_t* paddr) const
   3125 {
   3126   const Output_section_data* data = this->find_merge_section(object, shndx);
   3127   if (data == NULL)
   3128     return false;
   3129 
   3130   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
   3131   // Looking up the merge section map does not always work as we sometimes
   3132   // find a merge section without its address set.
   3133   uint64_t addr = this->address() + this->first_input_offset_;
   3134   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3135        p != this->input_sections_.end();
   3136        ++p)
   3137     {
   3138       addr = align_address(addr, p->addralign());
   3139 
   3140       // It would be nice if we could use the existing output_offset
   3141       // method to get the output offset of input offset 0.
   3142       // Unfortunately we don't know for sure that input offset 0 is
   3143       // mapped at all.
   3144       if (!p->is_input_section() && p->output_section_data() == data)
   3145 	{
   3146 	  *paddr = addr;
   3147 	  return true;
   3148 	}
   3149 
   3150       addr += p->data_size();
   3151     }
   3152 
   3153   // We couldn't find a merge output section for this input section.
   3154   return false;
   3155 }
   3156 
   3157 // Update the data size of an Output_section.
   3158 
   3159 void
   3160 Output_section::update_data_size()
   3161 {
   3162   if (this->input_sections_.empty())
   3163       return;
   3164 
   3165   if (this->must_sort_attached_input_sections()
   3166       || this->input_section_order_specified())
   3167     this->sort_attached_input_sections();
   3168 
   3169   off_t off = this->first_input_offset_;
   3170   for (Input_section_list::iterator p = this->input_sections_.begin();
   3171        p != this->input_sections_.end();
   3172        ++p)
   3173     {
   3174       off = align_address(off, p->addralign());
   3175       off += p->current_data_size();
   3176     }
   3177 
   3178   this->set_current_data_size_for_child(off);
   3179 }
   3180 
   3181 // Set the data size of an Output_section.  This is where we handle
   3182 // setting the addresses of any Output_section_data objects.
   3183 
   3184 void
   3185 Output_section::set_final_data_size()
   3186 {
   3187   off_t data_size;
   3188 
   3189   if (this->input_sections_.empty())
   3190     data_size = this->current_data_size_for_child();
   3191   else
   3192     {
   3193       if (this->must_sort_attached_input_sections()
   3194 	  || this->input_section_order_specified())
   3195 	this->sort_attached_input_sections();
   3196 
   3197       uint64_t address = this->address();
   3198       off_t startoff = this->offset();
   3199       off_t off = startoff + this->first_input_offset_;
   3200       for (Input_section_list::iterator p = this->input_sections_.begin();
   3201 	   p != this->input_sections_.end();
   3202 	   ++p)
   3203 	{
   3204 	  off = align_address(off, p->addralign());
   3205 	  p->set_address_and_file_offset(address + (off - startoff), off,
   3206 					 startoff);
   3207 	  off += p->data_size();
   3208 	}
   3209       data_size = off - startoff;
   3210     }
   3211 
   3212   // For full incremental links, we want to allocate some patch space
   3213   // in most sections for subsequent incremental updates.
   3214   if (this->is_patch_space_allowed_ && parameters->incremental_full())
   3215     {
   3216       double pct = parameters->options().incremental_patch();
   3217       size_t extra = static_cast<size_t>(data_size * pct);
   3218       if (this->free_space_fill_ != NULL
   3219 	  && this->free_space_fill_->minimum_hole_size() > extra)
   3220 	extra = this->free_space_fill_->minimum_hole_size();
   3221       off_t new_size = align_address(data_size + extra, this->addralign());
   3222       this->patch_space_ = new_size - data_size;
   3223       gold_debug(DEBUG_INCREMENTAL,
   3224 		 "set_final_data_size: %08lx + %08lx: section %s",
   3225 		 static_cast<long>(data_size),
   3226 		 static_cast<long>(this->patch_space_),
   3227 		 this->name());
   3228       data_size = new_size;
   3229     }
   3230 
   3231   this->set_data_size(data_size);
   3232 }
   3233 
   3234 // Reset the address and file offset.
   3235 
   3236 void
   3237 Output_section::do_reset_address_and_file_offset()
   3238 {
   3239   // An unallocated section has no address.  Forcing this means that
   3240   // we don't need special treatment for symbols defined in debug
   3241   // sections.  We do the same in the constructor.  This does not
   3242   // apply to NOLOAD sections though.
   3243   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
   3244      this->set_address(0);
   3245 
   3246   for (Input_section_list::iterator p = this->input_sections_.begin();
   3247        p != this->input_sections_.end();
   3248        ++p)
   3249     p->reset_address_and_file_offset();
   3250 
   3251   // Remove any patch space that was added in set_final_data_size.
   3252   if (this->patch_space_ > 0)
   3253     {
   3254       this->set_current_data_size_for_child(this->current_data_size_for_child()
   3255 					    - this->patch_space_);
   3256       this->patch_space_ = 0;
   3257     }
   3258 }
   3259 
   3260 // Return true if address and file offset have the values after reset.
   3261 
   3262 bool
   3263 Output_section::do_address_and_file_offset_have_reset_values() const
   3264 {
   3265   if (this->is_offset_valid())
   3266     return false;
   3267 
   3268   // An unallocated section has address 0 after its construction or a reset.
   3269   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
   3270     return this->is_address_valid() && this->address() == 0;
   3271   else
   3272     return !this->is_address_valid();
   3273 }
   3274 
   3275 // Set the TLS offset.  Called only for SHT_TLS sections.
   3276 
   3277 void
   3278 Output_section::do_set_tls_offset(uint64_t tls_base)
   3279 {
   3280   this->tls_offset_ = this->address() - tls_base;
   3281 }
   3282 
   3283 // In a few cases we need to sort the input sections attached to an
   3284 // output section.  This is used to implement the type of constructor
   3285 // priority ordering implemented by the GNU linker, in which the
   3286 // priority becomes part of the section name and the sections are
   3287 // sorted by name.  We only do this for an output section if we see an
   3288 // attached input section matching ".ctors.*", ".dtors.*",
   3289 // ".init_array.*" or ".fini_array.*".
   3290 
   3291 class Output_section::Input_section_sort_entry
   3292 {
   3293  public:
   3294   Input_section_sort_entry()
   3295     : input_section_(), index_(-1U), section_name_()
   3296   { }
   3297 
   3298   Input_section_sort_entry(const Input_section& input_section,
   3299 			   unsigned int index,
   3300 			   bool must_sort_attached_input_sections,
   3301 			   const char* output_section_name)
   3302     : input_section_(input_section), index_(index), section_name_()
   3303   {
   3304     if ((input_section.is_input_section()
   3305 	 || input_section.is_relaxed_input_section())
   3306 	&& must_sort_attached_input_sections)
   3307       {
   3308 	// This is only called single-threaded from Layout::finalize,
   3309 	// so it is OK to lock.  Unfortunately we have no way to pass
   3310 	// in a Task token.
   3311 	const Task* dummy_task = reinterpret_cast<const Task*>(-1);
   3312 	Object* obj = (input_section.is_input_section()
   3313 		       ? input_section.relobj()
   3314 		       : input_section.relaxed_input_section()->relobj());
   3315 	Task_lock_obj<Object> tl(dummy_task, obj);
   3316 
   3317 	// This is a slow operation, which should be cached in
   3318 	// Layout::layout if this becomes a speed problem.
   3319 	this->section_name_ = obj->section_name(input_section.shndx());
   3320       }
   3321     else if (input_section.is_output_section_data()
   3322     	     && must_sort_attached_input_sections)
   3323       {
   3324 	// For linker-generated sections, use the output section name.
   3325 	this->section_name_.assign(output_section_name);
   3326       }
   3327   }
   3328 
   3329   // Return the Input_section.
   3330   const Input_section&
   3331   input_section() const
   3332   {
   3333     gold_assert(this->index_ != -1U);
   3334     return this->input_section_;
   3335   }
   3336 
   3337   // The index of this entry in the original list.  This is used to
   3338   // make the sort stable.
   3339   unsigned int
   3340   index() const
   3341   {
   3342     gold_assert(this->index_ != -1U);
   3343     return this->index_;
   3344   }
   3345 
   3346   // The section name.
   3347   const std::string&
   3348   section_name() const
   3349   {
   3350     return this->section_name_;
   3351   }
   3352 
   3353   // Return true if the section name has a priority.  This is assumed
   3354   // to be true if it has a dot after the initial dot.
   3355   bool
   3356   has_priority() const
   3357   {
   3358     return this->section_name_.find('.', 1) != std::string::npos;
   3359   }
   3360 
   3361   // Return the priority.  Believe it or not, gcc encodes the priority
   3362   // differently for .ctors/.dtors and .init_array/.fini_array
   3363   // sections.
   3364   unsigned int
   3365   get_priority() const
   3366   {
   3367     bool is_ctors;
   3368     if (is_prefix_of(".ctors.", this->section_name_.c_str())
   3369 	|| is_prefix_of(".dtors.", this->section_name_.c_str()))
   3370       is_ctors = true;
   3371     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
   3372 	     || is_prefix_of(".fini_array.", this->section_name_.c_str()))
   3373       is_ctors = false;
   3374     else
   3375       return 0;
   3376     char* end;
   3377     unsigned long prio = strtoul((this->section_name_.c_str()
   3378 				  + (is_ctors ? 7 : 12)),
   3379 				 &end, 10);
   3380     if (*end != '\0')
   3381       return 0;
   3382     else if (is_ctors)
   3383       return 65535 - prio;
   3384     else
   3385       return prio;
   3386   }
   3387 
   3388   // Return true if this an input file whose base name matches
   3389   // FILE_NAME.  The base name must have an extension of ".o", and
   3390   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
   3391   // This is to match crtbegin.o as well as crtbeginS.o without
   3392   // getting confused by other possibilities.  Overall matching the
   3393   // file name this way is a dreadful hack, but the GNU linker does it
   3394   // in order to better support gcc, and we need to be compatible.
   3395   bool
   3396   match_file_name(const char* file_name) const
   3397   {
   3398     if (this->input_section_.is_output_section_data())
   3399       return false;
   3400     return Layout::match_file_name(this->input_section_.relobj(), file_name);
   3401   }
   3402 
   3403   // Returns 1 if THIS should appear before S in section order, -1 if S
   3404   // appears before THIS and 0 if they are not comparable.
   3405   int
   3406   compare_section_ordering(const Input_section_sort_entry& s) const
   3407   {
   3408     unsigned int this_secn_index = this->input_section_.section_order_index();
   3409     unsigned int s_secn_index = s.input_section().section_order_index();
   3410     if (this_secn_index > 0 && s_secn_index > 0)
   3411       {
   3412 	if (this_secn_index < s_secn_index)
   3413 	  return 1;
   3414 	else if (this_secn_index > s_secn_index)
   3415 	  return -1;
   3416       }
   3417     return 0;
   3418   }
   3419 
   3420  private:
   3421   // The Input_section we are sorting.
   3422   Input_section input_section_;
   3423   // The index of this Input_section in the original list.
   3424   unsigned int index_;
   3425   // The section name if there is one.
   3426   std::string section_name_;
   3427 };
   3428 
   3429 // Return true if S1 should come before S2 in the output section.
   3430 
   3431 bool
   3432 Output_section::Input_section_sort_compare::operator()(
   3433     const Output_section::Input_section_sort_entry& s1,
   3434     const Output_section::Input_section_sort_entry& s2) const
   3435 {
   3436   // crtbegin.o must come first.
   3437   bool s1_begin = s1.match_file_name("crtbegin");
   3438   bool s2_begin = s2.match_file_name("crtbegin");
   3439   if (s1_begin || s2_begin)
   3440     {
   3441       if (!s1_begin)
   3442 	return false;
   3443       if (!s2_begin)
   3444 	return true;
   3445       return s1.index() < s2.index();
   3446     }
   3447 
   3448   // crtend.o must come last.
   3449   bool s1_end = s1.match_file_name("crtend");
   3450   bool s2_end = s2.match_file_name("crtend");
   3451   if (s1_end || s2_end)
   3452     {
   3453       if (!s1_end)
   3454 	return true;
   3455       if (!s2_end)
   3456 	return false;
   3457       return s1.index() < s2.index();
   3458     }
   3459 
   3460   // A section with a priority follows a section without a priority.
   3461   bool s1_has_priority = s1.has_priority();
   3462   bool s2_has_priority = s2.has_priority();
   3463   if (s1_has_priority && !s2_has_priority)
   3464     return false;
   3465   if (!s1_has_priority && s2_has_priority)
   3466     return true;
   3467 
   3468   // Check if a section order exists for these sections through a section
   3469   // ordering file.  If sequence_num is 0, an order does not exist.
   3470   int sequence_num = s1.compare_section_ordering(s2);
   3471   if (sequence_num != 0)
   3472     return sequence_num == 1;
   3473 
   3474   // Otherwise we sort by name.
   3475   int compare = s1.section_name().compare(s2.section_name());
   3476   if (compare != 0)
   3477     return compare < 0;
   3478 
   3479   // Otherwise we keep the input order.
   3480   return s1.index() < s2.index();
   3481 }
   3482 
   3483 // Return true if S1 should come before S2 in an .init_array or .fini_array
   3484 // output section.
   3485 
   3486 bool
   3487 Output_section::Input_section_sort_init_fini_compare::operator()(
   3488     const Output_section::Input_section_sort_entry& s1,
   3489     const Output_section::Input_section_sort_entry& s2) const
   3490 {
   3491   // A section without a priority follows a section with a priority.
   3492   // This is the reverse of .ctors and .dtors sections.
   3493   bool s1_has_priority = s1.has_priority();
   3494   bool s2_has_priority = s2.has_priority();
   3495   if (s1_has_priority && !s2_has_priority)
   3496     return true;
   3497   if (!s1_has_priority && s2_has_priority)
   3498     return false;
   3499 
   3500   // .ctors and .dtors sections without priority come after
   3501   // .init_array and .fini_array sections without priority.
   3502   if (!s1_has_priority
   3503       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
   3504       && s1.section_name() != s2.section_name())
   3505     return false;
   3506   if (!s2_has_priority
   3507       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
   3508       && s2.section_name() != s1.section_name())
   3509     return true;
   3510 
   3511   // Sort by priority if we can.
   3512   if (s1_has_priority)
   3513     {
   3514       unsigned int s1_prio = s1.get_priority();
   3515       unsigned int s2_prio = s2.get_priority();
   3516       if (s1_prio < s2_prio)
   3517 	return true;
   3518       else if (s1_prio > s2_prio)
   3519 	return false;
   3520     }
   3521 
   3522   // Check if a section order exists for these sections through a section
   3523   // ordering file.  If sequence_num is 0, an order does not exist.
   3524   int sequence_num = s1.compare_section_ordering(s2);
   3525   if (sequence_num != 0)
   3526     return sequence_num == 1;
   3527 
   3528   // Otherwise we sort by name.
   3529   int compare = s1.section_name().compare(s2.section_name());
   3530   if (compare != 0)
   3531     return compare < 0;
   3532 
   3533   // Otherwise we keep the input order.
   3534   return s1.index() < s2.index();
   3535 }
   3536 
   3537 // Return true if S1 should come before S2.  Sections that do not match
   3538 // any pattern in the section ordering file are placed ahead of the sections
   3539 // that match some pattern.
   3540 
   3541 bool
   3542 Output_section::Input_section_sort_section_order_index_compare::operator()(
   3543     const Output_section::Input_section_sort_entry& s1,
   3544     const Output_section::Input_section_sort_entry& s2) const
   3545 {
   3546   unsigned int s1_secn_index = s1.input_section().section_order_index();
   3547   unsigned int s2_secn_index = s2.input_section().section_order_index();
   3548 
   3549   // Keep input order if section ordering cannot determine order.
   3550   if (s1_secn_index == s2_secn_index)
   3551     return s1.index() < s2.index();
   3552 
   3553   return s1_secn_index < s2_secn_index;
   3554 }
   3555 
   3556 // Return true if S1 should come before S2.  This is the sort comparison
   3557 // function for .text to sort sections with prefixes
   3558 // .text.{unlikely,exit,startup,hot} before other sections.
   3559 
   3560 bool
   3561 Output_section::Input_section_sort_section_prefix_special_ordering_compare
   3562   ::operator()(
   3563     const Output_section::Input_section_sort_entry& s1,
   3564     const Output_section::Input_section_sort_entry& s2) const
   3565 {
   3566   // Some input section names have special ordering requirements.
   3567   int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
   3568   int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
   3569   if (o1 != o2)
   3570     {
   3571       if (o1 < 0)
   3572 	return false;
   3573       else if (o2 < 0)
   3574 	return true;
   3575       else
   3576 	return o1 < o2;
   3577     }
   3578 
   3579   // Keep input order otherwise.
   3580   return s1.index() < s2.index();
   3581 }
   3582 
   3583 // Return true if S1 should come before S2.  This is the sort comparison
   3584 // function for sections to sort them by name.
   3585 
   3586 bool
   3587 Output_section::Input_section_sort_section_name_compare
   3588   ::operator()(
   3589     const Output_section::Input_section_sort_entry& s1,
   3590     const Output_section::Input_section_sort_entry& s2) const
   3591 {
   3592   // We sort by name.
   3593   int compare = s1.section_name().compare(s2.section_name());
   3594   if (compare != 0)
   3595     return compare < 0;
   3596 
   3597   // Keep input order otherwise.
   3598   return s1.index() < s2.index();
   3599 }
   3600 
   3601 // This updates the section order index of input sections according to the
   3602 // the order specified in the mapping from Section id to order index.
   3603 
   3604 void
   3605 Output_section::update_section_layout(
   3606   const Section_layout_order* order_map)
   3607 {
   3608   for (Input_section_list::iterator p = this->input_sections_.begin();
   3609        p != this->input_sections_.end();
   3610        ++p)
   3611     {
   3612       if (p->is_input_section()
   3613 	  || p->is_relaxed_input_section())
   3614 	{
   3615 	  Relobj* obj = (p->is_input_section()
   3616 			 ? p->relobj()
   3617 			 : p->relaxed_input_section()->relobj());
   3618 	  unsigned int shndx = p->shndx();
   3619 	  Section_layout_order::const_iterator it
   3620 	    = order_map->find(Section_id(obj, shndx));
   3621 	  if (it == order_map->end())
   3622 	    continue;
   3623 	  unsigned int section_order_index = it->second;
   3624 	  if (section_order_index != 0)
   3625 	    {
   3626 	      p->set_section_order_index(section_order_index);
   3627 	      this->set_input_section_order_specified();
   3628 	    }
   3629 	}
   3630     }
   3631 }
   3632 
   3633 // Sort the input sections attached to an output section.
   3634 
   3635 void
   3636 Output_section::sort_attached_input_sections()
   3637 {
   3638   if (this->attached_input_sections_are_sorted_)
   3639     return;
   3640 
   3641   if (this->checkpoint_ != NULL
   3642       && !this->checkpoint_->input_sections_saved())
   3643     this->checkpoint_->save_input_sections();
   3644 
   3645   // The only thing we know about an input section is the object and
   3646   // the section index.  We need the section name.  Recomputing this
   3647   // is slow but this is an unusual case.  If this becomes a speed
   3648   // problem we can cache the names as required in Layout::layout.
   3649 
   3650   // We start by building a larger vector holding a copy of each
   3651   // Input_section, plus its current index in the list and its name.
   3652   std::vector<Input_section_sort_entry> sort_list;
   3653 
   3654   unsigned int i = 0;
   3655   for (Input_section_list::iterator p = this->input_sections_.begin();
   3656        p != this->input_sections_.end();
   3657        ++p, ++i)
   3658       sort_list.push_back(Input_section_sort_entry(*p, i,
   3659 			    this->must_sort_attached_input_sections(),
   3660 			    this->name()));
   3661 
   3662   // Sort the input sections.
   3663   if (this->must_sort_attached_input_sections())
   3664     {
   3665       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
   3666 	  || this->type() == elfcpp::SHT_INIT_ARRAY
   3667 	  || this->type() == elfcpp::SHT_FINI_ARRAY)
   3668 	std::sort(sort_list.begin(), sort_list.end(),
   3669 		  Input_section_sort_init_fini_compare());
   3670       else if (strcmp(parameters->options().sort_section(), "name") == 0)
   3671 	std::sort(sort_list.begin(), sort_list.end(),
   3672 		  Input_section_sort_section_name_compare());
   3673       else if (strcmp(this->name(), ".text") == 0)
   3674 	std::sort(sort_list.begin(), sort_list.end(),
   3675 		  Input_section_sort_section_prefix_special_ordering_compare());
   3676       else
   3677 	std::sort(sort_list.begin(), sort_list.end(),
   3678 		  Input_section_sort_compare());
   3679     }
   3680   else
   3681     {
   3682       gold_assert(this->input_section_order_specified());
   3683       std::sort(sort_list.begin(), sort_list.end(),
   3684 		Input_section_sort_section_order_index_compare());
   3685     }
   3686 
   3687   // Copy the sorted input sections back to our list.
   3688   this->input_sections_.clear();
   3689   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
   3690        p != sort_list.end();
   3691        ++p)
   3692     this->input_sections_.push_back(p->input_section());
   3693   sort_list.clear();
   3694 
   3695   // Remember that we sorted the input sections, since we might get
   3696   // called again.
   3697   this->attached_input_sections_are_sorted_ = true;
   3698 }
   3699 
   3700 // Write the section header to *OSHDR.
   3701 
   3702 template<int size, bool big_endian>
   3703 void
   3704 Output_section::write_header(const Layout* layout,
   3705 			     const Stringpool* secnamepool,
   3706 			     elfcpp::Shdr_write<size, big_endian>* oshdr) const
   3707 {
   3708   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
   3709   oshdr->put_sh_type(this->type_);
   3710 
   3711   elfcpp::Elf_Xword flags = this->flags_;
   3712   if (this->info_section_ != NULL && this->info_uses_section_index_)
   3713     flags |= elfcpp::SHF_INFO_LINK;
   3714   oshdr->put_sh_flags(flags);
   3715 
   3716   oshdr->put_sh_addr(this->address());
   3717   oshdr->put_sh_offset(this->offset());
   3718   oshdr->put_sh_size(this->data_size());
   3719   if (this->link_section_ != NULL)
   3720     oshdr->put_sh_link(this->link_section_->out_shndx());
   3721   else if (this->should_link_to_symtab_)
   3722     oshdr->put_sh_link(layout->symtab_section_shndx());
   3723   else if (this->should_link_to_dynsym_)
   3724     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
   3725   else
   3726     oshdr->put_sh_link(this->link_);
   3727 
   3728   elfcpp::Elf_Word info;
   3729   if (this->info_section_ != NULL)
   3730     {
   3731       if (this->info_uses_section_index_)
   3732 	info = this->info_section_->out_shndx();
   3733       else
   3734 	info = this->info_section_->symtab_index();
   3735     }
   3736   else if (this->info_symndx_ != NULL)
   3737     info = this->info_symndx_->symtab_index();
   3738   else
   3739     info = this->info_;
   3740   oshdr->put_sh_info(info);
   3741 
   3742   oshdr->put_sh_addralign(this->addralign_);
   3743   oshdr->put_sh_entsize(this->entsize_);
   3744 }
   3745 
   3746 // Write out the data.  For input sections the data is written out by
   3747 // Object::relocate, but we have to handle Output_section_data objects
   3748 // here.
   3749 
   3750 void
   3751 Output_section::do_write(Output_file* of)
   3752 {
   3753   gold_assert(!this->requires_postprocessing());
   3754 
   3755   // If the target performs relaxation, we delay filler generation until now.
   3756   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
   3757 
   3758   off_t output_section_file_offset = this->offset();
   3759   for (Fill_list::iterator p = this->fills_.begin();
   3760        p != this->fills_.end();
   3761        ++p)
   3762     {
   3763       std::string fill_data(parameters->target().code_fill(p->length()));
   3764       of->write(output_section_file_offset + p->section_offset(),
   3765 		fill_data.data(), fill_data.size());
   3766     }
   3767 
   3768   off_t off = this->offset() + this->first_input_offset_;
   3769   for (Input_section_list::iterator p = this->input_sections_.begin();
   3770        p != this->input_sections_.end();
   3771        ++p)
   3772     {
   3773       off_t aligned_off = align_address(off, p->addralign());
   3774       if (this->generate_code_fills_at_write_ && (off != aligned_off))
   3775 	{
   3776 	  size_t fill_len = aligned_off - off;
   3777 	  std::string fill_data(parameters->target().code_fill(fill_len));
   3778 	  of->write(off, fill_data.data(), fill_data.size());
   3779 	}
   3780 
   3781       p->write(of);
   3782       off = aligned_off + p->data_size();
   3783     }
   3784 
   3785   // For incremental links, fill in unused chunks in debug sections
   3786   // with dummy compilation unit headers.
   3787   if (this->free_space_fill_ != NULL)
   3788     {
   3789       for (Free_list::Const_iterator p = this->free_list_.begin();
   3790 	   p != this->free_list_.end();
   3791 	   ++p)
   3792 	{
   3793 	  off_t off = p->start_;
   3794 	  size_t len = p->end_ - off;
   3795 	  this->free_space_fill_->write(of, this->offset() + off, len);
   3796 	}
   3797       if (this->patch_space_ > 0)
   3798 	{
   3799 	  off_t off = this->current_data_size_for_child() - this->patch_space_;
   3800 	  this->free_space_fill_->write(of, this->offset() + off,
   3801 					this->patch_space_);
   3802 	}
   3803     }
   3804 }
   3805 
   3806 // If a section requires postprocessing, create the buffer to use.
   3807 
   3808 void
   3809 Output_section::create_postprocessing_buffer()
   3810 {
   3811   gold_assert(this->requires_postprocessing());
   3812 
   3813   if (this->postprocessing_buffer_ != NULL)
   3814     return;
   3815 
   3816   if (!this->input_sections_.empty())
   3817     {
   3818       off_t off = this->first_input_offset_;
   3819       for (Input_section_list::iterator p = this->input_sections_.begin();
   3820 	   p != this->input_sections_.end();
   3821 	   ++p)
   3822 	{
   3823 	  off = align_address(off, p->addralign());
   3824 	  p->finalize_data_size();
   3825 	  off += p->data_size();
   3826 	}
   3827       this->set_current_data_size_for_child(off);
   3828     }
   3829 
   3830   off_t buffer_size = this->current_data_size_for_child();
   3831   this->postprocessing_buffer_ = new unsigned char[buffer_size];
   3832 }
   3833 
   3834 // Write all the data of an Output_section into the postprocessing
   3835 // buffer.  This is used for sections which require postprocessing,
   3836 // such as compression.  Input sections are handled by
   3837 // Object::Relocate.
   3838 
   3839 void
   3840 Output_section::write_to_postprocessing_buffer()
   3841 {
   3842   gold_assert(this->requires_postprocessing());
   3843 
   3844   // If the target performs relaxation, we delay filler generation until now.
   3845   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
   3846 
   3847   unsigned char* buffer = this->postprocessing_buffer();
   3848   for (Fill_list::iterator p = this->fills_.begin();
   3849        p != this->fills_.end();
   3850        ++p)
   3851     {
   3852       std::string fill_data(parameters->target().code_fill(p->length()));
   3853       memcpy(buffer + p->section_offset(), fill_data.data(),
   3854 	     fill_data.size());
   3855     }
   3856 
   3857   off_t off = this->first_input_offset_;
   3858   for (Input_section_list::iterator p = this->input_sections_.begin();
   3859        p != this->input_sections_.end();
   3860        ++p)
   3861     {
   3862       off_t aligned_off = align_address(off, p->addralign());
   3863       if (this->generate_code_fills_at_write_ && (off != aligned_off))
   3864 	{
   3865 	  size_t fill_len = aligned_off - off;
   3866 	  std::string fill_data(parameters->target().code_fill(fill_len));
   3867 	  memcpy(buffer + off, fill_data.data(), fill_data.size());
   3868 	}
   3869 
   3870       p->write_to_buffer(buffer + aligned_off);
   3871       off = aligned_off + p->data_size();
   3872     }
   3873 }
   3874 
   3875 // Get the input sections for linker script processing.  We leave
   3876 // behind the Output_section_data entries.  Note that this may be
   3877 // slightly incorrect for merge sections.  We will leave them behind,
   3878 // but it is possible that the script says that they should follow
   3879 // some other input sections, as in:
   3880 //    .rodata { *(.rodata) *(.rodata.cst*) }
   3881 // For that matter, we don't handle this correctly:
   3882 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
   3883 // With luck this will never matter.
   3884 
   3885 uint64_t
   3886 Output_section::get_input_sections(
   3887     uint64_t address,
   3888     const std::string& fill,
   3889     std::list<Input_section>* input_sections)
   3890 {
   3891   if (this->checkpoint_ != NULL
   3892       && !this->checkpoint_->input_sections_saved())
   3893     this->checkpoint_->save_input_sections();
   3894 
   3895   // Invalidate fast look-up maps.
   3896   this->lookup_maps_->invalidate();
   3897 
   3898   uint64_t orig_address = address;
   3899 
   3900   address = align_address(address, this->addralign());
   3901 
   3902   Input_section_list remaining;
   3903   for (Input_section_list::iterator p = this->input_sections_.begin();
   3904        p != this->input_sections_.end();
   3905        ++p)
   3906     {
   3907       if (p->is_input_section()
   3908 	  || p->is_relaxed_input_section()
   3909 	  || p->is_merge_section())
   3910 	input_sections->push_back(*p);
   3911       else
   3912 	{
   3913 	  uint64_t aligned_address = align_address(address, p->addralign());
   3914 	  if (aligned_address != address && !fill.empty())
   3915 	    {
   3916 	      section_size_type length =
   3917 		convert_to_section_size_type(aligned_address - address);
   3918 	      std::string this_fill;
   3919 	      this_fill.reserve(length);
   3920 	      while (this_fill.length() + fill.length() <= length)
   3921 		this_fill += fill;
   3922 	      if (this_fill.length() < length)
   3923 		this_fill.append(fill, 0, length - this_fill.length());
   3924 
   3925 	      Output_section_data* posd = new Output_data_const(this_fill, 0);
   3926 	      remaining.push_back(Input_section(posd));
   3927 	    }
   3928 	  address = aligned_address;
   3929 
   3930 	  remaining.push_back(*p);
   3931 
   3932 	  p->finalize_data_size();
   3933 	  address += p->data_size();
   3934 	}
   3935     }
   3936 
   3937   this->input_sections_.swap(remaining);
   3938   this->first_input_offset_ = 0;
   3939 
   3940   uint64_t data_size = address - orig_address;
   3941   this->set_current_data_size_for_child(data_size);
   3942   return data_size;
   3943 }
   3944 
   3945 // Add a script input section.  SIS is an Output_section::Input_section,
   3946 // which can be either a plain input section or a special input section like
   3947 // a relaxed input section.  For a special input section, its size must be
   3948 // finalized.
   3949 
   3950 void
   3951 Output_section::add_script_input_section(const Input_section& sis)
   3952 {
   3953   uint64_t data_size = sis.data_size();
   3954   uint64_t addralign = sis.addralign();
   3955   if (addralign > this->addralign_)
   3956     this->addralign_ = addralign;
   3957 
   3958   off_t offset_in_section = this->current_data_size_for_child();
   3959   off_t aligned_offset_in_section = align_address(offset_in_section,
   3960 						  addralign);
   3961 
   3962   this->set_current_data_size_for_child(aligned_offset_in_section
   3963 					+ data_size);
   3964 
   3965   this->input_sections_.push_back(sis);
   3966 
   3967   // Update fast lookup maps if necessary.
   3968   if (this->lookup_maps_->is_valid())
   3969     {
   3970       if (sis.is_relaxed_input_section())
   3971 	{
   3972 	  Output_relaxed_input_section* poris = sis.relaxed_input_section();
   3973 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   3974 							poris->shndx(), poris);
   3975 	}
   3976     }
   3977 }
   3978 
   3979 // Save states for relaxation.
   3980 
   3981 void
   3982 Output_section::save_states()
   3983 {
   3984   gold_assert(this->checkpoint_ == NULL);
   3985   Checkpoint_output_section* checkpoint =
   3986     new Checkpoint_output_section(this->addralign_, this->flags_,
   3987 				  this->input_sections_,
   3988 				  this->first_input_offset_,
   3989 				  this->attached_input_sections_are_sorted_);
   3990   this->checkpoint_ = checkpoint;
   3991   gold_assert(this->fills_.empty());
   3992 }
   3993 
   3994 void
   3995 Output_section::discard_states()
   3996 {
   3997   gold_assert(this->checkpoint_ != NULL);
   3998   delete this->checkpoint_;
   3999   this->checkpoint_ = NULL;
   4000   gold_assert(this->fills_.empty());
   4001 
   4002   // Simply invalidate the fast lookup maps since we do not keep
   4003   // track of them.
   4004   this->lookup_maps_->invalidate();
   4005 }
   4006 
   4007 void
   4008 Output_section::restore_states()
   4009 {
   4010   gold_assert(this->checkpoint_ != NULL);
   4011   Checkpoint_output_section* checkpoint = this->checkpoint_;
   4012 
   4013   this->addralign_ = checkpoint->addralign();
   4014   this->flags_ = checkpoint->flags();
   4015   this->first_input_offset_ = checkpoint->first_input_offset();
   4016 
   4017   if (!checkpoint->input_sections_saved())
   4018     {
   4019       // If we have not copied the input sections, just resize it.
   4020       size_t old_size = checkpoint->input_sections_size();
   4021       gold_assert(this->input_sections_.size() >= old_size);
   4022       this->input_sections_.resize(old_size);
   4023     }
   4024   else
   4025     {
   4026       // We need to copy the whole list.  This is not efficient for
   4027       // extremely large output with hundreads of thousands of input
   4028       // objects.  We may need to re-think how we should pass sections
   4029       // to scripts.
   4030       this->input_sections_ = *checkpoint->input_sections();
   4031     }
   4032 
   4033   this->attached_input_sections_are_sorted_ =
   4034     checkpoint->attached_input_sections_are_sorted();
   4035 
   4036   // Simply invalidate the fast lookup maps since we do not keep
   4037   // track of them.
   4038   this->lookup_maps_->invalidate();
   4039 }
   4040 
   4041 // Update the section offsets of input sections in this.  This is required if
   4042 // relaxation causes some input sections to change sizes.
   4043 
   4044 void
   4045 Output_section::adjust_section_offsets()
   4046 {
   4047   if (!this->section_offsets_need_adjustment_)
   4048     return;
   4049 
   4050   off_t off = 0;
   4051   for (Input_section_list::iterator p = this->input_sections_.begin();
   4052        p != this->input_sections_.end();
   4053        ++p)
   4054     {
   4055       off = align_address(off, p->addralign());
   4056       if (p->is_input_section())
   4057 	p->relobj()->set_section_offset(p->shndx(), off);
   4058       off += p->data_size();
   4059     }
   4060 
   4061   this->section_offsets_need_adjustment_ = false;
   4062 }
   4063 
   4064 // Print to the map file.
   4065 
   4066 void
   4067 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
   4068 {
   4069   mapfile->print_output_section(this);
   4070 
   4071   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   4072        p != this->input_sections_.end();
   4073        ++p)
   4074     p->print_to_mapfile(mapfile);
   4075 }
   4076 
   4077 // Print stats for merge sections to stderr.
   4078 
   4079 void
   4080 Output_section::print_merge_stats()
   4081 {
   4082   Input_section_list::iterator p;
   4083   for (p = this->input_sections_.begin();
   4084        p != this->input_sections_.end();
   4085        ++p)
   4086     p->print_merge_stats(this->name_);
   4087 }
   4088 
   4089 // Set a fixed layout for the section.  Used for incremental update links.
   4090 
   4091 void
   4092 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
   4093 				 off_t sh_size, uint64_t sh_addralign)
   4094 {
   4095   this->addralign_ = sh_addralign;
   4096   this->set_current_data_size(sh_size);
   4097   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
   4098     this->set_address(sh_addr);
   4099   this->set_file_offset(sh_offset);
   4100   this->finalize_data_size();
   4101   this->free_list_.init(sh_size, false);
   4102   this->has_fixed_layout_ = true;
   4103 }
   4104 
   4105 // Reserve space within the fixed layout for the section.  Used for
   4106 // incremental update links.
   4107 
   4108 void
   4109 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
   4110 {
   4111   this->free_list_.remove(sh_offset, sh_offset + sh_size);
   4112 }
   4113 
   4114 // Allocate space from the free list for the section.  Used for
   4115 // incremental update links.
   4116 
   4117 off_t
   4118 Output_section::allocate(off_t len, uint64_t addralign)
   4119 {
   4120   return this->free_list_.allocate(len, addralign, 0);
   4121 }
   4122 
   4123 // Output segment methods.
   4124 
   4125 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
   4126   : vaddr_(0),
   4127     paddr_(0),
   4128     memsz_(0),
   4129     max_align_(0),
   4130     min_p_align_(0),
   4131     offset_(0),
   4132     filesz_(0),
   4133     type_(type),
   4134     flags_(flags),
   4135     is_max_align_known_(false),
   4136     are_addresses_set_(false),
   4137     is_large_data_segment_(false),
   4138     is_unique_segment_(false)
   4139 {
   4140   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
   4141   // the flags.
   4142   if (type == elfcpp::PT_TLS)
   4143     this->flags_ = elfcpp::PF_R;
   4144 }
   4145 
   4146 // Add an Output_section to a PT_LOAD Output_segment.
   4147 
   4148 void
   4149 Output_segment::add_output_section_to_load(Layout* layout,
   4150 					   Output_section* os,
   4151 					   elfcpp::Elf_Word seg_flags)
   4152 {
   4153   gold_assert(this->type() == elfcpp::PT_LOAD);
   4154   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
   4155   gold_assert(!this->is_max_align_known_);
   4156   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
   4157 
   4158   this->update_flags_for_output_section(seg_flags);
   4159 
   4160   // We don't want to change the ordering if we have a linker script
   4161   // with a SECTIONS clause.
   4162   Output_section_order order = os->order();
   4163   if (layout->script_options()->saw_sections_clause())
   4164     order = static_cast<Output_section_order>(0);
   4165   else
   4166     gold_assert(order != ORDER_INVALID);
   4167 
   4168   this->output_lists_[order].push_back(os);
   4169 }
   4170 
   4171 // Add an Output_section to a non-PT_LOAD Output_segment.
   4172 
   4173 void
   4174 Output_segment::add_output_section_to_nonload(Output_section* os,
   4175 					      elfcpp::Elf_Word seg_flags)
   4176 {
   4177   gold_assert(this->type() != elfcpp::PT_LOAD);
   4178   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
   4179   gold_assert(!this->is_max_align_known_);
   4180 
   4181   this->update_flags_for_output_section(seg_flags);
   4182 
   4183   this->output_lists_[0].push_back(os);
   4184 }
   4185 
   4186 // Remove an Output_section from this segment.  It is an error if it
   4187 // is not present.
   4188 
   4189 void
   4190 Output_segment::remove_output_section(Output_section* os)
   4191 {
   4192   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4193     {
   4194       Output_data_list* pdl = &this->output_lists_[i];
   4195       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
   4196 	{
   4197 	  if (*p == os)
   4198 	    {
   4199 	      pdl->erase(p);
   4200 	      return;
   4201 	    }
   4202 	}
   4203     }
   4204   gold_unreachable();
   4205 }
   4206 
   4207 // Add an Output_data (which need not be an Output_section) to the
   4208 // start of a segment.
   4209 
   4210 void
   4211 Output_segment::add_initial_output_data(Output_data* od)
   4212 {
   4213   gold_assert(!this->is_max_align_known_);
   4214   Output_data_list::iterator p = this->output_lists_[0].begin();
   4215   this->output_lists_[0].insert(p, od);
   4216 }
   4217 
   4218 // Return true if this segment has any sections which hold actual
   4219 // data, rather than being a BSS section.
   4220 
   4221 bool
   4222 Output_segment::has_any_data_sections() const
   4223 {
   4224   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4225     {
   4226       const Output_data_list* pdl = &this->output_lists_[i];
   4227       for (Output_data_list::const_iterator p = pdl->begin();
   4228 	   p != pdl->end();
   4229 	   ++p)
   4230 	{
   4231 	  if (!(*p)->is_section())
   4232 	    return true;
   4233 	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
   4234 	    return true;
   4235 	}
   4236     }
   4237   return false;
   4238 }
   4239 
   4240 // Return whether the first data section (not counting TLS sections)
   4241 // is a relro section.
   4242 
   4243 bool
   4244 Output_segment::is_first_section_relro() const
   4245 {
   4246   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4247     {
   4248       if (i == static_cast<int>(ORDER_TLS_BSS))
   4249 	continue;
   4250       const Output_data_list* pdl = &this->output_lists_[i];
   4251       if (!pdl->empty())
   4252 	{
   4253 	  Output_data* p = pdl->front();
   4254 	  return p->is_section() && p->output_section()->is_relro();
   4255 	}
   4256     }
   4257   return false;
   4258 }
   4259 
   4260 // Return the maximum alignment of the Output_data in Output_segment.
   4261 
   4262 uint64_t
   4263 Output_segment::maximum_alignment()
   4264 {
   4265   if (!this->is_max_align_known_)
   4266     {
   4267       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4268 	{
   4269 	  const Output_data_list* pdl = &this->output_lists_[i];
   4270 	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
   4271 	  if (addralign > this->max_align_)
   4272 	    this->max_align_ = addralign;
   4273 	}
   4274       this->is_max_align_known_ = true;
   4275     }
   4276 
   4277   return this->max_align_;
   4278 }
   4279 
   4280 // Return the maximum alignment of a list of Output_data.
   4281 
   4282 uint64_t
   4283 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
   4284 {
   4285   uint64_t ret = 0;
   4286   for (Output_data_list::const_iterator p = pdl->begin();
   4287        p != pdl->end();
   4288        ++p)
   4289     {
   4290       uint64_t addralign = (*p)->addralign();
   4291       if (addralign > ret)
   4292 	ret = addralign;
   4293     }
   4294   return ret;
   4295 }
   4296 
   4297 // Return whether this segment has any dynamic relocs.
   4298 
   4299 bool
   4300 Output_segment::has_dynamic_reloc() const
   4301 {
   4302   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4303     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
   4304       return true;
   4305   return false;
   4306 }
   4307 
   4308 // Return whether this Output_data_list has any dynamic relocs.
   4309 
   4310 bool
   4311 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
   4312 {
   4313   for (Output_data_list::const_iterator p = pdl->begin();
   4314        p != pdl->end();
   4315        ++p)
   4316     if ((*p)->has_dynamic_reloc())
   4317       return true;
   4318   return false;
   4319 }
   4320 
   4321 // Set the section addresses for an Output_segment.  If RESET is true,
   4322 // reset the addresses first.  ADDR is the address and *POFF is the
   4323 // file offset.  Set the section indexes starting with *PSHNDX.
   4324 // INCREASE_RELRO is the size of the portion of the first non-relro
   4325 // section that should be included in the PT_GNU_RELRO segment.
   4326 // If this segment has relro sections, and has been aligned for
   4327 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
   4328 // the immediately following segment.  Update *HAS_RELRO, *POFF,
   4329 // and *PSHNDX.
   4330 
   4331 uint64_t
   4332 Output_segment::set_section_addresses(const Target* target,
   4333 				      Layout* layout, bool reset,
   4334 				      uint64_t addr,
   4335 				      unsigned int* increase_relro,
   4336 				      bool* has_relro,
   4337 				      off_t* poff,
   4338 				      unsigned int* pshndx)
   4339 {
   4340   gold_assert(this->type_ == elfcpp::PT_LOAD);
   4341 
   4342   uint64_t last_relro_pad = 0;
   4343   off_t orig_off = *poff;
   4344 
   4345   bool in_tls = false;
   4346 
   4347   // If we have relro sections, we need to pad forward now so that the
   4348   // relro sections plus INCREASE_RELRO end on an abi page boundary.
   4349   if (parameters->options().relro()
   4350       && this->is_first_section_relro()
   4351       && (!this->are_addresses_set_ || reset))
   4352     {
   4353       uint64_t relro_size = 0;
   4354       off_t off = *poff;
   4355       uint64_t max_align = 0;
   4356       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
   4357 	{
   4358 	  Output_data_list* pdl = &this->output_lists_[i];
   4359 	  Output_data_list::iterator p;
   4360 	  for (p = pdl->begin(); p != pdl->end(); ++p)
   4361 	    {
   4362 	      if (!(*p)->is_section())
   4363 		break;
   4364 	      uint64_t align = (*p)->addralign();
   4365 	      if (align > max_align)
   4366 		max_align = align;
   4367 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
   4368 		in_tls = true;
   4369 	      else if (in_tls)
   4370 		{
   4371 		  // Align the first non-TLS section to the alignment
   4372 		  // of the TLS segment.
   4373 		  align = max_align;
   4374 		  in_tls = false;
   4375 		}
   4376 	      // Ignore the size of the .tbss section.
   4377 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
   4378 		  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
   4379 		continue;
   4380 	      relro_size = align_address(relro_size, align);
   4381 	      if ((*p)->is_address_valid())
   4382 		relro_size += (*p)->data_size();
   4383 	      else
   4384 		{
   4385 		  // FIXME: This could be faster.
   4386 		  (*p)->set_address_and_file_offset(relro_size,
   4387 						    relro_size);
   4388 		  relro_size += (*p)->data_size();
   4389 		  (*p)->reset_address_and_file_offset();
   4390 		}
   4391 	    }
   4392 	  if (p != pdl->end())
   4393 	    break;
   4394 	}
   4395       relro_size += *increase_relro;
   4396       // Pad the total relro size to a multiple of the maximum
   4397       // section alignment seen.
   4398       uint64_t aligned_size = align_address(relro_size, max_align);
   4399       // Note the amount of padding added after the last relro section.
   4400       last_relro_pad = aligned_size - relro_size;
   4401       *has_relro = true;
   4402 
   4403       uint64_t page_align = parameters->target().abi_pagesize();
   4404 
   4405       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
   4406       uint64_t desired_align = page_align - (aligned_size % page_align);
   4407       if (desired_align < off % page_align)
   4408 	off += page_align;
   4409       off += desired_align - off % page_align;
   4410       addr += off - orig_off;
   4411       orig_off = off;
   4412       *poff = off;
   4413     }
   4414 
   4415   if (!reset && this->are_addresses_set_)
   4416     {
   4417       gold_assert(this->paddr_ == addr);
   4418       addr = this->vaddr_;
   4419     }
   4420   else
   4421     {
   4422       this->vaddr_ = addr;
   4423       this->paddr_ = addr;
   4424       this->are_addresses_set_ = true;
   4425     }
   4426 
   4427   in_tls = false;
   4428 
   4429   this->offset_ = orig_off;
   4430 
   4431   off_t off = 0;
   4432   uint64_t ret;
   4433   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4434     {
   4435       if (i == static_cast<int>(ORDER_RELRO_LAST))
   4436 	{
   4437 	  *poff += last_relro_pad;
   4438 	  addr += last_relro_pad;
   4439 	  if (this->output_lists_[i].empty())
   4440 	    {
   4441 	      // If there is nothing in the ORDER_RELRO_LAST list,
   4442 	      // the padding will occur at the end of the relro
   4443 	      // segment, and we need to add it to *INCREASE_RELRO.
   4444 	      *increase_relro += last_relro_pad;
   4445 	    }
   4446 	}
   4447       addr = this->set_section_list_addresses(layout, reset,
   4448 					      &this->output_lists_[i],
   4449 					      addr, poff, pshndx, &in_tls);
   4450       if (i < static_cast<int>(ORDER_SMALL_BSS))
   4451 	{
   4452 	  this->filesz_ = *poff - orig_off;
   4453 	  off = *poff;
   4454 	}
   4455 
   4456       ret = addr;
   4457     }
   4458 
   4459   // If the last section was a TLS section, align upward to the
   4460   // alignment of the TLS segment, so that the overall size of the TLS
   4461   // segment is aligned.
   4462   if (in_tls)
   4463     {
   4464       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
   4465       *poff = align_address(*poff, segment_align);
   4466     }
   4467 
   4468   this->memsz_ = *poff - orig_off;
   4469 
   4470   // Ignore the file offset adjustments made by the BSS Output_data
   4471   // objects.
   4472   *poff = off;
   4473 
   4474   // If code segments must contain only code, and this code segment is
   4475   // page-aligned in the file, then fill it out to a whole page with
   4476   // code fill (the tail of the segment will not be within any section).
   4477   // Thus the entire code segment can be mapped from the file as whole
   4478   // pages and that mapping will contain only valid instructions.
   4479   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
   4480     {
   4481       uint64_t abi_pagesize = target->abi_pagesize();
   4482       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
   4483 	{
   4484 	  size_t fill_size = abi_pagesize - (off % abi_pagesize);
   4485 
   4486 	  std::string fill_data;
   4487 	  if (target->has_code_fill())
   4488 	    fill_data = target->code_fill(fill_size);
   4489 	  else
   4490 	    fill_data.resize(fill_size); // Zero fill.
   4491 
   4492 	  Output_data_const* fill = new Output_data_const(fill_data, 0);
   4493 	  fill->set_address(this->vaddr_ + this->memsz_);
   4494 	  fill->set_file_offset(off);
   4495 	  layout->add_relax_output(fill);
   4496 
   4497 	  off += fill_size;
   4498 	  gold_assert(off % abi_pagesize == 0);
   4499 	  ret += fill_size;
   4500 	  gold_assert(ret % abi_pagesize == 0);
   4501 
   4502 	  gold_assert((uint64_t) this->filesz_ == this->memsz_);
   4503 	  this->memsz_ = this->filesz_ += fill_size;
   4504 
   4505 	  *poff = off;
   4506 	}
   4507     }
   4508 
   4509   return ret;
   4510 }
   4511 
   4512 // Set the addresses and file offsets in a list of Output_data
   4513 // structures.
   4514 
   4515 uint64_t
   4516 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
   4517 					   Output_data_list* pdl,
   4518 					   uint64_t addr, off_t* poff,
   4519 					   unsigned int* pshndx,
   4520 					   bool* in_tls)
   4521 {
   4522   off_t startoff = *poff;
   4523   // For incremental updates, we may allocate non-fixed sections from
   4524   // free space in the file.  This keeps track of the high-water mark.
   4525   off_t maxoff = startoff;
   4526 
   4527   off_t off = startoff;
   4528   for (Output_data_list::iterator p = pdl->begin();
   4529        p != pdl->end();
   4530        ++p)
   4531     {
   4532       if (reset)
   4533 	(*p)->reset_address_and_file_offset();
   4534 
   4535       // When doing an incremental update or when using a linker script,
   4536       // the section will most likely already have an address.
   4537       if (!(*p)->is_address_valid())
   4538 	{
   4539 	  uint64_t align = (*p)->addralign();
   4540 
   4541 	  if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
   4542 	    {
   4543 	      // Give the first TLS section the alignment of the
   4544 	      // entire TLS segment.  Otherwise the TLS segment as a
   4545 	      // whole may be misaligned.
   4546 	      if (!*in_tls)
   4547 		{
   4548 		  Output_segment* tls_segment = layout->tls_segment();
   4549 		  gold_assert(tls_segment != NULL);
   4550 		  uint64_t segment_align = tls_segment->maximum_alignment();
   4551 		  gold_assert(segment_align >= align);
   4552 		  align = segment_align;
   4553 
   4554 		  *in_tls = true;
   4555 		}
   4556 	    }
   4557 	  else
   4558 	    {
   4559 	      // If this is the first section after the TLS segment,
   4560 	      // align it to at least the alignment of the TLS
   4561 	      // segment, so that the size of the overall TLS segment
   4562 	      // is aligned.
   4563 	      if (*in_tls)
   4564 		{
   4565 		  uint64_t segment_align =
   4566 		      layout->tls_segment()->maximum_alignment();
   4567 		  if (segment_align > align)
   4568 		    align = segment_align;
   4569 
   4570 		  *in_tls = false;
   4571 		}
   4572 	    }
   4573 
   4574 	  if (!parameters->incremental_update())
   4575 	    {
   4576 	      off = align_address(off, align);
   4577 	      (*p)->set_address_and_file_offset(addr + (off - startoff), off);
   4578 	    }
   4579 	  else
   4580 	    {
   4581 	      // Incremental update: allocate file space from free list.
   4582 	      (*p)->pre_finalize_data_size();
   4583 	      off_t current_size = (*p)->current_data_size();
   4584 	      off = layout->allocate(current_size, align, startoff);
   4585 	      if (off == -1)
   4586 		{
   4587 		  gold_assert((*p)->output_section() != NULL);
   4588 		  gold_fallback(_("out of patch space for section %s; "
   4589 				  "relink with --incremental-full"),
   4590 				(*p)->output_section()->name());
   4591 		}
   4592 	      (*p)->set_address_and_file_offset(addr + (off - startoff), off);
   4593 	      if ((*p)->data_size() > current_size)
   4594 		{
   4595 		  gold_assert((*p)->output_section() != NULL);
   4596 		  gold_fallback(_("%s: section changed size; "
   4597 				  "relink with --incremental-full"),
   4598 				(*p)->output_section()->name());
   4599 		}
   4600 	    }
   4601 	}
   4602       else if (parameters->incremental_update())
   4603 	{
   4604 	  // For incremental updates, use the fixed offset for the
   4605 	  // high-water mark computation.
   4606 	  off = (*p)->offset();
   4607 	}
   4608       else
   4609 	{
   4610 	  // The script may have inserted a skip forward, but it
   4611 	  // better not have moved backward.
   4612 	  if ((*p)->address() >= addr + (off - startoff))
   4613 	    off += (*p)->address() - (addr + (off - startoff));
   4614 	  else
   4615 	    {
   4616 	      if (!layout->script_options()->saw_sections_clause())
   4617 		gold_unreachable();
   4618 	      else
   4619 		{
   4620 		  Output_section* os = (*p)->output_section();
   4621 
   4622 		  // Cast to unsigned long long to avoid format warnings.
   4623 		  unsigned long long previous_dot =
   4624 		    static_cast<unsigned long long>(addr + (off - startoff));
   4625 		  unsigned long long dot =
   4626 		    static_cast<unsigned long long>((*p)->address());
   4627 
   4628 		  if (os == NULL)
   4629 		    gold_error(_("dot moves backward in linker script "
   4630 				 "from 0x%llx to 0x%llx"), previous_dot, dot);
   4631 		  else
   4632 		    gold_error(_("address of section '%s' moves backward "
   4633 				 "from 0x%llx to 0x%llx"),
   4634 			       os->name(), previous_dot, dot);
   4635 		}
   4636 	    }
   4637 	  (*p)->set_file_offset(off);
   4638 	  (*p)->finalize_data_size();
   4639 	}
   4640 
   4641       if (parameters->incremental_update())
   4642 	gold_debug(DEBUG_INCREMENTAL,
   4643 		   "set_section_list_addresses: %08lx %08lx %s",
   4644 		   static_cast<long>(off),
   4645 		   static_cast<long>((*p)->data_size()),
   4646 		   ((*p)->output_section() != NULL
   4647 		    ? (*p)->output_section()->name() : "(special)"));
   4648 
   4649       // We want to ignore the size of a SHF_TLS SHT_NOBITS
   4650       // section.  Such a section does not affect the size of a
   4651       // PT_LOAD segment.
   4652       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
   4653 	  || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
   4654 	off += (*p)->data_size();
   4655 
   4656       if (off > maxoff)
   4657 	maxoff = off;
   4658 
   4659       if ((*p)->is_section())
   4660 	{
   4661 	  (*p)->set_out_shndx(*pshndx);
   4662 	  ++*pshndx;
   4663 	}
   4664     }
   4665 
   4666   *poff = maxoff;
   4667   return addr + (maxoff - startoff);
   4668 }
   4669 
   4670 // For a non-PT_LOAD segment, set the offset from the sections, if
   4671 // any.  Add INCREASE to the file size and the memory size.
   4672 
   4673 void
   4674 Output_segment::set_offset(unsigned int increase)
   4675 {
   4676   gold_assert(this->type_ != elfcpp::PT_LOAD);
   4677 
   4678   gold_assert(!this->are_addresses_set_);
   4679 
   4680   // A non-load section only uses output_lists_[0].
   4681 
   4682   Output_data_list* pdl = &this->output_lists_[0];
   4683 
   4684   if (pdl->empty())
   4685     {
   4686       gold_assert(increase == 0);
   4687       this->vaddr_ = 0;
   4688       this->paddr_ = 0;
   4689       this->are_addresses_set_ = true;
   4690       this->memsz_ = 0;
   4691       this->min_p_align_ = 0;
   4692       this->offset_ = 0;
   4693       this->filesz_ = 0;
   4694       return;
   4695     }
   4696 
   4697   // Find the first and last section by address.
   4698   const Output_data* first = NULL;
   4699   const Output_data* last_data = NULL;
   4700   const Output_data* last_bss = NULL;
   4701   for (Output_data_list::const_iterator p = pdl->begin();
   4702        p != pdl->end();
   4703        ++p)
   4704     {
   4705       if (first == NULL
   4706 	  || (*p)->address() < first->address()
   4707 	  || ((*p)->address() == first->address()
   4708 	      && (*p)->data_size() < first->data_size()))
   4709 	first = *p;
   4710       const Output_data** plast;
   4711       if ((*p)->is_section()
   4712 	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
   4713 	plast = &last_bss;
   4714       else
   4715 	plast = &last_data;
   4716       if (*plast == NULL
   4717 	  || (*p)->address() > (*plast)->address()
   4718 	  || ((*p)->address() == (*plast)->address()
   4719 	      && (*p)->data_size() > (*plast)->data_size()))
   4720 	*plast = *p;
   4721     }
   4722 
   4723   this->vaddr_ = first->address();
   4724   this->paddr_ = (first->has_load_address()
   4725 		  ? first->load_address()
   4726 		  : this->vaddr_);
   4727   this->are_addresses_set_ = true;
   4728   this->offset_ = first->offset();
   4729 
   4730   if (last_data == NULL)
   4731     this->filesz_ = 0;
   4732   else
   4733     this->filesz_ = (last_data->address()
   4734 		     + last_data->data_size()
   4735 		     - this->vaddr_);
   4736 
   4737   const Output_data* last = last_bss != NULL ? last_bss : last_data;
   4738   this->memsz_ = (last->address()
   4739 		  + last->data_size()
   4740 		  - this->vaddr_);
   4741 
   4742   this->filesz_ += increase;
   4743   this->memsz_ += increase;
   4744 
   4745   // If this is a RELRO segment, verify that the segment ends at a
   4746   // page boundary.
   4747   if (this->type_ == elfcpp::PT_GNU_RELRO)
   4748     {
   4749       uint64_t page_align = parameters->target().abi_pagesize();
   4750       uint64_t segment_end = this->vaddr_ + this->memsz_;
   4751       if (parameters->incremental_update())
   4752 	{
   4753 	  // The INCREASE_RELRO calculation is bypassed for an incremental
   4754 	  // update, so we need to adjust the segment size manually here.
   4755 	  segment_end = align_address(segment_end, page_align);
   4756 	  this->memsz_ = segment_end - this->vaddr_;
   4757 	}
   4758       else
   4759 	gold_assert(segment_end == align_address(segment_end, page_align));
   4760     }
   4761 
   4762   // If this is a TLS segment, align the memory size.  The code in
   4763   // set_section_list ensures that the section after the TLS segment
   4764   // is aligned to give us room.
   4765   if (this->type_ == elfcpp::PT_TLS)
   4766     {
   4767       uint64_t segment_align = this->maximum_alignment();
   4768       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
   4769       this->memsz_ = align_address(this->memsz_, segment_align);
   4770     }
   4771 }
   4772 
   4773 // Set the TLS offsets of the sections in the PT_TLS segment.
   4774 
   4775 void
   4776 Output_segment::set_tls_offsets()
   4777 {
   4778   gold_assert(this->type_ == elfcpp::PT_TLS);
   4779 
   4780   for (Output_data_list::iterator p = this->output_lists_[0].begin();
   4781        p != this->output_lists_[0].end();
   4782        ++p)
   4783     (*p)->set_tls_offset(this->vaddr_);
   4784 }
   4785 
   4786 // Return the first section.
   4787 
   4788 Output_section*
   4789 Output_segment::first_section() const
   4790 {
   4791   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4792     {
   4793       const Output_data_list* pdl = &this->output_lists_[i];
   4794       for (Output_data_list::const_iterator p = pdl->begin();
   4795 	   p != pdl->end();
   4796 	   ++p)
   4797 	{
   4798 	  if ((*p)->is_section())
   4799 	    return (*p)->output_section();
   4800 	}
   4801     }
   4802   gold_unreachable();
   4803 }
   4804 
   4805 // Return the number of Output_sections in an Output_segment.
   4806 
   4807 unsigned int
   4808 Output_segment::output_section_count() const
   4809 {
   4810   unsigned int ret = 0;
   4811   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4812     ret += this->output_section_count_list(&this->output_lists_[i]);
   4813   return ret;
   4814 }
   4815 
   4816 // Return the number of Output_sections in an Output_data_list.
   4817 
   4818 unsigned int
   4819 Output_segment::output_section_count_list(const Output_data_list* pdl) const
   4820 {
   4821   unsigned int count = 0;
   4822   for (Output_data_list::const_iterator p = pdl->begin();
   4823        p != pdl->end();
   4824        ++p)
   4825     {
   4826       if ((*p)->is_section())
   4827 	++count;
   4828     }
   4829   return count;
   4830 }
   4831 
   4832 // Return the section attached to the list segment with the lowest
   4833 // load address.  This is used when handling a PHDRS clause in a
   4834 // linker script.
   4835 
   4836 Output_section*
   4837 Output_segment::section_with_lowest_load_address() const
   4838 {
   4839   Output_section* found = NULL;
   4840   uint64_t found_lma = 0;
   4841   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4842     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
   4843 				      &found_lma);
   4844   return found;
   4845 }
   4846 
   4847 // Look through a list for a section with a lower load address.
   4848 
   4849 void
   4850 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
   4851 					    Output_section** found,
   4852 					    uint64_t* found_lma) const
   4853 {
   4854   for (Output_data_list::const_iterator p = pdl->begin();
   4855        p != pdl->end();
   4856        ++p)
   4857     {
   4858       if (!(*p)->is_section())
   4859 	continue;
   4860       Output_section* os = static_cast<Output_section*>(*p);
   4861       uint64_t lma = (os->has_load_address()
   4862 		      ? os->load_address()
   4863 		      : os->address());
   4864       if (*found == NULL || lma < *found_lma)
   4865 	{
   4866 	  *found = os;
   4867 	  *found_lma = lma;
   4868 	}
   4869     }
   4870 }
   4871 
   4872 // Write the segment data into *OPHDR.
   4873 
   4874 template<int size, bool big_endian>
   4875 void
   4876 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
   4877 {
   4878   ophdr->put_p_type(this->type_);
   4879   ophdr->put_p_offset(this->offset_);
   4880   ophdr->put_p_vaddr(this->vaddr_);
   4881   ophdr->put_p_paddr(this->paddr_);
   4882   ophdr->put_p_filesz(this->filesz_);
   4883   ophdr->put_p_memsz(this->memsz_);
   4884   ophdr->put_p_flags(this->flags_);
   4885   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
   4886 }
   4887 
   4888 // Write the section headers into V.
   4889 
   4890 template<int size, bool big_endian>
   4891 unsigned char*
   4892 Output_segment::write_section_headers(const Layout* layout,
   4893 				      const Stringpool* secnamepool,
   4894 				      unsigned char* v,
   4895 				      unsigned int* pshndx) const
   4896 {
   4897   // Every section that is attached to a segment must be attached to a
   4898   // PT_LOAD segment, so we only write out section headers for PT_LOAD
   4899   // segments.
   4900   if (this->type_ != elfcpp::PT_LOAD)
   4901     return v;
   4902 
   4903   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4904     {
   4905       const Output_data_list* pdl = &this->output_lists_[i];
   4906       v = this->write_section_headers_list<size, big_endian>(layout,
   4907 							     secnamepool,
   4908 							     pdl,
   4909 							     v, pshndx);
   4910     }
   4911 
   4912   return v;
   4913 }
   4914 
   4915 template<int size, bool big_endian>
   4916 unsigned char*
   4917 Output_segment::write_section_headers_list(const Layout* layout,
   4918 					   const Stringpool* secnamepool,
   4919 					   const Output_data_list* pdl,
   4920 					   unsigned char* v,
   4921 					   unsigned int* pshndx) const
   4922 {
   4923   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
   4924   for (Output_data_list::const_iterator p = pdl->begin();
   4925        p != pdl->end();
   4926        ++p)
   4927     {
   4928       if ((*p)->is_section())
   4929 	{
   4930 	  const Output_section* ps = static_cast<const Output_section*>(*p);
   4931 	  gold_assert(*pshndx == ps->out_shndx());
   4932 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
   4933 	  ps->write_header(layout, secnamepool, &oshdr);
   4934 	  v += shdr_size;
   4935 	  ++*pshndx;
   4936 	}
   4937     }
   4938   return v;
   4939 }
   4940 
   4941 // Print the output sections to the map file.
   4942 
   4943 void
   4944 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
   4945 {
   4946   if (this->type() != elfcpp::PT_LOAD)
   4947     return;
   4948   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4949     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
   4950 }
   4951 
   4952 // Print an output section list to the map file.
   4953 
   4954 void
   4955 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
   4956 					      const Output_data_list* pdl) const
   4957 {
   4958   for (Output_data_list::const_iterator p = pdl->begin();
   4959        p != pdl->end();
   4960        ++p)
   4961     (*p)->print_to_mapfile(mapfile);
   4962 }
   4963 
   4964 // Output_file methods.
   4965 
   4966 Output_file::Output_file(const char* name)
   4967   : name_(name),
   4968     o_(-1),
   4969     file_size_(0),
   4970     base_(NULL),
   4971     map_is_anonymous_(false),
   4972     map_is_allocated_(false),
   4973     is_temporary_(false)
   4974 {
   4975 }
   4976 
   4977 // Try to open an existing file.  Returns false if the file doesn't
   4978 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
   4979 // NULL, open that file as the base for incremental linking, and
   4980 // copy its contents to the new output file.  This routine can
   4981 // be called for incremental updates, in which case WRITABLE should
   4982 // be true, or by the incremental-dump utility, in which case
   4983 // WRITABLE should be false.
   4984 
   4985 bool
   4986 Output_file::open_base_file(const char* base_name, bool writable)
   4987 {
   4988   // The name "-" means "stdout".
   4989   if (strcmp(this->name_, "-") == 0)
   4990     return false;
   4991 
   4992   bool use_base_file = base_name != NULL;
   4993   if (!use_base_file)
   4994     base_name = this->name_;
   4995   else if (strcmp(base_name, this->name_) == 0)
   4996     gold_fatal(_("%s: incremental base and output file name are the same"),
   4997 	       base_name);
   4998 
   4999   // Don't bother opening files with a size of zero.
   5000   struct stat s;
   5001   if (::stat(base_name, &s) != 0)
   5002     {
   5003       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
   5004       return false;
   5005     }
   5006   if (s.st_size == 0)
   5007     {
   5008       gold_info(_("%s: incremental base file is empty"), base_name);
   5009       return false;
   5010     }
   5011 
   5012   // If we're using a base file, we want to open it read-only.
   5013   if (use_base_file)
   5014     writable = false;
   5015 
   5016   int oflags = writable ? O_RDWR : O_RDONLY;
   5017   int o = open_descriptor(-1, base_name, oflags, 0);
   5018   if (o < 0)
   5019     {
   5020       gold_info(_("%s: open: %s"), base_name, strerror(errno));
   5021       return false;
   5022     }
   5023 
   5024   // If the base file and the output file are different, open a
   5025   // new output file and read the contents from the base file into
   5026   // the newly-mapped region.
   5027   if (use_base_file)
   5028     {
   5029       this->open(s.st_size);
   5030       ssize_t bytes_to_read = s.st_size;
   5031       unsigned char* p = this->base_;
   5032       while (bytes_to_read > 0)
   5033 	{
   5034 	  ssize_t len = ::read(o, p, bytes_to_read);
   5035 	  if (len < 0)
   5036 	    {
   5037 	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
   5038 	      return false;
   5039 	    }
   5040 	  if (len == 0)
   5041 	    {
   5042 	      gold_info(_("%s: file too short: read only %lld of %lld bytes"),
   5043 			base_name,
   5044 			static_cast<long long>(s.st_size - bytes_to_read),
   5045 			static_cast<long long>(s.st_size));
   5046 	      return false;
   5047 	    }
   5048 	  p += len;
   5049 	  bytes_to_read -= len;
   5050 	}
   5051       ::close(o);
   5052       return true;
   5053     }
   5054 
   5055   this->o_ = o;
   5056   this->file_size_ = s.st_size;
   5057 
   5058   if (!this->map_no_anonymous(writable))
   5059     {
   5060       release_descriptor(o, true);
   5061       this->o_ = -1;
   5062       this->file_size_ = 0;
   5063       return false;
   5064     }
   5065 
   5066   return true;
   5067 }
   5068 
   5069 // Open the output file.
   5070 
   5071 void
   5072 Output_file::open(off_t file_size)
   5073 {
   5074   this->file_size_ = file_size;
   5075 
   5076   // Unlink the file first; otherwise the open() may fail if the file
   5077   // is busy (e.g. it's an executable that's currently being executed).
   5078   //
   5079   // However, the linker may be part of a system where a zero-length
   5080   // file is created for it to write to, with tight permissions (gcc
   5081   // 2.95 did something like this).  Unlinking the file would work
   5082   // around those permission controls, so we only unlink if the file
   5083   // has a non-zero size.  We also unlink only regular files to avoid
   5084   // trouble with directories/etc.
   5085   //
   5086   // If we fail, continue; this command is merely a best-effort attempt
   5087   // to improve the odds for open().
   5088 
   5089   // We let the name "-" mean "stdout"
   5090   if (!this->is_temporary_)
   5091     {
   5092       if (strcmp(this->name_, "-") == 0)
   5093 	this->o_ = STDOUT_FILENO;
   5094       else
   5095 	{
   5096 	  struct stat s;
   5097 	  if (::stat(this->name_, &s) == 0
   5098 	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
   5099 	    {
   5100 	      if (s.st_size != 0)
   5101 		::unlink(this->name_);
   5102 	      else if (!parameters->options().relocatable())
   5103 		{
   5104 		  // If we don't unlink the existing file, add execute
   5105 		  // permission where read permissions already exist
   5106 		  // and where the umask permits.
   5107 		  int mask = ::umask(0);
   5108 		  ::umask(mask);
   5109 		  s.st_mode |= (s.st_mode & 0444) >> 2;
   5110 		  ::chmod(this->name_, s.st_mode & ~mask);
   5111 		}
   5112 	    }
   5113 
   5114 	  int mode = parameters->options().relocatable() ? 0666 : 0777;
   5115 	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
   5116 				  mode);
   5117 	  if (o < 0)
   5118 	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
   5119 	  this->o_ = o;
   5120 	}
   5121     }
   5122 
   5123   this->map();
   5124 }
   5125 
   5126 // Resize the output file.
   5127 
   5128 void
   5129 Output_file::resize(off_t file_size)
   5130 {
   5131   // If the mmap is mapping an anonymous memory buffer, this is easy:
   5132   // just mremap to the new size.  If it's mapping to a file, we want
   5133   // to unmap to flush to the file, then remap after growing the file.
   5134   if (this->map_is_anonymous_)
   5135     {
   5136       void* base;
   5137       if (!this->map_is_allocated_)
   5138 	{
   5139 	  base = ::mremap(this->base_, this->file_size_, file_size,
   5140 			  MREMAP_MAYMOVE);
   5141 	  if (base == MAP_FAILED)
   5142 	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
   5143 	}
   5144       else
   5145 	{
   5146 	  base = realloc(this->base_, file_size);
   5147 	  if (base == NULL)
   5148 	    gold_nomem();
   5149 	  if (file_size > this->file_size_)
   5150 	    memset(static_cast<char*>(base) + this->file_size_, 0,
   5151 		   file_size - this->file_size_);
   5152 	}
   5153       this->base_ = static_cast<unsigned char*>(base);
   5154       this->file_size_ = file_size;
   5155     }
   5156   else
   5157     {
   5158       this->unmap();
   5159       this->file_size_ = file_size;
   5160       if (!this->map_no_anonymous(true))
   5161 	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
   5162     }
   5163 }
   5164 
   5165 // Map an anonymous block of memory which will later be written to the
   5166 // file.  Return whether the map succeeded.
   5167 
   5168 bool
   5169 Output_file::map_anonymous()
   5170 {
   5171   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
   5172 		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
   5173   if (base == MAP_FAILED)
   5174     {
   5175       base = malloc(this->file_size_);
   5176       if (base == NULL)
   5177 	return false;
   5178       memset(base, 0, this->file_size_);
   5179       this->map_is_allocated_ = true;
   5180     }
   5181   this->base_ = static_cast<unsigned char*>(base);
   5182   this->map_is_anonymous_ = true;
   5183   return true;
   5184 }
   5185 
   5186 // Map the file into memory.  Return whether the mapping succeeded.
   5187 // If WRITABLE is true, map with write access.
   5188 
   5189 bool
   5190 Output_file::map_no_anonymous(bool writable)
   5191 {
   5192   const int o = this->o_;
   5193 
   5194   // If the output file is not a regular file, don't try to mmap it;
   5195   // instead, we'll mmap a block of memory (an anonymous buffer), and
   5196   // then later write the buffer to the file.
   5197   void* base;
   5198   struct stat statbuf;
   5199   if (o == STDOUT_FILENO || o == STDERR_FILENO
   5200       || ::fstat(o, &statbuf) != 0
   5201       || !S_ISREG(statbuf.st_mode)
   5202       || this->is_temporary_)
   5203     return false;
   5204 
   5205   // Ensure that we have disk space available for the file.  If we
   5206   // don't do this, it is possible that we will call munmap, close,
   5207   // and exit with dirty buffers still in the cache with no assigned
   5208   // disk blocks.  If the disk is out of space at that point, the
   5209   // output file will wind up incomplete, but we will have already
   5210   // exited.  The alternative to fallocate would be to use fdatasync,
   5211   // but that would be a more significant performance hit.
   5212   if (writable)
   5213     {
   5214       int err = gold_fallocate(o, 0, this->file_size_);
   5215       if (err != 0)
   5216        gold_fatal(_("%s: %s"), this->name_, strerror(err));
   5217     }
   5218 
   5219   // Map the file into memory.
   5220   int prot = PROT_READ;
   5221   if (writable)
   5222     prot |= PROT_WRITE;
   5223   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
   5224 
   5225   // The mmap call might fail because of file system issues: the file
   5226   // system might not support mmap at all, or it might not support
   5227   // mmap with PROT_WRITE.
   5228   if (base == MAP_FAILED)
   5229     return false;
   5230 
   5231   this->map_is_anonymous_ = false;
   5232   this->base_ = static_cast<unsigned char*>(base);
   5233   return true;
   5234 }
   5235 
   5236 // Map the file into memory.
   5237 
   5238 void
   5239 Output_file::map()
   5240 {
   5241   if (parameters->options().mmap_output_file()
   5242       && this->map_no_anonymous(true))
   5243     return;
   5244 
   5245   // The mmap call might fail because of file system issues: the file
   5246   // system might not support mmap at all, or it might not support
   5247   // mmap with PROT_WRITE.  I'm not sure which errno values we will
   5248   // see in all cases, so if the mmap fails for any reason and we
   5249   // don't care about file contents, try for an anonymous map.
   5250   if (this->map_anonymous())
   5251     return;
   5252 
   5253   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
   5254 	     this->name_, static_cast<unsigned long>(this->file_size_),
   5255 	     strerror(errno));
   5256 }
   5257 
   5258 // Unmap the file from memory.
   5259 
   5260 void
   5261 Output_file::unmap()
   5262 {
   5263   if (this->map_is_anonymous_)
   5264     {
   5265       // We've already written out the data, so there is no reason to
   5266       // waste time unmapping or freeing the memory.
   5267     }
   5268   else
   5269     {
   5270       if (::munmap(this->base_, this->file_size_) < 0)
   5271 	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
   5272     }
   5273   this->base_ = NULL;
   5274 }
   5275 
   5276 // Close the output file.
   5277 
   5278 void
   5279 Output_file::close()
   5280 {
   5281   // If the map isn't file-backed, we need to write it now.
   5282   if (this->map_is_anonymous_ && !this->is_temporary_)
   5283     {
   5284       size_t bytes_to_write = this->file_size_;
   5285       size_t offset = 0;
   5286       while (bytes_to_write > 0)
   5287 	{
   5288 	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
   5289 					  bytes_to_write);
   5290 	  if (bytes_written == 0)
   5291 	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
   5292 	  else if (bytes_written < 0)
   5293 	    gold_error(_("%s: write: %s"), this->name_, strerror(errno));
   5294 	  else
   5295 	    {
   5296 	      bytes_to_write -= bytes_written;
   5297 	      offset += bytes_written;
   5298 	    }
   5299 	}
   5300     }
   5301   this->unmap();
   5302 
   5303   // We don't close stdout or stderr
   5304   if (this->o_ != STDOUT_FILENO
   5305       && this->o_ != STDERR_FILENO
   5306       && !this->is_temporary_)
   5307     if (::close(this->o_) < 0)
   5308       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
   5309   this->o_ = -1;
   5310 }
   5311 
   5312 // Instantiate the templates we need.  We could use the configure
   5313 // script to restrict this to only the ones for implemented targets.
   5314 
   5315 #ifdef HAVE_TARGET_32_LITTLE
   5316 template
   5317 off_t
   5318 Output_section::add_input_section<32, false>(
   5319     Layout* layout,
   5320     Sized_relobj_file<32, false>* object,
   5321     unsigned int shndx,
   5322     const char* secname,
   5323     const elfcpp::Shdr<32, false>& shdr,
   5324     unsigned int reloc_shndx,
   5325     bool have_sections_script);
   5326 #endif
   5327 
   5328 #ifdef HAVE_TARGET_32_BIG
   5329 template
   5330 off_t
   5331 Output_section::add_input_section<32, true>(
   5332     Layout* layout,
   5333     Sized_relobj_file<32, true>* object,
   5334     unsigned int shndx,
   5335     const char* secname,
   5336     const elfcpp::Shdr<32, true>& shdr,
   5337     unsigned int reloc_shndx,
   5338     bool have_sections_script);
   5339 #endif
   5340 
   5341 #ifdef HAVE_TARGET_64_LITTLE
   5342 template
   5343 off_t
   5344 Output_section::add_input_section<64, false>(
   5345     Layout* layout,
   5346     Sized_relobj_file<64, false>* object,
   5347     unsigned int shndx,
   5348     const char* secname,
   5349     const elfcpp::Shdr<64, false>& shdr,
   5350     unsigned int reloc_shndx,
   5351     bool have_sections_script);
   5352 #endif
   5353 
   5354 #ifdef HAVE_TARGET_64_BIG
   5355 template
   5356 off_t
   5357 Output_section::add_input_section<64, true>(
   5358     Layout* layout,
   5359     Sized_relobj_file<64, true>* object,
   5360     unsigned int shndx,
   5361     const char* secname,
   5362     const elfcpp::Shdr<64, true>& shdr,
   5363     unsigned int reloc_shndx,
   5364     bool have_sections_script);
   5365 #endif
   5366 
   5367 #ifdef HAVE_TARGET_32_LITTLE
   5368 template
   5369 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
   5370 #endif
   5371 
   5372 #ifdef HAVE_TARGET_32_BIG
   5373 template
   5374 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
   5375 #endif
   5376 
   5377 #ifdef HAVE_TARGET_64_LITTLE
   5378 template
   5379 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
   5380 #endif
   5381 
   5382 #ifdef HAVE_TARGET_64_BIG
   5383 template
   5384 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
   5385 #endif
   5386 
   5387 #ifdef HAVE_TARGET_32_LITTLE
   5388 template
   5389 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
   5390 #endif
   5391 
   5392 #ifdef HAVE_TARGET_32_BIG
   5393 template
   5394 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
   5395 #endif
   5396 
   5397 #ifdef HAVE_TARGET_64_LITTLE
   5398 template
   5399 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
   5400 #endif
   5401 
   5402 #ifdef HAVE_TARGET_64_BIG
   5403 template
   5404 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
   5405 #endif
   5406 
   5407 #ifdef HAVE_TARGET_32_LITTLE
   5408 template
   5409 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
   5410 #endif
   5411 
   5412 #ifdef HAVE_TARGET_32_BIG
   5413 template
   5414 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
   5415 #endif
   5416 
   5417 #ifdef HAVE_TARGET_64_LITTLE
   5418 template
   5419 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
   5420 #endif
   5421 
   5422 #ifdef HAVE_TARGET_64_BIG
   5423 template
   5424 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
   5425 #endif
   5426 
   5427 #ifdef HAVE_TARGET_32_LITTLE
   5428 template
   5429 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
   5430 #endif
   5431 
   5432 #ifdef HAVE_TARGET_32_BIG
   5433 template
   5434 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
   5435 #endif
   5436 
   5437 #ifdef HAVE_TARGET_64_LITTLE
   5438 template
   5439 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
   5440 #endif
   5441 
   5442 #ifdef HAVE_TARGET_64_BIG
   5443 template
   5444 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
   5445 #endif
   5446 
   5447 #ifdef HAVE_TARGET_32_LITTLE
   5448 template
   5449 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
   5450 #endif
   5451 
   5452 #ifdef HAVE_TARGET_32_BIG
   5453 template
   5454 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
   5455 #endif
   5456 
   5457 #ifdef HAVE_TARGET_64_LITTLE
   5458 template
   5459 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
   5460 #endif
   5461 
   5462 #ifdef HAVE_TARGET_64_BIG
   5463 template
   5464 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
   5465 #endif
   5466 
   5467 #ifdef HAVE_TARGET_32_LITTLE
   5468 template
   5469 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
   5470 #endif
   5471 
   5472 #ifdef HAVE_TARGET_32_BIG
   5473 template
   5474 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
   5475 #endif
   5476 
   5477 #ifdef HAVE_TARGET_64_LITTLE
   5478 template
   5479 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
   5480 #endif
   5481 
   5482 #ifdef HAVE_TARGET_64_BIG
   5483 template
   5484 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
   5485 #endif
   5486 
   5487 #ifdef HAVE_TARGET_32_LITTLE
   5488 template
   5489 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
   5490 #endif
   5491 
   5492 #ifdef HAVE_TARGET_32_BIG
   5493 template
   5494 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
   5495 #endif
   5496 
   5497 #ifdef HAVE_TARGET_64_LITTLE
   5498 template
   5499 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
   5500 #endif
   5501 
   5502 #ifdef HAVE_TARGET_64_BIG
   5503 template
   5504 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
   5505 #endif
   5506 
   5507 #ifdef HAVE_TARGET_32_LITTLE
   5508 template
   5509 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
   5510 #endif
   5511 
   5512 #ifdef HAVE_TARGET_32_BIG
   5513 template
   5514 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
   5515 #endif
   5516 
   5517 #ifdef HAVE_TARGET_64_LITTLE
   5518 template
   5519 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
   5520 #endif
   5521 
   5522 #ifdef HAVE_TARGET_64_BIG
   5523 template
   5524 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
   5525 #endif
   5526 
   5527 #ifdef HAVE_TARGET_32_LITTLE
   5528 template
   5529 class Output_data_reloc<elfcpp::SHT_RELR, true, 32, false>;
   5530 #endif
   5531 
   5532 #ifdef HAVE_TARGET_32_BIG
   5533 template
   5534 class Output_data_reloc<elfcpp::SHT_RELR, true, 32, true>;
   5535 #endif
   5536 
   5537 #ifdef HAVE_TARGET_64_LITTLE
   5538 template
   5539 class Output_data_reloc<elfcpp::SHT_RELR, true, 64, false>;
   5540 #endif
   5541 
   5542 #ifdef HAVE_TARGET_64_BIG
   5543 template
   5544 class Output_data_reloc<elfcpp::SHT_RELR, true, 64, true>;
   5545 #endif
   5546 
   5547 #ifdef HAVE_TARGET_32_LITTLE
   5548 template
   5549 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
   5550 #endif
   5551 
   5552 #ifdef HAVE_TARGET_32_BIG
   5553 template
   5554 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
   5555 #endif
   5556 
   5557 #ifdef HAVE_TARGET_64_LITTLE
   5558 template
   5559 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
   5560 #endif
   5561 
   5562 #ifdef HAVE_TARGET_64_BIG
   5563 template
   5564 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
   5565 #endif
   5566 
   5567 #ifdef HAVE_TARGET_32_LITTLE
   5568 template
   5569 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
   5570 #endif
   5571 
   5572 #ifdef HAVE_TARGET_32_BIG
   5573 template
   5574 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
   5575 #endif
   5576 
   5577 #ifdef HAVE_TARGET_64_LITTLE
   5578 template
   5579 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
   5580 #endif
   5581 
   5582 #ifdef HAVE_TARGET_64_BIG
   5583 template
   5584 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
   5585 #endif
   5586 
   5587 #ifdef HAVE_TARGET_32_LITTLE
   5588 template
   5589 class Output_data_group<32, false>;
   5590 #endif
   5591 
   5592 #ifdef HAVE_TARGET_32_BIG
   5593 template
   5594 class Output_data_group<32, true>;
   5595 #endif
   5596 
   5597 #ifdef HAVE_TARGET_64_LITTLE
   5598 template
   5599 class Output_data_group<64, false>;
   5600 #endif
   5601 
   5602 #ifdef HAVE_TARGET_64_BIG
   5603 template
   5604 class Output_data_group<64, true>;
   5605 #endif
   5606 
   5607 template
   5608 class Output_data_got<32, false>;
   5609 
   5610 template
   5611 class Output_data_got<32, true>;
   5612 
   5613 template
   5614 class Output_data_got<64, false>;
   5615 
   5616 template
   5617 class Output_data_got<64, true>;
   5618 
   5619 } // End namespace gold.
   5620