Home | History | Annotate | Download | only in gold
      1 // resolve.cc -- symbol resolution for gold
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include "elfcpp.h"
     26 #include "target.h"
     27 #include "object.h"
     28 #include "symtab.h"
     29 #include "plugin.h"
     30 
     31 namespace gold
     32 {
     33 
     34 // Symbol methods used in this file.
     35 
     36 // This symbol is being overridden by another symbol whose version is
     37 // VERSION.  Update the VERSION_ field accordingly.
     38 
     39 inline void
     40 Symbol::override_version(const char* version)
     41 {
     42   if (version == NULL)
     43     {
     44       // This is the case where this symbol is NAME/VERSION, and the
     45       // version was not marked as hidden.  That makes it the default
     46       // version, so we create NAME/NULL.  Later we see another symbol
     47       // NAME/NULL, and that symbol is overriding this one.  In this
     48       // case, since NAME/VERSION is the default, we make NAME/NULL
     49       // override NAME/VERSION as well.  They are already the same
     50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
     51       // that it will be output with the correct, empty, version.
     52       this->version_ = version;
     53     }
     54   else
     55     {
     56       // This is the case where this symbol is NAME/VERSION_ONE, and
     57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
     58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
     59       // different, then this can only happen when VERSION_ONE is NULL
     60       // and VERSION_TWO is not hidden.
     61       gold_assert(this->version_ == version || this->version_ == NULL);
     62       this->version_ = version;
     63     }
     64 }
     65 
     66 // This symbol is being overidden by another symbol whose visibility
     67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
     68 
     69 inline void
     70 Symbol::override_visibility(elfcpp::STV visibility)
     71 {
     72   // The rule for combining visibility is that we always choose the
     73   // most constrained visibility.  In order of increasing constraint,
     74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
     75   // of the numeric values, so the effect is that we always want the
     76   // smallest non-zero value.
     77   if (visibility != elfcpp::STV_DEFAULT)
     78     {
     79       if (this->visibility_ == elfcpp::STV_DEFAULT)
     80 	this->visibility_ = visibility;
     81       else if (this->visibility_ > visibility)
     82 	this->visibility_ = visibility;
     83     }
     84 }
     85 
     86 // Override the fields in Symbol.
     87 
     88 template<int size, bool big_endian>
     89 void
     90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
     91 		      unsigned int st_shndx, bool is_ordinary,
     92 		      Object* object, const char* version)
     93 {
     94   gold_assert(this->source_ == FROM_OBJECT);
     95   this->u_.from_object.object = object;
     96   this->override_version(version);
     97   this->u_.from_object.shndx = st_shndx;
     98   this->is_ordinary_shndx_ = is_ordinary;
     99   // Don't override st_type from plugin placeholder symbols.
    100   if (object->pluginobj() == NULL)
    101     this->type_ = sym.get_st_type();
    102   this->binding_ = sym.get_st_bind();
    103   this->override_visibility(sym.get_st_visibility());
    104   this->nonvis_ = sym.get_st_nonvis();
    105   if (object->is_dynamic())
    106     this->in_dyn_ = true;
    107   else
    108     this->in_reg_ = true;
    109 }
    110 
    111 // Override the fields in Sized_symbol.
    112 
    113 template<int size>
    114 template<bool big_endian>
    115 void
    116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
    117 			     unsigned st_shndx, bool is_ordinary,
    118 			     Object* object, const char* version)
    119 {
    120   this->override_base(sym, st_shndx, is_ordinary, object, version);
    121   this->value_ = sym.get_st_value();
    122   this->symsize_ = sym.get_st_size();
    123 }
    124 
    125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
    126 // VERSION.  This handles all aliases of TOSYM.
    127 
    128 template<int size, bool big_endian>
    129 void
    130 Symbol_table::override(Sized_symbol<size>* tosym,
    131 		       const elfcpp::Sym<size, big_endian>& fromsym,
    132 		       unsigned int st_shndx, bool is_ordinary,
    133 		       Object* object, const char* version)
    134 {
    135   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
    136   if (tosym->has_alias())
    137     {
    138       Symbol* sym = this->weak_aliases_[tosym];
    139       gold_assert(sym != NULL);
    140       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
    141       do
    142 	{
    143 	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
    144 	  sym = this->weak_aliases_[ssym];
    145 	  gold_assert(sym != NULL);
    146 	  ssym = this->get_sized_symbol<size>(sym);
    147 	}
    148       while (ssym != tosym);
    149     }
    150 }
    151 
    152 // The resolve functions build a little code for each symbol.
    153 // Bit 0: 0 for global, 1 for weak.
    154 // Bit 1: 0 for regular object, 1 for shared object
    155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
    156 // This gives us values from 0 to 11.
    157 
    158 static const int global_or_weak_shift = 0;
    159 static const unsigned int global_flag = 0 << global_or_weak_shift;
    160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
    161 
    162 static const int regular_or_dynamic_shift = 1;
    163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
    164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
    165 
    166 static const int def_undef_or_common_shift = 2;
    167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
    168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
    169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
    170 
    171 // This convenience function combines all the flags based on facts
    172 // about the symbol.
    173 
    174 static unsigned int
    175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
    176 	       unsigned int shndx, bool is_ordinary)
    177 {
    178   unsigned int bits;
    179 
    180   switch (binding)
    181     {
    182     case elfcpp::STB_GLOBAL:
    183     case elfcpp::STB_GNU_UNIQUE:
    184       bits = global_flag;
    185       break;
    186 
    187     case elfcpp::STB_WEAK:
    188       bits = weak_flag;
    189       break;
    190 
    191     case elfcpp::STB_LOCAL:
    192       // We should only see externally visible symbols in the symbol
    193       // table.
    194       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
    195       bits = global_flag;
    196 
    197     default:
    198       // Any target which wants to handle STB_LOOS, etc., needs to
    199       // define a resolve method.
    200       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
    201       bits = global_flag;
    202     }
    203 
    204   if (is_dynamic)
    205     bits |= dynamic_flag;
    206   else
    207     bits |= regular_flag;
    208 
    209   switch (shndx)
    210     {
    211     case elfcpp::SHN_UNDEF:
    212       bits |= undef_flag;
    213       break;
    214 
    215     case elfcpp::SHN_COMMON:
    216       if (!is_ordinary)
    217 	bits |= common_flag;
    218       break;
    219 
    220     default:
    221       if (!is_ordinary && Symbol::is_common_shndx(shndx))
    222 	bits |= common_flag;
    223       else
    224         bits |= def_flag;
    225       break;
    226     }
    227 
    228   return bits;
    229 }
    230 
    231 // Resolve a symbol.  This is called the second and subsequent times
    232 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
    233 // section index for SYM, possibly adjusted for many sections.
    234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
    235 // than a special code.  ORIG_ST_SHNDX is the original section index,
    236 // before any munging because of discarded sections, except that all
    237 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
    238 // the version of SYM.
    239 
    240 template<int size, bool big_endian>
    241 void
    242 Symbol_table::resolve(Sized_symbol<size>* to,
    243 		      const elfcpp::Sym<size, big_endian>& sym,
    244 		      unsigned int st_shndx, bool is_ordinary,
    245 		      unsigned int orig_st_shndx,
    246 		      Object* object, const char* version,
    247 		      bool is_default_version)
    248 {
    249   // It's possible for a symbol to be defined in an object file
    250   // using .symver to give it a version, and for there to also be
    251   // a linker script giving that symbol the same version.  We
    252   // don't want to give a multiple-definition error for this
    253   // harmless redefinition.
    254   bool to_is_ordinary;
    255   if (to->source() == Symbol::FROM_OBJECT
    256       && to->object() == object
    257       && is_ordinary
    258       && to->is_defined()
    259       && to->shndx(&to_is_ordinary) == st_shndx
    260       && to_is_ordinary
    261       && to->value() == sym.get_st_value())
    262     return;
    263 
    264   if (parameters->target().has_resolve())
    265     {
    266       Sized_target<size, big_endian>* sized_target;
    267       sized_target = parameters->sized_target<size, big_endian>();
    268       sized_target->resolve(to, sym, object, version);
    269       return;
    270     }
    271 
    272   if (!object->is_dynamic())
    273     {
    274       if (sym.get_st_type() == elfcpp::STT_COMMON
    275 	  && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
    276 	{
    277 	  gold_warning(_("STT_COMMON symbol '%s' in %s "
    278 			 "is not in a common section"),
    279 		       to->demangled_name().c_str(),
    280 		       to->object()->name().c_str());
    281 	  return;
    282 	}
    283       // Record that we've seen this symbol in a regular object.
    284       to->set_in_reg();
    285     }
    286   else if (st_shndx == elfcpp::SHN_UNDEF
    287            && (to->visibility() == elfcpp::STV_HIDDEN
    288                || to->visibility() == elfcpp::STV_INTERNAL))
    289     {
    290       // The symbol is hidden, so a reference from a shared object
    291       // cannot bind to it.  We tried issuing a warning in this case,
    292       // but that produces false positives when the symbol is
    293       // actually resolved in a different shared object (PR 15574).
    294       return;
    295     }
    296   else
    297     {
    298       // Record that we've seen this symbol in a dynamic object.
    299       to->set_in_dyn();
    300     }
    301 
    302   // Record if we've seen this symbol in a real ELF object (i.e., the
    303   // symbol is referenced from outside the world known to the plugin).
    304   if (object->pluginobj() == NULL && !object->is_dynamic())
    305     to->set_in_real_elf();
    306 
    307   // If we're processing replacement files, allow new symbols to override
    308   // the placeholders from the plugin objects.
    309   // Treat common symbols specially since it is possible that an ELF
    310   // file increased the size of the alignment.
    311   if (to->source() == Symbol::FROM_OBJECT)
    312     {
    313       Pluginobj* obj = to->object()->pluginobj();
    314       if (obj != NULL
    315           && parameters->options().plugins()->in_replacement_phase())
    316         {
    317 	  bool adjust_common = false;
    318 	  typename Sized_symbol<size>::Size_type tosize = 0;
    319 	  typename Sized_symbol<size>::Value_type tovalue = 0;
    320 	  if (to->is_common()
    321 	      && !is_ordinary && Symbol::is_common_shndx(st_shndx))
    322 	    {
    323 	      adjust_common = true;
    324 	      tosize = to->symsize();
    325 	      tovalue = to->value();
    326 	    }
    327 	  this->override(to, sym, st_shndx, is_ordinary, object, version);
    328 	  if (adjust_common)
    329 	    {
    330 	      if (tosize > to->symsize())
    331 		to->set_symsize(tosize);
    332 	      if (tovalue > to->value())
    333 		to->set_value(tovalue);
    334 	    }
    335 	  return;
    336         }
    337     }
    338 
    339   // A new weak undefined reference, merging with an old weak
    340   // reference, could be a One Definition Rule (ODR) violation --
    341   // especially if the types or sizes of the references differ.  We'll
    342   // store such pairs and look them up later to make sure they
    343   // actually refer to the same lines of code.  We also check
    344   // combinations of weak and strong, which might occur if one case is
    345   // inline and the other is not.  (Note: not all ODR violations can
    346   // be found this way, and not everything this finds is an ODR
    347   // violation.  But it's helpful to warn about.)
    348   if (parameters->options().detect_odr_violations()
    349       && (sym.get_st_bind() == elfcpp::STB_WEAK
    350 	  || to->binding() == elfcpp::STB_WEAK)
    351       && orig_st_shndx != elfcpp::SHN_UNDEF
    352       && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
    353       && to_is_ordinary
    354       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
    355       && to->symsize() != 0
    356       && (sym.get_st_type() != to->type()
    357           || sym.get_st_size() != to->symsize())
    358       // C does not have a concept of ODR, so we only need to do this
    359       // on C++ symbols.  These have (mangled) names starting with _Z.
    360       && to->name()[0] == '_' && to->name()[1] == 'Z')
    361     {
    362       Symbol_location fromloc
    363           = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
    364       Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
    365 				static_cast<off_t>(to->value()) };
    366       this->candidate_odr_violations_[to->name()].insert(fromloc);
    367       this->candidate_odr_violations_[to->name()].insert(toloc);
    368     }
    369 
    370   // Plugins don't provide a symbol type, so adopt the existing type
    371   // if the FROM symbol is from a plugin.
    372   elfcpp::STT fromtype = (object->pluginobj() != NULL
    373 			  ? to->type()
    374 			  : sym.get_st_type());
    375   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
    376                                          object->is_dynamic(),
    377 					 st_shndx, is_ordinary);
    378 
    379   bool adjust_common_sizes;
    380   bool adjust_dyndef;
    381   typename Sized_symbol<size>::Size_type tosize = to->symsize();
    382   if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
    383 				    object, &adjust_common_sizes,
    384 				    &adjust_dyndef, is_default_version))
    385     {
    386       elfcpp::STB tobinding = to->binding();
    387       typename Sized_symbol<size>::Value_type tovalue = to->value();
    388       this->override(to, sym, st_shndx, is_ordinary, object, version);
    389       if (adjust_common_sizes)
    390 	{
    391 	  if (tosize > to->symsize())
    392 	    to->set_symsize(tosize);
    393 	  if (tovalue > to->value())
    394 	    to->set_value(tovalue);
    395 	}
    396       if (adjust_dyndef)
    397 	{
    398 	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
    399 	  // Remember which kind of UNDEF it was for future reference.
    400 	  to->set_undef_binding(tobinding);
    401 	}
    402     }
    403   else
    404     {
    405       if (adjust_common_sizes)
    406 	{
    407 	  if (sym.get_st_size() > tosize)
    408 	    to->set_symsize(sym.get_st_size());
    409 	  if (sym.get_st_value() > to->value())
    410 	    to->set_value(sym.get_st_value());
    411 	}
    412       if (adjust_dyndef)
    413 	{
    414 	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
    415 	  // Remember which kind of UNDEF it was.
    416 	  to->set_undef_binding(sym.get_st_bind());
    417 	}
    418       // The ELF ABI says that even for a reference to a symbol we
    419       // merge the visibility.
    420       to->override_visibility(sym.get_st_visibility());
    421     }
    422 
    423   if (adjust_common_sizes && parameters->options().warn_common())
    424     {
    425       if (tosize > sym.get_st_size())
    426 	Symbol_table::report_resolve_problem(false,
    427 					     _("common of '%s' overriding "
    428 					       "smaller common"),
    429 					     to, OBJECT, object);
    430       else if (tosize < sym.get_st_size())
    431 	Symbol_table::report_resolve_problem(false,
    432 					     _("common of '%s' overidden by "
    433 					       "larger common"),
    434 					     to, OBJECT, object);
    435       else
    436 	Symbol_table::report_resolve_problem(false,
    437 					     _("multiple common of '%s'"),
    438 					     to, OBJECT, object);
    439     }
    440 }
    441 
    442 // Handle the core of symbol resolution.  This is called with the
    443 // existing symbol, TO, and a bitflag describing the new symbol.  This
    444 // returns true if we should override the existing symbol with the new
    445 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
    446 // true if we should set the symbol size to the maximum of the TO and
    447 // FROM sizes.  It handles error conditions.
    448 
    449 bool
    450 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
    451 			      elfcpp::STT fromtype, Defined defined,
    452 			      Object* object, bool* adjust_common_sizes,
    453 			      bool* adjust_dyndef, bool is_default_version)
    454 {
    455   *adjust_common_sizes = false;
    456   *adjust_dyndef = false;
    457 
    458   unsigned int tobits;
    459   if (to->source() == Symbol::IS_UNDEFINED)
    460     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
    461   else if (to->source() != Symbol::FROM_OBJECT)
    462     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
    463   else
    464     {
    465       bool is_ordinary;
    466       unsigned int shndx = to->shndx(&is_ordinary);
    467       tobits = symbol_to_bits(to->binding(),
    468 			      to->object()->is_dynamic(),
    469 			      shndx,
    470 			      is_ordinary);
    471     }
    472 
    473   if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
    474       && !to->is_placeholder())
    475     Symbol_table::report_resolve_problem(true,
    476 					 _("symbol '%s' used as both __thread "
    477 					   "and non-__thread"),
    478 					 to, defined, object);
    479 
    480   // We use a giant switch table for symbol resolution.  This code is
    481   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
    482   // cases; 3) it is easy to change the handling of a particular case.
    483   // The alternative would be a series of conditionals, but it is easy
    484   // to get the ordering wrong.  This could also be done as a table,
    485   // but that is no easier to understand than this large switch
    486   // statement.
    487 
    488   // These are the values generated by the bit codes.
    489   enum
    490   {
    491     DEF =              global_flag | regular_flag | def_flag,
    492     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
    493     DYN_DEF =          global_flag | dynamic_flag | def_flag,
    494     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
    495     UNDEF =            global_flag | regular_flag | undef_flag,
    496     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
    497     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
    498     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
    499     COMMON =           global_flag | regular_flag | common_flag,
    500     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
    501     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
    502     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
    503   };
    504 
    505   switch (tobits * 16 + frombits)
    506     {
    507     case DEF * 16 + DEF:
    508       // Two definitions of the same symbol.
    509 
    510       // If either symbol is defined by an object included using
    511       // --just-symbols, then don't warn.  This is for compatibility
    512       // with the GNU linker.  FIXME: This is a hack.
    513       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
    514           || (object != NULL && object->just_symbols()))
    515         return false;
    516 
    517       if (!parameters->options().muldefs())
    518 	Symbol_table::report_resolve_problem(true,
    519 					     _("multiple definition of '%s'"),
    520 					     to, defined, object);
    521       return false;
    522 
    523     case WEAK_DEF * 16 + DEF:
    524       // We've seen a weak definition, and now we see a strong
    525       // definition.  In the original SVR4 linker, this was treated as
    526       // a multiple definition error.  In the Solaris linker and the
    527       // GNU linker, a weak definition followed by a regular
    528       // definition causes the weak definition to be overridden.  We
    529       // are currently compatible with the GNU linker.  In the future
    530       // we should add a target specific option to change this.
    531       // FIXME.
    532       return true;
    533 
    534     case DYN_DEF * 16 + DEF:
    535     case DYN_WEAK_DEF * 16 + DEF:
    536       // We've seen a definition in a dynamic object, and now we see a
    537       // definition in a regular object.  The definition in the
    538       // regular object overrides the definition in the dynamic
    539       // object.
    540       return true;
    541 
    542     case UNDEF * 16 + DEF:
    543     case WEAK_UNDEF * 16 + DEF:
    544     case DYN_UNDEF * 16 + DEF:
    545     case DYN_WEAK_UNDEF * 16 + DEF:
    546       // We've seen an undefined reference, and now we see a
    547       // definition.  We use the definition.
    548       return true;
    549 
    550     case COMMON * 16 + DEF:
    551     case WEAK_COMMON * 16 + DEF:
    552     case DYN_COMMON * 16 + DEF:
    553     case DYN_WEAK_COMMON * 16 + DEF:
    554       // We've seen a common symbol and now we see a definition.  The
    555       // definition overrides.
    556       if (parameters->options().warn_common())
    557 	Symbol_table::report_resolve_problem(false,
    558 					     _("definition of '%s' overriding "
    559 					       "common"),
    560 					     to, defined, object);
    561       return true;
    562 
    563     case DEF * 16 + WEAK_DEF:
    564     case WEAK_DEF * 16 + WEAK_DEF:
    565       // We've seen a definition and now we see a weak definition.  We
    566       // ignore the new weak definition.
    567       return false;
    568 
    569     case DYN_DEF * 16 + WEAK_DEF:
    570     case DYN_WEAK_DEF * 16 + WEAK_DEF:
    571       // We've seen a dynamic definition and now we see a regular weak
    572       // definition.  The regular weak definition overrides.
    573       return true;
    574 
    575     case UNDEF * 16 + WEAK_DEF:
    576     case WEAK_UNDEF * 16 + WEAK_DEF:
    577     case DYN_UNDEF * 16 + WEAK_DEF:
    578     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
    579       // A weak definition of a currently undefined symbol.
    580       return true;
    581 
    582     case COMMON * 16 + WEAK_DEF:
    583     case WEAK_COMMON * 16 + WEAK_DEF:
    584       // A weak definition does not override a common definition.
    585       return false;
    586 
    587     case DYN_COMMON * 16 + WEAK_DEF:
    588     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
    589       // A weak definition does override a definition in a dynamic
    590       // object.
    591       if (parameters->options().warn_common())
    592 	Symbol_table::report_resolve_problem(false,
    593 					     _("definition of '%s' overriding "
    594 					       "dynamic common definition"),
    595 					     to, defined, object);
    596       return true;
    597 
    598     case DEF * 16 + DYN_DEF:
    599     case WEAK_DEF * 16 + DYN_DEF:
    600       // Ignore a dynamic definition if we already have a definition.
    601       return false;
    602 
    603     case DYN_DEF * 16 + DYN_DEF:
    604     case DYN_WEAK_DEF * 16 + DYN_DEF:
    605       // Ignore a dynamic definition if we already have a definition,
    606       // unless the existing definition is an unversioned definition
    607       // in the same dynamic object, and the new definition is a
    608       // default version.
    609       if (to->object() == object
    610           && to->version() == NULL
    611           && is_default_version)
    612         return true;
    613       return false;
    614 
    615     case UNDEF * 16 + DYN_DEF:
    616     case DYN_UNDEF * 16 + DYN_DEF:
    617     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
    618       // Use a dynamic definition if we have a reference.
    619       return true;
    620 
    621     case WEAK_UNDEF * 16 + DYN_DEF:
    622       // When overriding a weak undef by a dynamic definition,
    623       // we need to remember that the original undef was weak.
    624       *adjust_dyndef = true;
    625       return true;
    626 
    627     case COMMON * 16 + DYN_DEF:
    628     case WEAK_COMMON * 16 + DYN_DEF:
    629     case DYN_COMMON * 16 + DYN_DEF:
    630     case DYN_WEAK_COMMON * 16 + DYN_DEF:
    631       // Ignore a dynamic definition if we already have a common
    632       // definition.
    633       return false;
    634 
    635     case DEF * 16 + DYN_WEAK_DEF:
    636     case WEAK_DEF * 16 + DYN_WEAK_DEF:
    637     case DYN_DEF * 16 + DYN_WEAK_DEF:
    638     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
    639       // Ignore a weak dynamic definition if we already have a
    640       // definition.
    641       return false;
    642 
    643     case UNDEF * 16 + DYN_WEAK_DEF:
    644       // When overriding an undef by a dynamic weak definition,
    645       // we need to remember that the original undef was not weak.
    646       *adjust_dyndef = true;
    647       return true;
    648 
    649     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
    650     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
    651       // Use a weak dynamic definition if we have a reference.
    652       return true;
    653 
    654     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
    655       // When overriding a weak undef by a dynamic definition,
    656       // we need to remember that the original undef was weak.
    657       *adjust_dyndef = true;
    658       return true;
    659 
    660     case COMMON * 16 + DYN_WEAK_DEF:
    661     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
    662     case DYN_COMMON * 16 + DYN_WEAK_DEF:
    663     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
    664       // Ignore a weak dynamic definition if we already have a common
    665       // definition.
    666       return false;
    667 
    668     case DEF * 16 + UNDEF:
    669     case WEAK_DEF * 16 + UNDEF:
    670     case UNDEF * 16 + UNDEF:
    671       // A new undefined reference tells us nothing.
    672       return false;
    673 
    674     case DYN_DEF * 16 + UNDEF:
    675     case DYN_WEAK_DEF * 16 + UNDEF:
    676       // For a dynamic def, we need to remember which kind of undef we see.
    677       *adjust_dyndef = true;
    678       return false;
    679 
    680     case WEAK_UNDEF * 16 + UNDEF:
    681     case DYN_UNDEF * 16 + UNDEF:
    682     case DYN_WEAK_UNDEF * 16 + UNDEF:
    683       // A strong undef overrides a dynamic or weak undef.
    684       return true;
    685 
    686     case COMMON * 16 + UNDEF:
    687     case WEAK_COMMON * 16 + UNDEF:
    688     case DYN_COMMON * 16 + UNDEF:
    689     case DYN_WEAK_COMMON * 16 + UNDEF:
    690       // A new undefined reference tells us nothing.
    691       return false;
    692 
    693     case DEF * 16 + WEAK_UNDEF:
    694     case WEAK_DEF * 16 + WEAK_UNDEF:
    695     case UNDEF * 16 + WEAK_UNDEF:
    696     case WEAK_UNDEF * 16 + WEAK_UNDEF:
    697     case DYN_UNDEF * 16 + WEAK_UNDEF:
    698     case COMMON * 16 + WEAK_UNDEF:
    699     case WEAK_COMMON * 16 + WEAK_UNDEF:
    700     case DYN_COMMON * 16 + WEAK_UNDEF:
    701     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
    702       // A new weak undefined reference tells us nothing unless the
    703       // exisiting symbol is a dynamic weak reference.
    704       return false;
    705 
    706     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
    707       // A new weak reference overrides an existing dynamic weak reference.
    708       // This is necessary because a dynamic weak reference remembers
    709       // the old binding, which may not be weak.  If we keeps the existing
    710       // dynamic weak reference, the weakness may be dropped in the output.
    711       return true;
    712 
    713     case DYN_DEF * 16 + WEAK_UNDEF:
    714     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
    715       // For a dynamic def, we need to remember which kind of undef we see.
    716       *adjust_dyndef = true;
    717       return false;
    718 
    719     case DEF * 16 + DYN_UNDEF:
    720     case WEAK_DEF * 16 + DYN_UNDEF:
    721     case DYN_DEF * 16 + DYN_UNDEF:
    722     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
    723     case UNDEF * 16 + DYN_UNDEF:
    724     case WEAK_UNDEF * 16 + DYN_UNDEF:
    725     case DYN_UNDEF * 16 + DYN_UNDEF:
    726     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
    727     case COMMON * 16 + DYN_UNDEF:
    728     case WEAK_COMMON * 16 + DYN_UNDEF:
    729     case DYN_COMMON * 16 + DYN_UNDEF:
    730     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
    731       // A new dynamic undefined reference tells us nothing.
    732       return false;
    733 
    734     case DEF * 16 + DYN_WEAK_UNDEF:
    735     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    736     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
    737     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    738     case UNDEF * 16 + DYN_WEAK_UNDEF:
    739     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    740     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
    741     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    742     case COMMON * 16 + DYN_WEAK_UNDEF:
    743     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    744     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
    745     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    746       // A new weak dynamic undefined reference tells us nothing.
    747       return false;
    748 
    749     case DEF * 16 + COMMON:
    750       // A common symbol does not override a definition.
    751       if (parameters->options().warn_common())
    752 	Symbol_table::report_resolve_problem(false,
    753 					     _("common '%s' overridden by "
    754 					       "previous definition"),
    755 					     to, defined, object);
    756       return false;
    757 
    758     case WEAK_DEF * 16 + COMMON:
    759     case DYN_DEF * 16 + COMMON:
    760     case DYN_WEAK_DEF * 16 + COMMON:
    761       // A common symbol does override a weak definition or a dynamic
    762       // definition.
    763       return true;
    764 
    765     case UNDEF * 16 + COMMON:
    766     case WEAK_UNDEF * 16 + COMMON:
    767     case DYN_UNDEF * 16 + COMMON:
    768     case DYN_WEAK_UNDEF * 16 + COMMON:
    769       // A common symbol is a definition for a reference.
    770       return true;
    771 
    772     case COMMON * 16 + COMMON:
    773       // Set the size to the maximum.
    774       *adjust_common_sizes = true;
    775       return false;
    776 
    777     case WEAK_COMMON * 16 + COMMON:
    778       // I'm not sure just what a weak common symbol means, but
    779       // presumably it can be overridden by a regular common symbol.
    780       return true;
    781 
    782     case DYN_COMMON * 16 + COMMON:
    783     case DYN_WEAK_COMMON * 16 + COMMON:
    784       // Use the real common symbol, but adjust the size if necessary.
    785       *adjust_common_sizes = true;
    786       return true;
    787 
    788     case DEF * 16 + WEAK_COMMON:
    789     case WEAK_DEF * 16 + WEAK_COMMON:
    790     case DYN_DEF * 16 + WEAK_COMMON:
    791     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
    792       // Whatever a weak common symbol is, it won't override a
    793       // definition.
    794       return false;
    795 
    796     case UNDEF * 16 + WEAK_COMMON:
    797     case WEAK_UNDEF * 16 + WEAK_COMMON:
    798     case DYN_UNDEF * 16 + WEAK_COMMON:
    799     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
    800       // A weak common symbol is better than an undefined symbol.
    801       return true;
    802 
    803     case COMMON * 16 + WEAK_COMMON:
    804     case WEAK_COMMON * 16 + WEAK_COMMON:
    805     case DYN_COMMON * 16 + WEAK_COMMON:
    806     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
    807       // Ignore a weak common symbol in the presence of a real common
    808       // symbol.
    809       return false;
    810 
    811     case DEF * 16 + DYN_COMMON:
    812     case WEAK_DEF * 16 + DYN_COMMON:
    813     case DYN_DEF * 16 + DYN_COMMON:
    814     case DYN_WEAK_DEF * 16 + DYN_COMMON:
    815       // Ignore a dynamic common symbol in the presence of a
    816       // definition.
    817       return false;
    818 
    819     case UNDEF * 16 + DYN_COMMON:
    820     case WEAK_UNDEF * 16 + DYN_COMMON:
    821     case DYN_UNDEF * 16 + DYN_COMMON:
    822     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
    823       // A dynamic common symbol is a definition of sorts.
    824       return true;
    825 
    826     case COMMON * 16 + DYN_COMMON:
    827     case WEAK_COMMON * 16 + DYN_COMMON:
    828     case DYN_COMMON * 16 + DYN_COMMON:
    829     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
    830       // Set the size to the maximum.
    831       *adjust_common_sizes = true;
    832       return false;
    833 
    834     case DEF * 16 + DYN_WEAK_COMMON:
    835     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
    836     case DYN_DEF * 16 + DYN_WEAK_COMMON:
    837     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
    838       // A common symbol is ignored in the face of a definition.
    839       return false;
    840 
    841     case UNDEF * 16 + DYN_WEAK_COMMON:
    842     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    843     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
    844     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    845       // I guess a weak common symbol is better than a definition.
    846       return true;
    847 
    848     case COMMON * 16 + DYN_WEAK_COMMON:
    849     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    850     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
    851     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    852       // Set the size to the maximum.
    853       *adjust_common_sizes = true;
    854       return false;
    855 
    856     default:
    857       gold_unreachable();
    858     }
    859 }
    860 
    861 // Issue an error or warning due to symbol resolution.  IS_ERROR
    862 // indicates an error rather than a warning.  MSG is the error
    863 // message; it is expected to have a %s for the symbol name.  TO is
    864 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
    865 // found.
    866 
    867 // FIXME: We should have better location information here.  When the
    868 // symbol is defined, we should be able to pull the location from the
    869 // debug info if there is any.
    870 
    871 void
    872 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
    873 				     const Symbol* to, Defined defined,
    874 				     Object* object)
    875 {
    876   std::string demangled(to->demangled_name());
    877   size_t len = strlen(msg) + demangled.length() + 10;
    878   char* buf = new char[len];
    879   snprintf(buf, len, msg, demangled.c_str());
    880 
    881   const char* objname;
    882   switch (defined)
    883     {
    884     case OBJECT:
    885       objname = object->name().c_str();
    886       break;
    887     case COPY:
    888       objname = _("COPY reloc");
    889       break;
    890     case DEFSYM:
    891     case UNDEFINED:
    892       objname = _("command line");
    893       break;
    894     case SCRIPT:
    895       objname = _("linker script");
    896       break;
    897     case PREDEFINED:
    898     case INCREMENTAL_BASE:
    899       objname = _("linker defined");
    900       break;
    901     default:
    902       gold_unreachable();
    903     }
    904 
    905   if (is_error)
    906     gold_error("%s: %s", objname, buf);
    907   else
    908     gold_warning("%s: %s", objname, buf);
    909 
    910   delete[] buf;
    911 
    912   if (to->source() == Symbol::FROM_OBJECT)
    913     objname = to->object()->name().c_str();
    914   else
    915     objname = _("command line");
    916   gold_info("%s: %s: previous definition here", program_name, objname);
    917 }
    918 
    919 // A special case of should_override which is only called for a strong
    920 // defined symbol from a regular object file.  This is used when
    921 // defining special symbols.
    922 
    923 bool
    924 Symbol_table::should_override_with_special(const Symbol* to,
    925 					   elfcpp::STT fromtype,
    926 					   Defined defined)
    927 {
    928   bool adjust_common_sizes;
    929   bool adjust_dyn_def;
    930   unsigned int frombits = global_flag | regular_flag | def_flag;
    931   bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
    932 					   NULL, &adjust_common_sizes,
    933 					   &adjust_dyn_def, false);
    934   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
    935   return ret;
    936 }
    937 
    938 // Override symbol base with a special symbol.
    939 
    940 void
    941 Symbol::override_base_with_special(const Symbol* from)
    942 {
    943   bool same_name = this->name_ == from->name_;
    944   gold_assert(same_name || this->has_alias());
    945 
    946   // If we are overriding an undef, remember the original binding.
    947   if (this->is_undefined())
    948     this->set_undef_binding(this->binding_);
    949 
    950   this->source_ = from->source_;
    951   switch (from->source_)
    952     {
    953     case FROM_OBJECT:
    954       this->u_.from_object = from->u_.from_object;
    955       break;
    956     case IN_OUTPUT_DATA:
    957       this->u_.in_output_data = from->u_.in_output_data;
    958       break;
    959     case IN_OUTPUT_SEGMENT:
    960       this->u_.in_output_segment = from->u_.in_output_segment;
    961       break;
    962     case IS_CONSTANT:
    963     case IS_UNDEFINED:
    964       break;
    965     default:
    966       gold_unreachable();
    967       break;
    968     }
    969 
    970   if (same_name)
    971     {
    972       // When overriding a versioned symbol with a special symbol, we
    973       // may be changing the version.  This will happen if we see a
    974       // special symbol such as "_end" defined in a shared object with
    975       // one version (from a version script), but we want to define it
    976       // here with a different version (from a different version
    977       // script).
    978       this->version_ = from->version_;
    979     }
    980   this->type_ = from->type_;
    981   this->binding_ = from->binding_;
    982   this->override_visibility(from->visibility_);
    983   this->nonvis_ = from->nonvis_;
    984 
    985   // Special symbols are always considered to be regular symbols.
    986   this->in_reg_ = true;
    987 
    988   if (from->needs_dynsym_entry_)
    989     this->needs_dynsym_entry_ = true;
    990   if (from->needs_dynsym_value_)
    991     this->needs_dynsym_value_ = true;
    992 
    993   this->is_predefined_ = from->is_predefined_;
    994 
    995   // We shouldn't see these flags.  If we do, we need to handle them
    996   // somehow.
    997   gold_assert(!from->is_forwarder_);
    998   gold_assert(!from->has_plt_offset());
    999   gold_assert(!from->has_warning_);
   1000   gold_assert(!from->is_copied_from_dynobj_);
   1001   gold_assert(!from->is_forced_local_);
   1002 }
   1003 
   1004 // Override a symbol with a special symbol.
   1005 
   1006 template<int size>
   1007 void
   1008 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
   1009 {
   1010   this->override_base_with_special(from);
   1011   this->value_ = from->value_;
   1012   this->symsize_ = from->symsize_;
   1013 }
   1014 
   1015 // Override TOSYM with the special symbol FROMSYM.  This handles all
   1016 // aliases of TOSYM.
   1017 
   1018 template<int size>
   1019 void
   1020 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
   1021 				    const Sized_symbol<size>* fromsym)
   1022 {
   1023   tosym->override_with_special(fromsym);
   1024   if (tosym->has_alias())
   1025     {
   1026       Symbol* sym = this->weak_aliases_[tosym];
   1027       gold_assert(sym != NULL);
   1028       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
   1029       do
   1030 	{
   1031 	  ssym->override_with_special(fromsym);
   1032 	  sym = this->weak_aliases_[ssym];
   1033 	  gold_assert(sym != NULL);
   1034 	  ssym = this->get_sized_symbol<size>(sym);
   1035 	}
   1036       while (ssym != tosym);
   1037     }
   1038   if (tosym->binding() == elfcpp::STB_LOCAL
   1039       || ((tosym->visibility() == elfcpp::STV_HIDDEN
   1040 	   || tosym->visibility() == elfcpp::STV_INTERNAL)
   1041 	  && (tosym->binding() == elfcpp::STB_GLOBAL
   1042 	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
   1043 	      || tosym->binding() == elfcpp::STB_WEAK)
   1044 	  && !parameters->options().relocatable()))
   1045     this->force_local(tosym);
   1046 }
   1047 
   1048 // Instantiate the templates we need.  We could use the configure
   1049 // script to restrict this to only the ones needed for implemented
   1050 // targets.
   1051 
   1052 // We have to instantiate both big and little endian versions because
   1053 // these are used by other templates that depends on size only.
   1054 
   1055 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1056 template
   1057 void
   1058 Symbol_table::resolve<32, false>(
   1059     Sized_symbol<32>* to,
   1060     const elfcpp::Sym<32, false>& sym,
   1061     unsigned int st_shndx,
   1062     bool is_ordinary,
   1063     unsigned int orig_st_shndx,
   1064     Object* object,
   1065     const char* version,
   1066     bool is_default_version);
   1067 
   1068 template
   1069 void
   1070 Symbol_table::resolve<32, true>(
   1071     Sized_symbol<32>* to,
   1072     const elfcpp::Sym<32, true>& sym,
   1073     unsigned int st_shndx,
   1074     bool is_ordinary,
   1075     unsigned int orig_st_shndx,
   1076     Object* object,
   1077     const char* version,
   1078     bool is_default_version);
   1079 #endif
   1080 
   1081 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1082 template
   1083 void
   1084 Symbol_table::resolve<64, false>(
   1085     Sized_symbol<64>* to,
   1086     const elfcpp::Sym<64, false>& sym,
   1087     unsigned int st_shndx,
   1088     bool is_ordinary,
   1089     unsigned int orig_st_shndx,
   1090     Object* object,
   1091     const char* version,
   1092     bool is_default_version);
   1093 
   1094 template
   1095 void
   1096 Symbol_table::resolve<64, true>(
   1097     Sized_symbol<64>* to,
   1098     const elfcpp::Sym<64, true>& sym,
   1099     unsigned int st_shndx,
   1100     bool is_ordinary,
   1101     unsigned int orig_st_shndx,
   1102     Object* object,
   1103     const char* version,
   1104     bool is_default_version);
   1105 #endif
   1106 
   1107 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1108 template
   1109 void
   1110 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
   1111 					const Sized_symbol<32>*);
   1112 #endif
   1113 
   1114 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1115 template
   1116 void
   1117 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
   1118 					const Sized_symbol<64>*);
   1119 #endif
   1120 
   1121 } // End namespace gold.
   1122