1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the MachineInstr class, which is the 11 // basic representation for all target dependent machine instructions used by 12 // the back end. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 17 #define LLVM_CODEGEN_MACHINEINSTR_H 18 19 #include "llvm/ADT/DenseMapInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/ilist.h" 22 #include "llvm/ADT/ilist_node.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/Support/ArrayRecycler.h" 30 #include "llvm/Target/TargetOpcodes.h" 31 32 namespace llvm { 33 34 class StringRef; 35 template <typename T> class ArrayRef; 36 template <typename T> class SmallVectorImpl; 37 class DILocalVariable; 38 class DIExpression; 39 class TargetInstrInfo; 40 class TargetRegisterClass; 41 class TargetRegisterInfo; 42 #ifdef LLVM_BUILD_GLOBAL_ISEL 43 class Type; 44 #endif 45 class MachineFunction; 46 class MachineMemOperand; 47 48 //===----------------------------------------------------------------------===// 49 /// Representation of each machine instruction. 50 /// 51 /// This class isn't a POD type, but it must have a trivial destructor. When a 52 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 53 /// without having their destructor called. 54 /// 55 class MachineInstr 56 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> { 57 public: 58 typedef MachineMemOperand **mmo_iterator; 59 60 /// Flags to specify different kinds of comments to output in 61 /// assembly code. These flags carry semantic information not 62 /// otherwise easily derivable from the IR text. 63 /// 64 enum CommentFlag { 65 ReloadReuse = 0x1 66 }; 67 68 enum MIFlag { 69 NoFlags = 0, 70 FrameSetup = 1 << 0, // Instruction is used as a part of 71 // function frame setup code. 72 FrameDestroy = 1 << 1, // Instruction is used as a part of 73 // function frame destruction code. 74 BundledPred = 1 << 2, // Instruction has bundled predecessors. 75 BundledSucc = 1 << 3 // Instruction has bundled successors. 76 }; 77 private: 78 const MCInstrDesc *MCID; // Instruction descriptor. 79 MachineBasicBlock *Parent; // Pointer to the owning basic block. 80 81 // Operands are allocated by an ArrayRecycler. 82 MachineOperand *Operands; // Pointer to the first operand. 83 unsigned NumOperands; // Number of operands on instruction. 84 typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity; 85 OperandCapacity CapOperands; // Capacity of the Operands array. 86 87 uint8_t Flags; // Various bits of additional 88 // information about machine 89 // instruction. 90 91 uint8_t AsmPrinterFlags; // Various bits of information used by 92 // the AsmPrinter to emit helpful 93 // comments. This is *not* semantic 94 // information. Do not use this for 95 // anything other than to convey comment 96 // information to AsmPrinter. 97 98 uint8_t NumMemRefs; // Information on memory references. 99 // Note that MemRefs == nullptr, means 'don't know', not 'no memory access'. 100 // Calling code must treat missing information conservatively. If the number 101 // of memory operands required to be precise exceeds the maximum value of 102 // NumMemRefs - currently 256 - we remove the operands entirely. Note also 103 // that this is a non-owning reference to a shared copy on write buffer owned 104 // by the MachineFunction and created via MF.allocateMemRefsArray. 105 mmo_iterator MemRefs; 106 107 DebugLoc debugLoc; // Source line information. 108 109 #ifdef LLVM_BUILD_GLOBAL_ISEL 110 /// Type of the instruction in case of a generic opcode. 111 /// \invariant This must be nullptr is getOpcode() is not 112 /// in the range of generic opcodes. 113 Type *Ty; 114 #endif 115 116 MachineInstr(const MachineInstr&) = delete; 117 void operator=(const MachineInstr&) = delete; 118 // Use MachineFunction::DeleteMachineInstr() instead. 119 ~MachineInstr() = delete; 120 121 // Intrusive list support 122 friend struct ilist_traits<MachineInstr>; 123 friend struct ilist_traits<MachineBasicBlock>; 124 void setParent(MachineBasicBlock *P) { Parent = P; } 125 126 /// This constructor creates a copy of the given 127 /// MachineInstr in the given MachineFunction. 128 MachineInstr(MachineFunction &, const MachineInstr &); 129 130 /// This constructor create a MachineInstr and add the implicit operands. 131 /// It reserves space for number of operands specified by 132 /// MCInstrDesc. An explicit DebugLoc is supplied. 133 MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl, 134 bool NoImp = false); 135 136 // MachineInstrs are pool-allocated and owned by MachineFunction. 137 friend class MachineFunction; 138 139 public: 140 const MachineBasicBlock* getParent() const { return Parent; } 141 MachineBasicBlock* getParent() { return Parent; } 142 143 /// Return the asm printer flags bitvector. 144 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 145 146 /// Clear the AsmPrinter bitvector. 147 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 148 149 /// Return whether an AsmPrinter flag is set. 150 bool getAsmPrinterFlag(CommentFlag Flag) const { 151 return AsmPrinterFlags & Flag; 152 } 153 154 /// Set a flag for the AsmPrinter. 155 void setAsmPrinterFlag(CommentFlag Flag) { 156 AsmPrinterFlags |= (uint8_t)Flag; 157 } 158 159 /// Clear specific AsmPrinter flags. 160 void clearAsmPrinterFlag(CommentFlag Flag) { 161 AsmPrinterFlags &= ~Flag; 162 } 163 164 /// Return the MI flags bitvector. 165 uint8_t getFlags() const { 166 return Flags; 167 } 168 169 /// Return whether an MI flag is set. 170 bool getFlag(MIFlag Flag) const { 171 return Flags & Flag; 172 } 173 174 /// Set a MI flag. 175 void setFlag(MIFlag Flag) { 176 Flags |= (uint8_t)Flag; 177 } 178 179 void setFlags(unsigned flags) { 180 // Filter out the automatically maintained flags. 181 unsigned Mask = BundledPred | BundledSucc; 182 Flags = (Flags & Mask) | (flags & ~Mask); 183 } 184 185 /// clearFlag - Clear a MI flag. 186 void clearFlag(MIFlag Flag) { 187 Flags &= ~((uint8_t)Flag); 188 } 189 190 /// Set the type of the instruction. 191 /// \pre getOpcode() is in the range of the generic opcodes. 192 void setType(Type *Ty); 193 Type *getType() const; 194 195 /// Return true if MI is in a bundle (but not the first MI in a bundle). 196 /// 197 /// A bundle looks like this before it's finalized: 198 /// ---------------- 199 /// | MI | 200 /// ---------------- 201 /// | 202 /// ---------------- 203 /// | MI * | 204 /// ---------------- 205 /// | 206 /// ---------------- 207 /// | MI * | 208 /// ---------------- 209 /// In this case, the first MI starts a bundle but is not inside a bundle, the 210 /// next 2 MIs are considered "inside" the bundle. 211 /// 212 /// After a bundle is finalized, it looks like this: 213 /// ---------------- 214 /// | Bundle | 215 /// ---------------- 216 /// | 217 /// ---------------- 218 /// | MI * | 219 /// ---------------- 220 /// | 221 /// ---------------- 222 /// | MI * | 223 /// ---------------- 224 /// | 225 /// ---------------- 226 /// | MI * | 227 /// ---------------- 228 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 229 /// a bundle, but the next three MIs are. 230 bool isInsideBundle() const { 231 return getFlag(BundledPred); 232 } 233 234 /// Return true if this instruction part of a bundle. This is true 235 /// if either itself or its following instruction is marked "InsideBundle". 236 bool isBundled() const { 237 return isBundledWithPred() || isBundledWithSucc(); 238 } 239 240 /// Return true if this instruction is part of a bundle, and it is not the 241 /// first instruction in the bundle. 242 bool isBundledWithPred() const { return getFlag(BundledPred); } 243 244 /// Return true if this instruction is part of a bundle, and it is not the 245 /// last instruction in the bundle. 246 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 247 248 /// Bundle this instruction with its predecessor. This can be an unbundled 249 /// instruction, or it can be the first instruction in a bundle. 250 void bundleWithPred(); 251 252 /// Bundle this instruction with its successor. This can be an unbundled 253 /// instruction, or it can be the last instruction in a bundle. 254 void bundleWithSucc(); 255 256 /// Break bundle above this instruction. 257 void unbundleFromPred(); 258 259 /// Break bundle below this instruction. 260 void unbundleFromSucc(); 261 262 /// Returns the debug location id of this MachineInstr. 263 const DebugLoc &getDebugLoc() const { return debugLoc; } 264 265 /// Return the debug variable referenced by 266 /// this DBG_VALUE instruction. 267 const DILocalVariable *getDebugVariable() const; 268 269 /// Return the complex address expression referenced by 270 /// this DBG_VALUE instruction. 271 const DIExpression *getDebugExpression() const; 272 273 /// Emit an error referring to the source location of this instruction. 274 /// This should only be used for inline assembly that is somehow 275 /// impossible to compile. Other errors should have been handled much 276 /// earlier. 277 /// 278 /// If this method returns, the caller should try to recover from the error. 279 /// 280 void emitError(StringRef Msg) const; 281 282 /// Returns the target instruction descriptor of this MachineInstr. 283 const MCInstrDesc &getDesc() const { return *MCID; } 284 285 /// Returns the opcode of this MachineInstr. 286 unsigned getOpcode() const { return MCID->Opcode; } 287 288 /// Access to explicit operands of the instruction. 289 /// 290 unsigned getNumOperands() const { return NumOperands; } 291 292 const MachineOperand& getOperand(unsigned i) const { 293 assert(i < getNumOperands() && "getOperand() out of range!"); 294 return Operands[i]; 295 } 296 MachineOperand& getOperand(unsigned i) { 297 assert(i < getNumOperands() && "getOperand() out of range!"); 298 return Operands[i]; 299 } 300 301 /// Returns the number of non-implicit operands. 302 unsigned getNumExplicitOperands() const; 303 304 /// iterator/begin/end - Iterate over all operands of a machine instruction. 305 typedef MachineOperand *mop_iterator; 306 typedef const MachineOperand *const_mop_iterator; 307 308 mop_iterator operands_begin() { return Operands; } 309 mop_iterator operands_end() { return Operands + NumOperands; } 310 311 const_mop_iterator operands_begin() const { return Operands; } 312 const_mop_iterator operands_end() const { return Operands + NumOperands; } 313 314 iterator_range<mop_iterator> operands() { 315 return make_range(operands_begin(), operands_end()); 316 } 317 iterator_range<const_mop_iterator> operands() const { 318 return make_range(operands_begin(), operands_end()); 319 } 320 iterator_range<mop_iterator> explicit_operands() { 321 return make_range(operands_begin(), 322 operands_begin() + getNumExplicitOperands()); 323 } 324 iterator_range<const_mop_iterator> explicit_operands() const { 325 return make_range(operands_begin(), 326 operands_begin() + getNumExplicitOperands()); 327 } 328 iterator_range<mop_iterator> implicit_operands() { 329 return make_range(explicit_operands().end(), operands_end()); 330 } 331 iterator_range<const_mop_iterator> implicit_operands() const { 332 return make_range(explicit_operands().end(), operands_end()); 333 } 334 /// Returns a range over all explicit operands that are register definitions. 335 /// Implicit definition are not included! 336 iterator_range<mop_iterator> defs() { 337 return make_range(operands_begin(), 338 operands_begin() + getDesc().getNumDefs()); 339 } 340 /// \copydoc defs() 341 iterator_range<const_mop_iterator> defs() const { 342 return make_range(operands_begin(), 343 operands_begin() + getDesc().getNumDefs()); 344 } 345 /// Returns a range that includes all operands that are register uses. 346 /// This may include unrelated operands which are not register uses. 347 iterator_range<mop_iterator> uses() { 348 return make_range(operands_begin() + getDesc().getNumDefs(), 349 operands_end()); 350 } 351 /// \copydoc uses() 352 iterator_range<const_mop_iterator> uses() const { 353 return make_range(operands_begin() + getDesc().getNumDefs(), 354 operands_end()); 355 } 356 iterator_range<mop_iterator> explicit_uses() { 357 return make_range(operands_begin() + getDesc().getNumDefs(), 358 operands_begin() + getNumExplicitOperands() ); 359 } 360 iterator_range<const_mop_iterator> explicit_uses() const { 361 return make_range(operands_begin() + getDesc().getNumDefs(), 362 operands_begin() + getNumExplicitOperands() ); 363 } 364 365 /// Returns the number of the operand iterator \p I points to. 366 unsigned getOperandNo(const_mop_iterator I) const { 367 return I - operands_begin(); 368 } 369 370 /// Access to memory operands of the instruction 371 mmo_iterator memoperands_begin() const { return MemRefs; } 372 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 373 /// Return true if we don't have any memory operands which described the the 374 /// memory access done by this instruction. If this is true, calling code 375 /// must be conservative. 376 bool memoperands_empty() const { return NumMemRefs == 0; } 377 378 iterator_range<mmo_iterator> memoperands() { 379 return make_range(memoperands_begin(), memoperands_end()); 380 } 381 iterator_range<mmo_iterator> memoperands() const { 382 return make_range(memoperands_begin(), memoperands_end()); 383 } 384 385 /// Return true if this instruction has exactly one MachineMemOperand. 386 bool hasOneMemOperand() const { 387 return NumMemRefs == 1; 388 } 389 390 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 391 /// queries but they are bundle aware. 392 393 enum QueryType { 394 IgnoreBundle, // Ignore bundles 395 AnyInBundle, // Return true if any instruction in bundle has property 396 AllInBundle // Return true if all instructions in bundle have property 397 }; 398 399 /// Return true if the instruction (or in the case of a bundle, 400 /// the instructions inside the bundle) has the specified property. 401 /// The first argument is the property being queried. 402 /// The second argument indicates whether the query should look inside 403 /// instruction bundles. 404 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 405 // Inline the fast path for unbundled or bundle-internal instructions. 406 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 407 return getDesc().getFlags() & (1 << MCFlag); 408 409 // If this is the first instruction in a bundle, take the slow path. 410 return hasPropertyInBundle(1 << MCFlag, Type); 411 } 412 413 /// Return true if this instruction can have a variable number of operands. 414 /// In this case, the variable operands will be after the normal 415 /// operands but before the implicit definitions and uses (if any are 416 /// present). 417 bool isVariadic(QueryType Type = IgnoreBundle) const { 418 return hasProperty(MCID::Variadic, Type); 419 } 420 421 /// Set if this instruction has an optional definition, e.g. 422 /// ARM instructions which can set condition code if 's' bit is set. 423 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 424 return hasProperty(MCID::HasOptionalDef, Type); 425 } 426 427 /// Return true if this is a pseudo instruction that doesn't 428 /// correspond to a real machine instruction. 429 bool isPseudo(QueryType Type = IgnoreBundle) const { 430 return hasProperty(MCID::Pseudo, Type); 431 } 432 433 bool isReturn(QueryType Type = AnyInBundle) const { 434 return hasProperty(MCID::Return, Type); 435 } 436 437 bool isCall(QueryType Type = AnyInBundle) const { 438 return hasProperty(MCID::Call, Type); 439 } 440 441 /// Returns true if the specified instruction stops control flow 442 /// from executing the instruction immediately following it. Examples include 443 /// unconditional branches and return instructions. 444 bool isBarrier(QueryType Type = AnyInBundle) const { 445 return hasProperty(MCID::Barrier, Type); 446 } 447 448 /// Returns true if this instruction part of the terminator for a basic block. 449 /// Typically this is things like return and branch instructions. 450 /// 451 /// Various passes use this to insert code into the bottom of a basic block, 452 /// but before control flow occurs. 453 bool isTerminator(QueryType Type = AnyInBundle) const { 454 return hasProperty(MCID::Terminator, Type); 455 } 456 457 /// Returns true if this is a conditional, unconditional, or indirect branch. 458 /// Predicates below can be used to discriminate between 459 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 460 /// get more information. 461 bool isBranch(QueryType Type = AnyInBundle) const { 462 return hasProperty(MCID::Branch, Type); 463 } 464 465 /// Return true if this is an indirect branch, such as a 466 /// branch through a register. 467 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 468 return hasProperty(MCID::IndirectBranch, Type); 469 } 470 471 /// Return true if this is a branch which may fall 472 /// through to the next instruction or may transfer control flow to some other 473 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 474 /// information about this branch. 475 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 476 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 477 } 478 479 /// Return true if this is a branch which always 480 /// transfers control flow to some other block. The 481 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 482 /// about this branch. 483 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 484 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 485 } 486 487 /// Return true if this instruction has a predicate operand that 488 /// controls execution. It may be set to 'always', or may be set to other 489 /// values. There are various methods in TargetInstrInfo that can be used to 490 /// control and modify the predicate in this instruction. 491 bool isPredicable(QueryType Type = AllInBundle) const { 492 // If it's a bundle than all bundled instructions must be predicable for this 493 // to return true. 494 return hasProperty(MCID::Predicable, Type); 495 } 496 497 /// Return true if this instruction is a comparison. 498 bool isCompare(QueryType Type = IgnoreBundle) const { 499 return hasProperty(MCID::Compare, Type); 500 } 501 502 /// Return true if this instruction is a move immediate 503 /// (including conditional moves) instruction. 504 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 505 return hasProperty(MCID::MoveImm, Type); 506 } 507 508 /// Return true if this instruction is a bitcast instruction. 509 bool isBitcast(QueryType Type = IgnoreBundle) const { 510 return hasProperty(MCID::Bitcast, Type); 511 } 512 513 /// Return true if this instruction is a select instruction. 514 bool isSelect(QueryType Type = IgnoreBundle) const { 515 return hasProperty(MCID::Select, Type); 516 } 517 518 /// Return true if this instruction cannot be safely duplicated. 519 /// For example, if the instruction has a unique labels attached 520 /// to it, duplicating it would cause multiple definition errors. 521 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 522 return hasProperty(MCID::NotDuplicable, Type); 523 } 524 525 /// Return true if this instruction is convergent. 526 /// Convergent instructions can not be made control-dependent on any 527 /// additional values. 528 bool isConvergent(QueryType Type = AnyInBundle) const { 529 if (isInlineAsm()) { 530 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 531 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 532 return true; 533 } 534 return hasProperty(MCID::Convergent, Type); 535 } 536 537 /// Returns true if the specified instruction has a delay slot 538 /// which must be filled by the code generator. 539 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 540 return hasProperty(MCID::DelaySlot, Type); 541 } 542 543 /// Return true for instructions that can be folded as 544 /// memory operands in other instructions. The most common use for this 545 /// is instructions that are simple loads from memory that don't modify 546 /// the loaded value in any way, but it can also be used for instructions 547 /// that can be expressed as constant-pool loads, such as V_SETALLONES 548 /// on x86, to allow them to be folded when it is beneficial. 549 /// This should only be set on instructions that return a value in their 550 /// only virtual register definition. 551 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 552 return hasProperty(MCID::FoldableAsLoad, Type); 553 } 554 555 /// \brief Return true if this instruction behaves 556 /// the same way as the generic REG_SEQUENCE instructions. 557 /// E.g., on ARM, 558 /// dX VMOVDRR rY, rZ 559 /// is equivalent to 560 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 561 /// 562 /// Note that for the optimizers to be able to take advantage of 563 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 564 /// override accordingly. 565 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 566 return hasProperty(MCID::RegSequence, Type); 567 } 568 569 /// \brief Return true if this instruction behaves 570 /// the same way as the generic EXTRACT_SUBREG instructions. 571 /// E.g., on ARM, 572 /// rX, rY VMOVRRD dZ 573 /// is equivalent to two EXTRACT_SUBREG: 574 /// rX = EXTRACT_SUBREG dZ, ssub_0 575 /// rY = EXTRACT_SUBREG dZ, ssub_1 576 /// 577 /// Note that for the optimizers to be able to take advantage of 578 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 579 /// override accordingly. 580 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 581 return hasProperty(MCID::ExtractSubreg, Type); 582 } 583 584 /// \brief Return true if this instruction behaves 585 /// the same way as the generic INSERT_SUBREG instructions. 586 /// E.g., on ARM, 587 /// dX = VSETLNi32 dY, rZ, Imm 588 /// is equivalent to a INSERT_SUBREG: 589 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 590 /// 591 /// Note that for the optimizers to be able to take advantage of 592 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 593 /// override accordingly. 594 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 595 return hasProperty(MCID::InsertSubreg, Type); 596 } 597 598 //===--------------------------------------------------------------------===// 599 // Side Effect Analysis 600 //===--------------------------------------------------------------------===// 601 602 /// Return true if this instruction could possibly read memory. 603 /// Instructions with this flag set are not necessarily simple load 604 /// instructions, they may load a value and modify it, for example. 605 bool mayLoad(QueryType Type = AnyInBundle) const { 606 if (isInlineAsm()) { 607 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 608 if (ExtraInfo & InlineAsm::Extra_MayLoad) 609 return true; 610 } 611 return hasProperty(MCID::MayLoad, Type); 612 } 613 614 /// Return true if this instruction could possibly modify memory. 615 /// Instructions with this flag set are not necessarily simple store 616 /// instructions, they may store a modified value based on their operands, or 617 /// may not actually modify anything, for example. 618 bool mayStore(QueryType Type = AnyInBundle) const { 619 if (isInlineAsm()) { 620 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 621 if (ExtraInfo & InlineAsm::Extra_MayStore) 622 return true; 623 } 624 return hasProperty(MCID::MayStore, Type); 625 } 626 627 /// Return true if this instruction could possibly read or modify memory. 628 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 629 return mayLoad(Type) || mayStore(Type); 630 } 631 632 //===--------------------------------------------------------------------===// 633 // Flags that indicate whether an instruction can be modified by a method. 634 //===--------------------------------------------------------------------===// 635 636 /// Return true if this may be a 2- or 3-address 637 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 638 /// result if Y and Z are exchanged. If this flag is set, then the 639 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 640 /// instruction. 641 /// 642 /// Note that this flag may be set on instructions that are only commutable 643 /// sometimes. In these cases, the call to commuteInstruction will fail. 644 /// Also note that some instructions require non-trivial modification to 645 /// commute them. 646 bool isCommutable(QueryType Type = IgnoreBundle) const { 647 return hasProperty(MCID::Commutable, Type); 648 } 649 650 /// Return true if this is a 2-address instruction 651 /// which can be changed into a 3-address instruction if needed. Doing this 652 /// transformation can be profitable in the register allocator, because it 653 /// means that the instruction can use a 2-address form if possible, but 654 /// degrade into a less efficient form if the source and dest register cannot 655 /// be assigned to the same register. For example, this allows the x86 656 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 657 /// is the same speed as the shift but has bigger code size. 658 /// 659 /// If this returns true, then the target must implement the 660 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 661 /// is allowed to fail if the transformation isn't valid for this specific 662 /// instruction (e.g. shl reg, 4 on x86). 663 /// 664 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 665 return hasProperty(MCID::ConvertibleTo3Addr, Type); 666 } 667 668 /// Return true if this instruction requires 669 /// custom insertion support when the DAG scheduler is inserting it into a 670 /// machine basic block. If this is true for the instruction, it basically 671 /// means that it is a pseudo instruction used at SelectionDAG time that is 672 /// expanded out into magic code by the target when MachineInstrs are formed. 673 /// 674 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 675 /// is used to insert this into the MachineBasicBlock. 676 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 677 return hasProperty(MCID::UsesCustomInserter, Type); 678 } 679 680 /// Return true if this instruction requires *adjustment* 681 /// after instruction selection by calling a target hook. For example, this 682 /// can be used to fill in ARM 's' optional operand depending on whether 683 /// the conditional flag register is used. 684 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 685 return hasProperty(MCID::HasPostISelHook, Type); 686 } 687 688 /// Returns true if this instruction is a candidate for remat. 689 /// This flag is deprecated, please don't use it anymore. If this 690 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 691 /// verify the instruction is really rematable. 692 bool isRematerializable(QueryType Type = AllInBundle) const { 693 // It's only possible to re-mat a bundle if all bundled instructions are 694 // re-materializable. 695 return hasProperty(MCID::Rematerializable, Type); 696 } 697 698 /// Returns true if this instruction has the same cost (or less) than a move 699 /// instruction. This is useful during certain types of optimizations 700 /// (e.g., remat during two-address conversion or machine licm) 701 /// where we would like to remat or hoist the instruction, but not if it costs 702 /// more than moving the instruction into the appropriate register. Note, we 703 /// are not marking copies from and to the same register class with this flag. 704 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 705 // Only returns true for a bundle if all bundled instructions are cheap. 706 return hasProperty(MCID::CheapAsAMove, Type); 707 } 708 709 /// Returns true if this instruction source operands 710 /// have special register allocation requirements that are not captured by the 711 /// operand register classes. e.g. ARM::STRD's two source registers must be an 712 /// even / odd pair, ARM::STM registers have to be in ascending order. 713 /// Post-register allocation passes should not attempt to change allocations 714 /// for sources of instructions with this flag. 715 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 716 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 717 } 718 719 /// Returns true if this instruction def operands 720 /// have special register allocation requirements that are not captured by the 721 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 722 /// even / odd pair, ARM::LDM registers have to be in ascending order. 723 /// Post-register allocation passes should not attempt to change allocations 724 /// for definitions of instructions with this flag. 725 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 726 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 727 } 728 729 730 enum MICheckType { 731 CheckDefs, // Check all operands for equality 732 CheckKillDead, // Check all operands including kill / dead markers 733 IgnoreDefs, // Ignore all definitions 734 IgnoreVRegDefs // Ignore virtual register definitions 735 }; 736 737 /// Return true if this instruction is identical to (same 738 /// opcode and same operands as) the specified instruction. 739 bool isIdenticalTo(const MachineInstr &Other, 740 MICheckType Check = CheckDefs) const; 741 742 /// Unlink 'this' from the containing basic block, and return it without 743 /// deleting it. 744 /// 745 /// This function can not be used on bundled instructions, use 746 /// removeFromBundle() to remove individual instructions from a bundle. 747 MachineInstr *removeFromParent(); 748 749 /// Unlink this instruction from its basic block and return it without 750 /// deleting it. 751 /// 752 /// If the instruction is part of a bundle, the other instructions in the 753 /// bundle remain bundled. 754 MachineInstr *removeFromBundle(); 755 756 /// Unlink 'this' from the containing basic block and delete it. 757 /// 758 /// If this instruction is the header of a bundle, the whole bundle is erased. 759 /// This function can not be used for instructions inside a bundle, use 760 /// eraseFromBundle() to erase individual bundled instructions. 761 void eraseFromParent(); 762 763 /// Unlink 'this' from the containing basic block and delete it. 764 /// 765 /// For all definitions mark their uses in DBG_VALUE nodes 766 /// as undefined. Otherwise like eraseFromParent(). 767 void eraseFromParentAndMarkDBGValuesForRemoval(); 768 769 /// Unlink 'this' form its basic block and delete it. 770 /// 771 /// If the instruction is part of a bundle, the other instructions in the 772 /// bundle remain bundled. 773 void eraseFromBundle(); 774 775 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 776 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 777 778 /// Returns true if the MachineInstr represents a label. 779 bool isLabel() const { return isEHLabel() || isGCLabel(); } 780 bool isCFIInstruction() const { 781 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 782 } 783 784 // True if the instruction represents a position in the function. 785 bool isPosition() const { return isLabel() || isCFIInstruction(); } 786 787 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 788 /// A DBG_VALUE is indirect iff the first operand is a register and 789 /// the second operand is an immediate. 790 bool isIndirectDebugValue() const { 791 return isDebugValue() 792 && getOperand(0).isReg() 793 && getOperand(1).isImm(); 794 } 795 796 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } 797 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 798 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 799 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 800 bool isMSInlineAsm() const { 801 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 802 } 803 bool isStackAligningInlineAsm() const; 804 InlineAsm::AsmDialect getInlineAsmDialect() const; 805 bool isInsertSubreg() const { 806 return getOpcode() == TargetOpcode::INSERT_SUBREG; 807 } 808 bool isSubregToReg() const { 809 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 810 } 811 bool isRegSequence() const { 812 return getOpcode() == TargetOpcode::REG_SEQUENCE; 813 } 814 bool isBundle() const { 815 return getOpcode() == TargetOpcode::BUNDLE; 816 } 817 bool isCopy() const { 818 return getOpcode() == TargetOpcode::COPY; 819 } 820 bool isFullCopy() const { 821 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 822 } 823 bool isExtractSubreg() const { 824 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 825 } 826 827 /// Return true if the instruction behaves like a copy. 828 /// This does not include native copy instructions. 829 bool isCopyLike() const { 830 return isCopy() || isSubregToReg(); 831 } 832 833 /// Return true is the instruction is an identity copy. 834 bool isIdentityCopy() const { 835 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 836 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 837 } 838 839 /// Return true if this is a transient instruction that is 840 /// either very likely to be eliminated during register allocation (such as 841 /// copy-like instructions), or if this instruction doesn't have an 842 /// execution-time cost. 843 bool isTransient() const { 844 switch(getOpcode()) { 845 default: return false; 846 // Copy-like instructions are usually eliminated during register allocation. 847 case TargetOpcode::PHI: 848 case TargetOpcode::COPY: 849 case TargetOpcode::INSERT_SUBREG: 850 case TargetOpcode::SUBREG_TO_REG: 851 case TargetOpcode::REG_SEQUENCE: 852 // Pseudo-instructions that don't produce any real output. 853 case TargetOpcode::IMPLICIT_DEF: 854 case TargetOpcode::KILL: 855 case TargetOpcode::CFI_INSTRUCTION: 856 case TargetOpcode::EH_LABEL: 857 case TargetOpcode::GC_LABEL: 858 case TargetOpcode::DBG_VALUE: 859 return true; 860 } 861 } 862 863 /// Return the number of instructions inside the MI bundle, excluding the 864 /// bundle header. 865 /// 866 /// This is the number of instructions that MachineBasicBlock::iterator 867 /// skips, 0 for unbundled instructions. 868 unsigned getBundleSize() const; 869 870 /// Return true if the MachineInstr reads the specified register. 871 /// If TargetRegisterInfo is passed, then it also checks if there 872 /// is a read of a super-register. 873 /// This does not count partial redefines of virtual registers as reads: 874 /// %reg1024:6 = OP. 875 bool readsRegister(unsigned Reg, 876 const TargetRegisterInfo *TRI = nullptr) const { 877 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 878 } 879 880 /// Return true if the MachineInstr reads the specified virtual register. 881 /// Take into account that a partial define is a 882 /// read-modify-write operation. 883 bool readsVirtualRegister(unsigned Reg) const { 884 return readsWritesVirtualRegister(Reg).first; 885 } 886 887 /// Return a pair of bools (reads, writes) indicating if this instruction 888 /// reads or writes Reg. This also considers partial defines. 889 /// If Ops is not null, all operand indices for Reg are added. 890 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 891 SmallVectorImpl<unsigned> *Ops = nullptr) const; 892 893 /// Return true if the MachineInstr kills the specified register. 894 /// If TargetRegisterInfo is passed, then it also checks if there is 895 /// a kill of a super-register. 896 bool killsRegister(unsigned Reg, 897 const TargetRegisterInfo *TRI = nullptr) const { 898 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 899 } 900 901 /// Return true if the MachineInstr fully defines the specified register. 902 /// If TargetRegisterInfo is passed, then it also checks 903 /// if there is a def of a super-register. 904 /// NOTE: It's ignoring subreg indices on virtual registers. 905 bool definesRegister(unsigned Reg, 906 const TargetRegisterInfo *TRI = nullptr) const { 907 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 908 } 909 910 /// Return true if the MachineInstr modifies (fully define or partially 911 /// define) the specified register. 912 /// NOTE: It's ignoring subreg indices on virtual registers. 913 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 914 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 915 } 916 917 /// Returns true if the register is dead in this machine instruction. 918 /// If TargetRegisterInfo is passed, then it also checks 919 /// if there is a dead def of a super-register. 920 bool registerDefIsDead(unsigned Reg, 921 const TargetRegisterInfo *TRI = nullptr) const { 922 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 923 } 924 925 /// Returns true if the MachineInstr has an implicit-use operand of exactly 926 /// the given register (not considering sub/super-registers). 927 bool hasRegisterImplicitUseOperand(unsigned Reg) const; 928 929 /// Returns the operand index that is a use of the specific register or -1 930 /// if it is not found. It further tightens the search criteria to a use 931 /// that kills the register if isKill is true. 932 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 933 const TargetRegisterInfo *TRI = nullptr) const; 934 935 /// Wrapper for findRegisterUseOperandIdx, it returns 936 /// a pointer to the MachineOperand rather than an index. 937 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 938 const TargetRegisterInfo *TRI = nullptr) { 939 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 940 return (Idx == -1) ? nullptr : &getOperand(Idx); 941 } 942 943 const MachineOperand *findRegisterUseOperand( 944 unsigned Reg, bool isKill = false, 945 const TargetRegisterInfo *TRI = nullptr) const { 946 return const_cast<MachineInstr *>(this)-> 947 findRegisterUseOperand(Reg, isKill, TRI); 948 } 949 950 /// Returns the operand index that is a def of the specified register or 951 /// -1 if it is not found. If isDead is true, defs that are not dead are 952 /// skipped. If Overlap is true, then it also looks for defs that merely 953 /// overlap the specified register. If TargetRegisterInfo is non-null, 954 /// then it also checks if there is a def of a super-register. 955 /// This may also return a register mask operand when Overlap is true. 956 int findRegisterDefOperandIdx(unsigned Reg, 957 bool isDead = false, bool Overlap = false, 958 const TargetRegisterInfo *TRI = nullptr) const; 959 960 /// Wrapper for findRegisterDefOperandIdx, it returns 961 /// a pointer to the MachineOperand rather than an index. 962 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 963 const TargetRegisterInfo *TRI = nullptr) { 964 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 965 return (Idx == -1) ? nullptr : &getOperand(Idx); 966 } 967 968 /// Find the index of the first operand in the 969 /// operand list that is used to represent the predicate. It returns -1 if 970 /// none is found. 971 int findFirstPredOperandIdx() const; 972 973 /// Find the index of the flag word operand that 974 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 975 /// getOperand(OpIdx) does not belong to an inline asm operand group. 976 /// 977 /// If GroupNo is not NULL, it will receive the number of the operand group 978 /// containing OpIdx. 979 /// 980 /// The flag operand is an immediate that can be decoded with methods like 981 /// InlineAsm::hasRegClassConstraint(). 982 /// 983 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 984 985 /// Compute the static register class constraint for operand OpIdx. 986 /// For normal instructions, this is derived from the MCInstrDesc. 987 /// For inline assembly it is derived from the flag words. 988 /// 989 /// Returns NULL if the static register class constraint cannot be 990 /// determined. 991 /// 992 const TargetRegisterClass* 993 getRegClassConstraint(unsigned OpIdx, 994 const TargetInstrInfo *TII, 995 const TargetRegisterInfo *TRI) const; 996 997 /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to 998 /// the given \p CurRC. 999 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1000 /// instructions inside the bundle will be taken into account. In other words, 1001 /// this method accumulates all the constraints of the operand of this MI and 1002 /// the related bundle if MI is a bundle or inside a bundle. 1003 /// 1004 /// Returns the register class that satisfies both \p CurRC and the 1005 /// constraints set by MI. Returns NULL if such a register class does not 1006 /// exist. 1007 /// 1008 /// \pre CurRC must not be NULL. 1009 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1010 unsigned Reg, const TargetRegisterClass *CurRC, 1011 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1012 bool ExploreBundle = false) const; 1013 1014 /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand 1015 /// to the given \p CurRC. 1016 /// 1017 /// Returns the register class that satisfies both \p CurRC and the 1018 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1019 /// does not exist. 1020 /// 1021 /// \pre CurRC must not be NULL. 1022 /// \pre The operand at \p OpIdx must be a register. 1023 const TargetRegisterClass * 1024 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1025 const TargetInstrInfo *TII, 1026 const TargetRegisterInfo *TRI) const; 1027 1028 /// Add a tie between the register operands at DefIdx and UseIdx. 1029 /// The tie will cause the register allocator to ensure that the two 1030 /// operands are assigned the same physical register. 1031 /// 1032 /// Tied operands are managed automatically for explicit operands in the 1033 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1034 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1035 1036 /// Given the index of a tied register operand, find the 1037 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1038 /// index of the tied operand which must exist. 1039 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1040 1041 /// Given the index of a register def operand, 1042 /// check if the register def is tied to a source operand, due to either 1043 /// two-address elimination or inline assembly constraints. Returns the 1044 /// first tied use operand index by reference if UseOpIdx is not null. 1045 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1046 unsigned *UseOpIdx = nullptr) const { 1047 const MachineOperand &MO = getOperand(DefOpIdx); 1048 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1049 return false; 1050 if (UseOpIdx) 1051 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1052 return true; 1053 } 1054 1055 /// Return true if the use operand of the specified index is tied to a def 1056 /// operand. It also returns the def operand index by reference if DefOpIdx 1057 /// is not null. 1058 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1059 unsigned *DefOpIdx = nullptr) const { 1060 const MachineOperand &MO = getOperand(UseOpIdx); 1061 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1062 return false; 1063 if (DefOpIdx) 1064 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1065 return true; 1066 } 1067 1068 /// Clears kill flags on all operands. 1069 void clearKillInfo(); 1070 1071 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1072 /// properly composing subreg indices where necessary. 1073 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 1074 const TargetRegisterInfo &RegInfo); 1075 1076 /// We have determined MI kills a register. Look for the 1077 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1078 /// add a implicit operand if it's not found. Returns true if the operand 1079 /// exists / is added. 1080 bool addRegisterKilled(unsigned IncomingReg, 1081 const TargetRegisterInfo *RegInfo, 1082 bool AddIfNotFound = false); 1083 1084 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1085 /// all aliasing registers. 1086 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 1087 1088 /// We have determined MI defined a register without a use. 1089 /// Look for the operand that defines it and mark it as IsDead. If 1090 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1091 /// true if the operand exists / is added. 1092 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 1093 bool AddIfNotFound = false); 1094 1095 /// Clear all dead flags on operands defining register @p Reg. 1096 void clearRegisterDeads(unsigned Reg); 1097 1098 /// Mark all subregister defs of register @p Reg with the undef flag. 1099 /// This function is used when we determined to have a subregister def in an 1100 /// otherwise undefined super register. 1101 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); 1102 1103 /// We have determined MI defines a register. Make sure there is an operand 1104 /// defining Reg. 1105 void addRegisterDefined(unsigned Reg, 1106 const TargetRegisterInfo *RegInfo = nullptr); 1107 1108 /// Mark every physreg used by this instruction as 1109 /// dead except those in the UsedRegs list. 1110 /// 1111 /// On instructions with register mask operands, also add implicit-def 1112 /// operands for all registers in UsedRegs. 1113 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1114 const TargetRegisterInfo &TRI); 1115 1116 /// Return true if it is safe to move this instruction. If 1117 /// SawStore is set to true, it means that there is a store (or call) between 1118 /// the instruction's location and its intended destination. 1119 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; 1120 1121 /// Return true if this instruction may have an ordered 1122 /// or volatile memory reference, or if the information describing the memory 1123 /// reference is not available. Return false if it is known to have no 1124 /// ordered or volatile memory references. 1125 bool hasOrderedMemoryRef() const; 1126 1127 /// Return true if this instruction is loading from a 1128 /// location whose value is invariant across the function. For example, 1129 /// loading a value from the constant pool or from the argument area of 1130 /// a function if it does not change. This should only return true of *all* 1131 /// loads the instruction does are invariant (if it does multiple loads). 1132 bool isInvariantLoad(AliasAnalysis *AA) const; 1133 1134 /// If the specified instruction is a PHI that always merges together the 1135 /// same virtual register, return the register, otherwise return 0. 1136 unsigned isConstantValuePHI() const; 1137 1138 /// Return true if this instruction has side effects that are not modeled 1139 /// by mayLoad / mayStore, etc. 1140 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1141 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1142 /// INLINEASM instruction, in which case the side effect property is encoded 1143 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1144 /// 1145 bool hasUnmodeledSideEffects() const; 1146 1147 /// Returns true if it is illegal to fold a load across this instruction. 1148 bool isLoadFoldBarrier() const; 1149 1150 /// Return true if all the defs of this instruction are dead. 1151 bool allDefsAreDead() const; 1152 1153 /// Copy implicit register operands from specified 1154 /// instruction to this instruction. 1155 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1156 1157 // 1158 // Debugging support 1159 // 1160 void print(raw_ostream &OS, bool SkipOpers = false) const; 1161 void print(raw_ostream &OS, ModuleSlotTracker &MST, 1162 bool SkipOpers = false) const; 1163 void dump() const; 1164 1165 //===--------------------------------------------------------------------===// 1166 // Accessors used to build up machine instructions. 1167 1168 /// Add the specified operand to the instruction. If it is an implicit 1169 /// operand, it is added to the end of the operand list. If it is an 1170 /// explicit operand it is added at the end of the explicit operand list 1171 /// (before the first implicit operand). 1172 /// 1173 /// MF must be the machine function that was used to allocate this 1174 /// instruction. 1175 /// 1176 /// MachineInstrBuilder provides a more convenient interface for creating 1177 /// instructions and adding operands. 1178 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1179 1180 /// Add an operand without providing an MF reference. This only works for 1181 /// instructions that are inserted in a basic block. 1182 /// 1183 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1184 /// preferred. 1185 void addOperand(const MachineOperand &Op); 1186 1187 /// Replace the instruction descriptor (thus opcode) of 1188 /// the current instruction with a new one. 1189 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1190 1191 /// Replace current source information with new such. 1192 /// Avoid using this, the constructor argument is preferable. 1193 void setDebugLoc(DebugLoc dl) { 1194 debugLoc = std::move(dl); 1195 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1196 } 1197 1198 /// Erase an operand from an instruction, leaving it with one 1199 /// fewer operand than it started with. 1200 void RemoveOperand(unsigned i); 1201 1202 /// Add a MachineMemOperand to the machine instruction. 1203 /// This function should be used only occasionally. The setMemRefs function 1204 /// is the primary method for setting up a MachineInstr's MemRefs list. 1205 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1206 1207 /// Assign this MachineInstr's memory reference descriptor list. 1208 /// This does not transfer ownership. 1209 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 1210 setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs)); 1211 } 1212 1213 /// Assign this MachineInstr's memory reference descriptor list. First 1214 /// element in the pair is the begin iterator/pointer to the array; the 1215 /// second is the number of MemoryOperands. This does not transfer ownership 1216 /// of the underlying memory. 1217 void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) { 1218 MemRefs = NewMemRefs.first; 1219 NumMemRefs = uint8_t(NewMemRefs.second); 1220 assert(NumMemRefs == NewMemRefs.second && 1221 "Too many memrefs - must drop memory operands"); 1222 } 1223 1224 /// Return a set of memrefs (begin iterator, size) which conservatively 1225 /// describe the memory behavior of both MachineInstrs. This is appropriate 1226 /// for use when merging two MachineInstrs into one. This routine does not 1227 /// modify the memrefs of the this MachineInstr. 1228 std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other); 1229 1230 /// Clear this MachineInstr's memory reference descriptor list. This resets 1231 /// the memrefs to their most conservative state. This should be used only 1232 /// as a last resort since it greatly pessimizes our knowledge of the memory 1233 /// access performed by the instruction. 1234 void dropMemRefs() { 1235 MemRefs = nullptr; 1236 NumMemRefs = 0; 1237 } 1238 1239 /// Break any tie involving OpIdx. 1240 void untieRegOperand(unsigned OpIdx) { 1241 MachineOperand &MO = getOperand(OpIdx); 1242 if (MO.isReg() && MO.isTied()) { 1243 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1244 MO.TiedTo = 0; 1245 } 1246 } 1247 1248 /// Add all implicit def and use operands to this instruction. 1249 void addImplicitDefUseOperands(MachineFunction &MF); 1250 1251 private: 1252 /// If this instruction is embedded into a MachineFunction, return the 1253 /// MachineRegisterInfo object for the current function, otherwise 1254 /// return null. 1255 MachineRegisterInfo *getRegInfo(); 1256 1257 /// Unlink all of the register operands in this instruction from their 1258 /// respective use lists. This requires that the operands already be on their 1259 /// use lists. 1260 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1261 1262 /// Add all of the register operands in this instruction from their 1263 /// respective use lists. This requires that the operands not be on their 1264 /// use lists yet. 1265 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1266 1267 /// Slow path for hasProperty when we're dealing with a bundle. 1268 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 1269 1270 /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the 1271 /// this MI and the given operand index \p OpIdx. 1272 /// If the related operand does not constrained Reg, this returns CurRC. 1273 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1274 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1275 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1276 }; 1277 1278 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1279 /// instruction rather than by pointer value. 1280 /// The hashing and equality testing functions ignore definitions so this is 1281 /// useful for CSE, etc. 1282 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1283 static inline MachineInstr *getEmptyKey() { 1284 return nullptr; 1285 } 1286 1287 static inline MachineInstr *getTombstoneKey() { 1288 return reinterpret_cast<MachineInstr*>(-1); 1289 } 1290 1291 static unsigned getHashValue(const MachineInstr* const &MI); 1292 1293 static bool isEqual(const MachineInstr* const &LHS, 1294 const MachineInstr* const &RHS) { 1295 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1296 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1297 return LHS == RHS; 1298 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1299 } 1300 }; 1301 1302 //===----------------------------------------------------------------------===// 1303 // Debugging Support 1304 1305 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1306 MI.print(OS); 1307 return OS; 1308 } 1309 1310 } // End llvm namespace 1311 1312 #endif 1313