Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/DenseMapInfo.h"
     20 #include "llvm/ADT/ilist.h"
     21 #include "llvm/ADT/ilist_node.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/CodeGen/MachineOperand.h"
     25 #include "llvm/CodeGen/TargetOpcodes.h"
     26 #include "llvm/IR/DebugLoc.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/MC/MCInstrDesc.h"
     29 #include "llvm/Support/ArrayRecycler.h"
     30 #include <algorithm>
     31 #include <cassert>
     32 #include <cstdint>
     33 #include <utility>
     34 
     35 namespace llvm {
     36 
     37 template <typename T> class ArrayRef;
     38 class DIExpression;
     39 class DILocalVariable;
     40 class MachineBasicBlock;
     41 class MachineFunction;
     42 class MachineMemOperand;
     43 class MachineRegisterInfo;
     44 class ModuleSlotTracker;
     45 class raw_ostream;
     46 template <typename T> class SmallVectorImpl;
     47 class SmallBitVector;
     48 class StringRef;
     49 class TargetInstrInfo;
     50 class TargetRegisterClass;
     51 class TargetRegisterInfo;
     52 
     53 //===----------------------------------------------------------------------===//
     54 /// Representation of each machine instruction.
     55 ///
     56 /// This class isn't a POD type, but it must have a trivial destructor. When a
     57 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     58 /// without having their destructor called.
     59 ///
     60 class MachineInstr
     61     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
     62                                     ilist_sentinel_tracking<true>> {
     63 public:
     64   using mmo_iterator = MachineMemOperand **;
     65 
     66   /// Flags to specify different kinds of comments to output in
     67   /// assembly code.  These flags carry semantic information not
     68   /// otherwise easily derivable from the IR text.
     69   ///
     70   enum CommentFlag {
     71     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
     72     NoSchedComment = 0x2,
     73     TAsmComments = 0x4    // Target Asm comments should start from this value.
     74   };
     75 
     76   enum MIFlag {
     77     NoFlags      = 0,
     78     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     79                                         // function frame setup code.
     80     FrameDestroy = 1 << 1,              // Instruction is used as a part of
     81                                         // function frame destruction code.
     82     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
     83     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
     84     FmNoNans     = 1 << 4,              // Instruction does not support Fast
     85                                         // math nan values.
     86     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
     87                                         // math infinity values.
     88     FmNsz        = 1 << 6,              // Instruction is not required to retain
     89                                         // signed zero values.
     90     FmArcp       = 1 << 7,              // Instruction supports Fast math
     91                                         // reciprocal approximations.
     92     FmContract   = 1 << 8,              // Instruction supports Fast math
     93                                         // contraction operations like fma.
     94     FmAfn        = 1 << 9,              // Instruction may map to Fast math
     95                                         // instrinsic approximation.
     96     FmReassoc    = 1 << 10              // Instruction supports Fast math
     97                                         // reassociation of operand order.
     98   };
     99 
    100 private:
    101   const MCInstrDesc *MCID;              // Instruction descriptor.
    102   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
    103 
    104   // Operands are allocated by an ArrayRecycler.
    105   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
    106   unsigned NumOperands = 0;             // Number of operands on instruction.
    107   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
    108   OperandCapacity CapOperands;          // Capacity of the Operands array.
    109 
    110   uint16_t Flags = 0;                   // Various bits of additional
    111                                         // information about machine
    112                                         // instruction.
    113 
    114   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
    115                                         // the AsmPrinter to emit helpful
    116                                         // comments.  This is *not* semantic
    117                                         // information.  Do not use this for
    118                                         // anything other than to convey comment
    119                                         // information to AsmPrinter.
    120 
    121   uint8_t NumMemRefs = 0;               // Information on memory references.
    122   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
    123   // Calling code must treat missing information conservatively.  If the number
    124   // of memory operands required to be precise exceeds the maximum value of
    125   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
    126   // that this is a non-owning reference to a shared copy on write buffer owned
    127   // by the MachineFunction and created via MF.allocateMemRefsArray.
    128   mmo_iterator MemRefs = nullptr;
    129 
    130   DebugLoc debugLoc;                    // Source line information.
    131 
    132   // Intrusive list support
    133   friend struct ilist_traits<MachineInstr>;
    134   friend struct ilist_callback_traits<MachineBasicBlock>;
    135   void setParent(MachineBasicBlock *P) { Parent = P; }
    136 
    137   /// This constructor creates a copy of the given
    138   /// MachineInstr in the given MachineFunction.
    139   MachineInstr(MachineFunction &, const MachineInstr &);
    140 
    141   /// This constructor create a MachineInstr and add the implicit operands.
    142   /// It reserves space for number of operands specified by
    143   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    144   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
    145                bool NoImp = false);
    146 
    147   // MachineInstrs are pool-allocated and owned by MachineFunction.
    148   friend class MachineFunction;
    149 
    150 public:
    151   MachineInstr(const MachineInstr &) = delete;
    152   MachineInstr &operator=(const MachineInstr &) = delete;
    153   // Use MachineFunction::DeleteMachineInstr() instead.
    154   ~MachineInstr() = delete;
    155 
    156   const MachineBasicBlock* getParent() const { return Parent; }
    157   MachineBasicBlock* getParent() { return Parent; }
    158 
    159   /// Return the function that contains the basic block that this instruction
    160   /// belongs to.
    161   ///
    162   /// Note: this is undefined behaviour if the instruction does not have a
    163   /// parent.
    164   const MachineFunction *getMF() const;
    165   MachineFunction *getMF() {
    166     return const_cast<MachineFunction *>(
    167         static_cast<const MachineInstr *>(this)->getMF());
    168   }
    169 
    170   /// Return the asm printer flags bitvector.
    171   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    172 
    173   /// Clear the AsmPrinter bitvector.
    174   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    175 
    176   /// Return whether an AsmPrinter flag is set.
    177   bool getAsmPrinterFlag(CommentFlag Flag) const {
    178     return AsmPrinterFlags & Flag;
    179   }
    180 
    181   /// Set a flag for the AsmPrinter.
    182   void setAsmPrinterFlag(uint8_t Flag) {
    183     AsmPrinterFlags |= Flag;
    184   }
    185 
    186   /// Clear specific AsmPrinter flags.
    187   void clearAsmPrinterFlag(CommentFlag Flag) {
    188     AsmPrinterFlags &= ~Flag;
    189   }
    190 
    191   /// Return the MI flags bitvector.
    192   uint16_t getFlags() const {
    193     return Flags;
    194   }
    195 
    196   /// Return whether an MI flag is set.
    197   bool getFlag(MIFlag Flag) const {
    198     return Flags & Flag;
    199   }
    200 
    201   /// Set a MI flag.
    202   void setFlag(MIFlag Flag) {
    203     Flags |= (uint16_t)Flag;
    204   }
    205 
    206   void setFlags(unsigned flags) {
    207     // Filter out the automatically maintained flags.
    208     unsigned Mask = BundledPred | BundledSucc;
    209     Flags = (Flags & Mask) | (flags & ~Mask);
    210   }
    211 
    212   /// clearFlag - Clear a MI flag.
    213   void clearFlag(MIFlag Flag) {
    214     Flags &= ~((uint16_t)Flag);
    215   }
    216 
    217   /// Return true if MI is in a bundle (but not the first MI in a bundle).
    218   ///
    219   /// A bundle looks like this before it's finalized:
    220   ///   ----------------
    221   ///   |      MI      |
    222   ///   ----------------
    223   ///          |
    224   ///   ----------------
    225   ///   |      MI    * |
    226   ///   ----------------
    227   ///          |
    228   ///   ----------------
    229   ///   |      MI    * |
    230   ///   ----------------
    231   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    232   /// next 2 MIs are considered "inside" the bundle.
    233   ///
    234   /// After a bundle is finalized, it looks like this:
    235   ///   ----------------
    236   ///   |    Bundle    |
    237   ///   ----------------
    238   ///          |
    239   ///   ----------------
    240   ///   |      MI    * |
    241   ///   ----------------
    242   ///          |
    243   ///   ----------------
    244   ///   |      MI    * |
    245   ///   ----------------
    246   ///          |
    247   ///   ----------------
    248   ///   |      MI    * |
    249   ///   ----------------
    250   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    251   /// a bundle, but the next three MIs are.
    252   bool isInsideBundle() const {
    253     return getFlag(BundledPred);
    254   }
    255 
    256   /// Return true if this instruction part of a bundle. This is true
    257   /// if either itself or its following instruction is marked "InsideBundle".
    258   bool isBundled() const {
    259     return isBundledWithPred() || isBundledWithSucc();
    260   }
    261 
    262   /// Return true if this instruction is part of a bundle, and it is not the
    263   /// first instruction in the bundle.
    264   bool isBundledWithPred() const { return getFlag(BundledPred); }
    265 
    266   /// Return true if this instruction is part of a bundle, and it is not the
    267   /// last instruction in the bundle.
    268   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    269 
    270   /// Bundle this instruction with its predecessor. This can be an unbundled
    271   /// instruction, or it can be the first instruction in a bundle.
    272   void bundleWithPred();
    273 
    274   /// Bundle this instruction with its successor. This can be an unbundled
    275   /// instruction, or it can be the last instruction in a bundle.
    276   void bundleWithSucc();
    277 
    278   /// Break bundle above this instruction.
    279   void unbundleFromPred();
    280 
    281   /// Break bundle below this instruction.
    282   void unbundleFromSucc();
    283 
    284   /// Returns the debug location id of this MachineInstr.
    285   const DebugLoc &getDebugLoc() const { return debugLoc; }
    286 
    287   /// Return the debug variable referenced by
    288   /// this DBG_VALUE instruction.
    289   const DILocalVariable *getDebugVariable() const;
    290 
    291   /// Return the complex address expression referenced by
    292   /// this DBG_VALUE instruction.
    293   const DIExpression *getDebugExpression() const;
    294 
    295   /// Return the debug label referenced by
    296   /// this DBG_LABEL instruction.
    297   const DILabel *getDebugLabel() const;
    298 
    299   /// Emit an error referring to the source location of this instruction.
    300   /// This should only be used for inline assembly that is somehow
    301   /// impossible to compile. Other errors should have been handled much
    302   /// earlier.
    303   ///
    304   /// If this method returns, the caller should try to recover from the error.
    305   void emitError(StringRef Msg) const;
    306 
    307   /// Returns the target instruction descriptor of this MachineInstr.
    308   const MCInstrDesc &getDesc() const { return *MCID; }
    309 
    310   /// Returns the opcode of this MachineInstr.
    311   unsigned getOpcode() const { return MCID->Opcode; }
    312 
    313   /// Access to explicit operands of the instruction.
    314   unsigned getNumOperands() const { return NumOperands; }
    315 
    316   const MachineOperand& getOperand(unsigned i) const {
    317     assert(i < getNumOperands() && "getOperand() out of range!");
    318     return Operands[i];
    319   }
    320   MachineOperand& getOperand(unsigned i) {
    321     assert(i < getNumOperands() && "getOperand() out of range!");
    322     return Operands[i];
    323   }
    324 
    325   /// Returns the total number of definitions.
    326   unsigned getNumDefs() const {
    327     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
    328   }
    329 
    330   /// Return true if operand \p OpIdx is a subregister index.
    331   bool isOperandSubregIdx(unsigned OpIdx) const {
    332     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
    333            "Expected MO_Immediate operand type.");
    334     if (isExtractSubreg() && OpIdx == 2)
    335       return true;
    336     if (isInsertSubreg() && OpIdx == 3)
    337       return true;
    338     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
    339       return true;
    340     if (isSubregToReg() && OpIdx == 3)
    341       return true;
    342     return false;
    343   }
    344 
    345   /// Returns the number of non-implicit operands.
    346   unsigned getNumExplicitOperands() const;
    347 
    348   /// Returns the number of non-implicit definitions.
    349   unsigned getNumExplicitDefs() const;
    350 
    351   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    352   using mop_iterator = MachineOperand *;
    353   using const_mop_iterator = const MachineOperand *;
    354 
    355   mop_iterator operands_begin() { return Operands; }
    356   mop_iterator operands_end() { return Operands + NumOperands; }
    357 
    358   const_mop_iterator operands_begin() const { return Operands; }
    359   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    360 
    361   iterator_range<mop_iterator> operands() {
    362     return make_range(operands_begin(), operands_end());
    363   }
    364   iterator_range<const_mop_iterator> operands() const {
    365     return make_range(operands_begin(), operands_end());
    366   }
    367   iterator_range<mop_iterator> explicit_operands() {
    368     return make_range(operands_begin(),
    369                       operands_begin() + getNumExplicitOperands());
    370   }
    371   iterator_range<const_mop_iterator> explicit_operands() const {
    372     return make_range(operands_begin(),
    373                       operands_begin() + getNumExplicitOperands());
    374   }
    375   iterator_range<mop_iterator> implicit_operands() {
    376     return make_range(explicit_operands().end(), operands_end());
    377   }
    378   iterator_range<const_mop_iterator> implicit_operands() const {
    379     return make_range(explicit_operands().end(), operands_end());
    380   }
    381   /// Returns a range over all explicit operands that are register definitions.
    382   /// Implicit definition are not included!
    383   iterator_range<mop_iterator> defs() {
    384     return make_range(operands_begin(),
    385                       operands_begin() + getNumExplicitDefs());
    386   }
    387   /// \copydoc defs()
    388   iterator_range<const_mop_iterator> defs() const {
    389     return make_range(operands_begin(),
    390                       operands_begin() + getNumExplicitDefs());
    391   }
    392   /// Returns a range that includes all operands that are register uses.
    393   /// This may include unrelated operands which are not register uses.
    394   iterator_range<mop_iterator> uses() {
    395     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
    396   }
    397   /// \copydoc uses()
    398   iterator_range<const_mop_iterator> uses() const {
    399     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
    400   }
    401   iterator_range<mop_iterator> explicit_uses() {
    402     return make_range(operands_begin() + getNumExplicitDefs(),
    403                       operands_begin() + getNumExplicitOperands());
    404   }
    405   iterator_range<const_mop_iterator> explicit_uses() const {
    406     return make_range(operands_begin() + getNumExplicitDefs(),
    407                       operands_begin() + getNumExplicitOperands());
    408   }
    409 
    410   /// Returns the number of the operand iterator \p I points to.
    411   unsigned getOperandNo(const_mop_iterator I) const {
    412     return I - operands_begin();
    413   }
    414 
    415   /// Access to memory operands of the instruction
    416   mmo_iterator memoperands_begin() const { return MemRefs; }
    417   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    418   /// Return true if we don't have any memory operands which described the
    419   /// memory access done by this instruction.  If this is true, calling code
    420   /// must be conservative.
    421   bool memoperands_empty() const { return NumMemRefs == 0; }
    422 
    423   iterator_range<mmo_iterator>  memoperands() {
    424     return make_range(memoperands_begin(), memoperands_end());
    425   }
    426   iterator_range<mmo_iterator> memoperands() const {
    427     return make_range(memoperands_begin(), memoperands_end());
    428   }
    429 
    430   /// Return true if this instruction has exactly one MachineMemOperand.
    431   bool hasOneMemOperand() const {
    432     return NumMemRefs == 1;
    433   }
    434 
    435   /// Return the number of memory operands.
    436   unsigned getNumMemOperands() const { return NumMemRefs; }
    437 
    438   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    439   /// queries but they are bundle aware.
    440 
    441   enum QueryType {
    442     IgnoreBundle,    // Ignore bundles
    443     AnyInBundle,     // Return true if any instruction in bundle has property
    444     AllInBundle      // Return true if all instructions in bundle have property
    445   };
    446 
    447   /// Return true if the instruction (or in the case of a bundle,
    448   /// the instructions inside the bundle) has the specified property.
    449   /// The first argument is the property being queried.
    450   /// The second argument indicates whether the query should look inside
    451   /// instruction bundles.
    452   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    453     // Inline the fast path for unbundled or bundle-internal instructions.
    454     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    455       return getDesc().getFlags() & (1ULL << MCFlag);
    456 
    457     // If this is the first instruction in a bundle, take the slow path.
    458     return hasPropertyInBundle(1ULL << MCFlag, Type);
    459   }
    460 
    461   /// Return true if this instruction can have a variable number of operands.
    462   /// In this case, the variable operands will be after the normal
    463   /// operands but before the implicit definitions and uses (if any are
    464   /// present).
    465   bool isVariadic(QueryType Type = IgnoreBundle) const {
    466     return hasProperty(MCID::Variadic, Type);
    467   }
    468 
    469   /// Set if this instruction has an optional definition, e.g.
    470   /// ARM instructions which can set condition code if 's' bit is set.
    471   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    472     return hasProperty(MCID::HasOptionalDef, Type);
    473   }
    474 
    475   /// Return true if this is a pseudo instruction that doesn't
    476   /// correspond to a real machine instruction.
    477   bool isPseudo(QueryType Type = IgnoreBundle) const {
    478     return hasProperty(MCID::Pseudo, Type);
    479   }
    480 
    481   bool isReturn(QueryType Type = AnyInBundle) const {
    482     return hasProperty(MCID::Return, Type);
    483   }
    484 
    485   bool isCall(QueryType Type = AnyInBundle) const {
    486     return hasProperty(MCID::Call, Type);
    487   }
    488 
    489   /// Returns true if the specified instruction stops control flow
    490   /// from executing the instruction immediately following it.  Examples include
    491   /// unconditional branches and return instructions.
    492   bool isBarrier(QueryType Type = AnyInBundle) const {
    493     return hasProperty(MCID::Barrier, Type);
    494   }
    495 
    496   /// Returns true if this instruction part of the terminator for a basic block.
    497   /// Typically this is things like return and branch instructions.
    498   ///
    499   /// Various passes use this to insert code into the bottom of a basic block,
    500   /// but before control flow occurs.
    501   bool isTerminator(QueryType Type = AnyInBundle) const {
    502     return hasProperty(MCID::Terminator, Type);
    503   }
    504 
    505   /// Returns true if this is a conditional, unconditional, or indirect branch.
    506   /// Predicates below can be used to discriminate between
    507   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    508   /// get more information.
    509   bool isBranch(QueryType Type = AnyInBundle) const {
    510     return hasProperty(MCID::Branch, Type);
    511   }
    512 
    513   /// Return true if this is an indirect branch, such as a
    514   /// branch through a register.
    515   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    516     return hasProperty(MCID::IndirectBranch, Type);
    517   }
    518 
    519   /// Return true if this is a branch which may fall
    520   /// through to the next instruction or may transfer control flow to some other
    521   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    522   /// information about this branch.
    523   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    524     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    525   }
    526 
    527   /// Return true if this is a branch which always
    528   /// transfers control flow to some other block.  The
    529   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    530   /// about this branch.
    531   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    532     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    533   }
    534 
    535   /// Return true if this instruction has a predicate operand that
    536   /// controls execution.  It may be set to 'always', or may be set to other
    537   /// values.   There are various methods in TargetInstrInfo that can be used to
    538   /// control and modify the predicate in this instruction.
    539   bool isPredicable(QueryType Type = AllInBundle) const {
    540     // If it's a bundle than all bundled instructions must be predicable for this
    541     // to return true.
    542     return hasProperty(MCID::Predicable, Type);
    543   }
    544 
    545   /// Return true if this instruction is a comparison.
    546   bool isCompare(QueryType Type = IgnoreBundle) const {
    547     return hasProperty(MCID::Compare, Type);
    548   }
    549 
    550   /// Return true if this instruction is a move immediate
    551   /// (including conditional moves) instruction.
    552   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    553     return hasProperty(MCID::MoveImm, Type);
    554   }
    555 
    556   /// Return true if this instruction is a register move.
    557   /// (including moving values from subreg to reg)
    558   bool isMoveReg(QueryType Type = IgnoreBundle) const {
    559     return hasProperty(MCID::MoveReg, Type);
    560   }
    561 
    562   /// Return true if this instruction is a bitcast instruction.
    563   bool isBitcast(QueryType Type = IgnoreBundle) const {
    564     return hasProperty(MCID::Bitcast, Type);
    565   }
    566 
    567   /// Return true if this instruction is a select instruction.
    568   bool isSelect(QueryType Type = IgnoreBundle) const {
    569     return hasProperty(MCID::Select, Type);
    570   }
    571 
    572   /// Return true if this instruction cannot be safely duplicated.
    573   /// For example, if the instruction has a unique labels attached
    574   /// to it, duplicating it would cause multiple definition errors.
    575   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    576     return hasProperty(MCID::NotDuplicable, Type);
    577   }
    578 
    579   /// Return true if this instruction is convergent.
    580   /// Convergent instructions can not be made control-dependent on any
    581   /// additional values.
    582   bool isConvergent(QueryType Type = AnyInBundle) const {
    583     if (isInlineAsm()) {
    584       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    585       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
    586         return true;
    587     }
    588     return hasProperty(MCID::Convergent, Type);
    589   }
    590 
    591   /// Returns true if the specified instruction has a delay slot
    592   /// which must be filled by the code generator.
    593   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    594     return hasProperty(MCID::DelaySlot, Type);
    595   }
    596 
    597   /// Return true for instructions that can be folded as
    598   /// memory operands in other instructions. The most common use for this
    599   /// is instructions that are simple loads from memory that don't modify
    600   /// the loaded value in any way, but it can also be used for instructions
    601   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    602   /// on x86, to allow them to be folded when it is beneficial.
    603   /// This should only be set on instructions that return a value in their
    604   /// only virtual register definition.
    605   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    606     return hasProperty(MCID::FoldableAsLoad, Type);
    607   }
    608 
    609   /// Return true if this instruction behaves
    610   /// the same way as the generic REG_SEQUENCE instructions.
    611   /// E.g., on ARM,
    612   /// dX VMOVDRR rY, rZ
    613   /// is equivalent to
    614   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    615   ///
    616   /// Note that for the optimizers to be able to take advantage of
    617   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    618   /// override accordingly.
    619   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
    620     return hasProperty(MCID::RegSequence, Type);
    621   }
    622 
    623   /// Return true if this instruction behaves
    624   /// the same way as the generic EXTRACT_SUBREG instructions.
    625   /// E.g., on ARM,
    626   /// rX, rY VMOVRRD dZ
    627   /// is equivalent to two EXTRACT_SUBREG:
    628   /// rX = EXTRACT_SUBREG dZ, ssub_0
    629   /// rY = EXTRACT_SUBREG dZ, ssub_1
    630   ///
    631   /// Note that for the optimizers to be able to take advantage of
    632   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    633   /// override accordingly.
    634   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
    635     return hasProperty(MCID::ExtractSubreg, Type);
    636   }
    637 
    638   /// Return true if this instruction behaves
    639   /// the same way as the generic INSERT_SUBREG instructions.
    640   /// E.g., on ARM,
    641   /// dX = VSETLNi32 dY, rZ, Imm
    642   /// is equivalent to a INSERT_SUBREG:
    643   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    644   ///
    645   /// Note that for the optimizers to be able to take advantage of
    646   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    647   /// override accordingly.
    648   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
    649     return hasProperty(MCID::InsertSubreg, Type);
    650   }
    651 
    652   //===--------------------------------------------------------------------===//
    653   // Side Effect Analysis
    654   //===--------------------------------------------------------------------===//
    655 
    656   /// Return true if this instruction could possibly read memory.
    657   /// Instructions with this flag set are not necessarily simple load
    658   /// instructions, they may load a value and modify it, for example.
    659   bool mayLoad(QueryType Type = AnyInBundle) const {
    660     if (isInlineAsm()) {
    661       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    662       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    663         return true;
    664     }
    665     return hasProperty(MCID::MayLoad, Type);
    666   }
    667 
    668   /// Return true if this instruction could possibly modify memory.
    669   /// Instructions with this flag set are not necessarily simple store
    670   /// instructions, they may store a modified value based on their operands, or
    671   /// may not actually modify anything, for example.
    672   bool mayStore(QueryType Type = AnyInBundle) const {
    673     if (isInlineAsm()) {
    674       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    675       if (ExtraInfo & InlineAsm::Extra_MayStore)
    676         return true;
    677     }
    678     return hasProperty(MCID::MayStore, Type);
    679   }
    680 
    681   /// Return true if this instruction could possibly read or modify memory.
    682   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
    683     return mayLoad(Type) || mayStore(Type);
    684   }
    685 
    686   //===--------------------------------------------------------------------===//
    687   // Flags that indicate whether an instruction can be modified by a method.
    688   //===--------------------------------------------------------------------===//
    689 
    690   /// Return true if this may be a 2- or 3-address
    691   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    692   /// result if Y and Z are exchanged.  If this flag is set, then the
    693   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    694   /// instruction.
    695   ///
    696   /// Note that this flag may be set on instructions that are only commutable
    697   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    698   /// Also note that some instructions require non-trivial modification to
    699   /// commute them.
    700   bool isCommutable(QueryType Type = IgnoreBundle) const {
    701     return hasProperty(MCID::Commutable, Type);
    702   }
    703 
    704   /// Return true if this is a 2-address instruction
    705   /// which can be changed into a 3-address instruction if needed.  Doing this
    706   /// transformation can be profitable in the register allocator, because it
    707   /// means that the instruction can use a 2-address form if possible, but
    708   /// degrade into a less efficient form if the source and dest register cannot
    709   /// be assigned to the same register.  For example, this allows the x86
    710   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    711   /// is the same speed as the shift but has bigger code size.
    712   ///
    713   /// If this returns true, then the target must implement the
    714   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    715   /// is allowed to fail if the transformation isn't valid for this specific
    716   /// instruction (e.g. shl reg, 4 on x86).
    717   ///
    718   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    719     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    720   }
    721 
    722   /// Return true if this instruction requires
    723   /// custom insertion support when the DAG scheduler is inserting it into a
    724   /// machine basic block.  If this is true for the instruction, it basically
    725   /// means that it is a pseudo instruction used at SelectionDAG time that is
    726   /// expanded out into magic code by the target when MachineInstrs are formed.
    727   ///
    728   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    729   /// is used to insert this into the MachineBasicBlock.
    730   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    731     return hasProperty(MCID::UsesCustomInserter, Type);
    732   }
    733 
    734   /// Return true if this instruction requires *adjustment*
    735   /// after instruction selection by calling a target hook. For example, this
    736   /// can be used to fill in ARM 's' optional operand depending on whether
    737   /// the conditional flag register is used.
    738   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    739     return hasProperty(MCID::HasPostISelHook, Type);
    740   }
    741 
    742   /// Returns true if this instruction is a candidate for remat.
    743   /// This flag is deprecated, please don't use it anymore.  If this
    744   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    745   /// verify the instruction is really rematable.
    746   bool isRematerializable(QueryType Type = AllInBundle) const {
    747     // It's only possible to re-mat a bundle if all bundled instructions are
    748     // re-materializable.
    749     return hasProperty(MCID::Rematerializable, Type);
    750   }
    751 
    752   /// Returns true if this instruction has the same cost (or less) than a move
    753   /// instruction. This is useful during certain types of optimizations
    754   /// (e.g., remat during two-address conversion or machine licm)
    755   /// where we would like to remat or hoist the instruction, but not if it costs
    756   /// more than moving the instruction into the appropriate register. Note, we
    757   /// are not marking copies from and to the same register class with this flag.
    758   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    759     // Only returns true for a bundle if all bundled instructions are cheap.
    760     return hasProperty(MCID::CheapAsAMove, Type);
    761   }
    762 
    763   /// Returns true if this instruction source operands
    764   /// have special register allocation requirements that are not captured by the
    765   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    766   /// even / odd pair, ARM::STM registers have to be in ascending order.
    767   /// Post-register allocation passes should not attempt to change allocations
    768   /// for sources of instructions with this flag.
    769   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    770     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    771   }
    772 
    773   /// Returns true if this instruction def operands
    774   /// have special register allocation requirements that are not captured by the
    775   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    776   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    777   /// Post-register allocation passes should not attempt to change allocations
    778   /// for definitions of instructions with this flag.
    779   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    780     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    781   }
    782 
    783   enum MICheckType {
    784     CheckDefs,      // Check all operands for equality
    785     CheckKillDead,  // Check all operands including kill / dead markers
    786     IgnoreDefs,     // Ignore all definitions
    787     IgnoreVRegDefs  // Ignore virtual register definitions
    788   };
    789 
    790   /// Return true if this instruction is identical to \p Other.
    791   /// Two instructions are identical if they have the same opcode and all their
    792   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
    793   /// Note that this means liveness related flags (dead, undef, kill) do not
    794   /// affect the notion of identical.
    795   bool isIdenticalTo(const MachineInstr &Other,
    796                      MICheckType Check = CheckDefs) const;
    797 
    798   /// Unlink 'this' from the containing basic block, and return it without
    799   /// deleting it.
    800   ///
    801   /// This function can not be used on bundled instructions, use
    802   /// removeFromBundle() to remove individual instructions from a bundle.
    803   MachineInstr *removeFromParent();
    804 
    805   /// Unlink this instruction from its basic block and return it without
    806   /// deleting it.
    807   ///
    808   /// If the instruction is part of a bundle, the other instructions in the
    809   /// bundle remain bundled.
    810   MachineInstr *removeFromBundle();
    811 
    812   /// Unlink 'this' from the containing basic block and delete it.
    813   ///
    814   /// If this instruction is the header of a bundle, the whole bundle is erased.
    815   /// This function can not be used for instructions inside a bundle, use
    816   /// eraseFromBundle() to erase individual bundled instructions.
    817   void eraseFromParent();
    818 
    819   /// Unlink 'this' from the containing basic block and delete it.
    820   ///
    821   /// For all definitions mark their uses in DBG_VALUE nodes
    822   /// as undefined. Otherwise like eraseFromParent().
    823   void eraseFromParentAndMarkDBGValuesForRemoval();
    824 
    825   /// Unlink 'this' form its basic block and delete it.
    826   ///
    827   /// If the instruction is part of a bundle, the other instructions in the
    828   /// bundle remain bundled.
    829   void eraseFromBundle();
    830 
    831   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    832   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    833   bool isAnnotationLabel() const {
    834     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
    835   }
    836 
    837   /// Returns true if the MachineInstr represents a label.
    838   bool isLabel() const {
    839     return isEHLabel() || isGCLabel() || isAnnotationLabel();
    840   }
    841 
    842   bool isCFIInstruction() const {
    843     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    844   }
    845 
    846   // True if the instruction represents a position in the function.
    847   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    848 
    849   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    850   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
    851   bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
    852 
    853   /// A DBG_VALUE is indirect iff the first operand is a register and
    854   /// the second operand is an immediate.
    855   bool isIndirectDebugValue() const {
    856     return isDebugValue()
    857       && getOperand(0).isReg()
    858       && getOperand(1).isImm();
    859   }
    860 
    861   bool isPHI() const {
    862     return getOpcode() == TargetOpcode::PHI ||
    863            getOpcode() == TargetOpcode::G_PHI;
    864   }
    865   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    866   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    867   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    868 
    869   bool isMSInlineAsm() const {
    870     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    871   }
    872 
    873   bool isStackAligningInlineAsm() const;
    874   InlineAsm::AsmDialect getInlineAsmDialect() const;
    875 
    876   bool isInsertSubreg() const {
    877     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    878   }
    879 
    880   bool isSubregToReg() const {
    881     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    882   }
    883 
    884   bool isRegSequence() const {
    885     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    886   }
    887 
    888   bool isBundle() const {
    889     return getOpcode() == TargetOpcode::BUNDLE;
    890   }
    891 
    892   bool isCopy() const {
    893     return getOpcode() == TargetOpcode::COPY;
    894   }
    895 
    896   bool isFullCopy() const {
    897     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    898   }
    899 
    900   bool isExtractSubreg() const {
    901     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    902   }
    903 
    904   /// Return true if the instruction behaves like a copy.
    905   /// This does not include native copy instructions.
    906   bool isCopyLike() const {
    907     return isCopy() || isSubregToReg();
    908   }
    909 
    910   /// Return true is the instruction is an identity copy.
    911   bool isIdentityCopy() const {
    912     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    913       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    914   }
    915 
    916   /// Return true if this instruction doesn't produce any output in the form of
    917   /// executable instructions.
    918   bool isMetaInstruction() const {
    919     switch (getOpcode()) {
    920     default:
    921       return false;
    922     case TargetOpcode::IMPLICIT_DEF:
    923     case TargetOpcode::KILL:
    924     case TargetOpcode::CFI_INSTRUCTION:
    925     case TargetOpcode::EH_LABEL:
    926     case TargetOpcode::GC_LABEL:
    927     case TargetOpcode::DBG_VALUE:
    928     case TargetOpcode::DBG_LABEL:
    929     case TargetOpcode::LIFETIME_START:
    930     case TargetOpcode::LIFETIME_END:
    931       return true;
    932     }
    933   }
    934 
    935   /// Return true if this is a transient instruction that is either very likely
    936   /// to be eliminated during register allocation (such as copy-like
    937   /// instructions), or if this instruction doesn't have an execution-time cost.
    938   bool isTransient() const {
    939     switch (getOpcode()) {
    940     default:
    941       return isMetaInstruction();
    942     // Copy-like instructions are usually eliminated during register allocation.
    943     case TargetOpcode::PHI:
    944     case TargetOpcode::G_PHI:
    945     case TargetOpcode::COPY:
    946     case TargetOpcode::INSERT_SUBREG:
    947     case TargetOpcode::SUBREG_TO_REG:
    948     case TargetOpcode::REG_SEQUENCE:
    949       return true;
    950     }
    951   }
    952 
    953   /// Return the number of instructions inside the MI bundle, excluding the
    954   /// bundle header.
    955   ///
    956   /// This is the number of instructions that MachineBasicBlock::iterator
    957   /// skips, 0 for unbundled instructions.
    958   unsigned getBundleSize() const;
    959 
    960   /// Return true if the MachineInstr reads the specified register.
    961   /// If TargetRegisterInfo is passed, then it also checks if there
    962   /// is a read of a super-register.
    963   /// This does not count partial redefines of virtual registers as reads:
    964   ///   %reg1024:6 = OP.
    965   bool readsRegister(unsigned Reg,
    966                      const TargetRegisterInfo *TRI = nullptr) const {
    967     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    968   }
    969 
    970   /// Return true if the MachineInstr reads the specified virtual register.
    971   /// Take into account that a partial define is a
    972   /// read-modify-write operation.
    973   bool readsVirtualRegister(unsigned Reg) const {
    974     return readsWritesVirtualRegister(Reg).first;
    975   }
    976 
    977   /// Return a pair of bools (reads, writes) indicating if this instruction
    978   /// reads or writes Reg. This also considers partial defines.
    979   /// If Ops is not null, all operand indices for Reg are added.
    980   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    981                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    982 
    983   /// Return true if the MachineInstr kills the specified register.
    984   /// If TargetRegisterInfo is passed, then it also checks if there is
    985   /// a kill of a super-register.
    986   bool killsRegister(unsigned Reg,
    987                      const TargetRegisterInfo *TRI = nullptr) const {
    988     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    989   }
    990 
    991   /// Return true if the MachineInstr fully defines the specified register.
    992   /// If TargetRegisterInfo is passed, then it also checks
    993   /// if there is a def of a super-register.
    994   /// NOTE: It's ignoring subreg indices on virtual registers.
    995   bool definesRegister(unsigned Reg,
    996                        const TargetRegisterInfo *TRI = nullptr) const {
    997     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    998   }
    999 
   1000   /// Return true if the MachineInstr modifies (fully define or partially
   1001   /// define) the specified register.
   1002   /// NOTE: It's ignoring subreg indices on virtual registers.
   1003   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
   1004     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
   1005   }
   1006 
   1007   /// Returns true if the register is dead in this machine instruction.
   1008   /// If TargetRegisterInfo is passed, then it also checks
   1009   /// if there is a dead def of a super-register.
   1010   bool registerDefIsDead(unsigned Reg,
   1011                          const TargetRegisterInfo *TRI = nullptr) const {
   1012     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
   1013   }
   1014 
   1015   /// Returns true if the MachineInstr has an implicit-use operand of exactly
   1016   /// the given register (not considering sub/super-registers).
   1017   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
   1018 
   1019   /// Returns the operand index that is a use of the specific register or -1
   1020   /// if it is not found. It further tightens the search criteria to a use
   1021   /// that kills the register if isKill is true.
   1022   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
   1023                                 const TargetRegisterInfo *TRI = nullptr) const;
   1024 
   1025   /// Wrapper for findRegisterUseOperandIdx, it returns
   1026   /// a pointer to the MachineOperand rather than an index.
   1027   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
   1028                                       const TargetRegisterInfo *TRI = nullptr) {
   1029     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
   1030     return (Idx == -1) ? nullptr : &getOperand(Idx);
   1031   }
   1032 
   1033   const MachineOperand *findRegisterUseOperand(
   1034     unsigned Reg, bool isKill = false,
   1035     const TargetRegisterInfo *TRI = nullptr) const {
   1036     return const_cast<MachineInstr *>(this)->
   1037       findRegisterUseOperand(Reg, isKill, TRI);
   1038   }
   1039 
   1040   /// Returns the operand index that is a def of the specified register or
   1041   /// -1 if it is not found. If isDead is true, defs that are not dead are
   1042   /// skipped. If Overlap is true, then it also looks for defs that merely
   1043   /// overlap the specified register. If TargetRegisterInfo is non-null,
   1044   /// then it also checks if there is a def of a super-register.
   1045   /// This may also return a register mask operand when Overlap is true.
   1046   int findRegisterDefOperandIdx(unsigned Reg,
   1047                                 bool isDead = false, bool Overlap = false,
   1048                                 const TargetRegisterInfo *TRI = nullptr) const;
   1049 
   1050   /// Wrapper for findRegisterDefOperandIdx, it returns
   1051   /// a pointer to the MachineOperand rather than an index.
   1052   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
   1053                                       const TargetRegisterInfo *TRI = nullptr) {
   1054     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
   1055     return (Idx == -1) ? nullptr : &getOperand(Idx);
   1056   }
   1057 
   1058   /// Find the index of the first operand in the
   1059   /// operand list that is used to represent the predicate. It returns -1 if
   1060   /// none is found.
   1061   int findFirstPredOperandIdx() const;
   1062 
   1063   /// Find the index of the flag word operand that
   1064   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
   1065   /// getOperand(OpIdx) does not belong to an inline asm operand group.
   1066   ///
   1067   /// If GroupNo is not NULL, it will receive the number of the operand group
   1068   /// containing OpIdx.
   1069   ///
   1070   /// The flag operand is an immediate that can be decoded with methods like
   1071   /// InlineAsm::hasRegClassConstraint().
   1072   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
   1073 
   1074   /// Compute the static register class constraint for operand OpIdx.
   1075   /// For normal instructions, this is derived from the MCInstrDesc.
   1076   /// For inline assembly it is derived from the flag words.
   1077   ///
   1078   /// Returns NULL if the static register class constraint cannot be
   1079   /// determined.
   1080   const TargetRegisterClass*
   1081   getRegClassConstraint(unsigned OpIdx,
   1082                         const TargetInstrInfo *TII,
   1083                         const TargetRegisterInfo *TRI) const;
   1084 
   1085   /// Applies the constraints (def/use) implied by this MI on \p Reg to
   1086   /// the given \p CurRC.
   1087   /// If \p ExploreBundle is set and MI is part of a bundle, all the
   1088   /// instructions inside the bundle will be taken into account. In other words,
   1089   /// this method accumulates all the constraints of the operand of this MI and
   1090   /// the related bundle if MI is a bundle or inside a bundle.
   1091   ///
   1092   /// Returns the register class that satisfies both \p CurRC and the
   1093   /// constraints set by MI. Returns NULL if such a register class does not
   1094   /// exist.
   1095   ///
   1096   /// \pre CurRC must not be NULL.
   1097   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
   1098       unsigned Reg, const TargetRegisterClass *CurRC,
   1099       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
   1100       bool ExploreBundle = false) const;
   1101 
   1102   /// Applies the constraints (def/use) implied by the \p OpIdx operand
   1103   /// to the given \p CurRC.
   1104   ///
   1105   /// Returns the register class that satisfies both \p CurRC and the
   1106   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
   1107   /// does not exist.
   1108   ///
   1109   /// \pre CurRC must not be NULL.
   1110   /// \pre The operand at \p OpIdx must be a register.
   1111   const TargetRegisterClass *
   1112   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
   1113                               const TargetInstrInfo *TII,
   1114                               const TargetRegisterInfo *TRI) const;
   1115 
   1116   /// Add a tie between the register operands at DefIdx and UseIdx.
   1117   /// The tie will cause the register allocator to ensure that the two
   1118   /// operands are assigned the same physical register.
   1119   ///
   1120   /// Tied operands are managed automatically for explicit operands in the
   1121   /// MCInstrDesc. This method is for exceptional cases like inline asm.
   1122   void tieOperands(unsigned DefIdx, unsigned UseIdx);
   1123 
   1124   /// Given the index of a tied register operand, find the
   1125   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
   1126   /// index of the tied operand which must exist.
   1127   unsigned findTiedOperandIdx(unsigned OpIdx) const;
   1128 
   1129   /// Given the index of a register def operand,
   1130   /// check if the register def is tied to a source operand, due to either
   1131   /// two-address elimination or inline assembly constraints. Returns the
   1132   /// first tied use operand index by reference if UseOpIdx is not null.
   1133   bool isRegTiedToUseOperand(unsigned DefOpIdx,
   1134                              unsigned *UseOpIdx = nullptr) const {
   1135     const MachineOperand &MO = getOperand(DefOpIdx);
   1136     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
   1137       return false;
   1138     if (UseOpIdx)
   1139       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
   1140     return true;
   1141   }
   1142 
   1143   /// Return true if the use operand of the specified index is tied to a def
   1144   /// operand. It also returns the def operand index by reference if DefOpIdx
   1145   /// is not null.
   1146   bool isRegTiedToDefOperand(unsigned UseOpIdx,
   1147                              unsigned *DefOpIdx = nullptr) const {
   1148     const MachineOperand &MO = getOperand(UseOpIdx);
   1149     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
   1150       return false;
   1151     if (DefOpIdx)
   1152       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
   1153     return true;
   1154   }
   1155 
   1156   /// Clears kill flags on all operands.
   1157   void clearKillInfo();
   1158 
   1159   /// Replace all occurrences of FromReg with ToReg:SubIdx,
   1160   /// properly composing subreg indices where necessary.
   1161   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
   1162                           const TargetRegisterInfo &RegInfo);
   1163 
   1164   /// We have determined MI kills a register. Look for the
   1165   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
   1166   /// add a implicit operand if it's not found. Returns true if the operand
   1167   /// exists / is added.
   1168   bool addRegisterKilled(unsigned IncomingReg,
   1169                          const TargetRegisterInfo *RegInfo,
   1170                          bool AddIfNotFound = false);
   1171 
   1172   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
   1173   /// all aliasing registers.
   1174   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
   1175 
   1176   /// We have determined MI defined a register without a use.
   1177   /// Look for the operand that defines it and mark it as IsDead. If
   1178   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
   1179   /// true if the operand exists / is added.
   1180   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
   1181                        bool AddIfNotFound = false);
   1182 
   1183   /// Clear all dead flags on operands defining register @p Reg.
   1184   void clearRegisterDeads(unsigned Reg);
   1185 
   1186   /// Mark all subregister defs of register @p Reg with the undef flag.
   1187   /// This function is used when we determined to have a subregister def in an
   1188   /// otherwise undefined super register.
   1189   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
   1190 
   1191   /// We have determined MI defines a register. Make sure there is an operand
   1192   /// defining Reg.
   1193   void addRegisterDefined(unsigned Reg,
   1194                           const TargetRegisterInfo *RegInfo = nullptr);
   1195 
   1196   /// Mark every physreg used by this instruction as
   1197   /// dead except those in the UsedRegs list.
   1198   ///
   1199   /// On instructions with register mask operands, also add implicit-def
   1200   /// operands for all registers in UsedRegs.
   1201   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1202                              const TargetRegisterInfo &TRI);
   1203 
   1204   /// Return true if it is safe to move this instruction. If
   1205   /// SawStore is set to true, it means that there is a store (or call) between
   1206   /// the instruction's location and its intended destination.
   1207   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
   1208 
   1209   /// Returns true if this instruction's memory access aliases the memory
   1210   /// access of Other.
   1211   //
   1212   /// Assumes any physical registers used to compute addresses
   1213   /// have the same value for both instructions.  Returns false if neither
   1214   /// instruction writes to memory.
   1215   ///
   1216   /// @param AA Optional alias analysis, used to compare memory operands.
   1217   /// @param Other MachineInstr to check aliasing against.
   1218   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
   1219   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
   1220 
   1221   /// Return true if this instruction may have an ordered
   1222   /// or volatile memory reference, or if the information describing the memory
   1223   /// reference is not available. Return false if it is known to have no
   1224   /// ordered or volatile memory references.
   1225   bool hasOrderedMemoryRef() const;
   1226 
   1227   /// Return true if this load instruction never traps and points to a memory
   1228   /// location whose value doesn't change during the execution of this function.
   1229   ///
   1230   /// Examples include loading a value from the constant pool or from the
   1231   /// argument area of a function (if it does not change).  If the instruction
   1232   /// does multiple loads, this returns true only if all of the loads are
   1233   /// dereferenceable and invariant.
   1234   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
   1235 
   1236   /// If the specified instruction is a PHI that always merges together the
   1237   /// same virtual register, return the register, otherwise return 0.
   1238   unsigned isConstantValuePHI() const;
   1239 
   1240   /// Return true if this instruction has side effects that are not modeled
   1241   /// by mayLoad / mayStore, etc.
   1242   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1243   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1244   /// INLINEASM instruction, in which case the side effect property is encoded
   1245   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1246   ///
   1247   bool hasUnmodeledSideEffects() const;
   1248 
   1249   /// Returns true if it is illegal to fold a load across this instruction.
   1250   bool isLoadFoldBarrier() const;
   1251 
   1252   /// Return true if all the defs of this instruction are dead.
   1253   bool allDefsAreDead() const;
   1254 
   1255   /// Copy implicit register operands from specified
   1256   /// instruction to this instruction.
   1257   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
   1258 
   1259   /// Debugging support
   1260   /// @{
   1261   /// Determine the generic type to be printed (if needed) on uses and defs.
   1262   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
   1263                      const MachineRegisterInfo &MRI) const;
   1264 
   1265   /// Return true when an instruction has tied register that can't be determined
   1266   /// by the instruction's descriptor. This is useful for MIR printing, to
   1267   /// determine whether we need to print the ties or not.
   1268   bool hasComplexRegisterTies() const;
   1269 
   1270   /// Print this MI to \p OS.
   1271   /// Don't print information that can be inferred from other instructions if
   1272   /// \p IsStandalone is false. It is usually true when only a fragment of the
   1273   /// function is printed.
   1274   /// Only print the defs and the opcode if \p SkipOpers is true.
   1275   /// Otherwise, also print operands if \p SkipDebugLoc is true.
   1276   /// Otherwise, also print the debug loc, with a terminating newline.
   1277   /// \p TII is used to print the opcode name.  If it's not present, but the
   1278   /// MI is in a function, the opcode will be printed using the function's TII.
   1279   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
   1280              bool SkipDebugLoc = false, bool AddNewLine = true,
   1281              const TargetInstrInfo *TII = nullptr) const;
   1282   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
   1283              bool SkipOpers = false, bool SkipDebugLoc = false,
   1284              bool AddNewLine = true,
   1285              const TargetInstrInfo *TII = nullptr) const;
   1286   void dump() const;
   1287   /// @}
   1288 
   1289   //===--------------------------------------------------------------------===//
   1290   // Accessors used to build up machine instructions.
   1291 
   1292   /// Add the specified operand to the instruction.  If it is an implicit
   1293   /// operand, it is added to the end of the operand list.  If it is an
   1294   /// explicit operand it is added at the end of the explicit operand list
   1295   /// (before the first implicit operand).
   1296   ///
   1297   /// MF must be the machine function that was used to allocate this
   1298   /// instruction.
   1299   ///
   1300   /// MachineInstrBuilder provides a more convenient interface for creating
   1301   /// instructions and adding operands.
   1302   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1303 
   1304   /// Add an operand without providing an MF reference. This only works for
   1305   /// instructions that are inserted in a basic block.
   1306   ///
   1307   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1308   /// preferred.
   1309   void addOperand(const MachineOperand &Op);
   1310 
   1311   /// Replace the instruction descriptor (thus opcode) of
   1312   /// the current instruction with a new one.
   1313   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1314 
   1315   /// Replace current source information with new such.
   1316   /// Avoid using this, the constructor argument is preferable.
   1317   void setDebugLoc(DebugLoc dl) {
   1318     debugLoc = std::move(dl);
   1319     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1320   }
   1321 
   1322   /// Erase an operand from an instruction, leaving it with one
   1323   /// fewer operand than it started with.
   1324   void RemoveOperand(unsigned OpNo);
   1325 
   1326   /// Add a MachineMemOperand to the machine instruction.
   1327   /// This function should be used only occasionally. The setMemRefs function
   1328   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1329   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1330 
   1331   /// Assign this MachineInstr's memory reference descriptor list.
   1332   /// This does not transfer ownership.
   1333   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1334     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
   1335   }
   1336 
   1337   /// Assign this MachineInstr's memory reference descriptor list.  First
   1338   /// element in the pair is the begin iterator/pointer to the array; the
   1339   /// second is the number of MemoryOperands.  This does not transfer ownership
   1340   /// of the underlying memory.
   1341   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
   1342     MemRefs = NewMemRefs.first;
   1343     NumMemRefs = uint8_t(NewMemRefs.second);
   1344     assert(NumMemRefs == NewMemRefs.second &&
   1345            "Too many memrefs - must drop memory operands");
   1346   }
   1347 
   1348   /// Return a set of memrefs (begin iterator, size) which conservatively
   1349   /// describe the memory behavior of both MachineInstrs.  This is appropriate
   1350   /// for use when merging two MachineInstrs into one. This routine does not
   1351   /// modify the memrefs of the this MachineInstr.
   1352   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
   1353 
   1354   /// Return the MIFlags which represent both MachineInstrs. This
   1355   /// should be used when merging two MachineInstrs into one. This routine does
   1356   /// not modify the MIFlags of this MachineInstr.
   1357   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
   1358 
   1359   /// Clear this MachineInstr's memory reference descriptor list.  This resets
   1360   /// the memrefs to their most conservative state.  This should be used only
   1361   /// as a last resort since it greatly pessimizes our knowledge of the memory
   1362   /// access performed by the instruction.
   1363   void dropMemRefs() {
   1364     MemRefs = nullptr;
   1365     NumMemRefs = 0;
   1366   }
   1367 
   1368   /// Break any tie involving OpIdx.
   1369   void untieRegOperand(unsigned OpIdx) {
   1370     MachineOperand &MO = getOperand(OpIdx);
   1371     if (MO.isReg() && MO.isTied()) {
   1372       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1373       MO.TiedTo = 0;
   1374     }
   1375   }
   1376 
   1377   /// Add all implicit def and use operands to this instruction.
   1378   void addImplicitDefUseOperands(MachineFunction &MF);
   1379 
   1380 private:
   1381   /// If this instruction is embedded into a MachineFunction, return the
   1382   /// MachineRegisterInfo object for the current function, otherwise
   1383   /// return null.
   1384   MachineRegisterInfo *getRegInfo();
   1385 
   1386   /// Unlink all of the register operands in this instruction from their
   1387   /// respective use lists.  This requires that the operands already be on their
   1388   /// use lists.
   1389   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1390 
   1391   /// Add all of the register operands in this instruction from their
   1392   /// respective use lists.  This requires that the operands not be on their
   1393   /// use lists yet.
   1394   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1395 
   1396   /// Slow path for hasProperty when we're dealing with a bundle.
   1397   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1398 
   1399   /// Implements the logic of getRegClassConstraintEffectForVReg for the
   1400   /// this MI and the given operand index \p OpIdx.
   1401   /// If the related operand does not constrained Reg, this returns CurRC.
   1402   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1403       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1404       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1405 };
   1406 
   1407 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
   1408 /// instruction rather than by pointer value.
   1409 /// The hashing and equality testing functions ignore definitions so this is
   1410 /// useful for CSE, etc.
   1411 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1412   static inline MachineInstr *getEmptyKey() {
   1413     return nullptr;
   1414   }
   1415 
   1416   static inline MachineInstr *getTombstoneKey() {
   1417     return reinterpret_cast<MachineInstr*>(-1);
   1418   }
   1419 
   1420   static unsigned getHashValue(const MachineInstr* const &MI);
   1421 
   1422   static bool isEqual(const MachineInstr* const &LHS,
   1423                       const MachineInstr* const &RHS) {
   1424     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1425         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1426       return LHS == RHS;
   1427     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
   1428   }
   1429 };
   1430 
   1431 //===----------------------------------------------------------------------===//
   1432 // Debugging Support
   1433 
   1434 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1435   MI.print(OS);
   1436   return OS;
   1437 }
   1438 
   1439 } // end namespace llvm
   1440 
   1441 #endif // LLVM_CODEGEN_MACHINEINSTR_H
   1442