1 /* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26 /* 27 * When the device driver doesn't implement triangle rasterization it 28 * can hook in _swrast_Triangle, which eventually calls one of these 29 * functions to draw triangles. 30 */ 31 32 #include "main/glheader.h" 33 #include "main/context.h" 34 #include "main/imports.h" 35 #include "main/macros.h" 36 #include "main/mtypes.h" 37 #include "main/state.h" 38 #include "main/samplerobj.h" 39 #include "main/stencil.h" 40 #include "main/teximage.h" 41 #include "program/prog_instruction.h" 42 43 #include "s_aatriangle.h" 44 #include "s_context.h" 45 #include "s_feedback.h" 46 #include "s_span.h" 47 #include "s_triangle.h" 48 49 50 /** 51 * Test if a triangle should be culled. Used for feedback and selection mode. 52 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise. 53 */ 54 GLboolean 55 _swrast_culltriangle( struct gl_context *ctx, 56 const SWvertex *v0, 57 const SWvertex *v1, 58 const SWvertex *v2 ) 59 { 60 SWcontext *swrast = SWRAST_CONTEXT(ctx); 61 GLfloat ex = v1->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0]; 62 GLfloat ey = v1->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1]; 63 GLfloat fx = v2->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0]; 64 GLfloat fy = v2->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1]; 65 GLfloat c = ex*fy-ey*fx; 66 67 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F) 68 return GL_FALSE; 69 70 return GL_TRUE; 71 } 72 73 74 75 /* 76 * Render a flat-shaded RGBA triangle. 77 */ 78 #define NAME flat_rgba_triangle 79 #define INTERP_Z 1 80 #define SETUP_CODE \ 81 assert(ctx->Texture._EnabledCoordUnits == 0);\ 82 assert(ctx->Light.ShadeModel==GL_FLAT); \ 83 span.interpMask |= SPAN_RGBA; \ 84 span.red = ChanToFixed(v2->color[0]); \ 85 span.green = ChanToFixed(v2->color[1]); \ 86 span.blue = ChanToFixed(v2->color[2]); \ 87 span.alpha = ChanToFixed(v2->color[3]); \ 88 span.redStep = 0; \ 89 span.greenStep = 0; \ 90 span.blueStep = 0; \ 91 span.alphaStep = 0; 92 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 93 #include "s_tritemp.h" 94 95 96 97 /* 98 * Render a smooth-shaded RGBA triangle. 99 */ 100 #define NAME smooth_rgba_triangle 101 #define INTERP_Z 1 102 #define INTERP_RGB 1 103 #define INTERP_ALPHA 1 104 #define SETUP_CODE \ 105 { \ 106 /* texturing must be off */ \ 107 assert(ctx->Texture._EnabledCoordUnits == 0); \ 108 assert(ctx->Light.ShadeModel==GL_SMOOTH); \ 109 } 110 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 111 #include "s_tritemp.h" 112 113 114 115 /* 116 * Render an RGB, GL_DECAL, textured triangle. 117 * Interpolate S,T only w/out mipmapping or perspective correction. 118 * 119 * No fog. No depth testing. 120 */ 121 #define NAME simple_textured_triangle 122 #define INTERP_INT_TEX 1 123 #define S_SCALE twidth 124 #define T_SCALE theight 125 126 #define SETUP_CODE \ 127 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 128 const struct gl_texture_object *obj = \ 129 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 130 const struct gl_texture_image *texImg = \ 131 _mesa_base_tex_image(obj); \ 132 const struct swrast_texture_image *swImg = \ 133 swrast_texture_image_const(texImg); \ 134 const GLfloat twidth = (GLfloat) texImg->Width; \ 135 const GLfloat theight = (GLfloat) texImg->Height; \ 136 const GLint twidth_log2 = texImg->WidthLog2; \ 137 const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \ 138 const GLint smask = texImg->Width - 1; \ 139 const GLint tmask = texImg->Height - 1; \ 140 assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \ 141 if (!rb || !texture) { \ 142 return; \ 143 } 144 145 #define RENDER_SPAN( span ) \ 146 GLuint i; \ 147 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \ 148 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 149 span.intTex[1] -= FIXED_HALF; \ 150 for (i = 0; i < span.end; i++) { \ 151 GLint s = FixedToInt(span.intTex[0]) & smask; \ 152 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 153 GLint pos = (t << twidth_log2) + s; \ 154 pos = pos + pos + pos; /* multiply by 3 */ \ 155 rgba[i][RCOMP] = texture[pos+2]; \ 156 rgba[i][GCOMP] = texture[pos+1]; \ 157 rgba[i][BCOMP] = texture[pos+0]; \ 158 rgba[i][ACOMP] = 0xff; \ 159 span.intTex[0] += span.intTexStep[0]; \ 160 span.intTex[1] += span.intTexStep[1]; \ 161 } \ 162 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \ 163 span.x, span.y, rgba, NULL); 164 165 #include "s_tritemp.h" 166 167 168 169 /* 170 * Render an RGB, GL_DECAL, textured triangle. 171 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or 172 * perspective correction. 173 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE) 174 * 175 * No fog. 176 */ 177 #define NAME simple_z_textured_triangle 178 #define INTERP_Z 1 179 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 180 #define INTERP_INT_TEX 1 181 #define S_SCALE twidth 182 #define T_SCALE theight 183 184 #define SETUP_CODE \ 185 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 186 const struct gl_texture_object *obj = \ 187 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 188 const struct gl_texture_image *texImg = \ 189 _mesa_base_tex_image(obj); \ 190 const struct swrast_texture_image *swImg = \ 191 swrast_texture_image_const(texImg); \ 192 const GLfloat twidth = (GLfloat) texImg->Width; \ 193 const GLfloat theight = (GLfloat) texImg->Height; \ 194 const GLint twidth_log2 = texImg->WidthLog2; \ 195 const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \ 196 const GLint smask = texImg->Width - 1; \ 197 const GLint tmask = texImg->Height - 1; \ 198 assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \ 199 if (!rb || !texture) { \ 200 return; \ 201 } 202 203 #define RENDER_SPAN( span ) \ 204 GLuint i; \ 205 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \ 206 GLubyte *mask = swrast->SpanArrays->mask; \ 207 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 208 span.intTex[1] -= FIXED_HALF; \ 209 for (i = 0; i < span.end; i++) { \ 210 const GLuint z = FixedToDepth(span.z); \ 211 if (z < zRow[i]) { \ 212 GLint s = FixedToInt(span.intTex[0]) & smask; \ 213 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 214 GLint pos = (t << twidth_log2) + s; \ 215 pos = pos + pos + pos; /* multiply by 3 */ \ 216 rgba[i][RCOMP] = texture[pos+2]; \ 217 rgba[i][GCOMP] = texture[pos+1]; \ 218 rgba[i][BCOMP] = texture[pos+0]; \ 219 rgba[i][ACOMP] = 0xff; \ 220 zRow[i] = z; \ 221 mask[i] = 1; \ 222 } \ 223 else { \ 224 mask[i] = 0; \ 225 } \ 226 span.intTex[0] += span.intTexStep[0]; \ 227 span.intTex[1] += span.intTexStep[1]; \ 228 span.z += span.zStep; \ 229 } \ 230 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \ 231 span.end, span.x, span.y, rgba, mask); 232 233 #include "s_tritemp.h" 234 235 236 #if CHAN_TYPE != GL_FLOAT 237 238 struct affine_info 239 { 240 GLenum filter; 241 GLenum format; 242 GLenum envmode; 243 GLint smask, tmask; 244 GLint twidth_log2; 245 const GLchan *texture; 246 GLfixed er, eg, eb, ea; 247 GLint tbytesline, tsize; 248 }; 249 250 251 static inline GLint 252 ilerp(GLint t, GLint a, GLint b) 253 { 254 return a + ((t * (b - a)) >> FIXED_SHIFT); 255 } 256 257 static inline GLint 258 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11) 259 { 260 const GLint temp0 = ilerp(ia, v00, v10); 261 const GLint temp1 = ilerp(ia, v01, v11); 262 return ilerp(ib, temp0, temp1); 263 } 264 265 266 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA 267 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD 268 * texture env modes. 269 */ 270 static inline void 271 affine_span(struct gl_context *ctx, SWspan *span, 272 struct affine_info *info) 273 { 274 GLchan sample[4]; /* the filtered texture sample */ 275 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 276 277 /* Instead of defining a function for each mode, a test is done 278 * between the outer and inner loops. This is to reduce code size 279 * and complexity. Observe that an optimizing compiler kills 280 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 281 */ 282 283 #define NEAREST_RGB \ 284 sample[RCOMP] = tex00[2]; \ 285 sample[GCOMP] = tex00[1]; \ 286 sample[BCOMP] = tex00[0]; \ 287 sample[ACOMP] = CHAN_MAX; 288 289 #define LINEAR_RGB \ 290 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 291 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 292 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ 293 sample[ACOMP] = CHAN_MAX; 294 295 #define NEAREST_RGBA \ 296 sample[RCOMP] = tex00[3]; \ 297 sample[GCOMP] = tex00[2]; \ 298 sample[BCOMP] = tex00[1]; \ 299 sample[ACOMP] = tex00[0]; 300 301 #define LINEAR_RGBA \ 302 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\ 303 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 304 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 305 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]) 306 307 #define MODULATE \ 308 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 309 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 310 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 311 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) 312 313 #define DECAL \ 314 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ 315 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ 316 >> (FIXED_SHIFT + 8); \ 317 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ 318 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ 319 >> (FIXED_SHIFT + 8); \ 320 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ 321 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ 322 >> (FIXED_SHIFT + 8); \ 323 dest[ACOMP] = FixedToInt(span->alpha) 324 325 #define BLEND \ 326 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ 327 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ 328 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ 329 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ 330 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ 331 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ 332 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) 333 334 #define REPLACE COPY_CHAN4(dest, sample) 335 336 #define ADD \ 337 { \ 338 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ 339 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ 340 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ 341 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ 342 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ 343 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ 344 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ 345 } 346 347 /* shortcuts */ 348 349 #define NEAREST_RGB_REPLACE \ 350 NEAREST_RGB; \ 351 dest[0] = sample[0]; \ 352 dest[1] = sample[1]; \ 353 dest[2] = sample[2]; \ 354 dest[3] = FixedToInt(span->alpha); 355 356 #define NEAREST_RGBA_REPLACE \ 357 dest[RCOMP] = tex00[3]; \ 358 dest[GCOMP] = tex00[2]; \ 359 dest[BCOMP] = tex00[1]; \ 360 dest[ACOMP] = tex00[0] 361 362 #define SPAN_NEAREST(DO_TEX, COMPS) \ 363 for (i = 0; i < span->end; i++) { \ 364 /* Isn't it necessary to use FixedFloor below?? */ \ 365 GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 366 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 367 GLint pos = (t << info->twidth_log2) + s; \ 368 const GLchan *tex00 = info->texture + COMPS * pos; \ 369 DO_TEX; \ 370 span->red += span->redStep; \ 371 span->green += span->greenStep; \ 372 span->blue += span->blueStep; \ 373 span->alpha += span->alphaStep; \ 374 span->intTex[0] += span->intTexStep[0]; \ 375 span->intTex[1] += span->intTexStep[1]; \ 376 dest += 4; \ 377 } 378 379 #define SPAN_LINEAR(DO_TEX, COMPS) \ 380 for (i = 0; i < span->end; i++) { \ 381 /* Isn't it necessary to use FixedFloor below?? */ \ 382 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 383 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 384 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ 385 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ 386 const GLint pos = (t << info->twidth_log2) + s; \ 387 const GLchan *tex00 = info->texture + COMPS * pos; \ 388 const GLchan *tex10 = tex00 + info->tbytesline; \ 389 const GLchan *tex01 = tex00 + COMPS; \ 390 const GLchan *tex11 = tex10 + COMPS; \ 391 if (t == info->tmask) { \ 392 tex10 -= info->tsize; \ 393 tex11 -= info->tsize; \ 394 } \ 395 if (s == info->smask) { \ 396 tex01 -= info->tbytesline; \ 397 tex11 -= info->tbytesline; \ 398 } \ 399 DO_TEX; \ 400 span->red += span->redStep; \ 401 span->green += span->greenStep; \ 402 span->blue += span->blueStep; \ 403 span->alpha += span->alphaStep; \ 404 span->intTex[0] += span->intTexStep[0]; \ 405 span->intTex[1] += span->intTexStep[1]; \ 406 dest += 4; \ 407 } 408 409 410 GLuint i; 411 GLchan *dest = span->array->rgba[0]; 412 413 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */ 414 ctx->Texture._EnabledCoordUnits = 0x0; 415 416 span->intTex[0] -= FIXED_HALF; 417 span->intTex[1] -= FIXED_HALF; 418 switch (info->filter) { 419 case GL_NEAREST: 420 switch (info->format) { 421 case MESA_FORMAT_BGR_UNORM8: 422 switch (info->envmode) { 423 case GL_MODULATE: 424 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 425 break; 426 case GL_DECAL: 427 case GL_REPLACE: 428 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 429 break; 430 case GL_BLEND: 431 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 432 break; 433 case GL_ADD: 434 SPAN_NEAREST(NEAREST_RGB;ADD,3); 435 break; 436 default: 437 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR"); 438 return; 439 } 440 break; 441 case MESA_FORMAT_A8B8G8R8_UNORM: 442 switch(info->envmode) { 443 case GL_MODULATE: 444 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 445 break; 446 case GL_DECAL: 447 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 448 break; 449 case GL_BLEND: 450 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 451 break; 452 case GL_ADD: 453 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 454 break; 455 case GL_REPLACE: 456 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 457 break; 458 default: 459 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR"); 460 return; 461 } 462 break; 463 } 464 break; 465 466 case GL_LINEAR: 467 span->intTex[0] -= FIXED_HALF; 468 span->intTex[1] -= FIXED_HALF; 469 switch (info->format) { 470 case MESA_FORMAT_BGR_UNORM8: 471 switch (info->envmode) { 472 case GL_MODULATE: 473 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 474 break; 475 case GL_DECAL: 476 case GL_REPLACE: 477 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 478 break; 479 case GL_BLEND: 480 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 481 break; 482 case GL_ADD: 483 SPAN_LINEAR(LINEAR_RGB;ADD,3); 484 break; 485 default: 486 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR"); 487 return; 488 } 489 break; 490 case MESA_FORMAT_A8B8G8R8_UNORM: 491 switch (info->envmode) { 492 case GL_MODULATE: 493 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 494 break; 495 case GL_DECAL: 496 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 497 break; 498 case GL_BLEND: 499 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 500 break; 501 case GL_ADD: 502 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 503 break; 504 case GL_REPLACE: 505 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 506 break; 507 default: 508 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR"); 509 return; 510 } 511 break; 512 } 513 break; 514 } 515 span->interpMask &= ~SPAN_RGBA; 516 assert(span->arrayMask & SPAN_RGBA); 517 518 _swrast_write_rgba_span(ctx, span); 519 520 /* re-enable texture units */ 521 ctx->Texture._EnabledCoordUnits = texEnableSave; 522 523 #undef SPAN_NEAREST 524 #undef SPAN_LINEAR 525 } 526 527 528 529 /* 530 * Render an RGB/RGBA textured triangle without perspective correction. 531 */ 532 #define NAME affine_textured_triangle 533 #define INTERP_Z 1 534 #define INTERP_RGB 1 535 #define INTERP_ALPHA 1 536 #define INTERP_INT_TEX 1 537 #define S_SCALE twidth 538 #define T_SCALE theight 539 540 #define SETUP_CODE \ 541 struct affine_info info; \ 542 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 543 const struct gl_texture_object *obj = \ 544 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 545 const struct gl_texture_image *texImg = \ 546 _mesa_base_tex_image(obj); \ 547 const struct swrast_texture_image *swImg = \ 548 swrast_texture_image_const(texImg); \ 549 const GLfloat twidth = (GLfloat) texImg->Width; \ 550 const GLfloat theight = (GLfloat) texImg->Height; \ 551 info.texture = (const GLchan *) swImg->ImageSlices[0]; \ 552 info.twidth_log2 = texImg->WidthLog2; \ 553 info.smask = texImg->Width - 1; \ 554 info.tmask = texImg->Height - 1; \ 555 info.format = texImg->TexFormat; \ 556 info.filter = obj->Sampler.MinFilter; \ 557 info.envmode = unit->EnvMode; \ 558 info.er = 0; \ 559 info.eg = 0; \ 560 info.eb = 0; \ 561 span.arrayMask |= SPAN_RGBA; \ 562 \ 563 if (info.envmode == GL_BLEND) { \ 564 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 565 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 566 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 567 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 568 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 569 } \ 570 if (!info.texture) { \ 571 /* this shouldn't happen */ \ 572 return; \ 573 } \ 574 \ 575 switch (info.format) { \ 576 case MESA_FORMAT_BGR_UNORM8: \ 577 info.tbytesline = texImg->Width * 3; \ 578 break; \ 579 case MESA_FORMAT_A8B8G8R8_UNORM: \ 580 info.tbytesline = texImg->Width * 4; \ 581 break; \ 582 default: \ 583 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ 584 return; \ 585 } \ 586 info.tsize = texImg->Height * info.tbytesline; 587 588 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info); 589 590 #include "s_tritemp.h" 591 592 593 594 struct persp_info 595 { 596 GLenum filter; 597 GLenum format; 598 GLenum envmode; 599 GLint smask, tmask; 600 GLint twidth_log2; 601 const GLchan *texture; 602 GLfixed er, eg, eb, ea; /* texture env color */ 603 GLint tbytesline, tsize; 604 }; 605 606 607 static inline void 608 fast_persp_span(struct gl_context *ctx, SWspan *span, 609 struct persp_info *info) 610 { 611 GLchan sample[4]; /* the filtered texture sample */ 612 613 /* Instead of defining a function for each mode, a test is done 614 * between the outer and inner loops. This is to reduce code size 615 * and complexity. Observe that an optimizing compiler kills 616 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 617 */ 618 #define SPAN_NEAREST(DO_TEX,COMP) \ 619 for (i = 0; i < span->end; i++) { \ 620 GLdouble invQ = tex_coord[2] ? \ 621 (1.0 / tex_coord[2]) : 1.0; \ 622 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 623 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 624 GLint s = IFLOOR(s_tmp) & info->smask; \ 625 GLint t = IFLOOR(t_tmp) & info->tmask; \ 626 GLint pos = (t << info->twidth_log2) + s; \ 627 const GLchan *tex00 = info->texture + COMP * pos; \ 628 DO_TEX; \ 629 span->red += span->redStep; \ 630 span->green += span->greenStep; \ 631 span->blue += span->blueStep; \ 632 span->alpha += span->alphaStep; \ 633 tex_coord[0] += tex_step[0]; \ 634 tex_coord[1] += tex_step[1]; \ 635 tex_coord[2] += tex_step[2]; \ 636 dest += 4; \ 637 } 638 639 #define SPAN_LINEAR(DO_TEX,COMP) \ 640 for (i = 0; i < span->end; i++) { \ 641 GLdouble invQ = tex_coord[2] ? \ 642 (1.0 / tex_coord[2]) : 1.0; \ 643 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 644 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 645 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ 646 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ 647 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ 648 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ 649 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \ 650 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \ 651 const GLint pos = (t << info->twidth_log2) + s; \ 652 const GLchan *tex00 = info->texture + COMP * pos; \ 653 const GLchan *tex10 = tex00 + info->tbytesline; \ 654 const GLchan *tex01 = tex00 + COMP; \ 655 const GLchan *tex11 = tex10 + COMP; \ 656 if (t == info->tmask) { \ 657 tex10 -= info->tsize; \ 658 tex11 -= info->tsize; \ 659 } \ 660 if (s == info->smask) { \ 661 tex01 -= info->tbytesline; \ 662 tex11 -= info->tbytesline; \ 663 } \ 664 DO_TEX; \ 665 span->red += span->redStep; \ 666 span->green += span->greenStep; \ 667 span->blue += span->blueStep; \ 668 span->alpha += span->alphaStep; \ 669 tex_coord[0] += tex_step[0]; \ 670 tex_coord[1] += tex_step[1]; \ 671 tex_coord[2] += tex_step[2]; \ 672 dest += 4; \ 673 } 674 675 GLuint i; 676 GLfloat tex_coord[3], tex_step[3]; 677 GLchan *dest = span->array->rgba[0]; 678 679 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 680 ctx->Texture._EnabledCoordUnits = 0; 681 682 tex_coord[0] = span->attrStart[VARYING_SLOT_TEX0][0] * (info->smask + 1); 683 tex_step[0] = span->attrStepX[VARYING_SLOT_TEX0][0] * (info->smask + 1); 684 tex_coord[1] = span->attrStart[VARYING_SLOT_TEX0][1] * (info->tmask + 1); 685 tex_step[1] = span->attrStepX[VARYING_SLOT_TEX0][1] * (info->tmask + 1); 686 /* span->attrStart[VARYING_SLOT_TEX0][2] only if 3D-texturing, here only 2D */ 687 tex_coord[2] = span->attrStart[VARYING_SLOT_TEX0][3]; 688 tex_step[2] = span->attrStepX[VARYING_SLOT_TEX0][3]; 689 690 switch (info->filter) { 691 case GL_NEAREST: 692 switch (info->format) { 693 case MESA_FORMAT_BGR_UNORM8: 694 switch (info->envmode) { 695 case GL_MODULATE: 696 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 697 break; 698 case GL_DECAL: 699 case GL_REPLACE: 700 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 701 break; 702 case GL_BLEND: 703 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 704 break; 705 case GL_ADD: 706 SPAN_NEAREST(NEAREST_RGB;ADD,3); 707 break; 708 default: 709 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR"); 710 return; 711 } 712 break; 713 case MESA_FORMAT_A8B8G8R8_UNORM: 714 switch(info->envmode) { 715 case GL_MODULATE: 716 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 717 break; 718 case GL_DECAL: 719 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 720 break; 721 case GL_BLEND: 722 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 723 break; 724 case GL_ADD: 725 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 726 break; 727 case GL_REPLACE: 728 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 729 break; 730 default: 731 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR"); 732 return; 733 } 734 break; 735 } 736 break; 737 738 case GL_LINEAR: 739 switch (info->format) { 740 case MESA_FORMAT_BGR_UNORM8: 741 switch (info->envmode) { 742 case GL_MODULATE: 743 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 744 break; 745 case GL_DECAL: 746 case GL_REPLACE: 747 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 748 break; 749 case GL_BLEND: 750 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 751 break; 752 case GL_ADD: 753 SPAN_LINEAR(LINEAR_RGB;ADD,3); 754 break; 755 default: 756 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR"); 757 return; 758 } 759 break; 760 case MESA_FORMAT_A8B8G8R8_UNORM: 761 switch (info->envmode) { 762 case GL_MODULATE: 763 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 764 break; 765 case GL_DECAL: 766 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 767 break; 768 case GL_BLEND: 769 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 770 break; 771 case GL_ADD: 772 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 773 break; 774 case GL_REPLACE: 775 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 776 break; 777 default: 778 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR"); 779 return; 780 } 781 break; 782 } 783 break; 784 } 785 786 assert(span->arrayMask & SPAN_RGBA); 787 _swrast_write_rgba_span(ctx, span); 788 789 #undef SPAN_NEAREST 790 #undef SPAN_LINEAR 791 792 /* restore state */ 793 ctx->Texture._EnabledCoordUnits = texEnableSave; 794 } 795 796 797 /* 798 * Render an perspective corrected RGB/RGBA textured triangle. 799 * The Q (aka V in Mesa) coordinate must be zero such that the divide 800 * by interpolated Q/W comes out right. 801 * 802 */ 803 #define NAME persp_textured_triangle 804 #define INTERP_Z 1 805 #define INTERP_RGB 1 806 #define INTERP_ALPHA 1 807 #define INTERP_ATTRIBS 1 808 809 #define SETUP_CODE \ 810 struct persp_info info; \ 811 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 812 const struct gl_texture_object *obj = \ 813 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 814 const struct gl_texture_image *texImg = \ 815 _mesa_base_tex_image(obj); \ 816 const struct swrast_texture_image *swImg = \ 817 swrast_texture_image_const(texImg); \ 818 info.texture = (const GLchan *) swImg->ImageSlices[0]; \ 819 info.twidth_log2 = texImg->WidthLog2; \ 820 info.smask = texImg->Width - 1; \ 821 info.tmask = texImg->Height - 1; \ 822 info.format = texImg->TexFormat; \ 823 info.filter = obj->Sampler.MinFilter; \ 824 info.envmode = unit->EnvMode; \ 825 info.er = 0; \ 826 info.eg = 0; \ 827 info.eb = 0; \ 828 \ 829 if (info.envmode == GL_BLEND) { \ 830 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 831 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 832 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 833 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 834 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 835 } \ 836 if (!info.texture) { \ 837 /* this shouldn't happen */ \ 838 return; \ 839 } \ 840 \ 841 switch (info.format) { \ 842 case MESA_FORMAT_BGR_UNORM8: \ 843 info.tbytesline = texImg->Width * 3; \ 844 break; \ 845 case MESA_FORMAT_A8B8G8R8_UNORM: \ 846 info.tbytesline = texImg->Width * 4; \ 847 break; \ 848 default: \ 849 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ 850 return; \ 851 } \ 852 info.tsize = texImg->Height * info.tbytesline; 853 854 #define RENDER_SPAN( span ) \ 855 span.interpMask &= ~SPAN_RGBA; \ 856 span.arrayMask |= SPAN_RGBA; \ 857 fast_persp_span(ctx, &span, &info); 858 859 #include "s_tritemp.h" 860 861 #endif /*CHAN_TYPE != GL_FLOAT*/ 862 863 864 865 /* 866 * Render an RGBA triangle with arbitrary attributes. 867 */ 868 #define NAME general_triangle 869 #define INTERP_Z 1 870 #define INTERP_RGB 1 871 #define INTERP_ALPHA 1 872 #define INTERP_ATTRIBS 1 873 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 874 #include "s_tritemp.h" 875 876 877 878 879 /* 880 * Special tri function for occlusion testing 881 */ 882 #define NAME occlusion_zless_16_triangle 883 #define INTERP_Z 1 884 #define SETUP_CODE \ 885 struct gl_renderbuffer *rb = \ 886 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; \ 887 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \ 888 assert(ctx->Depth.Test); \ 889 assert(!ctx->Depth.Mask); \ 890 assert(ctx->Depth.Func == GL_LESS); \ 891 assert(rb->Format == MESA_FORMAT_Z_UNORM16); \ 892 if (!q) { \ 893 return; \ 894 } 895 #define RENDER_SPAN( span ) \ 896 { \ 897 GLuint i; \ 898 const GLushort *zRow = (const GLushort *) \ 899 _swrast_pixel_address(rb, span.x, span.y); \ 900 for (i = 0; i < span.end; i++) { \ 901 GLuint z = FixedToDepth(span.z); \ 902 if (z < zRow[i]) { \ 903 q->Result++; \ 904 } \ 905 span.z += span.zStep; \ 906 } \ 907 } 908 #include "s_tritemp.h" 909 910 911 912 static void 913 nodraw_triangle( struct gl_context *ctx, 914 const SWvertex *v0, 915 const SWvertex *v1, 916 const SWvertex *v2 ) 917 { 918 (void) (ctx && v0 && v1 && v2); 919 } 920 921 922 /* 923 * This is used when separate specular color is enabled, but not 924 * texturing. We add the specular color to the primary color, 925 * draw the triangle, then restore the original primary color. 926 * Inefficient, but seldom needed. 927 */ 928 void 929 _swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0, 930 const SWvertex *v1, const SWvertex *v2) 931 { 932 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ 933 SWvertex *ncv1 = (SWvertex *)v1; 934 SWvertex *ncv2 = (SWvertex *)v2; 935 GLfloat rSum, gSum, bSum; 936 GLchan cSave[3][4]; 937 938 /* save original colors */ 939 COPY_CHAN4( cSave[0], ncv0->color ); 940 COPY_CHAN4( cSave[1], ncv1->color ); 941 COPY_CHAN4( cSave[2], ncv2->color ); 942 /* sum v0 */ 943 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[VARYING_SLOT_COL1][0]; 944 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[VARYING_SLOT_COL1][1]; 945 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[VARYING_SLOT_COL1][2]; 946 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); 947 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); 948 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); 949 /* sum v1 */ 950 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[VARYING_SLOT_COL1][0]; 951 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[VARYING_SLOT_COL1][1]; 952 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[VARYING_SLOT_COL1][2]; 953 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); 954 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); 955 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); 956 /* sum v2 */ 957 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[VARYING_SLOT_COL1][0]; 958 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[VARYING_SLOT_COL1][1]; 959 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[VARYING_SLOT_COL1][2]; 960 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum); 961 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum); 962 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum); 963 /* draw */ 964 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); 965 /* restore original colors */ 966 COPY_CHAN4( ncv0->color, cSave[0] ); 967 COPY_CHAN4( ncv1->color, cSave[1] ); 968 COPY_CHAN4( ncv2->color, cSave[2] ); 969 } 970 971 972 973 #ifdef DEBUG 974 975 /* record the current triangle function name */ 976 const char *_mesa_triFuncName = NULL; 977 978 #define USE(triFunc) \ 979 do { \ 980 _mesa_triFuncName = #triFunc; \ 981 /*printf("%s\n", _mesa_triFuncName);*/ \ 982 swrast->Triangle = triFunc; \ 983 } while (0) 984 985 #else 986 987 #define USE(triFunc) swrast->Triangle = triFunc; 988 989 #endif 990 991 992 993 994 /* 995 * Determine which triangle rendering function to use given the current 996 * rendering context. 997 * 998 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or 999 * remove tests to this code. 1000 */ 1001 void 1002 _swrast_choose_triangle( struct gl_context *ctx ) 1003 { 1004 SWcontext *swrast = SWRAST_CONTEXT(ctx); 1005 1006 if (ctx->Polygon.CullFlag && 1007 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { 1008 USE(nodraw_triangle); 1009 return; 1010 } 1011 1012 if (ctx->RenderMode==GL_RENDER) { 1013 struct gl_renderbuffer *depthRb = 1014 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; 1015 1016 if (ctx->Polygon.SmoothFlag) { 1017 _swrast_set_aa_triangle_function(ctx); 1018 assert(swrast->Triangle); 1019 return; 1020 } 1021 1022 /* special case for occlusion testing */ 1023 if (ctx->Query.CurrentOcclusionObject && 1024 ctx->Depth.Test && 1025 ctx->Depth.Mask == GL_FALSE && 1026 ctx->Depth.Func == GL_LESS && 1027 !_mesa_stencil_is_enabled(ctx) && 1028 depthRb && 1029 depthRb->Format == MESA_FORMAT_Z_UNORM16) { 1030 if (ctx->Color.ColorMask[0][0] == 0 && 1031 ctx->Color.ColorMask[0][1] == 0 && 1032 ctx->Color.ColorMask[0][2] == 0 && 1033 ctx->Color.ColorMask[0][3] == 0) { 1034 USE(occlusion_zless_16_triangle); 1035 return; 1036 } 1037 } 1038 1039 /* 1040 * XXX should examine swrast->_ActiveAttribMask to determine what 1041 * needs to be interpolated. 1042 */ 1043 if (ctx->Texture._EnabledCoordUnits || 1044 _swrast_use_fragment_program(ctx) || 1045 _mesa_ati_fragment_shader_enabled(ctx) || 1046 _mesa_need_secondary_color(ctx) || 1047 swrast->_FogEnabled) { 1048 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ 1049 const struct gl_texture_object *texObj2D; 1050 const struct gl_sampler_object *samp; 1051 const struct gl_texture_image *texImg; 1052 const struct swrast_texture_image *swImg; 1053 GLenum minFilter, magFilter, envMode; 1054 mesa_format format; 1055 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; 1056 if (ctx->Texture.Unit[0].Sampler) 1057 samp = ctx->Texture.Unit[0].Sampler; 1058 else if (texObj2D) 1059 samp = &texObj2D->Sampler; 1060 else 1061 samp = NULL; 1062 1063 texImg = texObj2D ? _mesa_base_tex_image(texObj2D) : NULL; 1064 swImg = swrast_texture_image_const(texImg); 1065 1066 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE; 1067 minFilter = texObj2D ? samp->MinFilter : GL_NONE; 1068 magFilter = texObj2D ? samp->MagFilter : GL_NONE; 1069 envMode = ctx->Texture.Unit[0].EnvMode; 1070 1071 /* First see if we can use an optimized 2-D texture function */ 1072 if (ctx->Texture._EnabledCoordUnits == 0x1 1073 && !_swrast_use_fragment_program(ctx) 1074 && !_mesa_ati_fragment_shader_enabled(ctx) 1075 && ctx->Texture._MaxEnabledTexImageUnit == 0 1076 && ctx->Texture.Unit[0]._Current->Target == GL_TEXTURE_2D 1077 && samp->WrapS == GL_REPEAT 1078 && samp->WrapT == GL_REPEAT 1079 && texObj2D->_Swizzle == SWIZZLE_NOOP 1080 && swImg->_IsPowerOfTwo 1081 && texImg->Border == 0 1082 && (_mesa_format_row_stride(format, texImg->Width) == 1083 swImg->RowStride) 1084 && (format == MESA_FORMAT_BGR_UNORM8 || format == MESA_FORMAT_A8B8G8R8_UNORM) 1085 && minFilter == magFilter 1086 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR 1087 && !swrast->_FogEnabled 1088 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT 1089 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) { 1090 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { 1091 if (minFilter == GL_NEAREST 1092 && format == MESA_FORMAT_BGR_UNORM8 1093 && (envMode == GL_REPLACE || envMode == GL_DECAL) 1094 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) 1095 && ctx->Depth.Func == GL_LESS 1096 && ctx->Depth.Mask == GL_TRUE) 1097 || swrast->_RasterMask == TEXTURE_BIT) 1098 && ctx->Polygon.StippleFlag == GL_FALSE 1099 && ctx->DrawBuffer->Visual.depthBits <= 16) { 1100 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { 1101 USE(simple_z_textured_triangle); 1102 } 1103 else { 1104 USE(simple_textured_triangle); 1105 } 1106 } 1107 else { 1108 #if CHAN_BITS != 8 1109 USE(general_triangle); 1110 #else 1111 if (format == MESA_FORMAT_A8B8G8R8_UNORM && !_mesa_little_endian()) { 1112 /* We only handle RGBA8888 correctly on little endian 1113 * in the optimized code above. 1114 */ 1115 USE(general_triangle); 1116 } 1117 else { 1118 USE(affine_textured_triangle); 1119 } 1120 #endif 1121 } 1122 } 1123 else { 1124 #if CHAN_BITS != 8 1125 USE(general_triangle); 1126 #else 1127 USE(persp_textured_triangle); 1128 #endif 1129 } 1130 } 1131 else { 1132 /* general case textured triangles */ 1133 USE(general_triangle); 1134 } 1135 } 1136 else { 1137 assert(!swrast->_FogEnabled); 1138 assert(!_mesa_need_secondary_color(ctx)); 1139 if (ctx->Light.ShadeModel==GL_SMOOTH) { 1140 /* smooth shaded, no texturing, stippled or some raster ops */ 1141 #if CHAN_BITS != 8 1142 USE(general_triangle); 1143 #else 1144 USE(smooth_rgba_triangle); 1145 #endif 1146 } 1147 else { 1148 /* flat shaded, no texturing, stippled or some raster ops */ 1149 #if CHAN_BITS != 8 1150 USE(general_triangle); 1151 #else 1152 USE(flat_rgba_triangle); 1153 #endif 1154 } 1155 } 1156 } 1157 else if (ctx->RenderMode==GL_FEEDBACK) { 1158 USE(_swrast_feedback_triangle); 1159 } 1160 else { 1161 /* GL_SELECT mode */ 1162 USE(_swrast_select_triangle); 1163 } 1164 } 1165