1 /** 2 * \file macros.h 3 * A collection of useful macros. 4 */ 5 6 /* 7 * Mesa 3-D graphics library 8 * 9 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice shall be included 19 * in all copies or substantial portions of the Software. 20 * 21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 27 * OTHER DEALINGS IN THE SOFTWARE. 28 */ 29 30 31 #ifndef MACROS_H 32 #define MACROS_H 33 34 #include "util/macros.h" 35 #include "util/u_math.h" 36 #include "util/rounding.h" 37 #include "imports.h" 38 39 40 /** 41 * \name Integer / float conversion for colors, normals, etc. 42 */ 43 /*@{*/ 44 45 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */ 46 extern GLfloat _mesa_ubyte_to_float_color_tab[256]; 47 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)] 48 49 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */ 50 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F)) 51 52 53 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */ 54 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F)) 55 56 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */ 57 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 ) 58 59 60 /** Convert GLbyte to GLfloat while preserving zero */ 61 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B)) 62 63 64 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */ 65 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F)) 66 67 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */ 68 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 ) 69 70 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */ 71 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F)) 72 73 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */ 74 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F)) 75 76 77 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */ 78 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F)) 79 80 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */ 81 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 ) 82 83 /** Convert GLshort to GLfloat while preserving zero */ 84 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S)) 85 86 87 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */ 88 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F)) 89 90 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */ 91 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) ) 92 93 94 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */ 95 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0))) 96 97 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */ 98 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0)) 99 100 101 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */ 102 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0))) 103 104 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */ 105 /* causes overflow: 106 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 ) 107 */ 108 /* a close approximation: */ 109 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) ) 110 111 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */ 112 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) ) 113 114 115 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */ 116 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0)) 117 118 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */ 119 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) ) 120 121 122 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b))) 123 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7))) 124 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8)) 125 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23))) 126 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24)) 127 128 129 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255))) 130 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b)) 131 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767)))) 132 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15))) 133 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16))) 134 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \ 135 us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) ) 136 #define CLAMPED_FLOAT_TO_USHORT(us, f) \ 137 us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) ) 138 139 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \ 140 s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) ) 141 142 /*** 143 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255] 144 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255] 145 ***/ 146 #ifndef DEBUG 147 /* This function/macro is sensitive to precision. Test very carefully 148 * if you change it! 149 */ 150 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ 151 do { \ 152 fi_type __tmp; \ 153 __tmp.f = (FLT); \ 154 if (__tmp.i < 0) \ 155 UB = (GLubyte) 0; \ 156 else if (__tmp.i >= IEEE_ONE) \ 157 UB = (GLubyte) 255; \ 158 else { \ 159 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \ 160 UB = (GLubyte) __tmp.i; \ 161 } \ 162 } while (0) 163 #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ 164 do { \ 165 fi_type __tmp; \ 166 __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \ 167 UB = (GLubyte) __tmp.i; \ 168 } while (0) 169 #else 170 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ 171 ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F)) 172 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ 173 ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F)) 174 #endif 175 176 static fi_type UINT_AS_UNION(GLuint u) 177 { 178 fi_type tmp; 179 tmp.u = u; 180 return tmp; 181 } 182 183 static inline fi_type INT_AS_UNION(GLint i) 184 { 185 fi_type tmp; 186 tmp.i = i; 187 return tmp; 188 } 189 190 static inline fi_type FLOAT_AS_UNION(GLfloat f) 191 { 192 fi_type tmp; 193 tmp.f = f; 194 return tmp; 195 } 196 197 /** 198 * Convert a floating point value to an unsigned fixed point value. 199 * 200 * \param frac_bits The number of bits used to store the fractional part. 201 */ 202 static inline uint32_t 203 U_FIXED(float value, uint32_t frac_bits) 204 { 205 value *= (1 << frac_bits); 206 return value < 0.0f ? 0 : (uint32_t) value; 207 } 208 209 /** 210 * Convert a floating point value to an signed fixed point value. 211 * 212 * \param frac_bits The number of bits used to store the fractional part. 213 */ 214 static inline int32_t 215 S_FIXED(float value, uint32_t frac_bits) 216 { 217 return (int32_t) (value * (1 << frac_bits)); 218 } 219 /*@}*/ 220 221 222 /** Stepping a GLfloat pointer by a byte stride */ 223 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i)) 224 /** Stepping a GLuint pointer by a byte stride */ 225 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i)) 226 /** Stepping a GLubyte[4] pointer by a byte stride */ 227 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i)) 228 /** Stepping a GLfloat[4] pointer by a byte stride */ 229 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i)) 230 /** Stepping a \p t pointer by a byte stride */ 231 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i)) 232 233 234 /**********************************************************************/ 235 /** \name 4-element vector operations */ 236 /*@{*/ 237 238 /** Zero */ 239 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0 240 241 /** Test for equality */ 242 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \ 243 (a)[1] == (b)[1] && \ 244 (a)[2] == (b)[2] && \ 245 (a)[3] == (b)[3]) 246 247 /** Test for equality (unsigned bytes) */ 248 static inline GLboolean 249 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4]) 250 { 251 #if defined(__i386__) 252 return *((const GLuint *) a) == *((const GLuint *) b); 253 #else 254 return TEST_EQ_4V(a, b); 255 #endif 256 } 257 258 259 /** Copy a 4-element vector */ 260 #define COPY_4V( DST, SRC ) \ 261 do { \ 262 (DST)[0] = (SRC)[0]; \ 263 (DST)[1] = (SRC)[1]; \ 264 (DST)[2] = (SRC)[2]; \ 265 (DST)[3] = (SRC)[3]; \ 266 } while (0) 267 268 /** Copy a 4-element unsigned byte vector */ 269 static inline void 270 COPY_4UBV(GLubyte dst[4], const GLubyte src[4]) 271 { 272 #if defined(__i386__) 273 *((GLuint *) dst) = *((GLuint *) src); 274 #else 275 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */ 276 COPY_4V(dst, src); 277 #endif 278 } 279 280 /** Copy \p SZ elements into a 4-element vector */ 281 #define COPY_SZ_4V(DST, SZ, SRC) \ 282 do { \ 283 switch (SZ) { \ 284 case 4: (DST)[3] = (SRC)[3]; \ 285 case 3: (DST)[2] = (SRC)[2]; \ 286 case 2: (DST)[1] = (SRC)[1]; \ 287 case 1: (DST)[0] = (SRC)[0]; \ 288 } \ 289 } while(0) 290 291 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving 292 * default values to the remaining */ 293 #define COPY_CLEAN_4V(DST, SZ, SRC) \ 294 do { \ 295 ASSIGN_4V( DST, 0, 0, 0, 1 ); \ 296 COPY_SZ_4V( DST, SZ, SRC ); \ 297 } while (0) 298 299 /** Subtraction */ 300 #define SUB_4V( DST, SRCA, SRCB ) \ 301 do { \ 302 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ 303 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ 304 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ 305 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \ 306 } while (0) 307 308 /** Addition */ 309 #define ADD_4V( DST, SRCA, SRCB ) \ 310 do { \ 311 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ 312 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ 313 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ 314 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \ 315 } while (0) 316 317 /** Element-wise multiplication */ 318 #define SCALE_4V( DST, SRCA, SRCB ) \ 319 do { \ 320 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ 321 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ 322 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ 323 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \ 324 } while (0) 325 326 /** In-place addition */ 327 #define ACC_4V( DST, SRC ) \ 328 do { \ 329 (DST)[0] += (SRC)[0]; \ 330 (DST)[1] += (SRC)[1]; \ 331 (DST)[2] += (SRC)[2]; \ 332 (DST)[3] += (SRC)[3]; \ 333 } while (0) 334 335 /** Element-wise multiplication and addition */ 336 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \ 337 do { \ 338 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ 339 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ 340 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ 341 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \ 342 } while (0) 343 344 /** In-place scalar multiplication and addition */ 345 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \ 346 do { \ 347 (DST)[0] += S * (SRCB)[0]; \ 348 (DST)[1] += S * (SRCB)[1]; \ 349 (DST)[2] += S * (SRCB)[2]; \ 350 (DST)[3] += S * (SRCB)[3]; \ 351 } while (0) 352 353 /** Scalar multiplication */ 354 #define SCALE_SCALAR_4V( DST, S, SRCB ) \ 355 do { \ 356 (DST)[0] = S * (SRCB)[0]; \ 357 (DST)[1] = S * (SRCB)[1]; \ 358 (DST)[2] = S * (SRCB)[2]; \ 359 (DST)[3] = S * (SRCB)[3]; \ 360 } while (0) 361 362 /** In-place scalar multiplication */ 363 #define SELF_SCALE_SCALAR_4V( DST, S ) \ 364 do { \ 365 (DST)[0] *= S; \ 366 (DST)[1] *= S; \ 367 (DST)[2] *= S; \ 368 (DST)[3] *= S; \ 369 } while (0) 370 371 /*@}*/ 372 373 374 /**********************************************************************/ 375 /** \name 3-element vector operations*/ 376 /*@{*/ 377 378 /** Zero */ 379 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0 380 381 /** Test for equality */ 382 #define TEST_EQ_3V(a,b) \ 383 ((a)[0] == (b)[0] && \ 384 (a)[1] == (b)[1] && \ 385 (a)[2] == (b)[2]) 386 387 /** Copy a 3-element vector */ 388 #define COPY_3V( DST, SRC ) \ 389 do { \ 390 (DST)[0] = (SRC)[0]; \ 391 (DST)[1] = (SRC)[1]; \ 392 (DST)[2] = (SRC)[2]; \ 393 } while (0) 394 395 /** Copy a 3-element vector with cast */ 396 #define COPY_3V_CAST( DST, SRC, CAST ) \ 397 do { \ 398 (DST)[0] = (CAST)(SRC)[0]; \ 399 (DST)[1] = (CAST)(SRC)[1]; \ 400 (DST)[2] = (CAST)(SRC)[2]; \ 401 } while (0) 402 403 /** Copy a 3-element float vector */ 404 #define COPY_3FV( DST, SRC ) \ 405 do { \ 406 const GLfloat *_tmp = (SRC); \ 407 (DST)[0] = _tmp[0]; \ 408 (DST)[1] = _tmp[1]; \ 409 (DST)[2] = _tmp[2]; \ 410 } while (0) 411 412 /** Subtraction */ 413 #define SUB_3V( DST, SRCA, SRCB ) \ 414 do { \ 415 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ 416 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ 417 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ 418 } while (0) 419 420 /** Addition */ 421 #define ADD_3V( DST, SRCA, SRCB ) \ 422 do { \ 423 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ 424 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ 425 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ 426 } while (0) 427 428 /** In-place scalar multiplication */ 429 #define SCALE_3V( DST, SRCA, SRCB ) \ 430 do { \ 431 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ 432 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ 433 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ 434 } while (0) 435 436 /** In-place element-wise multiplication */ 437 #define SELF_SCALE_3V( DST, SRC ) \ 438 do { \ 439 (DST)[0] *= (SRC)[0]; \ 440 (DST)[1] *= (SRC)[1]; \ 441 (DST)[2] *= (SRC)[2]; \ 442 } while (0) 443 444 /** In-place addition */ 445 #define ACC_3V( DST, SRC ) \ 446 do { \ 447 (DST)[0] += (SRC)[0]; \ 448 (DST)[1] += (SRC)[1]; \ 449 (DST)[2] += (SRC)[2]; \ 450 } while (0) 451 452 /** Element-wise multiplication and addition */ 453 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \ 454 do { \ 455 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ 456 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ 457 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ 458 } while (0) 459 460 /** Scalar multiplication */ 461 #define SCALE_SCALAR_3V( DST, S, SRCB ) \ 462 do { \ 463 (DST)[0] = S * (SRCB)[0]; \ 464 (DST)[1] = S * (SRCB)[1]; \ 465 (DST)[2] = S * (SRCB)[2]; \ 466 } while (0) 467 468 /** In-place scalar multiplication and addition */ 469 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \ 470 do { \ 471 (DST)[0] += S * (SRCB)[0]; \ 472 (DST)[1] += S * (SRCB)[1]; \ 473 (DST)[2] += S * (SRCB)[2]; \ 474 } while (0) 475 476 /** In-place scalar multiplication */ 477 #define SELF_SCALE_SCALAR_3V( DST, S ) \ 478 do { \ 479 (DST)[0] *= S; \ 480 (DST)[1] *= S; \ 481 (DST)[2] *= S; \ 482 } while (0) 483 484 /** In-place scalar addition */ 485 #define ACC_SCALAR_3V( DST, S ) \ 486 do { \ 487 (DST)[0] += S; \ 488 (DST)[1] += S; \ 489 (DST)[2] += S; \ 490 } while (0) 491 492 /** Assignment */ 493 #define ASSIGN_3V( V, V0, V1, V2 ) \ 494 do { \ 495 V[0] = V0; \ 496 V[1] = V1; \ 497 V[2] = V2; \ 498 } while(0) 499 500 /*@}*/ 501 502 503 /**********************************************************************/ 504 /** \name 2-element vector operations*/ 505 /*@{*/ 506 507 /** Zero */ 508 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0 509 510 /** Copy a 2-element vector */ 511 #define COPY_2V( DST, SRC ) \ 512 do { \ 513 (DST)[0] = (SRC)[0]; \ 514 (DST)[1] = (SRC)[1]; \ 515 } while (0) 516 517 /** Copy a 2-element vector with cast */ 518 #define COPY_2V_CAST( DST, SRC, CAST ) \ 519 do { \ 520 (DST)[0] = (CAST)(SRC)[0]; \ 521 (DST)[1] = (CAST)(SRC)[1]; \ 522 } while (0) 523 524 /** Copy a 2-element float vector */ 525 #define COPY_2FV( DST, SRC ) \ 526 do { \ 527 const GLfloat *_tmp = (SRC); \ 528 (DST)[0] = _tmp[0]; \ 529 (DST)[1] = _tmp[1]; \ 530 } while (0) 531 532 /** Subtraction */ 533 #define SUB_2V( DST, SRCA, SRCB ) \ 534 do { \ 535 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ 536 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ 537 } while (0) 538 539 /** Addition */ 540 #define ADD_2V( DST, SRCA, SRCB ) \ 541 do { \ 542 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ 543 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ 544 } while (0) 545 546 /** In-place scalar multiplication */ 547 #define SCALE_2V( DST, SRCA, SRCB ) \ 548 do { \ 549 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ 550 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ 551 } while (0) 552 553 /** In-place addition */ 554 #define ACC_2V( DST, SRC ) \ 555 do { \ 556 (DST)[0] += (SRC)[0]; \ 557 (DST)[1] += (SRC)[1]; \ 558 } while (0) 559 560 /** Element-wise multiplication and addition */ 561 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \ 562 do { \ 563 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ 564 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ 565 } while (0) 566 567 /** Scalar multiplication */ 568 #define SCALE_SCALAR_2V( DST, S, SRCB ) \ 569 do { \ 570 (DST)[0] = S * (SRCB)[0]; \ 571 (DST)[1] = S * (SRCB)[1]; \ 572 } while (0) 573 574 /** In-place scalar multiplication and addition */ 575 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \ 576 do { \ 577 (DST)[0] += S * (SRCB)[0]; \ 578 (DST)[1] += S * (SRCB)[1]; \ 579 } while (0) 580 581 /** In-place scalar multiplication */ 582 #define SELF_SCALE_SCALAR_2V( DST, S ) \ 583 do { \ 584 (DST)[0] *= S; \ 585 (DST)[1] *= S; \ 586 } while (0) 587 588 /** In-place scalar addition */ 589 #define ACC_SCALAR_2V( DST, S ) \ 590 do { \ 591 (DST)[0] += S; \ 592 (DST)[1] += S; \ 593 } while (0) 594 595 /** Assign scalers to short vectors */ 596 #define ASSIGN_2V( V, V0, V1 ) \ 597 do { \ 598 V[0] = V0; \ 599 V[1] = V1; \ 600 } while(0) 601 602 /*@}*/ 603 604 /** Copy \p sz elements into a homegeneous (4-element) vector, giving 605 * default values to the remaining components. 606 * The default values are chosen based on \p type. 607 */ 608 static inline void 609 COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4], 610 GLenum type) 611 { 612 switch (type) { 613 case GL_FLOAT: 614 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0), 615 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); 616 break; 617 case GL_INT: 618 ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0), 619 INT_AS_UNION(0), INT_AS_UNION(1)); 620 break; 621 case GL_UNSIGNED_INT: 622 ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0), 623 UINT_AS_UNION(0), UINT_AS_UNION(1)); 624 break; 625 default: 626 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0), 627 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */ 628 assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro"); 629 } 630 COPY_SZ_4V(dst, sz, src); 631 } 632 633 /** \name Linear interpolation functions */ 634 /*@{*/ 635 636 static inline GLfloat 637 LINTERP(GLfloat t, GLfloat out, GLfloat in) 638 { 639 return out + t * (in - out); 640 } 641 642 static inline void 643 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3]) 644 { 645 dst[0] = LINTERP( t, out[0], in[0] ); 646 dst[1] = LINTERP( t, out[1], in[1] ); 647 dst[2] = LINTERP( t, out[2], in[2] ); 648 } 649 650 static inline void 651 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4]) 652 { 653 dst[0] = LINTERP( t, out[0], in[0] ); 654 dst[1] = LINTERP( t, out[1], in[1] ); 655 dst[2] = LINTERP( t, out[2], in[2] ); 656 dst[3] = LINTERP( t, out[3], in[3] ); 657 } 658 659 /*@}*/ 660 661 662 663 static inline unsigned 664 minify(unsigned value, unsigned levels) 665 { 666 return MAX2(1, value >> levels); 667 } 668 669 /** 670 * Align a value up to an alignment value 671 * 672 * If \c value is not already aligned to the requested alignment value, it 673 * will be rounded up. 674 * 675 * \param value Value to be rounded 676 * \param alignment Alignment value to be used. This must be a power of two. 677 * 678 * \sa ROUND_DOWN_TO() 679 */ 680 static inline uintptr_t 681 ALIGN(uintptr_t value, int32_t alignment) 682 { 683 assert((alignment > 0) && _mesa_is_pow_two(alignment)); 684 return (((value) + (alignment) - 1) & ~((alignment) - 1)); 685 } 686 687 /** 688 * Like ALIGN(), but works with a non-power-of-two alignment. 689 */ 690 static inline uintptr_t 691 ALIGN_NPOT(uintptr_t value, int32_t alignment) 692 { 693 assert(alignment > 0); 694 return (value + alignment - 1) / alignment * alignment; 695 } 696 697 /** 698 * Align a value down to an alignment value 699 * 700 * If \c value is not already aligned to the requested alignment value, it 701 * will be rounded down. 702 * 703 * \param value Value to be rounded 704 * \param alignment Alignment value to be used. This must be a power of two. 705 * 706 * \sa ALIGN() 707 */ 708 static inline uintptr_t 709 ROUND_DOWN_TO(uintptr_t value, int32_t alignment) 710 { 711 assert((alignment > 0) && _mesa_is_pow_two(alignment)); 712 return ((value) & ~(alignment - 1)); 713 } 714 715 716 /** Cross product of two 3-element vectors */ 717 static inline void 718 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3]) 719 { 720 n[0] = u[1] * v[2] - u[2] * v[1]; 721 n[1] = u[2] * v[0] - u[0] * v[2]; 722 n[2] = u[0] * v[1] - u[1] * v[0]; 723 } 724 725 726 /** Dot product of two 2-element vectors */ 727 static inline GLfloat 728 DOT2(const GLfloat a[2], const GLfloat b[2]) 729 { 730 return a[0] * b[0] + a[1] * b[1]; 731 } 732 733 static inline GLfloat 734 DOT3(const GLfloat a[3], const GLfloat b[3]) 735 { 736 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; 737 } 738 739 static inline GLfloat 740 DOT4(const GLfloat a[4], const GLfloat b[4]) 741 { 742 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; 743 } 744 745 746 static inline GLfloat 747 LEN_SQUARED_3FV(const GLfloat v[3]) 748 { 749 return DOT3(v, v); 750 } 751 752 static inline GLfloat 753 LEN_SQUARED_2FV(const GLfloat v[2]) 754 { 755 return DOT2(v, v); 756 } 757 758 759 static inline GLfloat 760 LEN_3FV(const GLfloat v[3]) 761 { 762 return sqrtf(LEN_SQUARED_3FV(v)); 763 } 764 765 static inline GLfloat 766 LEN_2FV(const GLfloat v[2]) 767 { 768 return sqrtf(LEN_SQUARED_2FV(v)); 769 } 770 771 772 /* Normalize a 3-element vector to unit length. */ 773 static inline void 774 NORMALIZE_3FV(GLfloat v[3]) 775 { 776 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v); 777 if (len) { 778 len = 1.0f / sqrtf(len); 779 v[0] *= len; 780 v[1] *= len; 781 v[2] *= len; 782 } 783 } 784 785 786 /** Test two floats have opposite signs */ 787 static inline GLboolean 788 DIFFERENT_SIGNS(GLfloat x, GLfloat y) 789 { 790 #ifdef _MSC_VER 791 #pragma warning( push ) 792 #pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */ 793 #endif 794 return signbit(x) != signbit(y); 795 #ifdef _MSC_VER 796 #pragma warning( pop ) 797 #endif 798 } 799 800 801 /** casts to silence warnings with some compilers */ 802 #define ENUM_TO_INT(E) ((GLint)(E)) 803 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E)) 804 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E)) 805 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE) 806 807 808 /* Stringify */ 809 #define STRINGIFY(x) #x 810 811 #endif 812