Home | History | Annotate | Download | only in ARM
      1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "ARMTargetTransformInfo.h"
     11 #include "ARMSubtarget.h"
     12 #include "MCTargetDesc/ARMAddressingModes.h"
     13 #include "llvm/ADT/APInt.h"
     14 #include "llvm/ADT/SmallVector.h"
     15 #include "llvm/Analysis/LoopInfo.h"
     16 #include "llvm/CodeGen/CostTable.h"
     17 #include "llvm/CodeGen/ISDOpcodes.h"
     18 #include "llvm/CodeGen/ValueTypes.h"
     19 #include "llvm/IR/BasicBlock.h"
     20 #include "llvm/IR/CallSite.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/Instruction.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Type.h"
     26 #include "llvm/MC/SubtargetFeature.h"
     27 #include "llvm/Support/Casting.h"
     28 #include "llvm/Support/MachineValueType.h"
     29 #include "llvm/Target/TargetMachine.h"
     30 #include <algorithm>
     31 #include <cassert>
     32 #include <cstdint>
     33 #include <utility>
     34 
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "armtti"
     38 
     39 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
     40                                      const Function *Callee) const {
     41   const TargetMachine &TM = getTLI()->getTargetMachine();
     42   const FeatureBitset &CallerBits =
     43       TM.getSubtargetImpl(*Caller)->getFeatureBits();
     44   const FeatureBitset &CalleeBits =
     45       TM.getSubtargetImpl(*Callee)->getFeatureBits();
     46 
     47   // To inline a callee, all features not in the whitelist must match exactly.
     48   bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
     49                     (CalleeBits & ~InlineFeatureWhitelist);
     50   // For features in the whitelist, the callee's features must be a subset of
     51   // the callers'.
     52   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
     53                      (CalleeBits & InlineFeatureWhitelist);
     54   return MatchExact && MatchSubset;
     55 }
     56 
     57 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
     58   assert(Ty->isIntegerTy());
     59 
     60  unsigned Bits = Ty->getPrimitiveSizeInBits();
     61  if (Bits == 0 || Imm.getActiveBits() >= 64)
     62    return 4;
     63 
     64   int64_t SImmVal = Imm.getSExtValue();
     65   uint64_t ZImmVal = Imm.getZExtValue();
     66   if (!ST->isThumb()) {
     67     if ((SImmVal >= 0 && SImmVal < 65536) ||
     68         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
     69         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
     70       return 1;
     71     return ST->hasV6T2Ops() ? 2 : 3;
     72   }
     73   if (ST->isThumb2()) {
     74     if ((SImmVal >= 0 && SImmVal < 65536) ||
     75         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
     76         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
     77       return 1;
     78     return ST->hasV6T2Ops() ? 2 : 3;
     79   }
     80   // Thumb1.
     81   if (SImmVal >= 0 && SImmVal < 256)
     82     return 1;
     83   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
     84     return 2;
     85   // Load from constantpool.
     86   return 3;
     87 }
     88 
     89 // Constants smaller than 256 fit in the immediate field of
     90 // Thumb1 instructions so we return a zero cost and 1 otherwise.
     91 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
     92                                       const APInt &Imm, Type *Ty) {
     93   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
     94     return 0;
     95 
     96   return 1;
     97 }
     98 
     99 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    100                               Type *Ty) {
    101   // Division by a constant can be turned into multiplication, but only if we
    102   // know it's constant. So it's not so much that the immediate is cheap (it's
    103   // not), but that the alternative is worse.
    104   // FIXME: this is probably unneeded with GlobalISel.
    105   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
    106        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
    107       Idx == 1)
    108     return 0;
    109 
    110   if (Opcode == Instruction::And)
    111       // Conversion to BIC is free, and means we can use ~Imm instead.
    112       return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
    113 
    114   if (Opcode == Instruction::Add)
    115     // Conversion to SUB is free, and means we can use -Imm instead.
    116     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
    117 
    118   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
    119       Ty->getIntegerBitWidth() == 32) {
    120     int64_t NegImm = -Imm.getSExtValue();
    121     if (ST->isThumb2() && NegImm < 1<<12)
    122       // icmp X, #-C -> cmn X, #C
    123       return 0;
    124     if (ST->isThumb() && NegImm < 1<<8)
    125       // icmp X, #-C -> adds X, #C
    126       return 0;
    127   }
    128 
    129   // xor a, -1 can always be folded to MVN
    130   if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
    131     return 0;
    132 
    133   return getIntImmCost(Imm, Ty);
    134 }
    135 
    136 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    137                                  const Instruction *I) {
    138   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    139   assert(ISD && "Invalid opcode");
    140 
    141   // Single to/from double precision conversions.
    142   static const CostTblEntry NEONFltDblTbl[] = {
    143     // Vector fptrunc/fpext conversions.
    144     { ISD::FP_ROUND,   MVT::v2f64, 2 },
    145     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
    146     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
    147   };
    148 
    149   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
    150                                           ISD == ISD::FP_EXTEND)) {
    151     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    152     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
    153       return LT.first * Entry->Cost;
    154   }
    155 
    156   EVT SrcTy = TLI->getValueType(DL, Src);
    157   EVT DstTy = TLI->getValueType(DL, Dst);
    158 
    159   if (!SrcTy.isSimple() || !DstTy.isSimple())
    160     return BaseT::getCastInstrCost(Opcode, Dst, Src);
    161 
    162   // Some arithmetic, load and store operations have specific instructions
    163   // to cast up/down their types automatically at no extra cost.
    164   // TODO: Get these tables to know at least what the related operations are.
    165   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
    166     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
    167     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
    168     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    169     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    170     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
    171     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
    172 
    173     // The number of vmovl instructions for the extension.
    174     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    175     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    176     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    177     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    178     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    179     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    180     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    181     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    182     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    183     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    184 
    185     // Operations that we legalize using splitting.
    186     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
    187     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
    188 
    189     // Vector float <-> i32 conversions.
    190     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    191     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    192 
    193     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    194     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    195     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    196     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    197     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    198     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    199     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    200     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    201     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    202     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    203     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    204     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    205     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    206     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    207     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    208     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    209     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    210     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    211     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    212     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    213 
    214     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
    215     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
    216     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
    217     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
    218     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
    219     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
    220 
    221     // Vector double <-> i32 conversions.
    222     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    223     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    224 
    225     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    226     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    227     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    228     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    229     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    230     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    231 
    232     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
    233     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
    234     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
    235     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
    236     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
    237     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
    238   };
    239 
    240   if (SrcTy.isVector() && ST->hasNEON()) {
    241     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
    242                                                    DstTy.getSimpleVT(),
    243                                                    SrcTy.getSimpleVT()))
    244       return Entry->Cost;
    245   }
    246 
    247   // Scalar float to integer conversions.
    248   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
    249     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
    250     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
    251     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
    252     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
    253     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
    254     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
    255     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
    256     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
    257     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
    258     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
    259     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
    260     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
    261     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
    262     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
    263     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
    264     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
    265     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
    266     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
    267     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
    268     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
    269   };
    270   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
    271     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
    272                                                    DstTy.getSimpleVT(),
    273                                                    SrcTy.getSimpleVT()))
    274       return Entry->Cost;
    275   }
    276 
    277   // Scalar integer to float conversions.
    278   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
    279     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    280     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    281     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    282     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    283     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    284     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    285     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    286     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    287     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    288     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    289     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    290     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    291     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    292     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    293     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    294     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    295     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    296     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    297     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
    298     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
    299   };
    300 
    301   if (SrcTy.isInteger() && ST->hasNEON()) {
    302     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
    303                                                    ISD, DstTy.getSimpleVT(),
    304                                                    SrcTy.getSimpleVT()))
    305       return Entry->Cost;
    306   }
    307 
    308   // Scalar integer conversion costs.
    309   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
    310     // i16 -> i64 requires two dependent operations.
    311     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
    312 
    313     // Truncates on i64 are assumed to be free.
    314     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
    315     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
    316     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
    317     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
    318   };
    319 
    320   if (SrcTy.isInteger()) {
    321     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
    322                                                    DstTy.getSimpleVT(),
    323                                                    SrcTy.getSimpleVT()))
    324       return Entry->Cost;
    325   }
    326 
    327   return BaseT::getCastInstrCost(Opcode, Dst, Src);
    328 }
    329 
    330 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
    331                                    unsigned Index) {
    332   // Penalize inserting into an D-subregister. We end up with a three times
    333   // lower estimated throughput on swift.
    334   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
    335       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
    336     return 3;
    337 
    338   if ((Opcode == Instruction::InsertElement ||
    339        Opcode == Instruction::ExtractElement)) {
    340     // Cross-class copies are expensive on many microarchitectures,
    341     // so assume they are expensive by default.
    342     if (ValTy->getVectorElementType()->isIntegerTy())
    343       return 3;
    344 
    345     // Even if it's not a cross class copy, this likely leads to mixing
    346     // of NEON and VFP code and should be therefore penalized.
    347     if (ValTy->isVectorTy() &&
    348         ValTy->getScalarSizeInBits() <= 32)
    349       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
    350   }
    351 
    352   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
    353 }
    354 
    355 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
    356                                    const Instruction *I) {
    357   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    358   // On NEON a vector select gets lowered to vbsl.
    359   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
    360     // Lowering of some vector selects is currently far from perfect.
    361     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
    362       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
    363       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
    364       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
    365     };
    366 
    367     EVT SelCondTy = TLI->getValueType(DL, CondTy);
    368     EVT SelValTy = TLI->getValueType(DL, ValTy);
    369     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
    370       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
    371                                                      SelCondTy.getSimpleVT(),
    372                                                      SelValTy.getSimpleVT()))
    373         return Entry->Cost;
    374     }
    375 
    376     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    377     return LT.first;
    378   }
    379 
    380   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
    381 }
    382 
    383 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
    384                                           const SCEV *Ptr) {
    385   // Address computations in vectorized code with non-consecutive addresses will
    386   // likely result in more instructions compared to scalar code where the
    387   // computation can more often be merged into the index mode. The resulting
    388   // extra micro-ops can significantly decrease throughput.
    389   unsigned NumVectorInstToHideOverhead = 10;
    390   int MaxMergeDistance = 64;
    391 
    392   if (Ty->isVectorTy() && SE &&
    393       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
    394     return NumVectorInstToHideOverhead;
    395 
    396   // In many cases the address computation is not merged into the instruction
    397   // addressing mode.
    398   return 1;
    399 }
    400 
    401 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
    402                                Type *SubTp) {
    403   // We only handle costs of reverse and select shuffles for now.
    404   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Select)
    405     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    406 
    407   if (Kind == TTI::SK_Reverse) {
    408     static const CostTblEntry NEONShuffleTbl[] = {
    409         // Reverse shuffle cost one instruction if we are shuffling within a
    410         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
    411         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
    412         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
    413         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    414         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    415 
    416         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    417         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    418         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
    419         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
    420 
    421     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    422 
    423     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
    424                                             LT.second))
    425       return LT.first * Entry->Cost;
    426 
    427     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    428   }
    429   if (Kind == TTI::SK_Select) {
    430     static const CostTblEntry NEONSelShuffleTbl[] = {
    431         // Select shuffle cost table for ARM. Cost is the number of instructions
    432         // required to create the shuffled vector.
    433 
    434         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
    435         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    436         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    437         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
    438 
    439         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    440         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    441         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
    442 
    443         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
    444 
    445         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
    446 
    447     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    448     if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
    449                                             ISD::VECTOR_SHUFFLE, LT.second))
    450       return LT.first * Entry->Cost;
    451     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    452   }
    453   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    454 }
    455 
    456 int ARMTTIImpl::getArithmeticInstrCost(
    457     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
    458     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
    459     TTI::OperandValueProperties Opd2PropInfo,
    460     ArrayRef<const Value *> Args) {
    461   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
    462   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
    463 
    464   const unsigned FunctionCallDivCost = 20;
    465   const unsigned ReciprocalDivCost = 10;
    466   static const CostTblEntry CostTbl[] = {
    467     // Division.
    468     // These costs are somewhat random. Choose a cost of 20 to indicate that
    469     // vectorizing devision (added function call) is going to be very expensive.
    470     // Double registers types.
    471     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
    472     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
    473     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
    474     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
    475     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
    476     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
    477     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
    478     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
    479     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
    480     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
    481     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
    482     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
    483     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
    484     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
    485     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
    486     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
    487     // Quad register types.
    488     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
    489     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
    490     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
    491     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
    492     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
    493     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
    494     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
    495     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
    496     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
    497     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
    498     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
    499     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
    500     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
    501     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
    502     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
    503     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
    504     // Multiplication.
    505   };
    506 
    507   if (ST->hasNEON())
    508     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
    509       return LT.first * Entry->Cost;
    510 
    511   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
    512                                            Opd1PropInfo, Opd2PropInfo);
    513 
    514   // This is somewhat of a hack. The problem that we are facing is that SROA
    515   // creates a sequence of shift, and, or instructions to construct values.
    516   // These sequences are recognized by the ISel and have zero-cost. Not so for
    517   // the vectorized code. Because we have support for v2i64 but not i64 those
    518   // sequences look particularly beneficial to vectorize.
    519   // To work around this we increase the cost of v2i64 operations to make them
    520   // seem less beneficial.
    521   if (LT.second == MVT::v2i64 &&
    522       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
    523     Cost += 4;
    524 
    525   return Cost;
    526 }
    527 
    528 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    529                                 unsigned AddressSpace, const Instruction *I) {
    530   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    531 
    532   if (Src->isVectorTy() && Alignment != 16 &&
    533       Src->getVectorElementType()->isDoubleTy()) {
    534     // Unaligned loads/stores are extremely inefficient.
    535     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
    536     return LT.first * 4;
    537   }
    538   return LT.first;
    539 }
    540 
    541 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    542                                            unsigned Factor,
    543                                            ArrayRef<unsigned> Indices,
    544                                            unsigned Alignment,
    545                                            unsigned AddressSpace) {
    546   assert(Factor >= 2 && "Invalid interleave factor");
    547   assert(isa<VectorType>(VecTy) && "Expect a vector type");
    548 
    549   // vldN/vstN doesn't support vector types of i64/f64 element.
    550   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
    551 
    552   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
    553     unsigned NumElts = VecTy->getVectorNumElements();
    554     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
    555 
    556     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
    557     // Accesses having vector types that are a multiple of 128 bits can be
    558     // matched to more than one vldN/vstN instruction.
    559     if (NumElts % Factor == 0 &&
    560         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
    561       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
    562   }
    563 
    564   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
    565                                            Alignment, AddressSpace);
    566 }
    567 
    568 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
    569                                          TTI::UnrollingPreferences &UP) {
    570   // Only currently enable these preferences for M-Class cores.
    571   if (!ST->isMClass())
    572     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
    573 
    574   // Disable loop unrolling for Oz and Os.
    575   UP.OptSizeThreshold = 0;
    576   UP.PartialOptSizeThreshold = 0;
    577   if (L->getHeader()->getParent()->optForSize())
    578     return;
    579 
    580   // Only enable on Thumb-2 targets.
    581   if (!ST->isThumb2())
    582     return;
    583 
    584   SmallVector<BasicBlock*, 4> ExitingBlocks;
    585   L->getExitingBlocks(ExitingBlocks);
    586   LLVM_DEBUG(dbgs() << "Loop has:\n"
    587                     << "Blocks: " << L->getNumBlocks() << "\n"
    588                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
    589 
    590   // Only allow another exit other than the latch. This acts as an early exit
    591   // as it mirrors the profitability calculation of the runtime unroller.
    592   if (ExitingBlocks.size() > 2)
    593     return;
    594 
    595   // Limit the CFG of the loop body for targets with a branch predictor.
    596   // Allowing 4 blocks permits if-then-else diamonds in the body.
    597   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
    598     return;
    599 
    600   // Scan the loop: don't unroll loops with calls as this could prevent
    601   // inlining.
    602   unsigned Cost = 0;
    603   for (auto *BB : L->getBlocks()) {
    604     for (auto &I : *BB) {
    605       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    606         ImmutableCallSite CS(&I);
    607         if (const Function *F = CS.getCalledFunction()) {
    608           if (!isLoweredToCall(F))
    609             continue;
    610         }
    611         return;
    612       }
    613       SmallVector<const Value*, 4> Operands(I.value_op_begin(),
    614                                             I.value_op_end());
    615       Cost += getUserCost(&I, Operands);
    616     }
    617   }
    618 
    619   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
    620 
    621   UP.Partial = true;
    622   UP.Runtime = true;
    623   UP.UnrollRemainder = true;
    624   UP.DefaultUnrollRuntimeCount = 4;
    625   UP.UnrollAndJam = true;
    626   UP.UnrollAndJamInnerLoopThreshold = 60;
    627 
    628   // Force unrolling small loops can be very useful because of the branch
    629   // taken cost of the backedge.
    630   if (Cost < 12)
    631     UP.Force = true;
    632 }
    633