Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCalls.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitCall and visitInvoke functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/APFloat.h"
     16 #include "llvm/ADT/APInt.h"
     17 #include "llvm/ADT/ArrayRef.h"
     18 #include "llvm/ADT/None.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/ADT/Twine.h"
     24 #include "llvm/Analysis/AssumptionCache.h"
     25 #include "llvm/Analysis/InstructionSimplify.h"
     26 #include "llvm/Analysis/MemoryBuiltins.h"
     27 #include "llvm/Transforms/Utils/Local.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/IR/Attributes.h"
     30 #include "llvm/IR/BasicBlock.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/Constant.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DataLayout.h"
     35 #include "llvm/IR/DerivedTypes.h"
     36 #include "llvm/IR/Function.h"
     37 #include "llvm/IR/GlobalVariable.h"
     38 #include "llvm/IR/InstrTypes.h"
     39 #include "llvm/IR/Instruction.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/IR/IntrinsicInst.h"
     42 #include "llvm/IR/Intrinsics.h"
     43 #include "llvm/IR/LLVMContext.h"
     44 #include "llvm/IR/Metadata.h"
     45 #include "llvm/IR/PatternMatch.h"
     46 #include "llvm/IR/Statepoint.h"
     47 #include "llvm/IR/Type.h"
     48 #include "llvm/IR/User.h"
     49 #include "llvm/IR/Value.h"
     50 #include "llvm/IR/ValueHandle.h"
     51 #include "llvm/Support/AtomicOrdering.h"
     52 #include "llvm/Support/Casting.h"
     53 #include "llvm/Support/CommandLine.h"
     54 #include "llvm/Support/Compiler.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/ErrorHandling.h"
     57 #include "llvm/Support/KnownBits.h"
     58 #include "llvm/Support/MathExtras.h"
     59 #include "llvm/Support/raw_ostream.h"
     60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
     61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     62 #include <algorithm>
     63 #include <cassert>
     64 #include <cstdint>
     65 #include <cstring>
     66 #include <utility>
     67 #include <vector>
     68 
     69 using namespace llvm;
     70 using namespace PatternMatch;
     71 
     72 #define DEBUG_TYPE "instcombine"
     73 
     74 STATISTIC(NumSimplified, "Number of library calls simplified");
     75 
     76 static cl::opt<unsigned> GuardWideningWindow(
     77     "instcombine-guard-widening-window",
     78     cl::init(3),
     79     cl::desc("How wide an instruction window to bypass looking for "
     80              "another guard"));
     81 
     82 /// Return the specified type promoted as it would be to pass though a va_arg
     83 /// area.
     84 static Type *getPromotedType(Type *Ty) {
     85   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
     86     if (ITy->getBitWidth() < 32)
     87       return Type::getInt32Ty(Ty->getContext());
     88   }
     89   return Ty;
     90 }
     91 
     92 /// Return a constant boolean vector that has true elements in all positions
     93 /// where the input constant data vector has an element with the sign bit set.
     94 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
     95   SmallVector<Constant *, 32> BoolVec;
     96   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
     97   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
     98     Constant *Elt = V->getElementAsConstant(I);
     99     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
    100            "Unexpected constant data vector element type");
    101     bool Sign = V->getElementType()->isIntegerTy()
    102                     ? cast<ConstantInt>(Elt)->isNegative()
    103                     : cast<ConstantFP>(Elt)->isNegative();
    104     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
    105   }
    106   return ConstantVector::get(BoolVec);
    107 }
    108 
    109 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
    110   unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
    111   unsigned CopyDstAlign = MI->getDestAlignment();
    112   if (CopyDstAlign < DstAlign){
    113     MI->setDestAlignment(DstAlign);
    114     return MI;
    115   }
    116 
    117   unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
    118   unsigned CopySrcAlign = MI->getSourceAlignment();
    119   if (CopySrcAlign < SrcAlign) {
    120     MI->setSourceAlignment(SrcAlign);
    121     return MI;
    122   }
    123 
    124   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
    125   // load/store.
    126   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
    127   if (!MemOpLength) return nullptr;
    128 
    129   // Source and destination pointer types are always "i8*" for intrinsic.  See
    130   // if the size is something we can handle with a single primitive load/store.
    131   // A single load+store correctly handles overlapping memory in the memmove
    132   // case.
    133   uint64_t Size = MemOpLength->getLimitedValue();
    134   assert(Size && "0-sized memory transferring should be removed already.");
    135 
    136   if (Size > 8 || (Size&(Size-1)))
    137     return nullptr;  // If not 1/2/4/8 bytes, exit.
    138 
    139   // Use an integer load+store unless we can find something better.
    140   unsigned SrcAddrSp =
    141     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
    142   unsigned DstAddrSp =
    143     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
    144 
    145   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
    146   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
    147   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
    148 
    149   // If the memcpy has metadata describing the members, see if we can get the
    150   // TBAA tag describing our copy.
    151   MDNode *CopyMD = nullptr;
    152   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
    153     CopyMD = M;
    154   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
    155     if (M->getNumOperands() == 3 && M->getOperand(0) &&
    156         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
    157         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
    158         M->getOperand(1) &&
    159         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
    160         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
    161         Size &&
    162         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
    163       CopyMD = cast<MDNode>(M->getOperand(2));
    164   }
    165 
    166   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
    167   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
    168   LoadInst *L = Builder.CreateLoad(Src);
    169   // Alignment from the mem intrinsic will be better, so use it.
    170   L->setAlignment(CopySrcAlign);
    171   if (CopyMD)
    172     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
    173   MDNode *LoopMemParallelMD =
    174     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
    175   if (LoopMemParallelMD)
    176     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
    177 
    178   StoreInst *S = Builder.CreateStore(L, Dest);
    179   // Alignment from the mem intrinsic will be better, so use it.
    180   S->setAlignment(CopyDstAlign);
    181   if (CopyMD)
    182     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
    183   if (LoopMemParallelMD)
    184     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
    185 
    186   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
    187     // non-atomics can be volatile
    188     L->setVolatile(MT->isVolatile());
    189     S->setVolatile(MT->isVolatile());
    190   }
    191   if (isa<AtomicMemTransferInst>(MI)) {
    192     // atomics have to be unordered
    193     L->setOrdering(AtomicOrdering::Unordered);
    194     S->setOrdering(AtomicOrdering::Unordered);
    195   }
    196 
    197   // Set the size of the copy to 0, it will be deleted on the next iteration.
    198   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
    199   return MI;
    200 }
    201 
    202 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
    203   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
    204   if (MI->getDestAlignment() < Alignment) {
    205     MI->setDestAlignment(Alignment);
    206     return MI;
    207   }
    208 
    209   // Extract the length and alignment and fill if they are constant.
    210   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
    211   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
    212   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
    213     return nullptr;
    214   uint64_t Len = LenC->getLimitedValue();
    215   Alignment = MI->getDestAlignment();
    216   assert(Len && "0-sized memory setting should be removed already.");
    217 
    218   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
    219   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
    220     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
    221 
    222     Value *Dest = MI->getDest();
    223     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
    224     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
    225     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
    226 
    227     // Alignment 0 is identity for alignment 1 for memset, but not store.
    228     if (Alignment == 0) Alignment = 1;
    229 
    230     // Extract the fill value and store.
    231     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
    232     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
    233                                        MI->isVolatile());
    234     S->setAlignment(Alignment);
    235     if (isa<AtomicMemSetInst>(MI))
    236       S->setOrdering(AtomicOrdering::Unordered);
    237 
    238     // Set the size of the copy to 0, it will be deleted on the next iteration.
    239     MI->setLength(Constant::getNullValue(LenC->getType()));
    240     return MI;
    241   }
    242 
    243   return nullptr;
    244 }
    245 
    246 static Value *simplifyX86immShift(const IntrinsicInst &II,
    247                                   InstCombiner::BuilderTy &Builder) {
    248   bool LogicalShift = false;
    249   bool ShiftLeft = false;
    250 
    251   switch (II.getIntrinsicID()) {
    252   default: llvm_unreachable("Unexpected intrinsic!");
    253   case Intrinsic::x86_sse2_psra_d:
    254   case Intrinsic::x86_sse2_psra_w:
    255   case Intrinsic::x86_sse2_psrai_d:
    256   case Intrinsic::x86_sse2_psrai_w:
    257   case Intrinsic::x86_avx2_psra_d:
    258   case Intrinsic::x86_avx2_psra_w:
    259   case Intrinsic::x86_avx2_psrai_d:
    260   case Intrinsic::x86_avx2_psrai_w:
    261   case Intrinsic::x86_avx512_psra_q_128:
    262   case Intrinsic::x86_avx512_psrai_q_128:
    263   case Intrinsic::x86_avx512_psra_q_256:
    264   case Intrinsic::x86_avx512_psrai_q_256:
    265   case Intrinsic::x86_avx512_psra_d_512:
    266   case Intrinsic::x86_avx512_psra_q_512:
    267   case Intrinsic::x86_avx512_psra_w_512:
    268   case Intrinsic::x86_avx512_psrai_d_512:
    269   case Intrinsic::x86_avx512_psrai_q_512:
    270   case Intrinsic::x86_avx512_psrai_w_512:
    271     LogicalShift = false; ShiftLeft = false;
    272     break;
    273   case Intrinsic::x86_sse2_psrl_d:
    274   case Intrinsic::x86_sse2_psrl_q:
    275   case Intrinsic::x86_sse2_psrl_w:
    276   case Intrinsic::x86_sse2_psrli_d:
    277   case Intrinsic::x86_sse2_psrli_q:
    278   case Intrinsic::x86_sse2_psrli_w:
    279   case Intrinsic::x86_avx2_psrl_d:
    280   case Intrinsic::x86_avx2_psrl_q:
    281   case Intrinsic::x86_avx2_psrl_w:
    282   case Intrinsic::x86_avx2_psrli_d:
    283   case Intrinsic::x86_avx2_psrli_q:
    284   case Intrinsic::x86_avx2_psrli_w:
    285   case Intrinsic::x86_avx512_psrl_d_512:
    286   case Intrinsic::x86_avx512_psrl_q_512:
    287   case Intrinsic::x86_avx512_psrl_w_512:
    288   case Intrinsic::x86_avx512_psrli_d_512:
    289   case Intrinsic::x86_avx512_psrli_q_512:
    290   case Intrinsic::x86_avx512_psrli_w_512:
    291     LogicalShift = true; ShiftLeft = false;
    292     break;
    293   case Intrinsic::x86_sse2_psll_d:
    294   case Intrinsic::x86_sse2_psll_q:
    295   case Intrinsic::x86_sse2_psll_w:
    296   case Intrinsic::x86_sse2_pslli_d:
    297   case Intrinsic::x86_sse2_pslli_q:
    298   case Intrinsic::x86_sse2_pslli_w:
    299   case Intrinsic::x86_avx2_psll_d:
    300   case Intrinsic::x86_avx2_psll_q:
    301   case Intrinsic::x86_avx2_psll_w:
    302   case Intrinsic::x86_avx2_pslli_d:
    303   case Intrinsic::x86_avx2_pslli_q:
    304   case Intrinsic::x86_avx2_pslli_w:
    305   case Intrinsic::x86_avx512_psll_d_512:
    306   case Intrinsic::x86_avx512_psll_q_512:
    307   case Intrinsic::x86_avx512_psll_w_512:
    308   case Intrinsic::x86_avx512_pslli_d_512:
    309   case Intrinsic::x86_avx512_pslli_q_512:
    310   case Intrinsic::x86_avx512_pslli_w_512:
    311     LogicalShift = true; ShiftLeft = true;
    312     break;
    313   }
    314   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
    315 
    316   // Simplify if count is constant.
    317   auto Arg1 = II.getArgOperand(1);
    318   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
    319   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
    320   auto CInt = dyn_cast<ConstantInt>(Arg1);
    321   if (!CAZ && !CDV && !CInt)
    322     return nullptr;
    323 
    324   APInt Count(64, 0);
    325   if (CDV) {
    326     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
    327     // operand to compute the shift amount.
    328     auto VT = cast<VectorType>(CDV->getType());
    329     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
    330     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
    331     unsigned NumSubElts = 64 / BitWidth;
    332 
    333     // Concatenate the sub-elements to create the 64-bit value.
    334     for (unsigned i = 0; i != NumSubElts; ++i) {
    335       unsigned SubEltIdx = (NumSubElts - 1) - i;
    336       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
    337       Count <<= BitWidth;
    338       Count |= SubElt->getValue().zextOrTrunc(64);
    339     }
    340   }
    341   else if (CInt)
    342     Count = CInt->getValue();
    343 
    344   auto Vec = II.getArgOperand(0);
    345   auto VT = cast<VectorType>(Vec->getType());
    346   auto SVT = VT->getElementType();
    347   unsigned VWidth = VT->getNumElements();
    348   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
    349 
    350   // If shift-by-zero then just return the original value.
    351   if (Count.isNullValue())
    352     return Vec;
    353 
    354   // Handle cases when Shift >= BitWidth.
    355   if (Count.uge(BitWidth)) {
    356     // If LogicalShift - just return zero.
    357     if (LogicalShift)
    358       return ConstantAggregateZero::get(VT);
    359 
    360     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
    361     Count = APInt(64, BitWidth - 1);
    362   }
    363 
    364   // Get a constant vector of the same type as the first operand.
    365   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
    366   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
    367 
    368   if (ShiftLeft)
    369     return Builder.CreateShl(Vec, ShiftVec);
    370 
    371   if (LogicalShift)
    372     return Builder.CreateLShr(Vec, ShiftVec);
    373 
    374   return Builder.CreateAShr(Vec, ShiftVec);
    375 }
    376 
    377 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
    378 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
    379 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
    380 static Value *simplifyX86varShift(const IntrinsicInst &II,
    381                                   InstCombiner::BuilderTy &Builder) {
    382   bool LogicalShift = false;
    383   bool ShiftLeft = false;
    384 
    385   switch (II.getIntrinsicID()) {
    386   default: llvm_unreachable("Unexpected intrinsic!");
    387   case Intrinsic::x86_avx2_psrav_d:
    388   case Intrinsic::x86_avx2_psrav_d_256:
    389   case Intrinsic::x86_avx512_psrav_q_128:
    390   case Intrinsic::x86_avx512_psrav_q_256:
    391   case Intrinsic::x86_avx512_psrav_d_512:
    392   case Intrinsic::x86_avx512_psrav_q_512:
    393   case Intrinsic::x86_avx512_psrav_w_128:
    394   case Intrinsic::x86_avx512_psrav_w_256:
    395   case Intrinsic::x86_avx512_psrav_w_512:
    396     LogicalShift = false;
    397     ShiftLeft = false;
    398     break;
    399   case Intrinsic::x86_avx2_psrlv_d:
    400   case Intrinsic::x86_avx2_psrlv_d_256:
    401   case Intrinsic::x86_avx2_psrlv_q:
    402   case Intrinsic::x86_avx2_psrlv_q_256:
    403   case Intrinsic::x86_avx512_psrlv_d_512:
    404   case Intrinsic::x86_avx512_psrlv_q_512:
    405   case Intrinsic::x86_avx512_psrlv_w_128:
    406   case Intrinsic::x86_avx512_psrlv_w_256:
    407   case Intrinsic::x86_avx512_psrlv_w_512:
    408     LogicalShift = true;
    409     ShiftLeft = false;
    410     break;
    411   case Intrinsic::x86_avx2_psllv_d:
    412   case Intrinsic::x86_avx2_psllv_d_256:
    413   case Intrinsic::x86_avx2_psllv_q:
    414   case Intrinsic::x86_avx2_psllv_q_256:
    415   case Intrinsic::x86_avx512_psllv_d_512:
    416   case Intrinsic::x86_avx512_psllv_q_512:
    417   case Intrinsic::x86_avx512_psllv_w_128:
    418   case Intrinsic::x86_avx512_psllv_w_256:
    419   case Intrinsic::x86_avx512_psllv_w_512:
    420     LogicalShift = true;
    421     ShiftLeft = true;
    422     break;
    423   }
    424   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
    425 
    426   // Simplify if all shift amounts are constant/undef.
    427   auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
    428   if (!CShift)
    429     return nullptr;
    430 
    431   auto Vec = II.getArgOperand(0);
    432   auto VT = cast<VectorType>(II.getType());
    433   auto SVT = VT->getVectorElementType();
    434   int NumElts = VT->getNumElements();
    435   int BitWidth = SVT->getIntegerBitWidth();
    436 
    437   // Collect each element's shift amount.
    438   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
    439   bool AnyOutOfRange = false;
    440   SmallVector<int, 8> ShiftAmts;
    441   for (int I = 0; I < NumElts; ++I) {
    442     auto *CElt = CShift->getAggregateElement(I);
    443     if (CElt && isa<UndefValue>(CElt)) {
    444       ShiftAmts.push_back(-1);
    445       continue;
    446     }
    447 
    448     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
    449     if (!COp)
    450       return nullptr;
    451 
    452     // Handle out of range shifts.
    453     // If LogicalShift - set to BitWidth (special case).
    454     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
    455     APInt ShiftVal = COp->getValue();
    456     if (ShiftVal.uge(BitWidth)) {
    457       AnyOutOfRange = LogicalShift;
    458       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
    459       continue;
    460     }
    461 
    462     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
    463   }
    464 
    465   // If all elements out of range or UNDEF, return vector of zeros/undefs.
    466   // ArithmeticShift should only hit this if they are all UNDEF.
    467   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
    468   if (llvm::all_of(ShiftAmts, OutOfRange)) {
    469     SmallVector<Constant *, 8> ConstantVec;
    470     for (int Idx : ShiftAmts) {
    471       if (Idx < 0) {
    472         ConstantVec.push_back(UndefValue::get(SVT));
    473       } else {
    474         assert(LogicalShift && "Logical shift expected");
    475         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
    476       }
    477     }
    478     return ConstantVector::get(ConstantVec);
    479   }
    480 
    481   // We can't handle only some out of range values with generic logical shifts.
    482   if (AnyOutOfRange)
    483     return nullptr;
    484 
    485   // Build the shift amount constant vector.
    486   SmallVector<Constant *, 8> ShiftVecAmts;
    487   for (int Idx : ShiftAmts) {
    488     if (Idx < 0)
    489       ShiftVecAmts.push_back(UndefValue::get(SVT));
    490     else
    491       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
    492   }
    493   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
    494 
    495   if (ShiftLeft)
    496     return Builder.CreateShl(Vec, ShiftVec);
    497 
    498   if (LogicalShift)
    499     return Builder.CreateLShr(Vec, ShiftVec);
    500 
    501   return Builder.CreateAShr(Vec, ShiftVec);
    502 }
    503 
    504 static Value *simplifyX86pack(IntrinsicInst &II, bool IsSigned) {
    505   Value *Arg0 = II.getArgOperand(0);
    506   Value *Arg1 = II.getArgOperand(1);
    507   Type *ResTy = II.getType();
    508 
    509   // Fast all undef handling.
    510   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
    511     return UndefValue::get(ResTy);
    512 
    513   Type *ArgTy = Arg0->getType();
    514   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
    515   unsigned NumDstElts = ResTy->getVectorNumElements();
    516   unsigned NumSrcElts = ArgTy->getVectorNumElements();
    517   assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
    518 
    519   unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
    520   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
    521   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
    522   assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
    523          "Unexpected packing types");
    524 
    525   // Constant folding.
    526   auto *Cst0 = dyn_cast<Constant>(Arg0);
    527   auto *Cst1 = dyn_cast<Constant>(Arg1);
    528   if (!Cst0 || !Cst1)
    529     return nullptr;
    530 
    531   SmallVector<Constant *, 32> Vals;
    532   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
    533     for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
    534       unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
    535       auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
    536       auto *COp = Cst->getAggregateElement(SrcIdx);
    537       if (COp && isa<UndefValue>(COp)) {
    538         Vals.push_back(UndefValue::get(ResTy->getScalarType()));
    539         continue;
    540       }
    541 
    542       auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
    543       if (!CInt)
    544         return nullptr;
    545 
    546       APInt Val = CInt->getValue();
    547       assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
    548              "Unexpected constant bitwidth");
    549 
    550       if (IsSigned) {
    551         // PACKSS: Truncate signed value with signed saturation.
    552         // Source values less than dst minint are saturated to minint.
    553         // Source values greater than dst maxint are saturated to maxint.
    554         if (Val.isSignedIntN(DstScalarSizeInBits))
    555           Val = Val.trunc(DstScalarSizeInBits);
    556         else if (Val.isNegative())
    557           Val = APInt::getSignedMinValue(DstScalarSizeInBits);
    558         else
    559           Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
    560       } else {
    561         // PACKUS: Truncate signed value with unsigned saturation.
    562         // Source values less than zero are saturated to zero.
    563         // Source values greater than dst maxuint are saturated to maxuint.
    564         if (Val.isIntN(DstScalarSizeInBits))
    565           Val = Val.trunc(DstScalarSizeInBits);
    566         else if (Val.isNegative())
    567           Val = APInt::getNullValue(DstScalarSizeInBits);
    568         else
    569           Val = APInt::getAllOnesValue(DstScalarSizeInBits);
    570       }
    571 
    572       Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
    573     }
    574   }
    575 
    576   return ConstantVector::get(Vals);
    577 }
    578 
    579 // Replace X86-specific intrinsics with generic floor-ceil where applicable.
    580 static Value *simplifyX86round(IntrinsicInst &II,
    581                                InstCombiner::BuilderTy &Builder) {
    582   ConstantInt *Arg = nullptr;
    583   Intrinsic::ID IntrinsicID = II.getIntrinsicID();
    584 
    585   if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
    586       IntrinsicID == Intrinsic::x86_sse41_round_sd)
    587     Arg = dyn_cast<ConstantInt>(II.getArgOperand(2));
    588   else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
    589            IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
    590     Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
    591   else
    592     Arg = dyn_cast<ConstantInt>(II.getArgOperand(1));
    593   if (!Arg)
    594     return nullptr;
    595   unsigned RoundControl = Arg->getZExtValue();
    596 
    597   Arg = nullptr;
    598   unsigned SAE = 0;
    599   if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
    600       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512)
    601     Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
    602   else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
    603            IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
    604     Arg = dyn_cast<ConstantInt>(II.getArgOperand(5));
    605   else
    606     SAE = 4;
    607   if (!SAE) {
    608     if (!Arg)
    609       return nullptr;
    610     SAE = Arg->getZExtValue();
    611   }
    612 
    613   if (SAE != 4 || (RoundControl != 2 /*ceil*/ && RoundControl != 1 /*floor*/))
    614     return nullptr;
    615 
    616   Value *Src, *Dst, *Mask;
    617   bool IsScalar = false;
    618   if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
    619       IntrinsicID == Intrinsic::x86_sse41_round_sd ||
    620       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
    621       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
    622     IsScalar = true;
    623     if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
    624         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
    625       Mask = II.getArgOperand(3);
    626       Value *Zero = Constant::getNullValue(Mask->getType());
    627       Mask = Builder.CreateAnd(Mask, 1);
    628       Mask = Builder.CreateICmp(ICmpInst::ICMP_NE, Mask, Zero);
    629       Dst = II.getArgOperand(2);
    630     } else
    631       Dst = II.getArgOperand(0);
    632     Src = Builder.CreateExtractElement(II.getArgOperand(1), (uint64_t)0);
    633   } else {
    634     Src = II.getArgOperand(0);
    635     if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_128 ||
    636         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_256 ||
    637         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
    638         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_128 ||
    639         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_256 ||
    640         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512) {
    641       Dst = II.getArgOperand(2);
    642       Mask = II.getArgOperand(3);
    643     } else {
    644       Dst = Src;
    645       Mask = ConstantInt::getAllOnesValue(
    646           Builder.getIntNTy(Src->getType()->getVectorNumElements()));
    647     }
    648   }
    649 
    650   Intrinsic::ID ID = (RoundControl == 2) ? Intrinsic::ceil : Intrinsic::floor;
    651   Value *Res = Builder.CreateIntrinsic(ID, {Src}, &II);
    652   if (!IsScalar) {
    653     if (auto *C = dyn_cast<Constant>(Mask))
    654       if (C->isAllOnesValue())
    655         return Res;
    656     auto *MaskTy = VectorType::get(
    657         Builder.getInt1Ty(), cast<IntegerType>(Mask->getType())->getBitWidth());
    658     Mask = Builder.CreateBitCast(Mask, MaskTy);
    659     unsigned Width = Src->getType()->getVectorNumElements();
    660     if (MaskTy->getVectorNumElements() > Width) {
    661       uint32_t Indices[4];
    662       for (unsigned i = 0; i != Width; ++i)
    663         Indices[i] = i;
    664       Mask = Builder.CreateShuffleVector(Mask, Mask,
    665                                          makeArrayRef(Indices, Width));
    666     }
    667     return Builder.CreateSelect(Mask, Res, Dst);
    668   }
    669   if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
    670       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
    671     Dst = Builder.CreateExtractElement(Dst, (uint64_t)0);
    672     Res = Builder.CreateSelect(Mask, Res, Dst);
    673     Dst = II.getArgOperand(0);
    674   }
    675   return Builder.CreateInsertElement(Dst, Res, (uint64_t)0);
    676 }
    677 
    678 static Value *simplifyX86movmsk(const IntrinsicInst &II) {
    679   Value *Arg = II.getArgOperand(0);
    680   Type *ResTy = II.getType();
    681   Type *ArgTy = Arg->getType();
    682 
    683   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
    684   if (isa<UndefValue>(Arg))
    685     return Constant::getNullValue(ResTy);
    686 
    687   // We can't easily peek through x86_mmx types.
    688   if (!ArgTy->isVectorTy())
    689     return nullptr;
    690 
    691   auto *C = dyn_cast<Constant>(Arg);
    692   if (!C)
    693     return nullptr;
    694 
    695   // Extract signbits of the vector input and pack into integer result.
    696   APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
    697   for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
    698     auto *COp = C->getAggregateElement(I);
    699     if (!COp)
    700       return nullptr;
    701     if (isa<UndefValue>(COp))
    702       continue;
    703 
    704     auto *CInt = dyn_cast<ConstantInt>(COp);
    705     auto *CFp = dyn_cast<ConstantFP>(COp);
    706     if (!CInt && !CFp)
    707       return nullptr;
    708 
    709     if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
    710       Result.setBit(I);
    711   }
    712 
    713   return Constant::getIntegerValue(ResTy, Result);
    714 }
    715 
    716 static Value *simplifyX86insertps(const IntrinsicInst &II,
    717                                   InstCombiner::BuilderTy &Builder) {
    718   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
    719   if (!CInt)
    720     return nullptr;
    721 
    722   VectorType *VecTy = cast<VectorType>(II.getType());
    723   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
    724 
    725   // The immediate permute control byte looks like this:
    726   //    [3:0] - zero mask for each 32-bit lane
    727   //    [5:4] - select one 32-bit destination lane
    728   //    [7:6] - select one 32-bit source lane
    729 
    730   uint8_t Imm = CInt->getZExtValue();
    731   uint8_t ZMask = Imm & 0xf;
    732   uint8_t DestLane = (Imm >> 4) & 0x3;
    733   uint8_t SourceLane = (Imm >> 6) & 0x3;
    734 
    735   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
    736 
    737   // If all zero mask bits are set, this was just a weird way to
    738   // generate a zero vector.
    739   if (ZMask == 0xf)
    740     return ZeroVector;
    741 
    742   // Initialize by passing all of the first source bits through.
    743   uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
    744 
    745   // We may replace the second operand with the zero vector.
    746   Value *V1 = II.getArgOperand(1);
    747 
    748   if (ZMask) {
    749     // If the zero mask is being used with a single input or the zero mask
    750     // overrides the destination lane, this is a shuffle with the zero vector.
    751     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
    752         (ZMask & (1 << DestLane))) {
    753       V1 = ZeroVector;
    754       // We may still move 32-bits of the first source vector from one lane
    755       // to another.
    756       ShuffleMask[DestLane] = SourceLane;
    757       // The zero mask may override the previous insert operation.
    758       for (unsigned i = 0; i < 4; ++i)
    759         if ((ZMask >> i) & 0x1)
    760           ShuffleMask[i] = i + 4;
    761     } else {
    762       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
    763       return nullptr;
    764     }
    765   } else {
    766     // Replace the selected destination lane with the selected source lane.
    767     ShuffleMask[DestLane] = SourceLane + 4;
    768   }
    769 
    770   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
    771 }
    772 
    773 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
    774 /// or conversion to a shuffle vector.
    775 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
    776                                ConstantInt *CILength, ConstantInt *CIIndex,
    777                                InstCombiner::BuilderTy &Builder) {
    778   auto LowConstantHighUndef = [&](uint64_t Val) {
    779     Type *IntTy64 = Type::getInt64Ty(II.getContext());
    780     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
    781                         UndefValue::get(IntTy64)};
    782     return ConstantVector::get(Args);
    783   };
    784 
    785   // See if we're dealing with constant values.
    786   Constant *C0 = dyn_cast<Constant>(Op0);
    787   ConstantInt *CI0 =
    788       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
    789          : nullptr;
    790 
    791   // Attempt to constant fold.
    792   if (CILength && CIIndex) {
    793     // From AMD documentation: "The bit index and field length are each six
    794     // bits in length other bits of the field are ignored."
    795     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
    796     APInt APLength = CILength->getValue().zextOrTrunc(6);
    797 
    798     unsigned Index = APIndex.getZExtValue();
    799 
    800     // From AMD documentation: "a value of zero in the field length is
    801     // defined as length of 64".
    802     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
    803 
    804     // From AMD documentation: "If the sum of the bit index + length field
    805     // is greater than 64, the results are undefined".
    806     unsigned End = Index + Length;
    807 
    808     // Note that both field index and field length are 8-bit quantities.
    809     // Since variables 'Index' and 'Length' are unsigned values
    810     // obtained from zero-extending field index and field length
    811     // respectively, their sum should never wrap around.
    812     if (End > 64)
    813       return UndefValue::get(II.getType());
    814 
    815     // If we are inserting whole bytes, we can convert this to a shuffle.
    816     // Lowering can recognize EXTRQI shuffle masks.
    817     if ((Length % 8) == 0 && (Index % 8) == 0) {
    818       // Convert bit indices to byte indices.
    819       Length /= 8;
    820       Index /= 8;
    821 
    822       Type *IntTy8 = Type::getInt8Ty(II.getContext());
    823       Type *IntTy32 = Type::getInt32Ty(II.getContext());
    824       VectorType *ShufTy = VectorType::get(IntTy8, 16);
    825 
    826       SmallVector<Constant *, 16> ShuffleMask;
    827       for (int i = 0; i != (int)Length; ++i)
    828         ShuffleMask.push_back(
    829             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
    830       for (int i = Length; i != 8; ++i)
    831         ShuffleMask.push_back(
    832             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
    833       for (int i = 8; i != 16; ++i)
    834         ShuffleMask.push_back(UndefValue::get(IntTy32));
    835 
    836       Value *SV = Builder.CreateShuffleVector(
    837           Builder.CreateBitCast(Op0, ShufTy),
    838           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
    839       return Builder.CreateBitCast(SV, II.getType());
    840     }
    841 
    842     // Constant Fold - shift Index'th bit to lowest position and mask off
    843     // Length bits.
    844     if (CI0) {
    845       APInt Elt = CI0->getValue();
    846       Elt.lshrInPlace(Index);
    847       Elt = Elt.zextOrTrunc(Length);
    848       return LowConstantHighUndef(Elt.getZExtValue());
    849     }
    850 
    851     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
    852     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
    853       Value *Args[] = {Op0, CILength, CIIndex};
    854       Module *M = II.getModule();
    855       Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
    856       return Builder.CreateCall(F, Args);
    857     }
    858   }
    859 
    860   // Constant Fold - extraction from zero is always {zero, undef}.
    861   if (CI0 && CI0->isZero())
    862     return LowConstantHighUndef(0);
    863 
    864   return nullptr;
    865 }
    866 
    867 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
    868 /// folding or conversion to a shuffle vector.
    869 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
    870                                  APInt APLength, APInt APIndex,
    871                                  InstCombiner::BuilderTy &Builder) {
    872   // From AMD documentation: "The bit index and field length are each six bits
    873   // in length other bits of the field are ignored."
    874   APIndex = APIndex.zextOrTrunc(6);
    875   APLength = APLength.zextOrTrunc(6);
    876 
    877   // Attempt to constant fold.
    878   unsigned Index = APIndex.getZExtValue();
    879 
    880   // From AMD documentation: "a value of zero in the field length is
    881   // defined as length of 64".
    882   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
    883 
    884   // From AMD documentation: "If the sum of the bit index + length field
    885   // is greater than 64, the results are undefined".
    886   unsigned End = Index + Length;
    887 
    888   // Note that both field index and field length are 8-bit quantities.
    889   // Since variables 'Index' and 'Length' are unsigned values
    890   // obtained from zero-extending field index and field length
    891   // respectively, their sum should never wrap around.
    892   if (End > 64)
    893     return UndefValue::get(II.getType());
    894 
    895   // If we are inserting whole bytes, we can convert this to a shuffle.
    896   // Lowering can recognize INSERTQI shuffle masks.
    897   if ((Length % 8) == 0 && (Index % 8) == 0) {
    898     // Convert bit indices to byte indices.
    899     Length /= 8;
    900     Index /= 8;
    901 
    902     Type *IntTy8 = Type::getInt8Ty(II.getContext());
    903     Type *IntTy32 = Type::getInt32Ty(II.getContext());
    904     VectorType *ShufTy = VectorType::get(IntTy8, 16);
    905 
    906     SmallVector<Constant *, 16> ShuffleMask;
    907     for (int i = 0; i != (int)Index; ++i)
    908       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
    909     for (int i = 0; i != (int)Length; ++i)
    910       ShuffleMask.push_back(
    911           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
    912     for (int i = Index + Length; i != 8; ++i)
    913       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
    914     for (int i = 8; i != 16; ++i)
    915       ShuffleMask.push_back(UndefValue::get(IntTy32));
    916 
    917     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
    918                                             Builder.CreateBitCast(Op1, ShufTy),
    919                                             ConstantVector::get(ShuffleMask));
    920     return Builder.CreateBitCast(SV, II.getType());
    921   }
    922 
    923   // See if we're dealing with constant values.
    924   Constant *C0 = dyn_cast<Constant>(Op0);
    925   Constant *C1 = dyn_cast<Constant>(Op1);
    926   ConstantInt *CI00 =
    927       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
    928          : nullptr;
    929   ConstantInt *CI10 =
    930       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
    931          : nullptr;
    932 
    933   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
    934   if (CI00 && CI10) {
    935     APInt V00 = CI00->getValue();
    936     APInt V10 = CI10->getValue();
    937     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
    938     V00 = V00 & ~Mask;
    939     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
    940     APInt Val = V00 | V10;
    941     Type *IntTy64 = Type::getInt64Ty(II.getContext());
    942     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
    943                         UndefValue::get(IntTy64)};
    944     return ConstantVector::get(Args);
    945   }
    946 
    947   // If we were an INSERTQ call, we'll save demanded elements if we convert to
    948   // INSERTQI.
    949   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
    950     Type *IntTy8 = Type::getInt8Ty(II.getContext());
    951     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
    952     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
    953 
    954     Value *Args[] = {Op0, Op1, CILength, CIIndex};
    955     Module *M = II.getModule();
    956     Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
    957     return Builder.CreateCall(F, Args);
    958   }
    959 
    960   return nullptr;
    961 }
    962 
    963 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
    964 static Value *simplifyX86pshufb(const IntrinsicInst &II,
    965                                 InstCombiner::BuilderTy &Builder) {
    966   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
    967   if (!V)
    968     return nullptr;
    969 
    970   auto *VecTy = cast<VectorType>(II.getType());
    971   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
    972   unsigned NumElts = VecTy->getNumElements();
    973   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
    974          "Unexpected number of elements in shuffle mask!");
    975 
    976   // Construct a shuffle mask from constant integers or UNDEFs.
    977   Constant *Indexes[64] = {nullptr};
    978 
    979   // Each byte in the shuffle control mask forms an index to permute the
    980   // corresponding byte in the destination operand.
    981   for (unsigned I = 0; I < NumElts; ++I) {
    982     Constant *COp = V->getAggregateElement(I);
    983     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
    984       return nullptr;
    985 
    986     if (isa<UndefValue>(COp)) {
    987       Indexes[I] = UndefValue::get(MaskEltTy);
    988       continue;
    989     }
    990 
    991     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
    992 
    993     // If the most significant bit (bit[7]) of each byte of the shuffle
    994     // control mask is set, then zero is written in the result byte.
    995     // The zero vector is in the right-hand side of the resulting
    996     // shufflevector.
    997 
    998     // The value of each index for the high 128-bit lane is the least
    999     // significant 4 bits of the respective shuffle control byte.
   1000     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
   1001     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
   1002   }
   1003 
   1004   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
   1005   auto V1 = II.getArgOperand(0);
   1006   auto V2 = Constant::getNullValue(VecTy);
   1007   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
   1008 }
   1009 
   1010 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
   1011 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
   1012                                     InstCombiner::BuilderTy &Builder) {
   1013   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
   1014   if (!V)
   1015     return nullptr;
   1016 
   1017   auto *VecTy = cast<VectorType>(II.getType());
   1018   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
   1019   unsigned NumElts = VecTy->getVectorNumElements();
   1020   bool IsPD = VecTy->getScalarType()->isDoubleTy();
   1021   unsigned NumLaneElts = IsPD ? 2 : 4;
   1022   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
   1023 
   1024   // Construct a shuffle mask from constant integers or UNDEFs.
   1025   Constant *Indexes[16] = {nullptr};
   1026 
   1027   // The intrinsics only read one or two bits, clear the rest.
   1028   for (unsigned I = 0; I < NumElts; ++I) {
   1029     Constant *COp = V->getAggregateElement(I);
   1030     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
   1031       return nullptr;
   1032 
   1033     if (isa<UndefValue>(COp)) {
   1034       Indexes[I] = UndefValue::get(MaskEltTy);
   1035       continue;
   1036     }
   1037 
   1038     APInt Index = cast<ConstantInt>(COp)->getValue();
   1039     Index = Index.zextOrTrunc(32).getLoBits(2);
   1040 
   1041     // The PD variants uses bit 1 to select per-lane element index, so
   1042     // shift down to convert to generic shuffle mask index.
   1043     if (IsPD)
   1044       Index.lshrInPlace(1);
   1045 
   1046     // The _256 variants are a bit trickier since the mask bits always index
   1047     // into the corresponding 128 half. In order to convert to a generic
   1048     // shuffle, we have to make that explicit.
   1049     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
   1050 
   1051     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
   1052   }
   1053 
   1054   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
   1055   auto V1 = II.getArgOperand(0);
   1056   auto V2 = UndefValue::get(V1->getType());
   1057   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
   1058 }
   1059 
   1060 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
   1061 static Value *simplifyX86vpermv(const IntrinsicInst &II,
   1062                                 InstCombiner::BuilderTy &Builder) {
   1063   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
   1064   if (!V)
   1065     return nullptr;
   1066 
   1067   auto *VecTy = cast<VectorType>(II.getType());
   1068   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
   1069   unsigned Size = VecTy->getNumElements();
   1070   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
   1071          "Unexpected shuffle mask size");
   1072 
   1073   // Construct a shuffle mask from constant integers or UNDEFs.
   1074   Constant *Indexes[64] = {nullptr};
   1075 
   1076   for (unsigned I = 0; I < Size; ++I) {
   1077     Constant *COp = V->getAggregateElement(I);
   1078     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
   1079       return nullptr;
   1080 
   1081     if (isa<UndefValue>(COp)) {
   1082       Indexes[I] = UndefValue::get(MaskEltTy);
   1083       continue;
   1084     }
   1085 
   1086     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
   1087     Index &= Size - 1;
   1088     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
   1089   }
   1090 
   1091   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
   1092   auto V1 = II.getArgOperand(0);
   1093   auto V2 = UndefValue::get(VecTy);
   1094   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
   1095 }
   1096 
   1097 /// Decode XOP integer vector comparison intrinsics.
   1098 static Value *simplifyX86vpcom(const IntrinsicInst &II,
   1099                                InstCombiner::BuilderTy &Builder,
   1100                                bool IsSigned) {
   1101   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
   1102     uint64_t Imm = CInt->getZExtValue() & 0x7;
   1103     VectorType *VecTy = cast<VectorType>(II.getType());
   1104     CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1105 
   1106     switch (Imm) {
   1107     case 0x0:
   1108       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1109       break;
   1110     case 0x1:
   1111       Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
   1112       break;
   1113     case 0x2:
   1114       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1115       break;
   1116     case 0x3:
   1117       Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
   1118       break;
   1119     case 0x4:
   1120       Pred = ICmpInst::ICMP_EQ; break;
   1121     case 0x5:
   1122       Pred = ICmpInst::ICMP_NE; break;
   1123     case 0x6:
   1124       return ConstantInt::getSigned(VecTy, 0); // FALSE
   1125     case 0x7:
   1126       return ConstantInt::getSigned(VecTy, -1); // TRUE
   1127     }
   1128 
   1129     if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
   1130                                         II.getArgOperand(1)))
   1131       return Builder.CreateSExtOrTrunc(Cmp, VecTy);
   1132   }
   1133   return nullptr;
   1134 }
   1135 
   1136 static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
   1137   Value *Arg0 = II.getArgOperand(0);
   1138   Value *Arg1 = II.getArgOperand(1);
   1139 
   1140   // fmin(x, x) -> x
   1141   if (Arg0 == Arg1)
   1142     return Arg0;
   1143 
   1144   const auto *C1 = dyn_cast<ConstantFP>(Arg1);
   1145 
   1146   // fmin(x, nan) -> x
   1147   if (C1 && C1->isNaN())
   1148     return Arg0;
   1149 
   1150   // This is the value because if undef were NaN, we would return the other
   1151   // value and cannot return a NaN unless both operands are.
   1152   //
   1153   // fmin(undef, x) -> x
   1154   if (isa<UndefValue>(Arg0))
   1155     return Arg1;
   1156 
   1157   // fmin(x, undef) -> x
   1158   if (isa<UndefValue>(Arg1))
   1159     return Arg0;
   1160 
   1161   Value *X = nullptr;
   1162   Value *Y = nullptr;
   1163   if (II.getIntrinsicID() == Intrinsic::minnum) {
   1164     // fmin(x, fmin(x, y)) -> fmin(x, y)
   1165     // fmin(y, fmin(x, y)) -> fmin(x, y)
   1166     if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
   1167       if (Arg0 == X || Arg0 == Y)
   1168         return Arg1;
   1169     }
   1170 
   1171     // fmin(fmin(x, y), x) -> fmin(x, y)
   1172     // fmin(fmin(x, y), y) -> fmin(x, y)
   1173     if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
   1174       if (Arg1 == X || Arg1 == Y)
   1175         return Arg0;
   1176     }
   1177 
   1178     // TODO: fmin(nnan x, inf) -> x
   1179     // TODO: fmin(nnan ninf x, flt_max) -> x
   1180     if (C1 && C1->isInfinity()) {
   1181       // fmin(x, -inf) -> -inf
   1182       if (C1->isNegative())
   1183         return Arg1;
   1184     }
   1185   } else {
   1186     assert(II.getIntrinsicID() == Intrinsic::maxnum);
   1187     // fmax(x, fmax(x, y)) -> fmax(x, y)
   1188     // fmax(y, fmax(x, y)) -> fmax(x, y)
   1189     if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
   1190       if (Arg0 == X || Arg0 == Y)
   1191         return Arg1;
   1192     }
   1193 
   1194     // fmax(fmax(x, y), x) -> fmax(x, y)
   1195     // fmax(fmax(x, y), y) -> fmax(x, y)
   1196     if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
   1197       if (Arg1 == X || Arg1 == Y)
   1198         return Arg0;
   1199     }
   1200 
   1201     // TODO: fmax(nnan x, -inf) -> x
   1202     // TODO: fmax(nnan ninf x, -flt_max) -> x
   1203     if (C1 && C1->isInfinity()) {
   1204       // fmax(x, inf) -> inf
   1205       if (!C1->isNegative())
   1206         return Arg1;
   1207     }
   1208   }
   1209   return nullptr;
   1210 }
   1211 
   1212 static bool maskIsAllOneOrUndef(Value *Mask) {
   1213   auto *ConstMask = dyn_cast<Constant>(Mask);
   1214   if (!ConstMask)
   1215     return false;
   1216   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
   1217     return true;
   1218   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
   1219        ++I) {
   1220     if (auto *MaskElt = ConstMask->getAggregateElement(I))
   1221       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
   1222         continue;
   1223     return false;
   1224   }
   1225   return true;
   1226 }
   1227 
   1228 static Value *simplifyMaskedLoad(const IntrinsicInst &II,
   1229                                  InstCombiner::BuilderTy &Builder) {
   1230   // If the mask is all ones or undefs, this is a plain vector load of the 1st
   1231   // argument.
   1232   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
   1233     Value *LoadPtr = II.getArgOperand(0);
   1234     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
   1235     return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
   1236   }
   1237 
   1238   return nullptr;
   1239 }
   1240 
   1241 static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
   1242   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
   1243   if (!ConstMask)
   1244     return nullptr;
   1245 
   1246   // If the mask is all zeros, this instruction does nothing.
   1247   if (ConstMask->isNullValue())
   1248     return IC.eraseInstFromFunction(II);
   1249 
   1250   // If the mask is all ones, this is a plain vector store of the 1st argument.
   1251   if (ConstMask->isAllOnesValue()) {
   1252     Value *StorePtr = II.getArgOperand(1);
   1253     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
   1254     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
   1255   }
   1256 
   1257   return nullptr;
   1258 }
   1259 
   1260 static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
   1261   // If the mask is all zeros, return the "passthru" argument of the gather.
   1262   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
   1263   if (ConstMask && ConstMask->isNullValue())
   1264     return IC.replaceInstUsesWith(II, II.getArgOperand(3));
   1265 
   1266   return nullptr;
   1267 }
   1268 
   1269 /// This function transforms launder.invariant.group and strip.invariant.group
   1270 /// like:
   1271 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
   1272 /// launder(strip(%x)) -> launder(%x)
   1273 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
   1274 /// strip(launder(%x)) -> strip(%x)
   1275 /// This is legal because it preserves the most recent information about
   1276 /// the presence or absence of invariant.group.
   1277 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
   1278                                                     InstCombiner &IC) {
   1279   auto *Arg = II.getArgOperand(0);
   1280   auto *StrippedArg = Arg->stripPointerCasts();
   1281   auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
   1282   if (StrippedArg == StrippedInvariantGroupsArg)
   1283     return nullptr; // No launders/strips to remove.
   1284 
   1285   Value *Result = nullptr;
   1286 
   1287   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
   1288     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
   1289   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
   1290     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
   1291   else
   1292     llvm_unreachable(
   1293         "simplifyInvariantGroupIntrinsic only handles launder and strip");
   1294   if (Result->getType()->getPointerAddressSpace() !=
   1295       II.getType()->getPointerAddressSpace())
   1296     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
   1297   if (Result->getType() != II.getType())
   1298     Result = IC.Builder.CreateBitCast(Result, II.getType());
   1299 
   1300   return cast<Instruction>(Result);
   1301 }
   1302 
   1303 static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
   1304   // If the mask is all zeros, a scatter does nothing.
   1305   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
   1306   if (ConstMask && ConstMask->isNullValue())
   1307     return IC.eraseInstFromFunction(II);
   1308 
   1309   return nullptr;
   1310 }
   1311 
   1312 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
   1313   assert((II.getIntrinsicID() == Intrinsic::cttz ||
   1314           II.getIntrinsicID() == Intrinsic::ctlz) &&
   1315          "Expected cttz or ctlz intrinsic");
   1316   Value *Op0 = II.getArgOperand(0);
   1317 
   1318   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
   1319 
   1320   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
   1321   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
   1322   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
   1323                                 : Known.countMaxLeadingZeros();
   1324   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
   1325                                 : Known.countMinLeadingZeros();
   1326 
   1327   // If all bits above (ctlz) or below (cttz) the first known one are known
   1328   // zero, this value is constant.
   1329   // FIXME: This should be in InstSimplify because we're replacing an
   1330   // instruction with a constant.
   1331   if (PossibleZeros == DefiniteZeros) {
   1332     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
   1333     return IC.replaceInstUsesWith(II, C);
   1334   }
   1335 
   1336   // If the input to cttz/ctlz is known to be non-zero,
   1337   // then change the 'ZeroIsUndef' parameter to 'true'
   1338   // because we know the zero behavior can't affect the result.
   1339   if (!Known.One.isNullValue() ||
   1340       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
   1341                      &IC.getDominatorTree())) {
   1342     if (!match(II.getArgOperand(1), m_One())) {
   1343       II.setOperand(1, IC.Builder.getTrue());
   1344       return &II;
   1345     }
   1346   }
   1347 
   1348   // Add range metadata since known bits can't completely reflect what we know.
   1349   // TODO: Handle splat vectors.
   1350   auto *IT = dyn_cast<IntegerType>(Op0->getType());
   1351   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
   1352     Metadata *LowAndHigh[] = {
   1353         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
   1354         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
   1355     II.setMetadata(LLVMContext::MD_range,
   1356                    MDNode::get(II.getContext(), LowAndHigh));
   1357     return &II;
   1358   }
   1359 
   1360   return nullptr;
   1361 }
   1362 
   1363 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
   1364   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
   1365          "Expected ctpop intrinsic");
   1366   Value *Op0 = II.getArgOperand(0);
   1367   // FIXME: Try to simplify vectors of integers.
   1368   auto *IT = dyn_cast<IntegerType>(Op0->getType());
   1369   if (!IT)
   1370     return nullptr;
   1371 
   1372   unsigned BitWidth = IT->getBitWidth();
   1373   KnownBits Known(BitWidth);
   1374   IC.computeKnownBits(Op0, Known, 0, &II);
   1375 
   1376   unsigned MinCount = Known.countMinPopulation();
   1377   unsigned MaxCount = Known.countMaxPopulation();
   1378 
   1379   // Add range metadata since known bits can't completely reflect what we know.
   1380   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
   1381     Metadata *LowAndHigh[] = {
   1382         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
   1383         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
   1384     II.setMetadata(LLVMContext::MD_range,
   1385                    MDNode::get(II.getContext(), LowAndHigh));
   1386     return &II;
   1387   }
   1388 
   1389   return nullptr;
   1390 }
   1391 
   1392 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
   1393 // XMM register mask efficiently, we could transform all x86 masked intrinsics
   1394 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
   1395 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
   1396   Value *Ptr = II.getOperand(0);
   1397   Value *Mask = II.getOperand(1);
   1398   Constant *ZeroVec = Constant::getNullValue(II.getType());
   1399 
   1400   // Special case a zero mask since that's not a ConstantDataVector.
   1401   // This masked load instruction creates a zero vector.
   1402   if (isa<ConstantAggregateZero>(Mask))
   1403     return IC.replaceInstUsesWith(II, ZeroVec);
   1404 
   1405   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
   1406   if (!ConstMask)
   1407     return nullptr;
   1408 
   1409   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
   1410   // to allow target-independent optimizations.
   1411 
   1412   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
   1413   // the LLVM intrinsic definition for the pointer argument.
   1414   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
   1415   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
   1416   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
   1417 
   1418   // Second, convert the x86 XMM integer vector mask to a vector of bools based
   1419   // on each element's most significant bit (the sign bit).
   1420   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
   1421 
   1422   // The pass-through vector for an x86 masked load is a zero vector.
   1423   CallInst *NewMaskedLoad =
   1424       IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
   1425   return IC.replaceInstUsesWith(II, NewMaskedLoad);
   1426 }
   1427 
   1428 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
   1429 // XMM register mask efficiently, we could transform all x86 masked intrinsics
   1430 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
   1431 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
   1432   Value *Ptr = II.getOperand(0);
   1433   Value *Mask = II.getOperand(1);
   1434   Value *Vec = II.getOperand(2);
   1435 
   1436   // Special case a zero mask since that's not a ConstantDataVector:
   1437   // this masked store instruction does nothing.
   1438   if (isa<ConstantAggregateZero>(Mask)) {
   1439     IC.eraseInstFromFunction(II);
   1440     return true;
   1441   }
   1442 
   1443   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
   1444   // anything else at this level.
   1445   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
   1446     return false;
   1447 
   1448   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
   1449   if (!ConstMask)
   1450     return false;
   1451 
   1452   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
   1453   // to allow target-independent optimizations.
   1454 
   1455   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
   1456   // the LLVM intrinsic definition for the pointer argument.
   1457   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
   1458   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
   1459   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
   1460 
   1461   // Second, convert the x86 XMM integer vector mask to a vector of bools based
   1462   // on each element's most significant bit (the sign bit).
   1463   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
   1464 
   1465   IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
   1466 
   1467   // 'Replace uses' doesn't work for stores. Erase the original masked store.
   1468   IC.eraseInstFromFunction(II);
   1469   return true;
   1470 }
   1471 
   1472 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
   1473 //
   1474 // A single NaN input is folded to minnum, so we rely on that folding for
   1475 // handling NaNs.
   1476 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
   1477                            const APFloat &Src2) {
   1478   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
   1479 
   1480   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
   1481   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
   1482   if (Cmp0 == APFloat::cmpEqual)
   1483     return maxnum(Src1, Src2);
   1484 
   1485   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
   1486   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
   1487   if (Cmp1 == APFloat::cmpEqual)
   1488     return maxnum(Src0, Src2);
   1489 
   1490   return maxnum(Src0, Src1);
   1491 }
   1492 
   1493 /// Convert a table lookup to shufflevector if the mask is constant.
   1494 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
   1495 /// which case we could lower the shufflevector with rev64 instructions
   1496 /// as it's actually a byte reverse.
   1497 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
   1498                                InstCombiner::BuilderTy &Builder) {
   1499   // Bail out if the mask is not a constant.
   1500   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
   1501   if (!C)
   1502     return nullptr;
   1503 
   1504   auto *VecTy = cast<VectorType>(II.getType());
   1505   unsigned NumElts = VecTy->getNumElements();
   1506 
   1507   // Only perform this transformation for <8 x i8> vector types.
   1508   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
   1509     return nullptr;
   1510 
   1511   uint32_t Indexes[8];
   1512 
   1513   for (unsigned I = 0; I < NumElts; ++I) {
   1514     Constant *COp = C->getAggregateElement(I);
   1515 
   1516     if (!COp || !isa<ConstantInt>(COp))
   1517       return nullptr;
   1518 
   1519     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
   1520 
   1521     // Make sure the mask indices are in range.
   1522     if (Indexes[I] >= NumElts)
   1523       return nullptr;
   1524   }
   1525 
   1526   auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
   1527                                               makeArrayRef(Indexes));
   1528   auto *V1 = II.getArgOperand(0);
   1529   auto *V2 = Constant::getNullValue(V1->getType());
   1530   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
   1531 }
   1532 
   1533 /// Convert a vector load intrinsic into a simple llvm load instruction.
   1534 /// This is beneficial when the underlying object being addressed comes
   1535 /// from a constant, since we get constant-folding for free.
   1536 static Value *simplifyNeonVld1(const IntrinsicInst &II,
   1537                                unsigned MemAlign,
   1538                                InstCombiner::BuilderTy &Builder) {
   1539   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
   1540 
   1541   if (!IntrAlign)
   1542     return nullptr;
   1543 
   1544   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
   1545                        MemAlign : IntrAlign->getLimitedValue();
   1546 
   1547   if (!isPowerOf2_32(Alignment))
   1548     return nullptr;
   1549 
   1550   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
   1551                                           PointerType::get(II.getType(), 0));
   1552   return Builder.CreateAlignedLoad(BCastInst, Alignment);
   1553 }
   1554 
   1555 // Returns true iff the 2 intrinsics have the same operands, limiting the
   1556 // comparison to the first NumOperands.
   1557 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
   1558                              unsigned NumOperands) {
   1559   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
   1560   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
   1561   for (unsigned i = 0; i < NumOperands; i++)
   1562     if (I.getArgOperand(i) != E.getArgOperand(i))
   1563       return false;
   1564   return true;
   1565 }
   1566 
   1567 // Remove trivially empty start/end intrinsic ranges, i.e. a start
   1568 // immediately followed by an end (ignoring debuginfo or other
   1569 // start/end intrinsics in between). As this handles only the most trivial
   1570 // cases, tracking the nesting level is not needed:
   1571 //
   1572 //   call @llvm.foo.start(i1 0) ; &I
   1573 //   call @llvm.foo.start(i1 0)
   1574 //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
   1575 //   call @llvm.foo.end(i1 0)
   1576 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
   1577                                       unsigned EndID, InstCombiner &IC) {
   1578   assert(I.getIntrinsicID() == StartID &&
   1579          "Start intrinsic does not have expected ID");
   1580   BasicBlock::iterator BI(I), BE(I.getParent()->end());
   1581   for (++BI; BI != BE; ++BI) {
   1582     if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
   1583       if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
   1584         continue;
   1585       if (E->getIntrinsicID() == EndID &&
   1586           haveSameOperands(I, *E, E->getNumArgOperands())) {
   1587         IC.eraseInstFromFunction(*E);
   1588         IC.eraseInstFromFunction(I);
   1589         return true;
   1590       }
   1591     }
   1592     break;
   1593   }
   1594 
   1595   return false;
   1596 }
   1597 
   1598 // Convert NVVM intrinsics to target-generic LLVM code where possible.
   1599 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
   1600   // Each NVVM intrinsic we can simplify can be replaced with one of:
   1601   //
   1602   //  * an LLVM intrinsic,
   1603   //  * an LLVM cast operation,
   1604   //  * an LLVM binary operation, or
   1605   //  * ad-hoc LLVM IR for the particular operation.
   1606 
   1607   // Some transformations are only valid when the module's
   1608   // flush-denormals-to-zero (ftz) setting is true/false, whereas other
   1609   // transformations are valid regardless of the module's ftz setting.
   1610   enum FtzRequirementTy {
   1611     FTZ_Any,       // Any ftz setting is ok.
   1612     FTZ_MustBeOn,  // Transformation is valid only if ftz is on.
   1613     FTZ_MustBeOff, // Transformation is valid only if ftz is off.
   1614   };
   1615   // Classes of NVVM intrinsics that can't be replaced one-to-one with a
   1616   // target-generic intrinsic, cast op, or binary op but that we can nonetheless
   1617   // simplify.
   1618   enum SpecialCase {
   1619     SPC_Reciprocal,
   1620   };
   1621 
   1622   // SimplifyAction is a poor-man's variant (plus an additional flag) that
   1623   // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
   1624   struct SimplifyAction {
   1625     // Invariant: At most one of these Optionals has a value.
   1626     Optional<Intrinsic::ID> IID;
   1627     Optional<Instruction::CastOps> CastOp;
   1628     Optional<Instruction::BinaryOps> BinaryOp;
   1629     Optional<SpecialCase> Special;
   1630 
   1631     FtzRequirementTy FtzRequirement = FTZ_Any;
   1632 
   1633     SimplifyAction() = default;
   1634 
   1635     SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
   1636         : IID(IID), FtzRequirement(FtzReq) {}
   1637 
   1638     // Cast operations don't have anything to do with FTZ, so we skip that
   1639     // argument.
   1640     SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
   1641 
   1642     SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
   1643         : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
   1644 
   1645     SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
   1646         : Special(Special), FtzRequirement(FtzReq) {}
   1647   };
   1648 
   1649   // Try to generate a SimplifyAction describing how to replace our
   1650   // IntrinsicInstr with target-generic LLVM IR.
   1651   const SimplifyAction Action = [II]() -> SimplifyAction {
   1652     switch (II->getIntrinsicID()) {
   1653     // NVVM intrinsics that map directly to LLVM intrinsics.
   1654     case Intrinsic::nvvm_ceil_d:
   1655       return {Intrinsic::ceil, FTZ_Any};
   1656     case Intrinsic::nvvm_ceil_f:
   1657       return {Intrinsic::ceil, FTZ_MustBeOff};
   1658     case Intrinsic::nvvm_ceil_ftz_f:
   1659       return {Intrinsic::ceil, FTZ_MustBeOn};
   1660     case Intrinsic::nvvm_fabs_d:
   1661       return {Intrinsic::fabs, FTZ_Any};
   1662     case Intrinsic::nvvm_fabs_f:
   1663       return {Intrinsic::fabs, FTZ_MustBeOff};
   1664     case Intrinsic::nvvm_fabs_ftz_f:
   1665       return {Intrinsic::fabs, FTZ_MustBeOn};
   1666     case Intrinsic::nvvm_floor_d:
   1667       return {Intrinsic::floor, FTZ_Any};
   1668     case Intrinsic::nvvm_floor_f:
   1669       return {Intrinsic::floor, FTZ_MustBeOff};
   1670     case Intrinsic::nvvm_floor_ftz_f:
   1671       return {Intrinsic::floor, FTZ_MustBeOn};
   1672     case Intrinsic::nvvm_fma_rn_d:
   1673       return {Intrinsic::fma, FTZ_Any};
   1674     case Intrinsic::nvvm_fma_rn_f:
   1675       return {Intrinsic::fma, FTZ_MustBeOff};
   1676     case Intrinsic::nvvm_fma_rn_ftz_f:
   1677       return {Intrinsic::fma, FTZ_MustBeOn};
   1678     case Intrinsic::nvvm_fmax_d:
   1679       return {Intrinsic::maxnum, FTZ_Any};
   1680     case Intrinsic::nvvm_fmax_f:
   1681       return {Intrinsic::maxnum, FTZ_MustBeOff};
   1682     case Intrinsic::nvvm_fmax_ftz_f:
   1683       return {Intrinsic::maxnum, FTZ_MustBeOn};
   1684     case Intrinsic::nvvm_fmin_d:
   1685       return {Intrinsic::minnum, FTZ_Any};
   1686     case Intrinsic::nvvm_fmin_f:
   1687       return {Intrinsic::minnum, FTZ_MustBeOff};
   1688     case Intrinsic::nvvm_fmin_ftz_f:
   1689       return {Intrinsic::minnum, FTZ_MustBeOn};
   1690     case Intrinsic::nvvm_round_d:
   1691       return {Intrinsic::round, FTZ_Any};
   1692     case Intrinsic::nvvm_round_f:
   1693       return {Intrinsic::round, FTZ_MustBeOff};
   1694     case Intrinsic::nvvm_round_ftz_f:
   1695       return {Intrinsic::round, FTZ_MustBeOn};
   1696     case Intrinsic::nvvm_sqrt_rn_d:
   1697       return {Intrinsic::sqrt, FTZ_Any};
   1698     case Intrinsic::nvvm_sqrt_f:
   1699       // nvvm_sqrt_f is a special case.  For  most intrinsics, foo_ftz_f is the
   1700       // ftz version, and foo_f is the non-ftz version.  But nvvm_sqrt_f adopts
   1701       // the ftz-ness of the surrounding code.  sqrt_rn_f and sqrt_rn_ftz_f are
   1702       // the versions with explicit ftz-ness.
   1703       return {Intrinsic::sqrt, FTZ_Any};
   1704     case Intrinsic::nvvm_sqrt_rn_f:
   1705       return {Intrinsic::sqrt, FTZ_MustBeOff};
   1706     case Intrinsic::nvvm_sqrt_rn_ftz_f:
   1707       return {Intrinsic::sqrt, FTZ_MustBeOn};
   1708     case Intrinsic::nvvm_trunc_d:
   1709       return {Intrinsic::trunc, FTZ_Any};
   1710     case Intrinsic::nvvm_trunc_f:
   1711       return {Intrinsic::trunc, FTZ_MustBeOff};
   1712     case Intrinsic::nvvm_trunc_ftz_f:
   1713       return {Intrinsic::trunc, FTZ_MustBeOn};
   1714 
   1715     // NVVM intrinsics that map to LLVM cast operations.
   1716     //
   1717     // Note that llvm's target-generic conversion operators correspond to the rz
   1718     // (round to zero) versions of the nvvm conversion intrinsics, even though
   1719     // most everything else here uses the rn (round to nearest even) nvvm ops.
   1720     case Intrinsic::nvvm_d2i_rz:
   1721     case Intrinsic::nvvm_f2i_rz:
   1722     case Intrinsic::nvvm_d2ll_rz:
   1723     case Intrinsic::nvvm_f2ll_rz:
   1724       return {Instruction::FPToSI};
   1725     case Intrinsic::nvvm_d2ui_rz:
   1726     case Intrinsic::nvvm_f2ui_rz:
   1727     case Intrinsic::nvvm_d2ull_rz:
   1728     case Intrinsic::nvvm_f2ull_rz:
   1729       return {Instruction::FPToUI};
   1730     case Intrinsic::nvvm_i2d_rz:
   1731     case Intrinsic::nvvm_i2f_rz:
   1732     case Intrinsic::nvvm_ll2d_rz:
   1733     case Intrinsic::nvvm_ll2f_rz:
   1734       return {Instruction::SIToFP};
   1735     case Intrinsic::nvvm_ui2d_rz:
   1736     case Intrinsic::nvvm_ui2f_rz:
   1737     case Intrinsic::nvvm_ull2d_rz:
   1738     case Intrinsic::nvvm_ull2f_rz:
   1739       return {Instruction::UIToFP};
   1740 
   1741     // NVVM intrinsics that map to LLVM binary ops.
   1742     case Intrinsic::nvvm_add_rn_d:
   1743       return {Instruction::FAdd, FTZ_Any};
   1744     case Intrinsic::nvvm_add_rn_f:
   1745       return {Instruction::FAdd, FTZ_MustBeOff};
   1746     case Intrinsic::nvvm_add_rn_ftz_f:
   1747       return {Instruction::FAdd, FTZ_MustBeOn};
   1748     case Intrinsic::nvvm_mul_rn_d:
   1749       return {Instruction::FMul, FTZ_Any};
   1750     case Intrinsic::nvvm_mul_rn_f:
   1751       return {Instruction::FMul, FTZ_MustBeOff};
   1752     case Intrinsic::nvvm_mul_rn_ftz_f:
   1753       return {Instruction::FMul, FTZ_MustBeOn};
   1754     case Intrinsic::nvvm_div_rn_d:
   1755       return {Instruction::FDiv, FTZ_Any};
   1756     case Intrinsic::nvvm_div_rn_f:
   1757       return {Instruction::FDiv, FTZ_MustBeOff};
   1758     case Intrinsic::nvvm_div_rn_ftz_f:
   1759       return {Instruction::FDiv, FTZ_MustBeOn};
   1760 
   1761     // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
   1762     // need special handling.
   1763     //
   1764     // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
   1765     // as well.
   1766     case Intrinsic::nvvm_rcp_rn_d:
   1767       return {SPC_Reciprocal, FTZ_Any};
   1768     case Intrinsic::nvvm_rcp_rn_f:
   1769       return {SPC_Reciprocal, FTZ_MustBeOff};
   1770     case Intrinsic::nvvm_rcp_rn_ftz_f:
   1771       return {SPC_Reciprocal, FTZ_MustBeOn};
   1772 
   1773     // We do not currently simplify intrinsics that give an approximate answer.
   1774     // These include:
   1775     //
   1776     //   - nvvm_cos_approx_{f,ftz_f}
   1777     //   - nvvm_ex2_approx_{d,f,ftz_f}
   1778     //   - nvvm_lg2_approx_{d,f,ftz_f}
   1779     //   - nvvm_sin_approx_{f,ftz_f}
   1780     //   - nvvm_sqrt_approx_{f,ftz_f}
   1781     //   - nvvm_rsqrt_approx_{d,f,ftz_f}
   1782     //   - nvvm_div_approx_{ftz_d,ftz_f,f}
   1783     //   - nvvm_rcp_approx_ftz_d
   1784     //
   1785     // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
   1786     // means that fastmath is enabled in the intrinsic.  Unfortunately only
   1787     // binary operators (currently) have a fastmath bit in SelectionDAG, so this
   1788     // information gets lost and we can't select on it.
   1789     //
   1790     // TODO: div and rcp are lowered to a binary op, so these we could in theory
   1791     // lower them to "fast fdiv".
   1792 
   1793     default:
   1794       return {};
   1795     }
   1796   }();
   1797 
   1798   // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
   1799   // can bail out now.  (Notice that in the case that IID is not an NVVM
   1800   // intrinsic, we don't have to look up any module metadata, as
   1801   // FtzRequirementTy will be FTZ_Any.)
   1802   if (Action.FtzRequirement != FTZ_Any) {
   1803     bool FtzEnabled =
   1804         II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
   1805         "true";
   1806 
   1807     if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
   1808       return nullptr;
   1809   }
   1810 
   1811   // Simplify to target-generic intrinsic.
   1812   if (Action.IID) {
   1813     SmallVector<Value *, 4> Args(II->arg_operands());
   1814     // All the target-generic intrinsics currently of interest to us have one
   1815     // type argument, equal to that of the nvvm intrinsic's argument.
   1816     Type *Tys[] = {II->getArgOperand(0)->getType()};
   1817     return CallInst::Create(
   1818         Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
   1819   }
   1820 
   1821   // Simplify to target-generic binary op.
   1822   if (Action.BinaryOp)
   1823     return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
   1824                                   II->getArgOperand(1), II->getName());
   1825 
   1826   // Simplify to target-generic cast op.
   1827   if (Action.CastOp)
   1828     return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
   1829                             II->getName());
   1830 
   1831   // All that's left are the special cases.
   1832   if (!Action.Special)
   1833     return nullptr;
   1834 
   1835   switch (*Action.Special) {
   1836   case SPC_Reciprocal:
   1837     // Simplify reciprocal.
   1838     return BinaryOperator::Create(
   1839         Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
   1840         II->getArgOperand(0), II->getName());
   1841   }
   1842   llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
   1843 }
   1844 
   1845 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
   1846   removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
   1847   return nullptr;
   1848 }
   1849 
   1850 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
   1851   removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
   1852   return nullptr;
   1853 }
   1854 
   1855 /// CallInst simplification. This mostly only handles folding of intrinsic
   1856 /// instructions. For normal calls, it allows visitCallSite to do the heavy
   1857 /// lifting.
   1858 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
   1859   if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
   1860     return replaceInstUsesWith(CI, V);
   1861 
   1862   if (isFreeCall(&CI, &TLI))
   1863     return visitFree(CI);
   1864 
   1865   // If the caller function is nounwind, mark the call as nounwind, even if the
   1866   // callee isn't.
   1867   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
   1868     CI.setDoesNotThrow();
   1869     return &CI;
   1870   }
   1871 
   1872   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
   1873   if (!II) return visitCallSite(&CI);
   1874 
   1875   // Intrinsics cannot occur in an invoke, so handle them here instead of in
   1876   // visitCallSite.
   1877   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
   1878     bool Changed = false;
   1879 
   1880     // memmove/cpy/set of zero bytes is a noop.
   1881     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
   1882       if (NumBytes->isNullValue())
   1883         return eraseInstFromFunction(CI);
   1884 
   1885       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
   1886         if (CI->getZExtValue() == 1) {
   1887           // Replace the instruction with just byte operations.  We would
   1888           // transform other cases to loads/stores, but we don't know if
   1889           // alignment is sufficient.
   1890         }
   1891     }
   1892 
   1893     // No other transformations apply to volatile transfers.
   1894     if (auto *M = dyn_cast<MemIntrinsic>(MI))
   1895       if (M->isVolatile())
   1896         return nullptr;
   1897 
   1898     // If we have a memmove and the source operation is a constant global,
   1899     // then the source and dest pointers can't alias, so we can change this
   1900     // into a call to memcpy.
   1901     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
   1902       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
   1903         if (GVSrc->isConstant()) {
   1904           Module *M = CI.getModule();
   1905           Intrinsic::ID MemCpyID =
   1906               isa<AtomicMemMoveInst>(MMI)
   1907                   ? Intrinsic::memcpy_element_unordered_atomic
   1908                   : Intrinsic::memcpy;
   1909           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
   1910                            CI.getArgOperand(1)->getType(),
   1911                            CI.getArgOperand(2)->getType() };
   1912           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
   1913           Changed = true;
   1914         }
   1915     }
   1916 
   1917     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
   1918       // memmove(x,x,size) -> noop.
   1919       if (MTI->getSource() == MTI->getDest())
   1920         return eraseInstFromFunction(CI);
   1921     }
   1922 
   1923     // If we can determine a pointer alignment that is bigger than currently
   1924     // set, update the alignment.
   1925     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
   1926       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
   1927         return I;
   1928     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
   1929       if (Instruction *I = SimplifyAnyMemSet(MSI))
   1930         return I;
   1931     }
   1932 
   1933     if (Changed) return II;
   1934   }
   1935 
   1936   if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
   1937     return I;
   1938 
   1939   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
   1940                                               unsigned DemandedWidth) {
   1941     APInt UndefElts(Width, 0);
   1942     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
   1943     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
   1944   };
   1945 
   1946   switch (II->getIntrinsicID()) {
   1947   default: break;
   1948   case Intrinsic::objectsize:
   1949     if (ConstantInt *N =
   1950             lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
   1951       return replaceInstUsesWith(CI, N);
   1952     return nullptr;
   1953   case Intrinsic::bswap: {
   1954     Value *IIOperand = II->getArgOperand(0);
   1955     Value *X = nullptr;
   1956 
   1957     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
   1958     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
   1959       unsigned C = X->getType()->getPrimitiveSizeInBits() -
   1960         IIOperand->getType()->getPrimitiveSizeInBits();
   1961       Value *CV = ConstantInt::get(X->getType(), C);
   1962       Value *V = Builder.CreateLShr(X, CV);
   1963       return new TruncInst(V, IIOperand->getType());
   1964     }
   1965     break;
   1966   }
   1967   case Intrinsic::masked_load:
   1968     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, Builder))
   1969       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
   1970     break;
   1971   case Intrinsic::masked_store:
   1972     return simplifyMaskedStore(*II, *this);
   1973   case Intrinsic::masked_gather:
   1974     return simplifyMaskedGather(*II, *this);
   1975   case Intrinsic::masked_scatter:
   1976     return simplifyMaskedScatter(*II, *this);
   1977   case Intrinsic::launder_invariant_group:
   1978   case Intrinsic::strip_invariant_group:
   1979     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
   1980       return replaceInstUsesWith(*II, SkippedBarrier);
   1981     break;
   1982   case Intrinsic::powi:
   1983     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
   1984       // 0 and 1 are handled in instsimplify
   1985 
   1986       // powi(x, -1) -> 1/x
   1987       if (Power->isMinusOne())
   1988         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
   1989                                           II->getArgOperand(0));
   1990       // powi(x, 2) -> x*x
   1991       if (Power->equalsInt(2))
   1992         return BinaryOperator::CreateFMul(II->getArgOperand(0),
   1993                                           II->getArgOperand(0));
   1994     }
   1995     break;
   1996 
   1997   case Intrinsic::cttz:
   1998   case Intrinsic::ctlz:
   1999     if (auto *I = foldCttzCtlz(*II, *this))
   2000       return I;
   2001     break;
   2002 
   2003   case Intrinsic::ctpop:
   2004     if (auto *I = foldCtpop(*II, *this))
   2005       return I;
   2006     break;
   2007 
   2008   case Intrinsic::uadd_with_overflow:
   2009   case Intrinsic::sadd_with_overflow:
   2010   case Intrinsic::umul_with_overflow:
   2011   case Intrinsic::smul_with_overflow:
   2012     if (isa<Constant>(II->getArgOperand(0)) &&
   2013         !isa<Constant>(II->getArgOperand(1))) {
   2014       // Canonicalize constants into the RHS.
   2015       Value *LHS = II->getArgOperand(0);
   2016       II->setArgOperand(0, II->getArgOperand(1));
   2017       II->setArgOperand(1, LHS);
   2018       return II;
   2019     }
   2020     LLVM_FALLTHROUGH;
   2021 
   2022   case Intrinsic::usub_with_overflow:
   2023   case Intrinsic::ssub_with_overflow: {
   2024     OverflowCheckFlavor OCF =
   2025         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
   2026     assert(OCF != OCF_INVALID && "unexpected!");
   2027 
   2028     Value *OperationResult = nullptr;
   2029     Constant *OverflowResult = nullptr;
   2030     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
   2031                               *II, OperationResult, OverflowResult))
   2032       return CreateOverflowTuple(II, OperationResult, OverflowResult);
   2033 
   2034     break;
   2035   }
   2036 
   2037   case Intrinsic::minnum:
   2038   case Intrinsic::maxnum: {
   2039     Value *Arg0 = II->getArgOperand(0);
   2040     Value *Arg1 = II->getArgOperand(1);
   2041     // Canonicalize constants to the RHS.
   2042     if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
   2043       II->setArgOperand(0, Arg1);
   2044       II->setArgOperand(1, Arg0);
   2045       return II;
   2046     }
   2047 
   2048     // FIXME: Simplifications should be in instsimplify.
   2049     if (Value *V = simplifyMinnumMaxnum(*II))
   2050       return replaceInstUsesWith(*II, V);
   2051 
   2052     Value *X, *Y;
   2053     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
   2054         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
   2055       // If both operands are negated, invert the call and negate the result:
   2056       // minnum(-X, -Y) --> -(maxnum(X, Y))
   2057       // maxnum(-X, -Y) --> -(minnum(X, Y))
   2058       Intrinsic::ID NewIID = II->getIntrinsicID() == Intrinsic::maxnum ?
   2059           Intrinsic::minnum : Intrinsic::maxnum;
   2060       Value *NewCall = Builder.CreateIntrinsic(NewIID, { X, Y }, II);
   2061       Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
   2062       FNeg->copyIRFlags(II);
   2063       return FNeg;
   2064     }
   2065     break;
   2066   }
   2067   case Intrinsic::fmuladd: {
   2068     // Canonicalize fast fmuladd to the separate fmul + fadd.
   2069     if (II->isFast()) {
   2070       BuilderTy::FastMathFlagGuard Guard(Builder);
   2071       Builder.setFastMathFlags(II->getFastMathFlags());
   2072       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
   2073                                       II->getArgOperand(1));
   2074       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
   2075       Add->takeName(II);
   2076       return replaceInstUsesWith(*II, Add);
   2077     }
   2078 
   2079     LLVM_FALLTHROUGH;
   2080   }
   2081   case Intrinsic::fma: {
   2082     Value *Src0 = II->getArgOperand(0);
   2083     Value *Src1 = II->getArgOperand(1);
   2084 
   2085     // Canonicalize constant multiply operand to Src1.
   2086     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
   2087       II->setArgOperand(0, Src1);
   2088       II->setArgOperand(1, Src0);
   2089       std::swap(Src0, Src1);
   2090     }
   2091 
   2092     // fma fneg(x), fneg(y), z -> fma x, y, z
   2093     Value *X, *Y;
   2094     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
   2095       II->setArgOperand(0, X);
   2096       II->setArgOperand(1, Y);
   2097       return II;
   2098     }
   2099 
   2100     // fma fabs(x), fabs(x), z -> fma x, x, z
   2101     if (match(Src0, m_FAbs(m_Value(X))) &&
   2102         match(Src1, m_FAbs(m_Specific(X)))) {
   2103       II->setArgOperand(0, X);
   2104       II->setArgOperand(1, X);
   2105       return II;
   2106     }
   2107 
   2108     // fma x, 1, z -> fadd x, z
   2109     if (match(Src1, m_FPOne())) {
   2110       auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
   2111       FAdd->copyFastMathFlags(II);
   2112       return FAdd;
   2113     }
   2114 
   2115     break;
   2116   }
   2117   case Intrinsic::fabs: {
   2118     Value *Cond;
   2119     Constant *LHS, *RHS;
   2120     if (match(II->getArgOperand(0),
   2121               m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
   2122       CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
   2123       CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
   2124       return SelectInst::Create(Cond, Call0, Call1);
   2125     }
   2126 
   2127     LLVM_FALLTHROUGH;
   2128   }
   2129   case Intrinsic::ceil:
   2130   case Intrinsic::floor:
   2131   case Intrinsic::round:
   2132   case Intrinsic::nearbyint:
   2133   case Intrinsic::rint:
   2134   case Intrinsic::trunc: {
   2135     Value *ExtSrc;
   2136     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
   2137       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
   2138       Value *NarrowII = Builder.CreateIntrinsic(II->getIntrinsicID(),
   2139                                                 { ExtSrc }, II);
   2140       return new FPExtInst(NarrowII, II->getType());
   2141     }
   2142     break;
   2143   }
   2144   case Intrinsic::cos:
   2145   case Intrinsic::amdgcn_cos: {
   2146     Value *SrcSrc;
   2147     Value *Src = II->getArgOperand(0);
   2148     if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
   2149         match(Src, m_FAbs(m_Value(SrcSrc)))) {
   2150       // cos(-x) -> cos(x)
   2151       // cos(fabs(x)) -> cos(x)
   2152       II->setArgOperand(0, SrcSrc);
   2153       return II;
   2154     }
   2155 
   2156     break;
   2157   }
   2158   case Intrinsic::ppc_altivec_lvx:
   2159   case Intrinsic::ppc_altivec_lvxl:
   2160     // Turn PPC lvx -> load if the pointer is known aligned.
   2161     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
   2162                                    &DT) >= 16) {
   2163       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
   2164                                          PointerType::getUnqual(II->getType()));
   2165       return new LoadInst(Ptr);
   2166     }
   2167     break;
   2168   case Intrinsic::ppc_vsx_lxvw4x:
   2169   case Intrinsic::ppc_vsx_lxvd2x: {
   2170     // Turn PPC VSX loads into normal loads.
   2171     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
   2172                                        PointerType::getUnqual(II->getType()));
   2173     return new LoadInst(Ptr, Twine(""), false, 1);
   2174   }
   2175   case Intrinsic::ppc_altivec_stvx:
   2176   case Intrinsic::ppc_altivec_stvxl:
   2177     // Turn stvx -> store if the pointer is known aligned.
   2178     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
   2179                                    &DT) >= 16) {
   2180       Type *OpPtrTy =
   2181         PointerType::getUnqual(II->getArgOperand(0)->getType());
   2182       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
   2183       return new StoreInst(II->getArgOperand(0), Ptr);
   2184     }
   2185     break;
   2186   case Intrinsic::ppc_vsx_stxvw4x:
   2187   case Intrinsic::ppc_vsx_stxvd2x: {
   2188     // Turn PPC VSX stores into normal stores.
   2189     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
   2190     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
   2191     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
   2192   }
   2193   case Intrinsic::ppc_qpx_qvlfs:
   2194     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
   2195     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
   2196                                    &DT) >= 16) {
   2197       Type *VTy = VectorType::get(Builder.getFloatTy(),
   2198                                   II->getType()->getVectorNumElements());
   2199       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
   2200                                          PointerType::getUnqual(VTy));
   2201       Value *Load = Builder.CreateLoad(Ptr);
   2202       return new FPExtInst(Load, II->getType());
   2203     }
   2204     break;
   2205   case Intrinsic::ppc_qpx_qvlfd:
   2206     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
   2207     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
   2208                                    &DT) >= 32) {
   2209       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
   2210                                          PointerType::getUnqual(II->getType()));
   2211       return new LoadInst(Ptr);
   2212     }
   2213     break;
   2214   case Intrinsic::ppc_qpx_qvstfs:
   2215     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
   2216     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
   2217                                    &DT) >= 16) {
   2218       Type *VTy = VectorType::get(Builder.getFloatTy(),
   2219           II->getArgOperand(0)->getType()->getVectorNumElements());
   2220       Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
   2221       Type *OpPtrTy = PointerType::getUnqual(VTy);
   2222       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
   2223       return new StoreInst(TOp, Ptr);
   2224     }
   2225     break;
   2226   case Intrinsic::ppc_qpx_qvstfd:
   2227     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
   2228     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
   2229                                    &DT) >= 32) {
   2230       Type *OpPtrTy =
   2231         PointerType::getUnqual(II->getArgOperand(0)->getType());
   2232       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
   2233       return new StoreInst(II->getArgOperand(0), Ptr);
   2234     }
   2235     break;
   2236 
   2237   case Intrinsic::x86_bmi_bextr_32:
   2238   case Intrinsic::x86_bmi_bextr_64:
   2239   case Intrinsic::x86_tbm_bextri_u32:
   2240   case Intrinsic::x86_tbm_bextri_u64:
   2241     // If the RHS is a constant we can try some simplifications.
   2242     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
   2243       uint64_t Shift = C->getZExtValue();
   2244       uint64_t Length = (Shift >> 8) & 0xff;
   2245       Shift &= 0xff;
   2246       unsigned BitWidth = II->getType()->getIntegerBitWidth();
   2247       // If the length is 0 or the shift is out of range, replace with zero.
   2248       if (Length == 0 || Shift >= BitWidth)
   2249         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
   2250       // If the LHS is also a constant, we can completely constant fold this.
   2251       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
   2252         uint64_t Result = InC->getZExtValue() >> Shift;
   2253         if (Length > BitWidth)
   2254           Length = BitWidth;
   2255         Result &= maskTrailingOnes<uint64_t>(Length);
   2256         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
   2257       }
   2258       // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
   2259       // are only masking bits that a shift already cleared?
   2260     }
   2261     break;
   2262 
   2263   case Intrinsic::x86_bmi_bzhi_32:
   2264   case Intrinsic::x86_bmi_bzhi_64:
   2265     // If the RHS is a constant we can try some simplifications.
   2266     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
   2267       uint64_t Index = C->getZExtValue() & 0xff;
   2268       unsigned BitWidth = II->getType()->getIntegerBitWidth();
   2269       if (Index >= BitWidth)
   2270         return replaceInstUsesWith(CI, II->getArgOperand(0));
   2271       if (Index == 0)
   2272         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
   2273       // If the LHS is also a constant, we can completely constant fold this.
   2274       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
   2275         uint64_t Result = InC->getZExtValue();
   2276         Result &= maskTrailingOnes<uint64_t>(Index);
   2277         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
   2278       }
   2279       // TODO should we convert this to an AND if the RHS is constant?
   2280     }
   2281     break;
   2282 
   2283   case Intrinsic::x86_vcvtph2ps_128:
   2284   case Intrinsic::x86_vcvtph2ps_256: {
   2285     auto Arg = II->getArgOperand(0);
   2286     auto ArgType = cast<VectorType>(Arg->getType());
   2287     auto RetType = cast<VectorType>(II->getType());
   2288     unsigned ArgWidth = ArgType->getNumElements();
   2289     unsigned RetWidth = RetType->getNumElements();
   2290     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
   2291     assert(ArgType->isIntOrIntVectorTy() &&
   2292            ArgType->getScalarSizeInBits() == 16 &&
   2293            "CVTPH2PS input type should be 16-bit integer vector");
   2294     assert(RetType->getScalarType()->isFloatTy() &&
   2295            "CVTPH2PS output type should be 32-bit float vector");
   2296 
   2297     // Constant folding: Convert to generic half to single conversion.
   2298     if (isa<ConstantAggregateZero>(Arg))
   2299       return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
   2300 
   2301     if (isa<ConstantDataVector>(Arg)) {
   2302       auto VectorHalfAsShorts = Arg;
   2303       if (RetWidth < ArgWidth) {
   2304         SmallVector<uint32_t, 8> SubVecMask;
   2305         for (unsigned i = 0; i != RetWidth; ++i)
   2306           SubVecMask.push_back((int)i);
   2307         VectorHalfAsShorts = Builder.CreateShuffleVector(
   2308             Arg, UndefValue::get(ArgType), SubVecMask);
   2309       }
   2310 
   2311       auto VectorHalfType =
   2312           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
   2313       auto VectorHalfs =
   2314           Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
   2315       auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
   2316       return replaceInstUsesWith(*II, VectorFloats);
   2317     }
   2318 
   2319     // We only use the lowest lanes of the argument.
   2320     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
   2321       II->setArgOperand(0, V);
   2322       return II;
   2323     }
   2324     break;
   2325   }
   2326 
   2327   case Intrinsic::x86_sse_cvtss2si:
   2328   case Intrinsic::x86_sse_cvtss2si64:
   2329   case Intrinsic::x86_sse_cvttss2si:
   2330   case Intrinsic::x86_sse_cvttss2si64:
   2331   case Intrinsic::x86_sse2_cvtsd2si:
   2332   case Intrinsic::x86_sse2_cvtsd2si64:
   2333   case Intrinsic::x86_sse2_cvttsd2si:
   2334   case Intrinsic::x86_sse2_cvttsd2si64:
   2335   case Intrinsic::x86_avx512_vcvtss2si32:
   2336   case Intrinsic::x86_avx512_vcvtss2si64:
   2337   case Intrinsic::x86_avx512_vcvtss2usi32:
   2338   case Intrinsic::x86_avx512_vcvtss2usi64:
   2339   case Intrinsic::x86_avx512_vcvtsd2si32:
   2340   case Intrinsic::x86_avx512_vcvtsd2si64:
   2341   case Intrinsic::x86_avx512_vcvtsd2usi32:
   2342   case Intrinsic::x86_avx512_vcvtsd2usi64:
   2343   case Intrinsic::x86_avx512_cvttss2si:
   2344   case Intrinsic::x86_avx512_cvttss2si64:
   2345   case Intrinsic::x86_avx512_cvttss2usi:
   2346   case Intrinsic::x86_avx512_cvttss2usi64:
   2347   case Intrinsic::x86_avx512_cvttsd2si:
   2348   case Intrinsic::x86_avx512_cvttsd2si64:
   2349   case Intrinsic::x86_avx512_cvttsd2usi:
   2350   case Intrinsic::x86_avx512_cvttsd2usi64: {
   2351     // These intrinsics only demand the 0th element of their input vectors. If
   2352     // we can simplify the input based on that, do so now.
   2353     Value *Arg = II->getArgOperand(0);
   2354     unsigned VWidth = Arg->getType()->getVectorNumElements();
   2355     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
   2356       II->setArgOperand(0, V);
   2357       return II;
   2358     }
   2359     break;
   2360   }
   2361 
   2362   case Intrinsic::x86_sse41_round_ps:
   2363   case Intrinsic::x86_sse41_round_pd:
   2364   case Intrinsic::x86_avx_round_ps_256:
   2365   case Intrinsic::x86_avx_round_pd_256:
   2366   case Intrinsic::x86_avx512_mask_rndscale_ps_128:
   2367   case Intrinsic::x86_avx512_mask_rndscale_ps_256:
   2368   case Intrinsic::x86_avx512_mask_rndscale_ps_512:
   2369   case Intrinsic::x86_avx512_mask_rndscale_pd_128:
   2370   case Intrinsic::x86_avx512_mask_rndscale_pd_256:
   2371   case Intrinsic::x86_avx512_mask_rndscale_pd_512:
   2372   case Intrinsic::x86_avx512_mask_rndscale_ss:
   2373   case Intrinsic::x86_avx512_mask_rndscale_sd:
   2374     if (Value *V = simplifyX86round(*II, Builder))
   2375       return replaceInstUsesWith(*II, V);
   2376     break;
   2377 
   2378   case Intrinsic::x86_mmx_pmovmskb:
   2379   case Intrinsic::x86_sse_movmsk_ps:
   2380   case Intrinsic::x86_sse2_movmsk_pd:
   2381   case Intrinsic::x86_sse2_pmovmskb_128:
   2382   case Intrinsic::x86_avx_movmsk_pd_256:
   2383   case Intrinsic::x86_avx_movmsk_ps_256:
   2384   case Intrinsic::x86_avx2_pmovmskb:
   2385     if (Value *V = simplifyX86movmsk(*II))
   2386       return replaceInstUsesWith(*II, V);
   2387     break;
   2388 
   2389   case Intrinsic::x86_sse_comieq_ss:
   2390   case Intrinsic::x86_sse_comige_ss:
   2391   case Intrinsic::x86_sse_comigt_ss:
   2392   case Intrinsic::x86_sse_comile_ss:
   2393   case Intrinsic::x86_sse_comilt_ss:
   2394   case Intrinsic::x86_sse_comineq_ss:
   2395   case Intrinsic::x86_sse_ucomieq_ss:
   2396   case Intrinsic::x86_sse_ucomige_ss:
   2397   case Intrinsic::x86_sse_ucomigt_ss:
   2398   case Intrinsic::x86_sse_ucomile_ss:
   2399   case Intrinsic::x86_sse_ucomilt_ss:
   2400   case Intrinsic::x86_sse_ucomineq_ss:
   2401   case Intrinsic::x86_sse2_comieq_sd:
   2402   case Intrinsic::x86_sse2_comige_sd:
   2403   case Intrinsic::x86_sse2_comigt_sd:
   2404   case Intrinsic::x86_sse2_comile_sd:
   2405   case Intrinsic::x86_sse2_comilt_sd:
   2406   case Intrinsic::x86_sse2_comineq_sd:
   2407   case Intrinsic::x86_sse2_ucomieq_sd:
   2408   case Intrinsic::x86_sse2_ucomige_sd:
   2409   case Intrinsic::x86_sse2_ucomigt_sd:
   2410   case Intrinsic::x86_sse2_ucomile_sd:
   2411   case Intrinsic::x86_sse2_ucomilt_sd:
   2412   case Intrinsic::x86_sse2_ucomineq_sd:
   2413   case Intrinsic::x86_avx512_vcomi_ss:
   2414   case Intrinsic::x86_avx512_vcomi_sd:
   2415   case Intrinsic::x86_avx512_mask_cmp_ss:
   2416   case Intrinsic::x86_avx512_mask_cmp_sd: {
   2417     // These intrinsics only demand the 0th element of their input vectors. If
   2418     // we can simplify the input based on that, do so now.
   2419     bool MadeChange = false;
   2420     Value *Arg0 = II->getArgOperand(0);
   2421     Value *Arg1 = II->getArgOperand(1);
   2422     unsigned VWidth = Arg0->getType()->getVectorNumElements();
   2423     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
   2424       II->setArgOperand(0, V);
   2425       MadeChange = true;
   2426     }
   2427     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
   2428       II->setArgOperand(1, V);
   2429       MadeChange = true;
   2430     }
   2431     if (MadeChange)
   2432       return II;
   2433     break;
   2434   }
   2435   case Intrinsic::x86_avx512_cmp_pd_128:
   2436   case Intrinsic::x86_avx512_cmp_pd_256:
   2437   case Intrinsic::x86_avx512_cmp_pd_512:
   2438   case Intrinsic::x86_avx512_cmp_ps_128:
   2439   case Intrinsic::x86_avx512_cmp_ps_256:
   2440   case Intrinsic::x86_avx512_cmp_ps_512: {
   2441     // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
   2442     Value *Arg0 = II->getArgOperand(0);
   2443     Value *Arg1 = II->getArgOperand(1);
   2444     bool Arg0IsZero = match(Arg0, m_PosZeroFP());
   2445     if (Arg0IsZero)
   2446       std::swap(Arg0, Arg1);
   2447     Value *A, *B;
   2448     // This fold requires only the NINF(not +/- inf) since inf minus
   2449     // inf is nan.
   2450     // NSZ(No Signed Zeros) is not needed because zeros of any sign are
   2451     // equal for both compares.
   2452     // NNAN is not needed because nans compare the same for both compares.
   2453     // The compare intrinsic uses the above assumptions and therefore
   2454     // doesn't require additional flags.
   2455     if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
   2456          match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
   2457          cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
   2458       if (Arg0IsZero)
   2459         std::swap(A, B);
   2460       II->setArgOperand(0, A);
   2461       II->setArgOperand(1, B);
   2462       return II;
   2463     }
   2464     break;
   2465   }
   2466 
   2467   case Intrinsic::x86_avx512_add_ps_512:
   2468   case Intrinsic::x86_avx512_div_ps_512:
   2469   case Intrinsic::x86_avx512_mul_ps_512:
   2470   case Intrinsic::x86_avx512_sub_ps_512:
   2471   case Intrinsic::x86_avx512_add_pd_512:
   2472   case Intrinsic::x86_avx512_div_pd_512:
   2473   case Intrinsic::x86_avx512_mul_pd_512:
   2474   case Intrinsic::x86_avx512_sub_pd_512:
   2475     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
   2476     // IR operations.
   2477     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
   2478       if (R->getValue() == 4) {
   2479         Value *Arg0 = II->getArgOperand(0);
   2480         Value *Arg1 = II->getArgOperand(1);
   2481 
   2482         Value *V;
   2483         switch (II->getIntrinsicID()) {
   2484         default: llvm_unreachable("Case stmts out of sync!");
   2485         case Intrinsic::x86_avx512_add_ps_512:
   2486         case Intrinsic::x86_avx512_add_pd_512:
   2487           V = Builder.CreateFAdd(Arg0, Arg1);
   2488           break;
   2489         case Intrinsic::x86_avx512_sub_ps_512:
   2490         case Intrinsic::x86_avx512_sub_pd_512:
   2491           V = Builder.CreateFSub(Arg0, Arg1);
   2492           break;
   2493         case Intrinsic::x86_avx512_mul_ps_512:
   2494         case Intrinsic::x86_avx512_mul_pd_512:
   2495           V = Builder.CreateFMul(Arg0, Arg1);
   2496           break;
   2497         case Intrinsic::x86_avx512_div_ps_512:
   2498         case Intrinsic::x86_avx512_div_pd_512:
   2499           V = Builder.CreateFDiv(Arg0, Arg1);
   2500           break;
   2501         }
   2502 
   2503         return replaceInstUsesWith(*II, V);
   2504       }
   2505     }
   2506     break;
   2507 
   2508   case Intrinsic::x86_avx512_mask_add_ss_round:
   2509   case Intrinsic::x86_avx512_mask_div_ss_round:
   2510   case Intrinsic::x86_avx512_mask_mul_ss_round:
   2511   case Intrinsic::x86_avx512_mask_sub_ss_round:
   2512   case Intrinsic::x86_avx512_mask_add_sd_round:
   2513   case Intrinsic::x86_avx512_mask_div_sd_round:
   2514   case Intrinsic::x86_avx512_mask_mul_sd_round:
   2515   case Intrinsic::x86_avx512_mask_sub_sd_round:
   2516     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
   2517     // IR operations.
   2518     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
   2519       if (R->getValue() == 4) {
   2520         // Extract the element as scalars.
   2521         Value *Arg0 = II->getArgOperand(0);
   2522         Value *Arg1 = II->getArgOperand(1);
   2523         Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
   2524         Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
   2525 
   2526         Value *V;
   2527         switch (II->getIntrinsicID()) {
   2528         default: llvm_unreachable("Case stmts out of sync!");
   2529         case Intrinsic::x86_avx512_mask_add_ss_round:
   2530         case Intrinsic::x86_avx512_mask_add_sd_round:
   2531           V = Builder.CreateFAdd(LHS, RHS);
   2532           break;
   2533         case Intrinsic::x86_avx512_mask_sub_ss_round:
   2534         case Intrinsic::x86_avx512_mask_sub_sd_round:
   2535           V = Builder.CreateFSub(LHS, RHS);
   2536           break;
   2537         case Intrinsic::x86_avx512_mask_mul_ss_round:
   2538         case Intrinsic::x86_avx512_mask_mul_sd_round:
   2539           V = Builder.CreateFMul(LHS, RHS);
   2540           break;
   2541         case Intrinsic::x86_avx512_mask_div_ss_round:
   2542         case Intrinsic::x86_avx512_mask_div_sd_round:
   2543           V = Builder.CreateFDiv(LHS, RHS);
   2544           break;
   2545         }
   2546 
   2547         // Handle the masking aspect of the intrinsic.
   2548         Value *Mask = II->getArgOperand(3);
   2549         auto *C = dyn_cast<ConstantInt>(Mask);
   2550         // We don't need a select if we know the mask bit is a 1.
   2551         if (!C || !C->getValue()[0]) {
   2552           // Cast the mask to an i1 vector and then extract the lowest element.
   2553           auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
   2554                              cast<IntegerType>(Mask->getType())->getBitWidth());
   2555           Mask = Builder.CreateBitCast(Mask, MaskTy);
   2556           Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
   2557           // Extract the lowest element from the passthru operand.
   2558           Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
   2559                                                           (uint64_t)0);
   2560           V = Builder.CreateSelect(Mask, V, Passthru);
   2561         }
   2562 
   2563         // Insert the result back into the original argument 0.
   2564         V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
   2565 
   2566         return replaceInstUsesWith(*II, V);
   2567       }
   2568     }
   2569     LLVM_FALLTHROUGH;
   2570 
   2571   // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
   2572   case Intrinsic::x86_avx512_mask_max_ss_round:
   2573   case Intrinsic::x86_avx512_mask_min_ss_round:
   2574   case Intrinsic::x86_avx512_mask_max_sd_round:
   2575   case Intrinsic::x86_avx512_mask_min_sd_round:
   2576   case Intrinsic::x86_sse_cmp_ss:
   2577   case Intrinsic::x86_sse_min_ss:
   2578   case Intrinsic::x86_sse_max_ss:
   2579   case Intrinsic::x86_sse2_cmp_sd:
   2580   case Intrinsic::x86_sse2_min_sd:
   2581   case Intrinsic::x86_sse2_max_sd:
   2582   case Intrinsic::x86_xop_vfrcz_ss:
   2583   case Intrinsic::x86_xop_vfrcz_sd: {
   2584    unsigned VWidth = II->getType()->getVectorNumElements();
   2585    APInt UndefElts(VWidth, 0);
   2586    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
   2587    if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
   2588      if (V != II)
   2589        return replaceInstUsesWith(*II, V);
   2590      return II;
   2591    }
   2592    break;
   2593   }
   2594   case Intrinsic::x86_sse41_round_ss:
   2595   case Intrinsic::x86_sse41_round_sd: {
   2596     unsigned VWidth = II->getType()->getVectorNumElements();
   2597     APInt UndefElts(VWidth, 0);
   2598     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
   2599     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
   2600       if (V != II)
   2601         return replaceInstUsesWith(*II, V);
   2602       return II;
   2603     } else if (Value *V = simplifyX86round(*II, Builder))
   2604       return replaceInstUsesWith(*II, V);
   2605     break;
   2606   }
   2607 
   2608   // Constant fold ashr( <A x Bi>, Ci ).
   2609   // Constant fold lshr( <A x Bi>, Ci ).
   2610   // Constant fold shl( <A x Bi>, Ci ).
   2611   case Intrinsic::x86_sse2_psrai_d:
   2612   case Intrinsic::x86_sse2_psrai_w:
   2613   case Intrinsic::x86_avx2_psrai_d:
   2614   case Intrinsic::x86_avx2_psrai_w:
   2615   case Intrinsic::x86_avx512_psrai_q_128:
   2616   case Intrinsic::x86_avx512_psrai_q_256:
   2617   case Intrinsic::x86_avx512_psrai_d_512:
   2618   case Intrinsic::x86_avx512_psrai_q_512:
   2619   case Intrinsic::x86_avx512_psrai_w_512:
   2620   case Intrinsic::x86_sse2_psrli_d:
   2621   case Intrinsic::x86_sse2_psrli_q:
   2622   case Intrinsic::x86_sse2_psrli_w:
   2623   case Intrinsic::x86_avx2_psrli_d:
   2624   case Intrinsic::x86_avx2_psrli_q:
   2625   case Intrinsic::x86_avx2_psrli_w:
   2626   case Intrinsic::x86_avx512_psrli_d_512:
   2627   case Intrinsic::x86_avx512_psrli_q_512:
   2628   case Intrinsic::x86_avx512_psrli_w_512:
   2629   case Intrinsic::x86_sse2_pslli_d:
   2630   case Intrinsic::x86_sse2_pslli_q:
   2631   case Intrinsic::x86_sse2_pslli_w:
   2632   case Intrinsic::x86_avx2_pslli_d:
   2633   case Intrinsic::x86_avx2_pslli_q:
   2634   case Intrinsic::x86_avx2_pslli_w:
   2635   case Intrinsic::x86_avx512_pslli_d_512:
   2636   case Intrinsic::x86_avx512_pslli_q_512:
   2637   case Intrinsic::x86_avx512_pslli_w_512:
   2638     if (Value *V = simplifyX86immShift(*II, Builder))
   2639       return replaceInstUsesWith(*II, V);
   2640     break;
   2641 
   2642   case Intrinsic::x86_sse2_psra_d:
   2643   case Intrinsic::x86_sse2_psra_w:
   2644   case Intrinsic::x86_avx2_psra_d:
   2645   case Intrinsic::x86_avx2_psra_w:
   2646   case Intrinsic::x86_avx512_psra_q_128:
   2647   case Intrinsic::x86_avx512_psra_q_256:
   2648   case Intrinsic::x86_avx512_psra_d_512:
   2649   case Intrinsic::x86_avx512_psra_q_512:
   2650   case Intrinsic::x86_avx512_psra_w_512:
   2651   case Intrinsic::x86_sse2_psrl_d:
   2652   case Intrinsic::x86_sse2_psrl_q:
   2653   case Intrinsic::x86_sse2_psrl_w:
   2654   case Intrinsic::x86_avx2_psrl_d:
   2655   case Intrinsic::x86_avx2_psrl_q:
   2656   case Intrinsic::x86_avx2_psrl_w:
   2657   case Intrinsic::x86_avx512_psrl_d_512:
   2658   case Intrinsic::x86_avx512_psrl_q_512:
   2659   case Intrinsic::x86_avx512_psrl_w_512:
   2660   case Intrinsic::x86_sse2_psll_d:
   2661   case Intrinsic::x86_sse2_psll_q:
   2662   case Intrinsic::x86_sse2_psll_w:
   2663   case Intrinsic::x86_avx2_psll_d:
   2664   case Intrinsic::x86_avx2_psll_q:
   2665   case Intrinsic::x86_avx2_psll_w:
   2666   case Intrinsic::x86_avx512_psll_d_512:
   2667   case Intrinsic::x86_avx512_psll_q_512:
   2668   case Intrinsic::x86_avx512_psll_w_512: {
   2669     if (Value *V = simplifyX86immShift(*II, Builder))
   2670       return replaceInstUsesWith(*II, V);
   2671 
   2672     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
   2673     // operand to compute the shift amount.
   2674     Value *Arg1 = II->getArgOperand(1);
   2675     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
   2676            "Unexpected packed shift size");
   2677     unsigned VWidth = Arg1->getType()->getVectorNumElements();
   2678 
   2679     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
   2680       II->setArgOperand(1, V);
   2681       return II;
   2682     }
   2683     break;
   2684   }
   2685 
   2686   case Intrinsic::x86_avx2_psllv_d:
   2687   case Intrinsic::x86_avx2_psllv_d_256:
   2688   case Intrinsic::x86_avx2_psllv_q:
   2689   case Intrinsic::x86_avx2_psllv_q_256:
   2690   case Intrinsic::x86_avx512_psllv_d_512:
   2691   case Intrinsic::x86_avx512_psllv_q_512:
   2692   case Intrinsic::x86_avx512_psllv_w_128:
   2693   case Intrinsic::x86_avx512_psllv_w_256:
   2694   case Intrinsic::x86_avx512_psllv_w_512:
   2695   case Intrinsic::x86_avx2_psrav_d:
   2696   case Intrinsic::x86_avx2_psrav_d_256:
   2697   case Intrinsic::x86_avx512_psrav_q_128:
   2698   case Intrinsic::x86_avx512_psrav_q_256:
   2699   case Intrinsic::x86_avx512_psrav_d_512:
   2700   case Intrinsic::x86_avx512_psrav_q_512:
   2701   case Intrinsic::x86_avx512_psrav_w_128:
   2702   case Intrinsic::x86_avx512_psrav_w_256:
   2703   case Intrinsic::x86_avx512_psrav_w_512:
   2704   case Intrinsic::x86_avx2_psrlv_d:
   2705   case Intrinsic::x86_avx2_psrlv_d_256:
   2706   case Intrinsic::x86_avx2_psrlv_q:
   2707   case Intrinsic::x86_avx2_psrlv_q_256:
   2708   case Intrinsic::x86_avx512_psrlv_d_512:
   2709   case Intrinsic::x86_avx512_psrlv_q_512:
   2710   case Intrinsic::x86_avx512_psrlv_w_128:
   2711   case Intrinsic::x86_avx512_psrlv_w_256:
   2712   case Intrinsic::x86_avx512_psrlv_w_512:
   2713     if (Value *V = simplifyX86varShift(*II, Builder))
   2714       return replaceInstUsesWith(*II, V);
   2715     break;
   2716 
   2717   case Intrinsic::x86_sse2_packssdw_128:
   2718   case Intrinsic::x86_sse2_packsswb_128:
   2719   case Intrinsic::x86_avx2_packssdw:
   2720   case Intrinsic::x86_avx2_packsswb:
   2721   case Intrinsic::x86_avx512_packssdw_512:
   2722   case Intrinsic::x86_avx512_packsswb_512:
   2723     if (Value *V = simplifyX86pack(*II, true))
   2724       return replaceInstUsesWith(*II, V);
   2725     break;
   2726 
   2727   case Intrinsic::x86_sse2_packuswb_128:
   2728   case Intrinsic::x86_sse41_packusdw:
   2729   case Intrinsic::x86_avx2_packusdw:
   2730   case Intrinsic::x86_avx2_packuswb:
   2731   case Intrinsic::x86_avx512_packusdw_512:
   2732   case Intrinsic::x86_avx512_packuswb_512:
   2733     if (Value *V = simplifyX86pack(*II, false))
   2734       return replaceInstUsesWith(*II, V);
   2735     break;
   2736 
   2737   case Intrinsic::x86_pclmulqdq:
   2738   case Intrinsic::x86_pclmulqdq_256:
   2739   case Intrinsic::x86_pclmulqdq_512: {
   2740     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
   2741       unsigned Imm = C->getZExtValue();
   2742 
   2743       bool MadeChange = false;
   2744       Value *Arg0 = II->getArgOperand(0);
   2745       Value *Arg1 = II->getArgOperand(1);
   2746       unsigned VWidth = Arg0->getType()->getVectorNumElements();
   2747 
   2748       APInt UndefElts1(VWidth, 0);
   2749       APInt DemandedElts1 = APInt::getSplat(VWidth,
   2750                                             APInt(2, (Imm & 0x01) ? 2 : 1));
   2751       if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
   2752                                                 UndefElts1)) {
   2753         II->setArgOperand(0, V);
   2754         MadeChange = true;
   2755       }
   2756 
   2757       APInt UndefElts2(VWidth, 0);
   2758       APInt DemandedElts2 = APInt::getSplat(VWidth,
   2759                                             APInt(2, (Imm & 0x10) ? 2 : 1));
   2760       if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
   2761                                                 UndefElts2)) {
   2762         II->setArgOperand(1, V);
   2763         MadeChange = true;
   2764       }
   2765 
   2766       // If either input elements are undef, the result is zero.
   2767       if (DemandedElts1.isSubsetOf(UndefElts1) ||
   2768           DemandedElts2.isSubsetOf(UndefElts2))
   2769         return replaceInstUsesWith(*II,
   2770                                    ConstantAggregateZero::get(II->getType()));
   2771 
   2772       if (MadeChange)
   2773         return II;
   2774     }
   2775     break;
   2776   }
   2777 
   2778   case Intrinsic::x86_sse41_insertps:
   2779     if (Value *V = simplifyX86insertps(*II, Builder))
   2780       return replaceInstUsesWith(*II, V);
   2781     break;
   2782 
   2783   case Intrinsic::x86_sse4a_extrq: {
   2784     Value *Op0 = II->getArgOperand(0);
   2785     Value *Op1 = II->getArgOperand(1);
   2786     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
   2787     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
   2788     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
   2789            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
   2790            VWidth1 == 16 && "Unexpected operand sizes");
   2791 
   2792     // See if we're dealing with constant values.
   2793     Constant *C1 = dyn_cast<Constant>(Op1);
   2794     ConstantInt *CILength =
   2795         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
   2796            : nullptr;
   2797     ConstantInt *CIIndex =
   2798         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
   2799            : nullptr;
   2800 
   2801     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
   2802     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
   2803       return replaceInstUsesWith(*II, V);
   2804 
   2805     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
   2806     // operands and the lowest 16-bits of the second.
   2807     bool MadeChange = false;
   2808     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
   2809       II->setArgOperand(0, V);
   2810       MadeChange = true;
   2811     }
   2812     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
   2813       II->setArgOperand(1, V);
   2814       MadeChange = true;
   2815     }
   2816     if (MadeChange)
   2817       return II;
   2818     break;
   2819   }
   2820 
   2821   case Intrinsic::x86_sse4a_extrqi: {
   2822     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
   2823     // bits of the lower 64-bits. The upper 64-bits are undefined.
   2824     Value *Op0 = II->getArgOperand(0);
   2825     unsigned VWidth = Op0->getType()->getVectorNumElements();
   2826     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
   2827            "Unexpected operand size");
   2828 
   2829     // See if we're dealing with constant values.
   2830     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
   2831     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
   2832 
   2833     // Attempt to simplify to a constant or shuffle vector.
   2834     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
   2835       return replaceInstUsesWith(*II, V);
   2836 
   2837     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
   2838     // operand.
   2839     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
   2840       II->setArgOperand(0, V);
   2841       return II;
   2842     }
   2843     break;
   2844   }
   2845 
   2846   case Intrinsic::x86_sse4a_insertq: {
   2847     Value *Op0 = II->getArgOperand(0);
   2848     Value *Op1 = II->getArgOperand(1);
   2849     unsigned VWidth = Op0->getType()->getVectorNumElements();
   2850     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
   2851            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
   2852            Op1->getType()->getVectorNumElements() == 2 &&
   2853            "Unexpected operand size");
   2854 
   2855     // See if we're dealing with constant values.
   2856     Constant *C1 = dyn_cast<Constant>(Op1);
   2857     ConstantInt *CI11 =
   2858         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
   2859            : nullptr;
   2860 
   2861     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
   2862     if (CI11) {
   2863       const APInt &V11 = CI11->getValue();
   2864       APInt Len = V11.zextOrTrunc(6);
   2865       APInt Idx = V11.lshr(8).zextOrTrunc(6);
   2866       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
   2867         return replaceInstUsesWith(*II, V);
   2868     }
   2869 
   2870     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
   2871     // operand.
   2872     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
   2873       II->setArgOperand(0, V);
   2874       return II;
   2875     }
   2876     break;
   2877   }
   2878 
   2879   case Intrinsic::x86_sse4a_insertqi: {
   2880     // INSERTQI: Extract lowest Length bits from lower half of second source and
   2881     // insert over first source starting at Index bit. The upper 64-bits are
   2882     // undefined.
   2883     Value *Op0 = II->getArgOperand(0);
   2884     Value *Op1 = II->getArgOperand(1);
   2885     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
   2886     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
   2887     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
   2888            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
   2889            VWidth1 == 2 && "Unexpected operand sizes");
   2890 
   2891     // See if we're dealing with constant values.
   2892     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
   2893     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
   2894 
   2895     // Attempt to simplify to a constant or shuffle vector.
   2896     if (CILength && CIIndex) {
   2897       APInt Len = CILength->getValue().zextOrTrunc(6);
   2898       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
   2899       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
   2900         return replaceInstUsesWith(*II, V);
   2901     }
   2902 
   2903     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
   2904     // operands.
   2905     bool MadeChange = false;
   2906     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
   2907       II->setArgOperand(0, V);
   2908       MadeChange = true;
   2909     }
   2910     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
   2911       II->setArgOperand(1, V);
   2912       MadeChange = true;
   2913     }
   2914     if (MadeChange)
   2915       return II;
   2916     break;
   2917   }
   2918 
   2919   case Intrinsic::x86_sse41_pblendvb:
   2920   case Intrinsic::x86_sse41_blendvps:
   2921   case Intrinsic::x86_sse41_blendvpd:
   2922   case Intrinsic::x86_avx_blendv_ps_256:
   2923   case Intrinsic::x86_avx_blendv_pd_256:
   2924   case Intrinsic::x86_avx2_pblendvb: {
   2925     // Convert blendv* to vector selects if the mask is constant.
   2926     // This optimization is convoluted because the intrinsic is defined as
   2927     // getting a vector of floats or doubles for the ps and pd versions.
   2928     // FIXME: That should be changed.
   2929 
   2930     Value *Op0 = II->getArgOperand(0);
   2931     Value *Op1 = II->getArgOperand(1);
   2932     Value *Mask = II->getArgOperand(2);
   2933 
   2934     // fold (blend A, A, Mask) -> A
   2935     if (Op0 == Op1)
   2936       return replaceInstUsesWith(CI, Op0);
   2937 
   2938     // Zero Mask - select 1st argument.
   2939     if (isa<ConstantAggregateZero>(Mask))
   2940       return replaceInstUsesWith(CI, Op0);
   2941 
   2942     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
   2943     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
   2944       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
   2945       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
   2946     }
   2947     break;
   2948   }
   2949 
   2950   case Intrinsic::x86_ssse3_pshuf_b_128:
   2951   case Intrinsic::x86_avx2_pshuf_b:
   2952   case Intrinsic::x86_avx512_pshuf_b_512:
   2953     if (Value *V = simplifyX86pshufb(*II, Builder))
   2954       return replaceInstUsesWith(*II, V);
   2955     break;
   2956 
   2957   case Intrinsic::x86_avx_vpermilvar_ps:
   2958   case Intrinsic::x86_avx_vpermilvar_ps_256:
   2959   case Intrinsic::x86_avx512_vpermilvar_ps_512:
   2960   case Intrinsic::x86_avx_vpermilvar_pd:
   2961   case Intrinsic::x86_avx_vpermilvar_pd_256:
   2962   case Intrinsic::x86_avx512_vpermilvar_pd_512:
   2963     if (Value *V = simplifyX86vpermilvar(*II, Builder))
   2964       return replaceInstUsesWith(*II, V);
   2965     break;
   2966 
   2967   case Intrinsic::x86_avx2_permd:
   2968   case Intrinsic::x86_avx2_permps:
   2969   case Intrinsic::x86_avx512_permvar_df_256:
   2970   case Intrinsic::x86_avx512_permvar_df_512:
   2971   case Intrinsic::x86_avx512_permvar_di_256:
   2972   case Intrinsic::x86_avx512_permvar_di_512:
   2973   case Intrinsic::x86_avx512_permvar_hi_128:
   2974   case Intrinsic::x86_avx512_permvar_hi_256:
   2975   case Intrinsic::x86_avx512_permvar_hi_512:
   2976   case Intrinsic::x86_avx512_permvar_qi_128:
   2977   case Intrinsic::x86_avx512_permvar_qi_256:
   2978   case Intrinsic::x86_avx512_permvar_qi_512:
   2979   case Intrinsic::x86_avx512_permvar_sf_512:
   2980   case Intrinsic::x86_avx512_permvar_si_512:
   2981     if (Value *V = simplifyX86vpermv(*II, Builder))
   2982       return replaceInstUsesWith(*II, V);
   2983     break;
   2984 
   2985   case Intrinsic::x86_avx_maskload_ps:
   2986   case Intrinsic::x86_avx_maskload_pd:
   2987   case Intrinsic::x86_avx_maskload_ps_256:
   2988   case Intrinsic::x86_avx_maskload_pd_256:
   2989   case Intrinsic::x86_avx2_maskload_d:
   2990   case Intrinsic::x86_avx2_maskload_q:
   2991   case Intrinsic::x86_avx2_maskload_d_256:
   2992   case Intrinsic::x86_avx2_maskload_q_256:
   2993     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
   2994       return I;
   2995     break;
   2996 
   2997   case Intrinsic::x86_sse2_maskmov_dqu:
   2998   case Intrinsic::x86_avx_maskstore_ps:
   2999   case Intrinsic::x86_avx_maskstore_pd:
   3000   case Intrinsic::x86_avx_maskstore_ps_256:
   3001   case Intrinsic::x86_avx_maskstore_pd_256:
   3002   case Intrinsic::x86_avx2_maskstore_d:
   3003   case Intrinsic::x86_avx2_maskstore_q:
   3004   case Intrinsic::x86_avx2_maskstore_d_256:
   3005   case Intrinsic::x86_avx2_maskstore_q_256:
   3006     if (simplifyX86MaskedStore(*II, *this))
   3007       return nullptr;
   3008     break;
   3009 
   3010   case Intrinsic::x86_xop_vpcomb:
   3011   case Intrinsic::x86_xop_vpcomd:
   3012   case Intrinsic::x86_xop_vpcomq:
   3013   case Intrinsic::x86_xop_vpcomw:
   3014     if (Value *V = simplifyX86vpcom(*II, Builder, true))
   3015       return replaceInstUsesWith(*II, V);
   3016     break;
   3017 
   3018   case Intrinsic::x86_xop_vpcomub:
   3019   case Intrinsic::x86_xop_vpcomud:
   3020   case Intrinsic::x86_xop_vpcomuq:
   3021   case Intrinsic::x86_xop_vpcomuw:
   3022     if (Value *V = simplifyX86vpcom(*II, Builder, false))
   3023       return replaceInstUsesWith(*II, V);
   3024     break;
   3025 
   3026   case Intrinsic::ppc_altivec_vperm:
   3027     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
   3028     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
   3029     // a vectorshuffle for little endian, we must undo the transformation
   3030     // performed on vec_perm in altivec.h.  That is, we must complement
   3031     // the permutation mask with respect to 31 and reverse the order of
   3032     // V1 and V2.
   3033     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
   3034       assert(Mask->getType()->getVectorNumElements() == 16 &&
   3035              "Bad type for intrinsic!");
   3036 
   3037       // Check that all of the elements are integer constants or undefs.
   3038       bool AllEltsOk = true;
   3039       for (unsigned i = 0; i != 16; ++i) {
   3040         Constant *Elt = Mask->getAggregateElement(i);
   3041         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
   3042           AllEltsOk = false;
   3043           break;
   3044         }
   3045       }
   3046 
   3047       if (AllEltsOk) {
   3048         // Cast the input vectors to byte vectors.
   3049         Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
   3050                                            Mask->getType());
   3051         Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
   3052                                            Mask->getType());
   3053         Value *Result = UndefValue::get(Op0->getType());
   3054 
   3055         // Only extract each element once.
   3056         Value *ExtractedElts[32];
   3057         memset(ExtractedElts, 0, sizeof(ExtractedElts));
   3058 
   3059         for (unsigned i = 0; i != 16; ++i) {
   3060           if (isa<UndefValue>(Mask->getAggregateElement(i)))
   3061             continue;
   3062           unsigned Idx =
   3063             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
   3064           Idx &= 31;  // Match the hardware behavior.
   3065           if (DL.isLittleEndian())
   3066             Idx = 31 - Idx;
   3067 
   3068           if (!ExtractedElts[Idx]) {
   3069             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
   3070             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
   3071             ExtractedElts[Idx] =
   3072               Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
   3073                                            Builder.getInt32(Idx&15));
   3074           }
   3075 
   3076           // Insert this value into the result vector.
   3077           Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
   3078                                                Builder.getInt32(i));
   3079         }
   3080         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
   3081       }
   3082     }
   3083     break;
   3084 
   3085   case Intrinsic::arm_neon_vld1: {
   3086     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
   3087                                           DL, II, &AC, &DT);
   3088     if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
   3089       return replaceInstUsesWith(*II, V);
   3090     break;
   3091   }
   3092 
   3093   case Intrinsic::arm_neon_vld2:
   3094   case Intrinsic::arm_neon_vld3:
   3095   case Intrinsic::arm_neon_vld4:
   3096   case Intrinsic::arm_neon_vld2lane:
   3097   case Intrinsic::arm_neon_vld3lane:
   3098   case Intrinsic::arm_neon_vld4lane:
   3099   case Intrinsic::arm_neon_vst1:
   3100   case Intrinsic::arm_neon_vst2:
   3101   case Intrinsic::arm_neon_vst3:
   3102   case Intrinsic::arm_neon_vst4:
   3103   case Intrinsic::arm_neon_vst2lane:
   3104   case Intrinsic::arm_neon_vst3lane:
   3105   case Intrinsic::arm_neon_vst4lane: {
   3106     unsigned MemAlign =
   3107         getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
   3108     unsigned AlignArg = II->getNumArgOperands() - 1;
   3109     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
   3110     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
   3111       II->setArgOperand(AlignArg,
   3112                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
   3113                                          MemAlign, false));
   3114       return II;
   3115     }
   3116     break;
   3117   }
   3118 
   3119   case Intrinsic::arm_neon_vtbl1:
   3120   case Intrinsic::aarch64_neon_tbl1:
   3121     if (Value *V = simplifyNeonTbl1(*II, Builder))
   3122       return replaceInstUsesWith(*II, V);
   3123     break;
   3124 
   3125   case Intrinsic::arm_neon_vmulls:
   3126   case Intrinsic::arm_neon_vmullu:
   3127   case Intrinsic::aarch64_neon_smull:
   3128   case Intrinsic::aarch64_neon_umull: {
   3129     Value *Arg0 = II->getArgOperand(0);
   3130     Value *Arg1 = II->getArgOperand(1);
   3131 
   3132     // Handle mul by zero first:
   3133     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
   3134       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
   3135     }
   3136 
   3137     // Check for constant LHS & RHS - in this case we just simplify.
   3138     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
   3139                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
   3140     VectorType *NewVT = cast<VectorType>(II->getType());
   3141     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
   3142       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
   3143         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
   3144         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
   3145 
   3146         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
   3147       }
   3148 
   3149       // Couldn't simplify - canonicalize constant to the RHS.
   3150       std::swap(Arg0, Arg1);
   3151     }
   3152 
   3153     // Handle mul by one:
   3154     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
   3155       if (ConstantInt *Splat =
   3156               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
   3157         if (Splat->isOne())
   3158           return CastInst::CreateIntegerCast(Arg0, II->getType(),
   3159                                              /*isSigned=*/!Zext);
   3160 
   3161     break;
   3162   }
   3163   case Intrinsic::arm_neon_aesd:
   3164   case Intrinsic::arm_neon_aese:
   3165   case Intrinsic::aarch64_crypto_aesd:
   3166   case Intrinsic::aarch64_crypto_aese: {
   3167     Value *DataArg = II->getArgOperand(0);
   3168     Value *KeyArg  = II->getArgOperand(1);
   3169 
   3170     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
   3171     Value *Data, *Key;
   3172     if (match(KeyArg, m_ZeroInt()) &&
   3173         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
   3174       II->setArgOperand(0, Data);
   3175       II->setArgOperand(1, Key);
   3176       return II;
   3177     }
   3178     break;
   3179   }
   3180   case Intrinsic::amdgcn_rcp: {
   3181     Value *Src = II->getArgOperand(0);
   3182 
   3183     // TODO: Move to ConstantFolding/InstSimplify?
   3184     if (isa<UndefValue>(Src))
   3185       return replaceInstUsesWith(CI, Src);
   3186 
   3187     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
   3188       const APFloat &ArgVal = C->getValueAPF();
   3189       APFloat Val(ArgVal.getSemantics(), 1.0);
   3190       APFloat::opStatus Status = Val.divide(ArgVal,
   3191                                             APFloat::rmNearestTiesToEven);
   3192       // Only do this if it was exact and therefore not dependent on the
   3193       // rounding mode.
   3194       if (Status == APFloat::opOK)
   3195         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
   3196     }
   3197 
   3198     break;
   3199   }
   3200   case Intrinsic::amdgcn_rsq: {
   3201     Value *Src = II->getArgOperand(0);
   3202 
   3203     // TODO: Move to ConstantFolding/InstSimplify?
   3204     if (isa<UndefValue>(Src))
   3205       return replaceInstUsesWith(CI, Src);
   3206     break;
   3207   }
   3208   case Intrinsic::amdgcn_frexp_mant:
   3209   case Intrinsic::amdgcn_frexp_exp: {
   3210     Value *Src = II->getArgOperand(0);
   3211     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
   3212       int Exp;
   3213       APFloat Significand = frexp(C->getValueAPF(), Exp,
   3214                                   APFloat::rmNearestTiesToEven);
   3215 
   3216       if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
   3217         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
   3218                                                        Significand));
   3219       }
   3220 
   3221       // Match instruction special case behavior.
   3222       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
   3223         Exp = 0;
   3224 
   3225       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
   3226     }
   3227 
   3228     if (isa<UndefValue>(Src))
   3229       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
   3230 
   3231     break;
   3232   }
   3233   case Intrinsic::amdgcn_class: {
   3234     enum  {
   3235       S_NAN = 1 << 0,        // Signaling NaN
   3236       Q_NAN = 1 << 1,        // Quiet NaN
   3237       N_INFINITY = 1 << 2,   // Negative infinity
   3238       N_NORMAL = 1 << 3,     // Negative normal
   3239       N_SUBNORMAL = 1 << 4,  // Negative subnormal
   3240       N_ZERO = 1 << 5,       // Negative zero
   3241       P_ZERO = 1 << 6,       // Positive zero
   3242       P_SUBNORMAL = 1 << 7,  // Positive subnormal
   3243       P_NORMAL = 1 << 8,     // Positive normal
   3244       P_INFINITY = 1 << 9    // Positive infinity
   3245     };
   3246 
   3247     const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
   3248       N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
   3249 
   3250     Value *Src0 = II->getArgOperand(0);
   3251     Value *Src1 = II->getArgOperand(1);
   3252     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
   3253     if (!CMask) {
   3254       if (isa<UndefValue>(Src0))
   3255         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   3256 
   3257       if (isa<UndefValue>(Src1))
   3258         return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
   3259       break;
   3260     }
   3261 
   3262     uint32_t Mask = CMask->getZExtValue();
   3263 
   3264     // If all tests are made, it doesn't matter what the value is.
   3265     if ((Mask & FullMask) == FullMask)
   3266       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
   3267 
   3268     if ((Mask & FullMask) == 0)
   3269       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
   3270 
   3271     if (Mask == (S_NAN | Q_NAN)) {
   3272       // Equivalent of isnan. Replace with standard fcmp.
   3273       Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
   3274       FCmp->takeName(II);
   3275       return replaceInstUsesWith(*II, FCmp);
   3276     }
   3277 
   3278     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
   3279     if (!CVal) {
   3280       if (isa<UndefValue>(Src0))
   3281         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   3282 
   3283       // Clamp mask to used bits
   3284       if ((Mask & FullMask) != Mask) {
   3285         CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
   3286           { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
   3287         );
   3288 
   3289         NewCall->takeName(II);
   3290         return replaceInstUsesWith(*II, NewCall);
   3291       }
   3292 
   3293       break;
   3294     }
   3295 
   3296     const APFloat &Val = CVal->getValueAPF();
   3297 
   3298     bool Result =
   3299       ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
   3300       ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
   3301       ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
   3302       ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
   3303       ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
   3304       ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
   3305       ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
   3306       ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
   3307       ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
   3308       ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
   3309 
   3310     return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
   3311   }
   3312   case Intrinsic::amdgcn_cvt_pkrtz: {
   3313     Value *Src0 = II->getArgOperand(0);
   3314     Value *Src1 = II->getArgOperand(1);
   3315     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
   3316       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
   3317         const fltSemantics &HalfSem
   3318           = II->getType()->getScalarType()->getFltSemantics();
   3319         bool LosesInfo;
   3320         APFloat Val0 = C0->getValueAPF();
   3321         APFloat Val1 = C1->getValueAPF();
   3322         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
   3323         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
   3324 
   3325         Constant *Folded = ConstantVector::get({
   3326             ConstantFP::get(II->getContext(), Val0),
   3327             ConstantFP::get(II->getContext(), Val1) });
   3328         return replaceInstUsesWith(*II, Folded);
   3329       }
   3330     }
   3331 
   3332     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
   3333       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   3334 
   3335     break;
   3336   }
   3337   case Intrinsic::amdgcn_cvt_pknorm_i16:
   3338   case Intrinsic::amdgcn_cvt_pknorm_u16:
   3339   case Intrinsic::amdgcn_cvt_pk_i16:
   3340   case Intrinsic::amdgcn_cvt_pk_u16: {
   3341     Value *Src0 = II->getArgOperand(0);
   3342     Value *Src1 = II->getArgOperand(1);
   3343 
   3344     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
   3345       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   3346 
   3347     break;
   3348   }
   3349   case Intrinsic::amdgcn_ubfe:
   3350   case Intrinsic::amdgcn_sbfe: {
   3351     // Decompose simple cases into standard shifts.
   3352     Value *Src = II->getArgOperand(0);
   3353     if (isa<UndefValue>(Src))
   3354       return replaceInstUsesWith(*II, Src);
   3355 
   3356     unsigned Width;
   3357     Type *Ty = II->getType();
   3358     unsigned IntSize = Ty->getIntegerBitWidth();
   3359 
   3360     ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
   3361     if (CWidth) {
   3362       Width = CWidth->getZExtValue();
   3363       if ((Width & (IntSize - 1)) == 0)
   3364         return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
   3365 
   3366       if (Width >= IntSize) {
   3367         // Hardware ignores high bits, so remove those.
   3368         II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
   3369                                               Width & (IntSize - 1)));
   3370         return II;
   3371       }
   3372     }
   3373 
   3374     unsigned Offset;
   3375     ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
   3376     if (COffset) {
   3377       Offset = COffset->getZExtValue();
   3378       if (Offset >= IntSize) {
   3379         II->setArgOperand(1, ConstantInt::get(COffset->getType(),
   3380                                               Offset & (IntSize - 1)));
   3381         return II;
   3382       }
   3383     }
   3384 
   3385     bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
   3386 
   3387     // TODO: Also emit sub if only width is constant.
   3388     if (!CWidth && COffset && Offset == 0) {
   3389       Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
   3390       Value *ShiftVal = Builder.CreateSub(KSize, II->getArgOperand(2));
   3391       ShiftVal = Builder.CreateZExt(ShiftVal, II->getType());
   3392 
   3393       Value *Shl = Builder.CreateShl(Src, ShiftVal);
   3394       Value *RightShift = Signed ? Builder.CreateAShr(Shl, ShiftVal)
   3395                                  : Builder.CreateLShr(Shl, ShiftVal);
   3396       RightShift->takeName(II);
   3397       return replaceInstUsesWith(*II, RightShift);
   3398     }
   3399 
   3400     if (!CWidth || !COffset)
   3401       break;
   3402 
   3403     // TODO: This allows folding to undef when the hardware has specific
   3404     // behavior?
   3405     if (Offset + Width < IntSize) {
   3406       Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
   3407       Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
   3408                                  : Builder.CreateLShr(Shl, IntSize - Width);
   3409       RightShift->takeName(II);
   3410       return replaceInstUsesWith(*II, RightShift);
   3411     }
   3412 
   3413     Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
   3414                                : Builder.CreateLShr(Src, Offset);
   3415 
   3416     RightShift->takeName(II);
   3417     return replaceInstUsesWith(*II, RightShift);
   3418   }
   3419   case Intrinsic::amdgcn_exp:
   3420   case Intrinsic::amdgcn_exp_compr: {
   3421     ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
   3422     if (!En) // Illegal.
   3423       break;
   3424 
   3425     unsigned EnBits = En->getZExtValue();
   3426     if (EnBits == 0xf)
   3427       break; // All inputs enabled.
   3428 
   3429     bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
   3430     bool Changed = false;
   3431     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
   3432       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
   3433           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
   3434         Value *Src = II->getArgOperand(I + 2);
   3435         if (!isa<UndefValue>(Src)) {
   3436           II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
   3437           Changed = true;
   3438         }
   3439       }
   3440     }
   3441 
   3442     if (Changed)
   3443       return II;
   3444 
   3445     break;
   3446   }
   3447   case Intrinsic::amdgcn_fmed3: {
   3448     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
   3449     // for the shader.
   3450 
   3451     Value *Src0 = II->getArgOperand(0);
   3452     Value *Src1 = II->getArgOperand(1);
   3453     Value *Src2 = II->getArgOperand(2);
   3454 
   3455     // Checking for NaN before canonicalization provides better fidelity when
   3456     // mapping other operations onto fmed3 since the order of operands is
   3457     // unchanged.
   3458     CallInst *NewCall = nullptr;
   3459     if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
   3460       NewCall = Builder.CreateMinNum(Src1, Src2);
   3461     } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
   3462       NewCall = Builder.CreateMinNum(Src0, Src2);
   3463     } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
   3464       NewCall = Builder.CreateMaxNum(Src0, Src1);
   3465     }
   3466 
   3467     if (NewCall) {
   3468       NewCall->copyFastMathFlags(II);
   3469       NewCall->takeName(II);
   3470       return replaceInstUsesWith(*II, NewCall);
   3471     }
   3472 
   3473     bool Swap = false;
   3474     // Canonicalize constants to RHS operands.
   3475     //
   3476     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
   3477     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
   3478       std::swap(Src0, Src1);
   3479       Swap = true;
   3480     }
   3481 
   3482     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
   3483       std::swap(Src1, Src2);
   3484       Swap = true;
   3485     }
   3486 
   3487     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
   3488       std::swap(Src0, Src1);
   3489       Swap = true;
   3490     }
   3491 
   3492     if (Swap) {
   3493       II->setArgOperand(0, Src0);
   3494       II->setArgOperand(1, Src1);
   3495       II->setArgOperand(2, Src2);
   3496       return II;
   3497     }
   3498 
   3499     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
   3500       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
   3501         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
   3502           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
   3503                                        C2->getValueAPF());
   3504           return replaceInstUsesWith(*II,
   3505             ConstantFP::get(Builder.getContext(), Result));
   3506         }
   3507       }
   3508     }
   3509 
   3510     break;
   3511   }
   3512   case Intrinsic::amdgcn_icmp:
   3513   case Intrinsic::amdgcn_fcmp: {
   3514     const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
   3515     if (!CC)
   3516       break;
   3517 
   3518     // Guard against invalid arguments.
   3519     int64_t CCVal = CC->getZExtValue();
   3520     bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
   3521     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
   3522                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
   3523         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
   3524                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
   3525       break;
   3526 
   3527     Value *Src0 = II->getArgOperand(0);
   3528     Value *Src1 = II->getArgOperand(1);
   3529 
   3530     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
   3531       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
   3532         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
   3533         if (CCmp->isNullValue()) {
   3534           return replaceInstUsesWith(
   3535               *II, ConstantExpr::getSExt(CCmp, II->getType()));
   3536         }
   3537 
   3538         // The result of V_ICMP/V_FCMP assembly instructions (which this
   3539         // intrinsic exposes) is one bit per thread, masked with the EXEC
   3540         // register (which contains the bitmask of live threads). So a
   3541         // comparison that always returns true is the same as a read of the
   3542         // EXEC register.
   3543         Value *NewF = Intrinsic::getDeclaration(
   3544             II->getModule(), Intrinsic::read_register, II->getType());
   3545         Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
   3546         MDNode *MD = MDNode::get(II->getContext(), MDArgs);
   3547         Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
   3548         CallInst *NewCall = Builder.CreateCall(NewF, Args);
   3549         NewCall->addAttribute(AttributeList::FunctionIndex,
   3550                               Attribute::Convergent);
   3551         NewCall->takeName(II);
   3552         return replaceInstUsesWith(*II, NewCall);
   3553       }
   3554 
   3555       // Canonicalize constants to RHS.
   3556       CmpInst::Predicate SwapPred
   3557         = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
   3558       II->setArgOperand(0, Src1);
   3559       II->setArgOperand(1, Src0);
   3560       II->setArgOperand(2, ConstantInt::get(CC->getType(),
   3561                                             static_cast<int>(SwapPred)));
   3562       return II;
   3563     }
   3564 
   3565     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
   3566       break;
   3567 
   3568     // Canonicalize compare eq with true value to compare != 0
   3569     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
   3570     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
   3571     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
   3572     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
   3573     Value *ExtSrc;
   3574     if (CCVal == CmpInst::ICMP_EQ &&
   3575         ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
   3576          (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
   3577         ExtSrc->getType()->isIntegerTy(1)) {
   3578       II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
   3579       II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
   3580       return II;
   3581     }
   3582 
   3583     CmpInst::Predicate SrcPred;
   3584     Value *SrcLHS;
   3585     Value *SrcRHS;
   3586 
   3587     // Fold compare eq/ne with 0 from a compare result as the predicate to the
   3588     // intrinsic. The typical use is a wave vote function in the library, which
   3589     // will be fed from a user code condition compared with 0. Fold in the
   3590     // redundant compare.
   3591 
   3592     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
   3593     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
   3594     //
   3595     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
   3596     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
   3597     if (match(Src1, m_Zero()) &&
   3598         match(Src0,
   3599               m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
   3600       if (CCVal == CmpInst::ICMP_EQ)
   3601         SrcPred = CmpInst::getInversePredicate(SrcPred);
   3602 
   3603       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
   3604         Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
   3605 
   3606       Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
   3607                                               SrcLHS->getType());
   3608       Value *Args[] = { SrcLHS, SrcRHS,
   3609                         ConstantInt::get(CC->getType(), SrcPred) };
   3610       CallInst *NewCall = Builder.CreateCall(NewF, Args);
   3611       NewCall->takeName(II);
   3612       return replaceInstUsesWith(*II, NewCall);
   3613     }
   3614 
   3615     break;
   3616   }
   3617   case Intrinsic::amdgcn_wqm_vote: {
   3618     // wqm_vote is identity when the argument is constant.
   3619     if (!isa<Constant>(II->getArgOperand(0)))
   3620       break;
   3621 
   3622     return replaceInstUsesWith(*II, II->getArgOperand(0));
   3623   }
   3624   case Intrinsic::amdgcn_kill: {
   3625     const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
   3626     if (!C || !C->getZExtValue())
   3627       break;
   3628 
   3629     // amdgcn.kill(i1 1) is a no-op
   3630     return eraseInstFromFunction(CI);
   3631   }
   3632   case Intrinsic::amdgcn_update_dpp: {
   3633     Value *Old = II->getArgOperand(0);
   3634 
   3635     auto BC = dyn_cast<ConstantInt>(II->getArgOperand(5));
   3636     auto RM = dyn_cast<ConstantInt>(II->getArgOperand(3));
   3637     auto BM = dyn_cast<ConstantInt>(II->getArgOperand(4));
   3638     if (!BC || !RM || !BM ||
   3639         BC->isZeroValue() ||
   3640         RM->getZExtValue() != 0xF ||
   3641         BM->getZExtValue() != 0xF ||
   3642         isa<UndefValue>(Old))
   3643       break;
   3644 
   3645     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
   3646     II->setOperand(0, UndefValue::get(Old->getType()));
   3647     return II;
   3648   }
   3649   case Intrinsic::stackrestore: {
   3650     // If the save is right next to the restore, remove the restore.  This can
   3651     // happen when variable allocas are DCE'd.
   3652     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
   3653       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
   3654         // Skip over debug info.
   3655         if (SS->getNextNonDebugInstruction() == II) {
   3656           return eraseInstFromFunction(CI);
   3657         }
   3658       }
   3659     }
   3660 
   3661     // Scan down this block to see if there is another stack restore in the
   3662     // same block without an intervening call/alloca.
   3663     BasicBlock::iterator BI(II);
   3664     TerminatorInst *TI = II->getParent()->getTerminator();
   3665     bool CannotRemove = false;
   3666     for (++BI; &*BI != TI; ++BI) {
   3667       if (isa<AllocaInst>(BI)) {
   3668         CannotRemove = true;
   3669         break;
   3670       }
   3671       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
   3672         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
   3673           // If there is a stackrestore below this one, remove this one.
   3674           if (II->getIntrinsicID() == Intrinsic::stackrestore)
   3675             return eraseInstFromFunction(CI);
   3676 
   3677           // Bail if we cross over an intrinsic with side effects, such as
   3678           // llvm.stacksave, llvm.read_register, or llvm.setjmp.
   3679           if (II->mayHaveSideEffects()) {
   3680             CannotRemove = true;
   3681             break;
   3682           }
   3683         } else {
   3684           // If we found a non-intrinsic call, we can't remove the stack
   3685           // restore.
   3686           CannotRemove = true;
   3687           break;
   3688         }
   3689       }
   3690     }
   3691 
   3692     // If the stack restore is in a return, resume, or unwind block and if there
   3693     // are no allocas or calls between the restore and the return, nuke the
   3694     // restore.
   3695     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
   3696       return eraseInstFromFunction(CI);
   3697     break;
   3698   }
   3699   case Intrinsic::lifetime_start:
   3700     // Asan needs to poison memory to detect invalid access which is possible
   3701     // even for empty lifetime range.
   3702     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
   3703         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
   3704       break;
   3705 
   3706     if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
   3707                                   Intrinsic::lifetime_end, *this))
   3708       return nullptr;
   3709     break;
   3710   case Intrinsic::assume: {
   3711     Value *IIOperand = II->getArgOperand(0);
   3712     // Remove an assume if it is followed by an identical assume.
   3713     // TODO: Do we need this? Unless there are conflicting assumptions, the
   3714     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
   3715     Instruction *Next = II->getNextNonDebugInstruction();
   3716     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
   3717       return eraseInstFromFunction(CI);
   3718 
   3719     // Canonicalize assume(a && b) -> assume(a); assume(b);
   3720     // Note: New assumption intrinsics created here are registered by
   3721     // the InstCombineIRInserter object.
   3722     Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
   3723     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
   3724       Builder.CreateCall(AssumeIntrinsic, A, II->getName());
   3725       Builder.CreateCall(AssumeIntrinsic, B, II->getName());
   3726       return eraseInstFromFunction(*II);
   3727     }
   3728     // assume(!(a || b)) -> assume(!a); assume(!b);
   3729     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
   3730       Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(A), II->getName());
   3731       Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(B), II->getName());
   3732       return eraseInstFromFunction(*II);
   3733     }
   3734 
   3735     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
   3736     // (if assume is valid at the load)
   3737     CmpInst::Predicate Pred;
   3738     Instruction *LHS;
   3739     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
   3740         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
   3741         LHS->getType()->isPointerTy() &&
   3742         isValidAssumeForContext(II, LHS, &DT)) {
   3743       MDNode *MD = MDNode::get(II->getContext(), None);
   3744       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
   3745       return eraseInstFromFunction(*II);
   3746 
   3747       // TODO: apply nonnull return attributes to calls and invokes
   3748       // TODO: apply range metadata for range check patterns?
   3749     }
   3750 
   3751     // If there is a dominating assume with the same condition as this one,
   3752     // then this one is redundant, and should be removed.
   3753     KnownBits Known(1);
   3754     computeKnownBits(IIOperand, Known, 0, II);
   3755     if (Known.isAllOnes())
   3756       return eraseInstFromFunction(*II);
   3757 
   3758     // Update the cache of affected values for this assumption (we might be
   3759     // here because we just simplified the condition).
   3760     AC.updateAffectedValues(II);
   3761     break;
   3762   }
   3763   case Intrinsic::experimental_gc_relocate: {
   3764     // Translate facts known about a pointer before relocating into
   3765     // facts about the relocate value, while being careful to
   3766     // preserve relocation semantics.
   3767     Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
   3768 
   3769     // Remove the relocation if unused, note that this check is required
   3770     // to prevent the cases below from looping forever.
   3771     if (II->use_empty())
   3772       return eraseInstFromFunction(*II);
   3773 
   3774     // Undef is undef, even after relocation.
   3775     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
   3776     // most practical collectors, but there was discussion in the review thread
   3777     // about whether it was legal for all possible collectors.
   3778     if (isa<UndefValue>(DerivedPtr))
   3779       // Use undef of gc_relocate's type to replace it.
   3780       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   3781 
   3782     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
   3783       // The relocation of null will be null for most any collector.
   3784       // TODO: provide a hook for this in GCStrategy.  There might be some
   3785       // weird collector this property does not hold for.
   3786       if (isa<ConstantPointerNull>(DerivedPtr))
   3787         // Use null-pointer of gc_relocate's type to replace it.
   3788         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
   3789 
   3790       // isKnownNonNull -> nonnull attribute
   3791       if (isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT))
   3792         II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
   3793     }
   3794 
   3795     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
   3796     // Canonicalize on the type from the uses to the defs
   3797 
   3798     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
   3799     break;
   3800   }
   3801 
   3802   case Intrinsic::experimental_guard: {
   3803     // Is this guard followed by another guard?  We scan forward over a small
   3804     // fixed window of instructions to handle common cases with conditions
   3805     // computed between guards.
   3806     Instruction *NextInst = II->getNextNode();
   3807     for (unsigned i = 0; i < GuardWideningWindow; i++) {
   3808       // Note: Using context-free form to avoid compile time blow up
   3809       if (!isSafeToSpeculativelyExecute(NextInst))
   3810         break;
   3811       NextInst = NextInst->getNextNode();
   3812     }
   3813     Value *NextCond = nullptr;
   3814     if (match(NextInst,
   3815               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
   3816       Value *CurrCond = II->getArgOperand(0);
   3817 
   3818       // Remove a guard that it is immediately preceded by an identical guard.
   3819       if (CurrCond == NextCond)
   3820         return eraseInstFromFunction(*NextInst);
   3821 
   3822       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
   3823       Instruction* MoveI = II->getNextNode();
   3824       while (MoveI != NextInst) {
   3825         auto *Temp = MoveI;
   3826         MoveI = MoveI->getNextNode();
   3827         Temp->moveBefore(II);
   3828       }
   3829       II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
   3830       return eraseInstFromFunction(*NextInst);
   3831     }
   3832     break;
   3833   }
   3834   }
   3835   return visitCallSite(II);
   3836 }
   3837 
   3838 // Fence instruction simplification
   3839 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
   3840   // Remove identical consecutive fences.
   3841   Instruction *Next = FI.getNextNonDebugInstruction();
   3842   if (auto *NFI = dyn_cast<FenceInst>(Next))
   3843     if (FI.isIdenticalTo(NFI))
   3844       return eraseInstFromFunction(FI);
   3845   return nullptr;
   3846 }
   3847 
   3848 // InvokeInst simplification
   3849 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
   3850   return visitCallSite(&II);
   3851 }
   3852 
   3853 /// If this cast does not affect the value passed through the varargs area, we
   3854 /// can eliminate the use of the cast.
   3855 static bool isSafeToEliminateVarargsCast(const CallSite CS,
   3856                                          const DataLayout &DL,
   3857                                          const CastInst *const CI,
   3858                                          const int ix) {
   3859   if (!CI->isLosslessCast())
   3860     return false;
   3861 
   3862   // If this is a GC intrinsic, avoid munging types.  We need types for
   3863   // statepoint reconstruction in SelectionDAG.
   3864   // TODO: This is probably something which should be expanded to all
   3865   // intrinsics since the entire point of intrinsics is that
   3866   // they are understandable by the optimizer.
   3867   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
   3868     return false;
   3869 
   3870   // The size of ByVal or InAlloca arguments is derived from the type, so we
   3871   // can't change to a type with a different size.  If the size were
   3872   // passed explicitly we could avoid this check.
   3873   if (!CS.isByValOrInAllocaArgument(ix))
   3874     return true;
   3875 
   3876   Type* SrcTy =
   3877             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
   3878   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
   3879   if (!SrcTy->isSized() || !DstTy->isSized())
   3880     return false;
   3881   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
   3882     return false;
   3883   return true;
   3884 }
   3885 
   3886 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
   3887   if (!CI->getCalledFunction()) return nullptr;
   3888 
   3889   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
   3890     replaceInstUsesWith(*From, With);
   3891   };
   3892   LibCallSimplifier Simplifier(DL, &TLI, ORE, InstCombineRAUW);
   3893   if (Value *With = Simplifier.optimizeCall(CI)) {
   3894     ++NumSimplified;
   3895     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
   3896   }
   3897 
   3898   return nullptr;
   3899 }
   3900 
   3901 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
   3902   // Strip off at most one level of pointer casts, looking for an alloca.  This
   3903   // is good enough in practice and simpler than handling any number of casts.
   3904   Value *Underlying = TrampMem->stripPointerCasts();
   3905   if (Underlying != TrampMem &&
   3906       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
   3907     return nullptr;
   3908   if (!isa<AllocaInst>(Underlying))
   3909     return nullptr;
   3910 
   3911   IntrinsicInst *InitTrampoline = nullptr;
   3912   for (User *U : TrampMem->users()) {
   3913     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
   3914     if (!II)
   3915       return nullptr;
   3916     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
   3917       if (InitTrampoline)
   3918         // More than one init_trampoline writes to this value.  Give up.
   3919         return nullptr;
   3920       InitTrampoline = II;
   3921       continue;
   3922     }
   3923     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
   3924       // Allow any number of calls to adjust.trampoline.
   3925       continue;
   3926     return nullptr;
   3927   }
   3928 
   3929   // No call to init.trampoline found.
   3930   if (!InitTrampoline)
   3931     return nullptr;
   3932 
   3933   // Check that the alloca is being used in the expected way.
   3934   if (InitTrampoline->getOperand(0) != TrampMem)
   3935     return nullptr;
   3936 
   3937   return InitTrampoline;
   3938 }
   3939 
   3940 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
   3941                                                Value *TrampMem) {
   3942   // Visit all the previous instructions in the basic block, and try to find a
   3943   // init.trampoline which has a direct path to the adjust.trampoline.
   3944   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
   3945                             E = AdjustTramp->getParent()->begin();
   3946        I != E;) {
   3947     Instruction *Inst = &*--I;
   3948     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   3949       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
   3950           II->getOperand(0) == TrampMem)
   3951         return II;
   3952     if (Inst->mayWriteToMemory())
   3953       return nullptr;
   3954   }
   3955   return nullptr;
   3956 }
   3957 
   3958 // Given a call to llvm.adjust.trampoline, find and return the corresponding
   3959 // call to llvm.init.trampoline if the call to the trampoline can be optimized
   3960 // to a direct call to a function.  Otherwise return NULL.
   3961 static IntrinsicInst *findInitTrampoline(Value *Callee) {
   3962   Callee = Callee->stripPointerCasts();
   3963   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
   3964   if (!AdjustTramp ||
   3965       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
   3966     return nullptr;
   3967 
   3968   Value *TrampMem = AdjustTramp->getOperand(0);
   3969 
   3970   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
   3971     return IT;
   3972   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
   3973     return IT;
   3974   return nullptr;
   3975 }
   3976 
   3977 /// Improvements for call and invoke instructions.
   3978 Instruction *InstCombiner::visitCallSite(CallSite CS) {
   3979   if (isAllocLikeFn(CS.getInstruction(), &TLI))
   3980     return visitAllocSite(*CS.getInstruction());
   3981 
   3982   bool Changed = false;
   3983 
   3984   // Mark any parameters that are known to be non-null with the nonnull
   3985   // attribute.  This is helpful for inlining calls to functions with null
   3986   // checks on their arguments.
   3987   SmallVector<unsigned, 4> ArgNos;
   3988   unsigned ArgNo = 0;
   3989 
   3990   for (Value *V : CS.args()) {
   3991     if (V->getType()->isPointerTy() &&
   3992         !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
   3993         isKnownNonZero(V, DL, 0, &AC, CS.getInstruction(), &DT))
   3994       ArgNos.push_back(ArgNo);
   3995     ArgNo++;
   3996   }
   3997 
   3998   assert(ArgNo == CS.arg_size() && "sanity check");
   3999 
   4000   if (!ArgNos.empty()) {
   4001     AttributeList AS = CS.getAttributes();
   4002     LLVMContext &Ctx = CS.getInstruction()->getContext();
   4003     AS = AS.addParamAttribute(Ctx, ArgNos,
   4004                               Attribute::get(Ctx, Attribute::NonNull));
   4005     CS.setAttributes(AS);
   4006     Changed = true;
   4007   }
   4008 
   4009   // If the callee is a pointer to a function, attempt to move any casts to the
   4010   // arguments of the call/invoke.
   4011   Value *Callee = CS.getCalledValue();
   4012   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
   4013     return nullptr;
   4014 
   4015   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
   4016     // Remove the convergent attr on calls when the callee is not convergent.
   4017     if (CS.isConvergent() && !CalleeF->isConvergent() &&
   4018         !CalleeF->isIntrinsic()) {
   4019       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr "
   4020                         << CS.getInstruction() << "\n");
   4021       CS.setNotConvergent();
   4022       return CS.getInstruction();
   4023     }
   4024 
   4025     // If the call and callee calling conventions don't match, this call must
   4026     // be unreachable, as the call is undefined.
   4027     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
   4028         // Only do this for calls to a function with a body.  A prototype may
   4029         // not actually end up matching the implementation's calling conv for a
   4030         // variety of reasons (e.g. it may be written in assembly).
   4031         !CalleeF->isDeclaration()) {
   4032       Instruction *OldCall = CS.getInstruction();
   4033       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
   4034                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
   4035                                   OldCall);
   4036       // If OldCall does not return void then replaceAllUsesWith undef.
   4037       // This allows ValueHandlers and custom metadata to adjust itself.
   4038       if (!OldCall->getType()->isVoidTy())
   4039         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
   4040       if (isa<CallInst>(OldCall))
   4041         return eraseInstFromFunction(*OldCall);
   4042 
   4043       // We cannot remove an invoke, because it would change the CFG, just
   4044       // change the callee to a null pointer.
   4045       cast<InvokeInst>(OldCall)->setCalledFunction(
   4046                                     Constant::getNullValue(CalleeF->getType()));
   4047       return nullptr;
   4048     }
   4049   }
   4050 
   4051   if ((isa<ConstantPointerNull>(Callee) &&
   4052        !NullPointerIsDefined(CS.getInstruction()->getFunction())) ||
   4053       isa<UndefValue>(Callee)) {
   4054     // If CS does not return void then replaceAllUsesWith undef.
   4055     // This allows ValueHandlers and custom metadata to adjust itself.
   4056     if (!CS.getInstruction()->getType()->isVoidTy())
   4057       replaceInstUsesWith(*CS.getInstruction(),
   4058                           UndefValue::get(CS.getInstruction()->getType()));
   4059 
   4060     if (isa<InvokeInst>(CS.getInstruction())) {
   4061       // Can't remove an invoke because we cannot change the CFG.
   4062       return nullptr;
   4063     }
   4064 
   4065     // This instruction is not reachable, just remove it.  We insert a store to
   4066     // undef so that we know that this code is not reachable, despite the fact
   4067     // that we can't modify the CFG here.
   4068     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
   4069                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
   4070                   CS.getInstruction());
   4071 
   4072     return eraseInstFromFunction(*CS.getInstruction());
   4073   }
   4074 
   4075   if (IntrinsicInst *II = findInitTrampoline(Callee))
   4076     return transformCallThroughTrampoline(CS, II);
   4077 
   4078   PointerType *PTy = cast<PointerType>(Callee->getType());
   4079   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   4080   if (FTy->isVarArg()) {
   4081     int ix = FTy->getNumParams();
   4082     // See if we can optimize any arguments passed through the varargs area of
   4083     // the call.
   4084     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
   4085            E = CS.arg_end(); I != E; ++I, ++ix) {
   4086       CastInst *CI = dyn_cast<CastInst>(*I);
   4087       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
   4088         *I = CI->getOperand(0);
   4089         Changed = true;
   4090       }
   4091     }
   4092   }
   4093 
   4094   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
   4095     // Inline asm calls cannot throw - mark them 'nounwind'.
   4096     CS.setDoesNotThrow();
   4097     Changed = true;
   4098   }
   4099 
   4100   // Try to optimize the call if possible, we require DataLayout for most of
   4101   // this.  None of these calls are seen as possibly dead so go ahead and
   4102   // delete the instruction now.
   4103   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
   4104     Instruction *I = tryOptimizeCall(CI);
   4105     // If we changed something return the result, etc. Otherwise let
   4106     // the fallthrough check.
   4107     if (I) return eraseInstFromFunction(*I);
   4108   }
   4109 
   4110   return Changed ? CS.getInstruction() : nullptr;
   4111 }
   4112 
   4113 /// If the callee is a constexpr cast of a function, attempt to move the cast to
   4114 /// the arguments of the call/invoke.
   4115 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
   4116   auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
   4117   if (!Callee)
   4118     return false;
   4119 
   4120   // If this is a call to a thunk function, don't remove the cast. Thunks are
   4121   // used to transparently forward all incoming parameters and outgoing return
   4122   // values, so it's important to leave the cast in place.
   4123   if (Callee->hasFnAttribute("thunk"))
   4124     return false;
   4125 
   4126   // If this is a musttail call, the callee's prototype must match the caller's
   4127   // prototype with the exception of pointee types. The code below doesn't
   4128   // implement that, so we can't do this transform.
   4129   // TODO: Do the transform if it only requires adding pointer casts.
   4130   if (CS.isMustTailCall())
   4131     return false;
   4132 
   4133   Instruction *Caller = CS.getInstruction();
   4134   const AttributeList &CallerPAL = CS.getAttributes();
   4135 
   4136   // Okay, this is a cast from a function to a different type.  Unless doing so
   4137   // would cause a type conversion of one of our arguments, change this call to
   4138   // be a direct call with arguments casted to the appropriate types.
   4139   FunctionType *FT = Callee->getFunctionType();
   4140   Type *OldRetTy = Caller->getType();
   4141   Type *NewRetTy = FT->getReturnType();
   4142 
   4143   // Check to see if we are changing the return type...
   4144   if (OldRetTy != NewRetTy) {
   4145 
   4146     if (NewRetTy->isStructTy())
   4147       return false; // TODO: Handle multiple return values.
   4148 
   4149     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
   4150       if (Callee->isDeclaration())
   4151         return false;   // Cannot transform this return value.
   4152 
   4153       if (!Caller->use_empty() &&
   4154           // void -> non-void is handled specially
   4155           !NewRetTy->isVoidTy())
   4156         return false;   // Cannot transform this return value.
   4157     }
   4158 
   4159     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
   4160       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
   4161       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
   4162         return false;   // Attribute not compatible with transformed value.
   4163     }
   4164 
   4165     // If the callsite is an invoke instruction, and the return value is used by
   4166     // a PHI node in a successor, we cannot change the return type of the call
   4167     // because there is no place to put the cast instruction (without breaking
   4168     // the critical edge).  Bail out in this case.
   4169     if (!Caller->use_empty())
   4170       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
   4171         for (User *U : II->users())
   4172           if (PHINode *PN = dyn_cast<PHINode>(U))
   4173             if (PN->getParent() == II->getNormalDest() ||
   4174                 PN->getParent() == II->getUnwindDest())
   4175               return false;
   4176   }
   4177 
   4178   unsigned NumActualArgs = CS.arg_size();
   4179   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
   4180 
   4181   // Prevent us turning:
   4182   // declare void @takes_i32_inalloca(i32* inalloca)
   4183   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
   4184   //
   4185   // into:
   4186   //  call void @takes_i32_inalloca(i32* null)
   4187   //
   4188   //  Similarly, avoid folding away bitcasts of byval calls.
   4189   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
   4190       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
   4191     return false;
   4192 
   4193   CallSite::arg_iterator AI = CS.arg_begin();
   4194   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
   4195     Type *ParamTy = FT->getParamType(i);
   4196     Type *ActTy = (*AI)->getType();
   4197 
   4198     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
   4199       return false;   // Cannot transform this parameter value.
   4200 
   4201     if (AttrBuilder(CallerPAL.getParamAttributes(i))
   4202             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
   4203       return false;   // Attribute not compatible with transformed value.
   4204 
   4205     if (CS.isInAllocaArgument(i))
   4206       return false;   // Cannot transform to and from inalloca.
   4207 
   4208     // If the parameter is passed as a byval argument, then we have to have a
   4209     // sized type and the sized type has to have the same size as the old type.
   4210     if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
   4211       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
   4212       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
   4213         return false;
   4214 
   4215       Type *CurElTy = ActTy->getPointerElementType();
   4216       if (DL.getTypeAllocSize(CurElTy) !=
   4217           DL.getTypeAllocSize(ParamPTy->getElementType()))
   4218         return false;
   4219     }
   4220   }
   4221 
   4222   if (Callee->isDeclaration()) {
   4223     // Do not delete arguments unless we have a function body.
   4224     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
   4225       return false;
   4226 
   4227     // If the callee is just a declaration, don't change the varargsness of the
   4228     // call.  We don't want to introduce a varargs call where one doesn't
   4229     // already exist.
   4230     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
   4231     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
   4232       return false;
   4233 
   4234     // If both the callee and the cast type are varargs, we still have to make
   4235     // sure the number of fixed parameters are the same or we have the same
   4236     // ABI issues as if we introduce a varargs call.
   4237     if (FT->isVarArg() &&
   4238         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
   4239         FT->getNumParams() !=
   4240         cast<FunctionType>(APTy->getElementType())->getNumParams())
   4241       return false;
   4242   }
   4243 
   4244   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
   4245       !CallerPAL.isEmpty()) {
   4246     // In this case we have more arguments than the new function type, but we
   4247     // won't be dropping them.  Check that these extra arguments have attributes
   4248     // that are compatible with being a vararg call argument.
   4249     unsigned SRetIdx;
   4250     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
   4251         SRetIdx > FT->getNumParams())
   4252       return false;
   4253   }
   4254 
   4255   // Okay, we decided that this is a safe thing to do: go ahead and start
   4256   // inserting cast instructions as necessary.
   4257   SmallVector<Value *, 8> Args;
   4258   SmallVector<AttributeSet, 8> ArgAttrs;
   4259   Args.reserve(NumActualArgs);
   4260   ArgAttrs.reserve(NumActualArgs);
   4261 
   4262   // Get any return attributes.
   4263   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
   4264 
   4265   // If the return value is not being used, the type may not be compatible
   4266   // with the existing attributes.  Wipe out any problematic attributes.
   4267   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
   4268 
   4269   AI = CS.arg_begin();
   4270   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
   4271     Type *ParamTy = FT->getParamType(i);
   4272 
   4273     Value *NewArg = *AI;
   4274     if ((*AI)->getType() != ParamTy)
   4275       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
   4276     Args.push_back(NewArg);
   4277 
   4278     // Add any parameter attributes.
   4279     ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
   4280   }
   4281 
   4282   // If the function takes more arguments than the call was taking, add them
   4283   // now.
   4284   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
   4285     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
   4286     ArgAttrs.push_back(AttributeSet());
   4287   }
   4288 
   4289   // If we are removing arguments to the function, emit an obnoxious warning.
   4290   if (FT->getNumParams() < NumActualArgs) {
   4291     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
   4292     if (FT->isVarArg()) {
   4293       // Add all of the arguments in their promoted form to the arg list.
   4294       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
   4295         Type *PTy = getPromotedType((*AI)->getType());
   4296         Value *NewArg = *AI;
   4297         if (PTy != (*AI)->getType()) {
   4298           // Must promote to pass through va_arg area!
   4299           Instruction::CastOps opcode =
   4300             CastInst::getCastOpcode(*AI, false, PTy, false);
   4301           NewArg = Builder.CreateCast(opcode, *AI, PTy);
   4302         }
   4303         Args.push_back(NewArg);
   4304 
   4305         // Add any parameter attributes.
   4306         ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
   4307       }
   4308     }
   4309   }
   4310 
   4311   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
   4312 
   4313   if (NewRetTy->isVoidTy())
   4314     Caller->setName("");   // Void type should not have a name.
   4315 
   4316   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
   4317          "missing argument attributes");
   4318   LLVMContext &Ctx = Callee->getContext();
   4319   AttributeList NewCallerPAL = AttributeList::get(
   4320       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
   4321 
   4322   SmallVector<OperandBundleDef, 1> OpBundles;
   4323   CS.getOperandBundlesAsDefs(OpBundles);
   4324 
   4325   CallSite NewCS;
   4326   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   4327     NewCS = Builder.CreateInvoke(Callee, II->getNormalDest(),
   4328                                  II->getUnwindDest(), Args, OpBundles);
   4329   } else {
   4330     NewCS = Builder.CreateCall(Callee, Args, OpBundles);
   4331     cast<CallInst>(NewCS.getInstruction())
   4332         ->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
   4333   }
   4334   NewCS->takeName(Caller);
   4335   NewCS.setCallingConv(CS.getCallingConv());
   4336   NewCS.setAttributes(NewCallerPAL);
   4337 
   4338   // Preserve the weight metadata for the new call instruction. The metadata
   4339   // is used by SamplePGO to check callsite's hotness.
   4340   uint64_t W;
   4341   if (Caller->extractProfTotalWeight(W))
   4342     NewCS->setProfWeight(W);
   4343 
   4344   // Insert a cast of the return type as necessary.
   4345   Instruction *NC = NewCS.getInstruction();
   4346   Value *NV = NC;
   4347   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
   4348     if (!NV->getType()->isVoidTy()) {
   4349       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
   4350       NC->setDebugLoc(Caller->getDebugLoc());
   4351 
   4352       // If this is an invoke instruction, we should insert it after the first
   4353       // non-phi, instruction in the normal successor block.
   4354       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   4355         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
   4356         InsertNewInstBefore(NC, *I);
   4357       } else {
   4358         // Otherwise, it's a call, just insert cast right after the call.
   4359         InsertNewInstBefore(NC, *Caller);
   4360       }
   4361       Worklist.AddUsersToWorkList(*Caller);
   4362     } else {
   4363       NV = UndefValue::get(Caller->getType());
   4364     }
   4365   }
   4366 
   4367   if (!Caller->use_empty())
   4368     replaceInstUsesWith(*Caller, NV);
   4369   else if (Caller->hasValueHandle()) {
   4370     if (OldRetTy == NV->getType())
   4371       ValueHandleBase::ValueIsRAUWd(Caller, NV);
   4372     else
   4373       // We cannot call ValueIsRAUWd with a different type, and the
   4374       // actual tracked value will disappear.
   4375       ValueHandleBase::ValueIsDeleted(Caller);
   4376   }
   4377 
   4378   eraseInstFromFunction(*Caller);
   4379   return true;
   4380 }
   4381 
   4382 /// Turn a call to a function created by init_trampoline / adjust_trampoline
   4383 /// intrinsic pair into a direct call to the underlying function.
   4384 Instruction *
   4385 InstCombiner::transformCallThroughTrampoline(CallSite CS,
   4386                                              IntrinsicInst *Tramp) {
   4387   Value *Callee = CS.getCalledValue();
   4388   PointerType *PTy = cast<PointerType>(Callee->getType());
   4389   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   4390   AttributeList Attrs = CS.getAttributes();
   4391 
   4392   // If the call already has the 'nest' attribute somewhere then give up -
   4393   // otherwise 'nest' would occur twice after splicing in the chain.
   4394   if (Attrs.hasAttrSomewhere(Attribute::Nest))
   4395     return nullptr;
   4396 
   4397   assert(Tramp &&
   4398          "transformCallThroughTrampoline called with incorrect CallSite.");
   4399 
   4400   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
   4401   FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
   4402 
   4403   AttributeList NestAttrs = NestF->getAttributes();
   4404   if (!NestAttrs.isEmpty()) {
   4405     unsigned NestArgNo = 0;
   4406     Type *NestTy = nullptr;
   4407     AttributeSet NestAttr;
   4408 
   4409     // Look for a parameter marked with the 'nest' attribute.
   4410     for (FunctionType::param_iterator I = NestFTy->param_begin(),
   4411                                       E = NestFTy->param_end();
   4412          I != E; ++NestArgNo, ++I) {
   4413       AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
   4414       if (AS.hasAttribute(Attribute::Nest)) {
   4415         // Record the parameter type and any other attributes.
   4416         NestTy = *I;
   4417         NestAttr = AS;
   4418         break;
   4419       }
   4420     }
   4421 
   4422     if (NestTy) {
   4423       Instruction *Caller = CS.getInstruction();
   4424       std::vector<Value*> NewArgs;
   4425       std::vector<AttributeSet> NewArgAttrs;
   4426       NewArgs.reserve(CS.arg_size() + 1);
   4427       NewArgAttrs.reserve(CS.arg_size());
   4428 
   4429       // Insert the nest argument into the call argument list, which may
   4430       // mean appending it.  Likewise for attributes.
   4431 
   4432       {
   4433         unsigned ArgNo = 0;
   4434         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   4435         do {
   4436           if (ArgNo == NestArgNo) {
   4437             // Add the chain argument and attributes.
   4438             Value *NestVal = Tramp->getArgOperand(2);
   4439             if (NestVal->getType() != NestTy)
   4440               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
   4441             NewArgs.push_back(NestVal);
   4442             NewArgAttrs.push_back(NestAttr);
   4443           }
   4444 
   4445           if (I == E)
   4446             break;
   4447 
   4448           // Add the original argument and attributes.
   4449           NewArgs.push_back(*I);
   4450           NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
   4451 
   4452           ++ArgNo;
   4453           ++I;
   4454         } while (true);
   4455       }
   4456 
   4457       // The trampoline may have been bitcast to a bogus type (FTy).
   4458       // Handle this by synthesizing a new function type, equal to FTy
   4459       // with the chain parameter inserted.
   4460 
   4461       std::vector<Type*> NewTypes;
   4462       NewTypes.reserve(FTy->getNumParams()+1);
   4463 
   4464       // Insert the chain's type into the list of parameter types, which may
   4465       // mean appending it.
   4466       {
   4467         unsigned ArgNo = 0;
   4468         FunctionType::param_iterator I = FTy->param_begin(),
   4469           E = FTy->param_end();
   4470 
   4471         do {
   4472           if (ArgNo == NestArgNo)
   4473             // Add the chain's type.
   4474             NewTypes.push_back(NestTy);
   4475 
   4476           if (I == E)
   4477             break;
   4478 
   4479           // Add the original type.
   4480           NewTypes.push_back(*I);
   4481 
   4482           ++ArgNo;
   4483           ++I;
   4484         } while (true);
   4485       }
   4486 
   4487       // Replace the trampoline call with a direct call.  Let the generic
   4488       // code sort out any function type mismatches.
   4489       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
   4490                                                 FTy->isVarArg());
   4491       Constant *NewCallee =
   4492         NestF->getType() == PointerType::getUnqual(NewFTy) ?
   4493         NestF : ConstantExpr::getBitCast(NestF,
   4494                                          PointerType::getUnqual(NewFTy));
   4495       AttributeList NewPAL =
   4496           AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
   4497                              Attrs.getRetAttributes(), NewArgAttrs);
   4498 
   4499       SmallVector<OperandBundleDef, 1> OpBundles;
   4500       CS.getOperandBundlesAsDefs(OpBundles);
   4501 
   4502       Instruction *NewCaller;
   4503       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   4504         NewCaller = InvokeInst::Create(NewCallee,
   4505                                        II->getNormalDest(), II->getUnwindDest(),
   4506                                        NewArgs, OpBundles);
   4507         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
   4508         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
   4509       } else {
   4510         NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
   4511         cast<CallInst>(NewCaller)->setTailCallKind(
   4512             cast<CallInst>(Caller)->getTailCallKind());
   4513         cast<CallInst>(NewCaller)->setCallingConv(
   4514             cast<CallInst>(Caller)->getCallingConv());
   4515         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
   4516       }
   4517       NewCaller->setDebugLoc(Caller->getDebugLoc());
   4518 
   4519       return NewCaller;
   4520     }
   4521   }
   4522 
   4523   // Replace the trampoline call with a direct call.  Since there is no 'nest'
   4524   // parameter, there is no need to adjust the argument list.  Let the generic
   4525   // code sort out any function type mismatches.
   4526   Constant *NewCallee =
   4527     NestF->getType() == PTy ? NestF :
   4528                               ConstantExpr::getBitCast(NestF, PTy);
   4529   CS.setCalledFunction(NewCallee);
   4530   return CS.getInstruction();
   4531 }
   4532