Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ADT/APInt.h"
     15 #include "llvm/ADT/ArrayRef.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SetOperations.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/SmallPtrSet.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/ADT/StringRef.h"
     25 #include "llvm/Analysis/AssumptionCache.h"
     26 #include "llvm/Analysis/ConstantFolding.h"
     27 #include "llvm/Analysis/EHPersonalities.h"
     28 #include "llvm/Analysis/InstructionSimplify.h"
     29 #include "llvm/Analysis/TargetTransformInfo.h"
     30 #include "llvm/Transforms/Utils/Local.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/IR/Attributes.h"
     33 #include "llvm/IR/BasicBlock.h"
     34 #include "llvm/IR/CFG.h"
     35 #include "llvm/IR/CallSite.h"
     36 #include "llvm/IR/Constant.h"
     37 #include "llvm/IR/ConstantRange.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/DataLayout.h"
     40 #include "llvm/IR/DerivedTypes.h"
     41 #include "llvm/IR/Function.h"
     42 #include "llvm/IR/GlobalValue.h"
     43 #include "llvm/IR/GlobalVariable.h"
     44 #include "llvm/IR/IRBuilder.h"
     45 #include "llvm/IR/InstrTypes.h"
     46 #include "llvm/IR/Instruction.h"
     47 #include "llvm/IR/Instructions.h"
     48 #include "llvm/IR/IntrinsicInst.h"
     49 #include "llvm/IR/Intrinsics.h"
     50 #include "llvm/IR/LLVMContext.h"
     51 #include "llvm/IR/MDBuilder.h"
     52 #include "llvm/IR/Metadata.h"
     53 #include "llvm/IR/Module.h"
     54 #include "llvm/IR/NoFolder.h"
     55 #include "llvm/IR/Operator.h"
     56 #include "llvm/IR/PatternMatch.h"
     57 #include "llvm/IR/Type.h"
     58 #include "llvm/IR/Use.h"
     59 #include "llvm/IR/User.h"
     60 #include "llvm/IR/Value.h"
     61 #include "llvm/Support/Casting.h"
     62 #include "llvm/Support/CommandLine.h"
     63 #include "llvm/Support/Debug.h"
     64 #include "llvm/Support/ErrorHandling.h"
     65 #include "llvm/Support/KnownBits.h"
     66 #include "llvm/Support/MathExtras.h"
     67 #include "llvm/Support/raw_ostream.h"
     68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     69 #include "llvm/Transforms/Utils/ValueMapper.h"
     70 #include <algorithm>
     71 #include <cassert>
     72 #include <climits>
     73 #include <cstddef>
     74 #include <cstdint>
     75 #include <iterator>
     76 #include <map>
     77 #include <set>
     78 #include <tuple>
     79 #include <utility>
     80 #include <vector>
     81 
     82 using namespace llvm;
     83 using namespace PatternMatch;
     84 
     85 #define DEBUG_TYPE "simplifycfg"
     86 
     87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
     88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
     89 // To catch this, we need to fold a compare and a select, hence '2' being the
     90 // minimum reasonable default.
     91 static cl::opt<unsigned> PHINodeFoldingThreshold(
     92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
     93     cl::desc(
     94         "Control the amount of phi node folding to perform (default = 2)"));
     95 
     96 static cl::opt<bool> DupRet(
     97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     98     cl::desc("Duplicate return instructions into unconditional branches"));
     99 
    100 static cl::opt<bool>
    101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
    102                cl::desc("Sink common instructions down to the end block"));
    103 
    104 static cl::opt<bool> HoistCondStores(
    105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
    106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
    107 
    108 static cl::opt<bool> MergeCondStores(
    109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
    110     cl::desc("Hoist conditional stores even if an unconditional store does not "
    111              "precede - hoist multiple conditional stores into a single "
    112              "predicated store"));
    113 
    114 static cl::opt<bool> MergeCondStoresAggressively(
    115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
    116     cl::desc("When merging conditional stores, do so even if the resultant "
    117              "basic blocks are unlikely to be if-converted as a result"));
    118 
    119 static cl::opt<bool> SpeculateOneExpensiveInst(
    120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
    121     cl::desc("Allow exactly one expensive instruction to be speculatively "
    122              "executed"));
    123 
    124 static cl::opt<unsigned> MaxSpeculationDepth(
    125     "max-speculation-depth", cl::Hidden, cl::init(10),
    126     cl::desc("Limit maximum recursion depth when calculating costs of "
    127              "speculatively executed instructions"));
    128 
    129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
    130 STATISTIC(NumLinearMaps,
    131           "Number of switch instructions turned into linear mapping");
    132 STATISTIC(NumLookupTables,
    133           "Number of switch instructions turned into lookup tables");
    134 STATISTIC(
    135     NumLookupTablesHoles,
    136     "Number of switch instructions turned into lookup tables (holes checked)");
    137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
    138 STATISTIC(NumSinkCommons,
    139           "Number of common instructions sunk down to the end block");
    140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
    141 
    142 namespace {
    143 
    144 // The first field contains the value that the switch produces when a certain
    145 // case group is selected, and the second field is a vector containing the
    146 // cases composing the case group.
    147 using SwitchCaseResultVectorTy =
    148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
    149 
    150 // The first field contains the phi node that generates a result of the switch
    151 // and the second field contains the value generated for a certain case in the
    152 // switch for that PHI.
    153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
    154 
    155 /// ValueEqualityComparisonCase - Represents a case of a switch.
    156 struct ValueEqualityComparisonCase {
    157   ConstantInt *Value;
    158   BasicBlock *Dest;
    159 
    160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
    161       : Value(Value), Dest(Dest) {}
    162 
    163   bool operator<(ValueEqualityComparisonCase RHS) const {
    164     // Comparing pointers is ok as we only rely on the order for uniquing.
    165     return Value < RHS.Value;
    166   }
    167 
    168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
    169 };
    170 
    171 class SimplifyCFGOpt {
    172   const TargetTransformInfo &TTI;
    173   const DataLayout &DL;
    174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
    175   const SimplifyCFGOptions &Options;
    176 
    177   Value *isValueEqualityComparison(TerminatorInst *TI);
    178   BasicBlock *GetValueEqualityComparisonCases(
    179       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
    180   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    181                                                      BasicBlock *Pred,
    182                                                      IRBuilder<> &Builder);
    183   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    184                                            IRBuilder<> &Builder);
    185 
    186   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
    187   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
    188   bool SimplifySingleResume(ResumeInst *RI);
    189   bool SimplifyCommonResume(ResumeInst *RI);
    190   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
    191   bool SimplifyUnreachable(UnreachableInst *UI);
    192   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    193   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    194   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
    195   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
    196 
    197 public:
    198   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
    199                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
    200                  const SimplifyCFGOptions &Opts)
    201       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
    202 
    203   bool run(BasicBlock *BB);
    204 };
    205 
    206 } // end anonymous namespace
    207 
    208 /// Return true if it is safe to merge these two
    209 /// terminator instructions together.
    210 static bool
    211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
    212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
    213   if (SI1 == SI2)
    214     return false; // Can't merge with self!
    215 
    216   // It is not safe to merge these two switch instructions if they have a common
    217   // successor, and if that successor has a PHI node, and if *that* PHI node has
    218   // conflicting incoming values from the two switch blocks.
    219   BasicBlock *SI1BB = SI1->getParent();
    220   BasicBlock *SI2BB = SI2->getParent();
    221 
    222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    223   bool Fail = false;
    224   for (BasicBlock *Succ : successors(SI2BB))
    225     if (SI1Succs.count(Succ))
    226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
    227         PHINode *PN = cast<PHINode>(BBI);
    228         if (PN->getIncomingValueForBlock(SI1BB) !=
    229             PN->getIncomingValueForBlock(SI2BB)) {
    230           if (FailBlocks)
    231             FailBlocks->insert(Succ);
    232           Fail = true;
    233         }
    234       }
    235 
    236   return !Fail;
    237 }
    238 
    239 /// Return true if it is safe and profitable to merge these two terminator
    240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
    241 /// store all PHI nodes in common successors.
    242 static bool
    243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
    244                                 Instruction *Cond,
    245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
    246   if (SI1 == SI2)
    247     return false; // Can't merge with self!
    248   assert(SI1->isUnconditional() && SI2->isConditional());
    249 
    250   // We fold the unconditional branch if we can easily update all PHI nodes in
    251   // common successors:
    252   // 1> We have a constant incoming value for the conditional branch;
    253   // 2> We have "Cond" as the incoming value for the unconditional branch;
    254   // 3> SI2->getCondition() and Cond have same operands.
    255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    256   if (!Ci2)
    257     return false;
    258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    261         Cond->getOperand(1) == Ci2->getOperand(0)))
    262     return false;
    263 
    264   BasicBlock *SI1BB = SI1->getParent();
    265   BasicBlock *SI2BB = SI2->getParent();
    266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    267   for (BasicBlock *Succ : successors(SI2BB))
    268     if (SI1Succs.count(Succ))
    269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
    270         PHINode *PN = cast<PHINode>(BBI);
    271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    273           return false;
    274         PhiNodes.push_back(PN);
    275       }
    276   return true;
    277 }
    278 
    279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
    280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
    281 /// will be the same as those coming in from ExistPred, an existing predecessor
    282 /// of Succ.
    283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    284                                   BasicBlock *ExistPred) {
    285   for (PHINode &PN : Succ->phis())
    286     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
    287 }
    288 
    289 /// Compute an abstract "cost" of speculating the given instruction,
    290 /// which is assumed to be safe to speculate. TCC_Free means cheap,
    291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
    292 /// expensive.
    293 static unsigned ComputeSpeculationCost(const User *I,
    294                                        const TargetTransformInfo &TTI) {
    295   assert(isSafeToSpeculativelyExecute(I) &&
    296          "Instruction is not safe to speculatively execute!");
    297   return TTI.getUserCost(I);
    298 }
    299 
    300 /// If we have a merge point of an "if condition" as accepted above,
    301 /// return true if the specified value dominates the block.  We
    302 /// don't handle the true generality of domination here, just a special case
    303 /// which works well enough for us.
    304 ///
    305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    306 /// see if V (which must be an instruction) and its recursive operands
    307 /// that do not dominate BB have a combined cost lower than CostRemaining and
    308 /// are non-trapping.  If both are true, the instruction is inserted into the
    309 /// set and true is returned.
    310 ///
    311 /// The cost for most non-trapping instructions is defined as 1 except for
    312 /// Select whose cost is 2.
    313 ///
    314 /// After this function returns, CostRemaining is decreased by the cost of
    315 /// V plus its non-dominating operands.  If that cost is greater than
    316 /// CostRemaining, false is returned and CostRemaining is undefined.
    317 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    318                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
    319                                 unsigned &CostRemaining,
    320                                 const TargetTransformInfo &TTI,
    321                                 unsigned Depth = 0) {
    322   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
    323   // so limit the recursion depth.
    324   // TODO: While this recursion limit does prevent pathological behavior, it
    325   // would be better to track visited instructions to avoid cycles.
    326   if (Depth == MaxSpeculationDepth)
    327     return false;
    328 
    329   Instruction *I = dyn_cast<Instruction>(V);
    330   if (!I) {
    331     // Non-instructions all dominate instructions, but not all constantexprs
    332     // can be executed unconditionally.
    333     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    334       if (C->canTrap())
    335         return false;
    336     return true;
    337   }
    338   BasicBlock *PBB = I->getParent();
    339 
    340   // We don't want to allow weird loops that might have the "if condition" in
    341   // the bottom of this block.
    342   if (PBB == BB)
    343     return false;
    344 
    345   // If this instruction is defined in a block that contains an unconditional
    346   // branch to BB, then it must be in the 'conditional' part of the "if
    347   // statement".  If not, it definitely dominates the region.
    348   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    349   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    350     return true;
    351 
    352   // If we aren't allowing aggressive promotion anymore, then don't consider
    353   // instructions in the 'if region'.
    354   if (!AggressiveInsts)
    355     return false;
    356 
    357   // If we have seen this instruction before, don't count it again.
    358   if (AggressiveInsts->count(I))
    359     return true;
    360 
    361   // Okay, it looks like the instruction IS in the "condition".  Check to
    362   // see if it's a cheap instruction to unconditionally compute, and if it
    363   // only uses stuff defined outside of the condition.  If so, hoist it out.
    364   if (!isSafeToSpeculativelyExecute(I))
    365     return false;
    366 
    367   unsigned Cost = ComputeSpeculationCost(I, TTI);
    368 
    369   // Allow exactly one instruction to be speculated regardless of its cost
    370   // (as long as it is safe to do so).
    371   // This is intended to flatten the CFG even if the instruction is a division
    372   // or other expensive operation. The speculation of an expensive instruction
    373   // is expected to be undone in CodeGenPrepare if the speculation has not
    374   // enabled further IR optimizations.
    375   if (Cost > CostRemaining &&
    376       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
    377     return false;
    378 
    379   // Avoid unsigned wrap.
    380   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
    381 
    382   // Okay, we can only really hoist these out if their operands do
    383   // not take us over the cost threshold.
    384   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    385     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
    386                              Depth + 1))
    387       return false;
    388   // Okay, it's safe to do this!  Remember this instruction.
    389   AggressiveInsts->insert(I);
    390   return true;
    391 }
    392 
    393 /// Extract ConstantInt from value, looking through IntToPtr
    394 /// and PointerNullValue. Return NULL if value is not a constant int.
    395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
    396   // Normal constant int.
    397   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    398   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
    399     return CI;
    400 
    401   // This is some kind of pointer constant. Turn it into a pointer-sized
    402   // ConstantInt if possible.
    403   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
    404 
    405   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    406   if (isa<ConstantPointerNull>(V))
    407     return ConstantInt::get(PtrTy, 0);
    408 
    409   // IntToPtr const int.
    410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    411     if (CE->getOpcode() == Instruction::IntToPtr)
    412       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    413         // The constant is very likely to have the right type already.
    414         if (CI->getType() == PtrTy)
    415           return CI;
    416         else
    417           return cast<ConstantInt>(
    418               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    419       }
    420   return nullptr;
    421 }
    422 
    423 namespace {
    424 
    425 /// Given a chain of or (||) or and (&&) comparison of a value against a
    426 /// constant, this will try to recover the information required for a switch
    427 /// structure.
    428 /// It will depth-first traverse the chain of comparison, seeking for patterns
    429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
    430 /// representing the different cases for the switch.
    431 /// Note that if the chain is composed of '||' it will build the set of elements
    432 /// that matches the comparisons (i.e. any of this value validate the chain)
    433 /// while for a chain of '&&' it will build the set elements that make the test
    434 /// fail.
    435 struct ConstantComparesGatherer {
    436   const DataLayout &DL;
    437 
    438   /// Value found for the switch comparison
    439   Value *CompValue = nullptr;
    440 
    441   /// Extra clause to be checked before the switch
    442   Value *Extra = nullptr;
    443 
    444   /// Set of integers to match in switch
    445   SmallVector<ConstantInt *, 8> Vals;
    446 
    447   /// Number of comparisons matched in the and/or chain
    448   unsigned UsedICmps = 0;
    449 
    450   /// Construct and compute the result for the comparison instruction Cond
    451   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
    452     gather(Cond);
    453   }
    454 
    455   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
    456   ConstantComparesGatherer &
    457   operator=(const ConstantComparesGatherer &) = delete;
    458 
    459 private:
    460   /// Try to set the current value used for the comparison, it succeeds only if
    461   /// it wasn't set before or if the new value is the same as the old one
    462   bool setValueOnce(Value *NewVal) {
    463     if (CompValue && CompValue != NewVal)
    464       return false;
    465     CompValue = NewVal;
    466     return (CompValue != nullptr);
    467   }
    468 
    469   /// Try to match Instruction "I" as a comparison against a constant and
    470   /// populates the array Vals with the set of values that match (or do not
    471   /// match depending on isEQ).
    472   /// Return false on failure. On success, the Value the comparison matched
    473   /// against is placed in CompValue.
    474   /// If CompValue is already set, the function is expected to fail if a match
    475   /// is found but the value compared to is different.
    476   bool matchInstruction(Instruction *I, bool isEQ) {
    477     // If this is an icmp against a constant, handle this as one of the cases.
    478     ICmpInst *ICI;
    479     ConstantInt *C;
    480     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
    481           (C = GetConstantInt(I->getOperand(1), DL)))) {
    482       return false;
    483     }
    484 
    485     Value *RHSVal;
    486     const APInt *RHSC;
    487 
    488     // Pattern match a special case
    489     // (x & ~2^z) == y --> x == y || x == y|2^z
    490     // This undoes a transformation done by instcombine to fuse 2 compares.
    491     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
    492       // It's a little bit hard to see why the following transformations are
    493       // correct. Here is a CVC3 program to verify them for 64-bit values:
    494 
    495       /*
    496          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
    497          x    : BITVECTOR(64);
    498          y    : BITVECTOR(64);
    499          z    : BITVECTOR(64);
    500          mask : BITVECTOR(64) = BVSHL(ONE, z);
    501          QUERY( (y & ~mask = y) =>
    502                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
    503          );
    504          QUERY( (y |  mask = y) =>
    505                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
    506          );
    507       */
    508 
    509       // Please note that each pattern must be a dual implication (<--> or
    510       // iff). One directional implication can create spurious matches. If the
    511       // implication is only one-way, an unsatisfiable condition on the left
    512       // side can imply a satisfiable condition on the right side. Dual
    513       // implication ensures that satisfiable conditions are transformed to
    514       // other satisfiable conditions and unsatisfiable conditions are
    515       // transformed to other unsatisfiable conditions.
    516 
    517       // Here is a concrete example of a unsatisfiable condition on the left
    518       // implying a satisfiable condition on the right:
    519       //
    520       // mask = (1 << z)
    521       // (x & ~mask) == y  --> (x == y || x == (y | mask))
    522       //
    523       // Substituting y = 3, z = 0 yields:
    524       // (x & -2) == 3 --> (x == 3 || x == 2)
    525 
    526       // Pattern match a special case:
    527       /*
    528         QUERY( (y & ~mask = y) =>
    529                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
    530         );
    531       */
    532       if (match(ICI->getOperand(0),
    533                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
    534         APInt Mask = ~*RHSC;
    535         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
    536           // If we already have a value for the switch, it has to match!
    537           if (!setValueOnce(RHSVal))
    538             return false;
    539 
    540           Vals.push_back(C);
    541           Vals.push_back(
    542               ConstantInt::get(C->getContext(),
    543                                C->getValue() | Mask));
    544           UsedICmps++;
    545           return true;
    546         }
    547       }
    548 
    549       // Pattern match a special case:
    550       /*
    551         QUERY( (y |  mask = y) =>
    552                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
    553         );
    554       */
    555       if (match(ICI->getOperand(0),
    556                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
    557         APInt Mask = *RHSC;
    558         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
    559           // If we already have a value for the switch, it has to match!
    560           if (!setValueOnce(RHSVal))
    561             return false;
    562 
    563           Vals.push_back(C);
    564           Vals.push_back(ConstantInt::get(C->getContext(),
    565                                           C->getValue() & ~Mask));
    566           UsedICmps++;
    567           return true;
    568         }
    569       }
    570 
    571       // If we already have a value for the switch, it has to match!
    572       if (!setValueOnce(ICI->getOperand(0)))
    573         return false;
    574 
    575       UsedICmps++;
    576       Vals.push_back(C);
    577       return ICI->getOperand(0);
    578     }
    579 
    580     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
    581     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
    582         ICI->getPredicate(), C->getValue());
    583 
    584     // Shift the range if the compare is fed by an add. This is the range
    585     // compare idiom as emitted by instcombine.
    586     Value *CandidateVal = I->getOperand(0);
    587     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
    588       Span = Span.subtract(*RHSC);
    589       CandidateVal = RHSVal;
    590     }
    591 
    592     // If this is an and/!= check, then we are looking to build the set of
    593     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
    594     // x != 0 && x != 1.
    595     if (!isEQ)
    596       Span = Span.inverse();
    597 
    598     // If there are a ton of values, we don't want to make a ginormous switch.
    599     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
    600       return false;
    601     }
    602 
    603     // If we already have a value for the switch, it has to match!
    604     if (!setValueOnce(CandidateVal))
    605       return false;
    606 
    607     // Add all values from the range to the set
    608     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    609       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
    610 
    611     UsedICmps++;
    612     return true;
    613   }
    614 
    615   /// Given a potentially 'or'd or 'and'd together collection of icmp
    616   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
    617   /// the value being compared, and stick the list constants into the Vals
    618   /// vector.
    619   /// One "Extra" case is allowed to differ from the other.
    620   void gather(Value *V) {
    621     Instruction *I = dyn_cast<Instruction>(V);
    622     bool isEQ = (I->getOpcode() == Instruction::Or);
    623 
    624     // Keep a stack (SmallVector for efficiency) for depth-first traversal
    625     SmallVector<Value *, 8> DFT;
    626     SmallPtrSet<Value *, 8> Visited;
    627 
    628     // Initialize
    629     Visited.insert(V);
    630     DFT.push_back(V);
    631 
    632     while (!DFT.empty()) {
    633       V = DFT.pop_back_val();
    634 
    635       if (Instruction *I = dyn_cast<Instruction>(V)) {
    636         // If it is a || (or && depending on isEQ), process the operands.
    637         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
    638           if (Visited.insert(I->getOperand(1)).second)
    639             DFT.push_back(I->getOperand(1));
    640           if (Visited.insert(I->getOperand(0)).second)
    641             DFT.push_back(I->getOperand(0));
    642           continue;
    643         }
    644 
    645         // Try to match the current instruction
    646         if (matchInstruction(I, isEQ))
    647           // Match succeed, continue the loop
    648           continue;
    649       }
    650 
    651       // One element of the sequence of || (or &&) could not be match as a
    652       // comparison against the same value as the others.
    653       // We allow only one "Extra" case to be checked before the switch
    654       if (!Extra) {
    655         Extra = V;
    656         continue;
    657       }
    658       // Failed to parse a proper sequence, abort now
    659       CompValue = nullptr;
    660       break;
    661     }
    662   }
    663 };
    664 
    665 } // end anonymous namespace
    666 
    667 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    668   Instruction *Cond = nullptr;
    669   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    670     Cond = dyn_cast<Instruction>(SI->getCondition());
    671   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    672     if (BI->isConditional())
    673       Cond = dyn_cast<Instruction>(BI->getCondition());
    674   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    675     Cond = dyn_cast<Instruction>(IBI->getAddress());
    676   }
    677 
    678   TI->eraseFromParent();
    679   if (Cond)
    680     RecursivelyDeleteTriviallyDeadInstructions(Cond);
    681 }
    682 
    683 /// Return true if the specified terminator checks
    684 /// to see if a value is equal to constant integer value.
    685 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    686   Value *CV = nullptr;
    687   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    688     // Do not permit merging of large switch instructions into their
    689     // predecessors unless there is only one predecessor.
    690     if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128)
    691       CV = SI->getCondition();
    692   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    693     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    694       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
    695         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
    696           CV = ICI->getOperand(0);
    697       }
    698 
    699   // Unwrap any lossless ptrtoint cast.
    700   if (CV) {
    701     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
    702       Value *Ptr = PTII->getPointerOperand();
    703       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
    704         CV = Ptr;
    705     }
    706   }
    707   return CV;
    708 }
    709 
    710 /// Given a value comparison instruction,
    711 /// decode all of the 'cases' that it represents and return the 'default' block.
    712 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
    713     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
    714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    715     Cases.reserve(SI->getNumCases());
    716     for (auto Case : SI->cases())
    717       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
    718                                                   Case.getCaseSuccessor()));
    719     return SI->getDefaultDest();
    720   }
    721 
    722   BranchInst *BI = cast<BranchInst>(TI);
    723   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    724   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    725   Cases.push_back(ValueEqualityComparisonCase(
    726       GetConstantInt(ICI->getOperand(1), DL), Succ));
    727   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    728 }
    729 
    730 /// Given a vector of bb/value pairs, remove any entries
    731 /// in the list that match the specified block.
    732 static void
    733 EliminateBlockCases(BasicBlock *BB,
    734                     std::vector<ValueEqualityComparisonCase> &Cases) {
    735   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    736 }
    737 
    738 /// Return true if there are any keys in C1 that exist in C2 as well.
    739 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    740                           std::vector<ValueEqualityComparisonCase> &C2) {
    741   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    742 
    743   // Make V1 be smaller than V2.
    744   if (V1->size() > V2->size())
    745     std::swap(V1, V2);
    746 
    747   if (V1->empty())
    748     return false;
    749   if (V1->size() == 1) {
    750     // Just scan V2.
    751     ConstantInt *TheVal = (*V1)[0].Value;
    752     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    753       if (TheVal == (*V2)[i].Value)
    754         return true;
    755   }
    756 
    757   // Otherwise, just sort both lists and compare element by element.
    758   array_pod_sort(V1->begin(), V1->end());
    759   array_pod_sort(V2->begin(), V2->end());
    760   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    761   while (i1 != e1 && i2 != e2) {
    762     if ((*V1)[i1].Value == (*V2)[i2].Value)
    763       return true;
    764     if ((*V1)[i1].Value < (*V2)[i2].Value)
    765       ++i1;
    766     else
    767       ++i2;
    768   }
    769   return false;
    770 }
    771 
    772 // Set branch weights on SwitchInst. This sets the metadata if there is at
    773 // least one non-zero weight.
    774 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
    775   // Check that there is at least one non-zero weight. Otherwise, pass
    776   // nullptr to setMetadata which will erase the existing metadata.
    777   MDNode *N = nullptr;
    778   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
    779     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
    780   SI->setMetadata(LLVMContext::MD_prof, N);
    781 }
    782 
    783 // Similar to the above, but for branch and select instructions that take
    784 // exactly 2 weights.
    785 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
    786                              uint32_t FalseWeight) {
    787   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
    788   // Check that there is at least one non-zero weight. Otherwise, pass
    789   // nullptr to setMetadata which will erase the existing metadata.
    790   MDNode *N = nullptr;
    791   if (TrueWeight || FalseWeight)
    792     N = MDBuilder(I->getParent()->getContext())
    793             .createBranchWeights(TrueWeight, FalseWeight);
    794   I->setMetadata(LLVMContext::MD_prof, N);
    795 }
    796 
    797 /// If TI is known to be a terminator instruction and its block is known to
    798 /// only have a single predecessor block, check to see if that predecessor is
    799 /// also a value comparison with the same value, and if that comparison
    800 /// determines the outcome of this comparison. If so, simplify TI. This does a
    801 /// very limited form of jump threading.
    802 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
    803     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
    804   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    805   if (!PredVal)
    806     return false; // Not a value comparison in predecessor.
    807 
    808   Value *ThisVal = isValueEqualityComparison(TI);
    809   assert(ThisVal && "This isn't a value comparison!!");
    810   if (ThisVal != PredVal)
    811     return false; // Different predicates.
    812 
    813   // TODO: Preserve branch weight metadata, similarly to how
    814   // FoldValueComparisonIntoPredecessors preserves it.
    815 
    816   // Find out information about when control will move from Pred to TI's block.
    817   std::vector<ValueEqualityComparisonCase> PredCases;
    818   BasicBlock *PredDef =
    819       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
    820   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
    821 
    822   // Find information about how control leaves this block.
    823   std::vector<ValueEqualityComparisonCase> ThisCases;
    824   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    825   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
    826 
    827   // If TI's block is the default block from Pred's comparison, potentially
    828   // simplify TI based on this knowledge.
    829   if (PredDef == TI->getParent()) {
    830     // If we are here, we know that the value is none of those cases listed in
    831     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    832     // can simplify TI.
    833     if (!ValuesOverlap(PredCases, ThisCases))
    834       return false;
    835 
    836     if (isa<BranchInst>(TI)) {
    837       // Okay, one of the successors of this condbr is dead.  Convert it to a
    838       // uncond br.
    839       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    840       // Insert the new branch.
    841       Instruction *NI = Builder.CreateBr(ThisDef);
    842       (void)NI;
    843 
    844       // Remove PHI node entries for the dead edge.
    845       ThisCases[0].Dest->removePredecessor(TI->getParent());
    846 
    847       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    848                         << "Through successor TI: " << *TI << "Leaving: " << *NI
    849                         << "\n");
    850 
    851       EraseTerminatorInstAndDCECond(TI);
    852       return true;
    853     }
    854 
    855     SwitchInst *SI = cast<SwitchInst>(TI);
    856     // Okay, TI has cases that are statically dead, prune them away.
    857     SmallPtrSet<Constant *, 16> DeadCases;
    858     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    859       DeadCases.insert(PredCases[i].Value);
    860 
    861     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    862                       << "Through successor TI: " << *TI);
    863 
    864     // Collect branch weights into a vector.
    865     SmallVector<uint32_t, 8> Weights;
    866     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    867     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    868     if (HasWeight)
    869       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    870            ++MD_i) {
    871         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
    872         Weights.push_back(CI->getValue().getZExtValue());
    873       }
    874     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    875       --i;
    876       if (DeadCases.count(i->getCaseValue())) {
    877         if (HasWeight) {
    878           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
    879           Weights.pop_back();
    880         }
    881         i->getCaseSuccessor()->removePredecessor(TI->getParent());
    882         SI->removeCase(i);
    883       }
    884     }
    885     if (HasWeight && Weights.size() >= 2)
    886       setBranchWeights(SI, Weights);
    887 
    888     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    889     return true;
    890   }
    891 
    892   // Otherwise, TI's block must correspond to some matched value.  Find out
    893   // which value (or set of values) this is.
    894   ConstantInt *TIV = nullptr;
    895   BasicBlock *TIBB = TI->getParent();
    896   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    897     if (PredCases[i].Dest == TIBB) {
    898       if (TIV)
    899         return false; // Cannot handle multiple values coming to this block.
    900       TIV = PredCases[i].Value;
    901     }
    902   assert(TIV && "No edge from pred to succ?");
    903 
    904   // Okay, we found the one constant that our value can be if we get into TI's
    905   // BB.  Find out which successor will unconditionally be branched to.
    906   BasicBlock *TheRealDest = nullptr;
    907   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    908     if (ThisCases[i].Value == TIV) {
    909       TheRealDest = ThisCases[i].Dest;
    910       break;
    911     }
    912 
    913   // If not handled by any explicit cases, it is handled by the default case.
    914   if (!TheRealDest)
    915     TheRealDest = ThisDef;
    916 
    917   // Remove PHI node entries for dead edges.
    918   BasicBlock *CheckEdge = TheRealDest;
    919   for (BasicBlock *Succ : successors(TIBB))
    920     if (Succ != CheckEdge)
    921       Succ->removePredecessor(TIBB);
    922     else
    923       CheckEdge = nullptr;
    924 
    925   // Insert the new branch.
    926   Instruction *NI = Builder.CreateBr(TheRealDest);
    927   (void)NI;
    928 
    929   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    930                     << "Through successor TI: " << *TI << "Leaving: " << *NI
    931                     << "\n");
    932 
    933   EraseTerminatorInstAndDCECond(TI);
    934   return true;
    935 }
    936 
    937 namespace {
    938 
    939 /// This class implements a stable ordering of constant
    940 /// integers that does not depend on their address.  This is important for
    941 /// applications that sort ConstantInt's to ensure uniqueness.
    942 struct ConstantIntOrdering {
    943   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    944     return LHS->getValue().ult(RHS->getValue());
    945   }
    946 };
    947 
    948 } // end anonymous namespace
    949 
    950 static int ConstantIntSortPredicate(ConstantInt *const *P1,
    951                                     ConstantInt *const *P2) {
    952   const ConstantInt *LHS = *P1;
    953   const ConstantInt *RHS = *P2;
    954   if (LHS == RHS)
    955     return 0;
    956   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
    957 }
    958 
    959 static inline bool HasBranchWeights(const Instruction *I) {
    960   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
    961   if (ProfMD && ProfMD->getOperand(0))
    962     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    963       return MDS->getString().equals("branch_weights");
    964 
    965   return false;
    966 }
    967 
    968 /// Get Weights of a given TerminatorInst, the default weight is at the front
    969 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    970 /// metadata.
    971 static void GetBranchWeights(TerminatorInst *TI,
    972                              SmallVectorImpl<uint64_t> &Weights) {
    973   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
    974   assert(MD);
    975   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    976     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
    977     Weights.push_back(CI->getValue().getZExtValue());
    978   }
    979 
    980   // If TI is a conditional eq, the default case is the false case,
    981   // and the corresponding branch-weight data is at index 2. We swap the
    982   // default weight to be the first entry.
    983   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    984     assert(Weights.size() == 2);
    985     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    986     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    987       std::swap(Weights.front(), Weights.back());
    988   }
    989 }
    990 
    991 /// Keep halving the weights until all can fit in uint32_t.
    992 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    993   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
    994   if (Max > UINT_MAX) {
    995     unsigned Offset = 32 - countLeadingZeros(Max);
    996     for (uint64_t &I : Weights)
    997       I >>= Offset;
    998   }
    999 }
   1000 
   1001 /// The specified terminator is a value equality comparison instruction
   1002 /// (either a switch or a branch on "X == c").
   1003 /// See if any of the predecessors of the terminator block are value comparisons
   1004 /// on the same value.  If so, and if safe to do so, fold them together.
   1005 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
   1006                                                          IRBuilder<> &Builder) {
   1007   BasicBlock *BB = TI->getParent();
   1008   Value *CV = isValueEqualityComparison(TI); // CondVal
   1009   assert(CV && "Not a comparison?");
   1010   bool Changed = false;
   1011 
   1012   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
   1013   while (!Preds.empty()) {
   1014     BasicBlock *Pred = Preds.pop_back_val();
   1015 
   1016     // See if the predecessor is a comparison with the same value.
   1017     TerminatorInst *PTI = Pred->getTerminator();
   1018     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
   1019 
   1020     if (PCV == CV && TI != PTI) {
   1021       SmallSetVector<BasicBlock*, 4> FailBlocks;
   1022       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
   1023         for (auto *Succ : FailBlocks) {
   1024           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
   1025             return false;
   1026         }
   1027       }
   1028 
   1029       // Figure out which 'cases' to copy from SI to PSI.
   1030       std::vector<ValueEqualityComparisonCase> BBCases;
   1031       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
   1032 
   1033       std::vector<ValueEqualityComparisonCase> PredCases;
   1034       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
   1035 
   1036       // Based on whether the default edge from PTI goes to BB or not, fill in
   1037       // PredCases and PredDefault with the new switch cases we would like to
   1038       // build.
   1039       SmallVector<BasicBlock *, 8> NewSuccessors;
   1040 
   1041       // Update the branch weight metadata along the way
   1042       SmallVector<uint64_t, 8> Weights;
   1043       bool PredHasWeights = HasBranchWeights(PTI);
   1044       bool SuccHasWeights = HasBranchWeights(TI);
   1045 
   1046       if (PredHasWeights) {
   1047         GetBranchWeights(PTI, Weights);
   1048         // branch-weight metadata is inconsistent here.
   1049         if (Weights.size() != 1 + PredCases.size())
   1050           PredHasWeights = SuccHasWeights = false;
   1051       } else if (SuccHasWeights)
   1052         // If there are no predecessor weights but there are successor weights,
   1053         // populate Weights with 1, which will later be scaled to the sum of
   1054         // successor's weights
   1055         Weights.assign(1 + PredCases.size(), 1);
   1056 
   1057       SmallVector<uint64_t, 8> SuccWeights;
   1058       if (SuccHasWeights) {
   1059         GetBranchWeights(TI, SuccWeights);
   1060         // branch-weight metadata is inconsistent here.
   1061         if (SuccWeights.size() != 1 + BBCases.size())
   1062           PredHasWeights = SuccHasWeights = false;
   1063       } else if (PredHasWeights)
   1064         SuccWeights.assign(1 + BBCases.size(), 1);
   1065 
   1066       if (PredDefault == BB) {
   1067         // If this is the default destination from PTI, only the edges in TI
   1068         // that don't occur in PTI, or that branch to BB will be activated.
   1069         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
   1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
   1071           if (PredCases[i].Dest != BB)
   1072             PTIHandled.insert(PredCases[i].Value);
   1073           else {
   1074             // The default destination is BB, we don't need explicit targets.
   1075             std::swap(PredCases[i], PredCases.back());
   1076 
   1077             if (PredHasWeights || SuccHasWeights) {
   1078               // Increase weight for the default case.
   1079               Weights[0] += Weights[i + 1];
   1080               std::swap(Weights[i + 1], Weights.back());
   1081               Weights.pop_back();
   1082             }
   1083 
   1084             PredCases.pop_back();
   1085             --i;
   1086             --e;
   1087           }
   1088 
   1089         // Reconstruct the new switch statement we will be building.
   1090         if (PredDefault != BBDefault) {
   1091           PredDefault->removePredecessor(Pred);
   1092           PredDefault = BBDefault;
   1093           NewSuccessors.push_back(BBDefault);
   1094         }
   1095 
   1096         unsigned CasesFromPred = Weights.size();
   1097         uint64_t ValidTotalSuccWeight = 0;
   1098         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
   1099           if (!PTIHandled.count(BBCases[i].Value) &&
   1100               BBCases[i].Dest != BBDefault) {
   1101             PredCases.push_back(BBCases[i]);
   1102             NewSuccessors.push_back(BBCases[i].Dest);
   1103             if (SuccHasWeights || PredHasWeights) {
   1104               // The default weight is at index 0, so weight for the ith case
   1105               // should be at index i+1. Scale the cases from successor by
   1106               // PredDefaultWeight (Weights[0]).
   1107               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
   1108               ValidTotalSuccWeight += SuccWeights[i + 1];
   1109             }
   1110           }
   1111 
   1112         if (SuccHasWeights || PredHasWeights) {
   1113           ValidTotalSuccWeight += SuccWeights[0];
   1114           // Scale the cases from predecessor by ValidTotalSuccWeight.
   1115           for (unsigned i = 1; i < CasesFromPred; ++i)
   1116             Weights[i] *= ValidTotalSuccWeight;
   1117           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
   1118           Weights[0] *= SuccWeights[0];
   1119         }
   1120       } else {
   1121         // If this is not the default destination from PSI, only the edges
   1122         // in SI that occur in PSI with a destination of BB will be
   1123         // activated.
   1124         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
   1125         std::map<ConstantInt *, uint64_t> WeightsForHandled;
   1126         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
   1127           if (PredCases[i].Dest == BB) {
   1128             PTIHandled.insert(PredCases[i].Value);
   1129 
   1130             if (PredHasWeights || SuccHasWeights) {
   1131               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
   1132               std::swap(Weights[i + 1], Weights.back());
   1133               Weights.pop_back();
   1134             }
   1135 
   1136             std::swap(PredCases[i], PredCases.back());
   1137             PredCases.pop_back();
   1138             --i;
   1139             --e;
   1140           }
   1141 
   1142         // Okay, now we know which constants were sent to BB from the
   1143         // predecessor.  Figure out where they will all go now.
   1144         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
   1145           if (PTIHandled.count(BBCases[i].Value)) {
   1146             // If this is one we are capable of getting...
   1147             if (PredHasWeights || SuccHasWeights)
   1148               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
   1149             PredCases.push_back(BBCases[i]);
   1150             NewSuccessors.push_back(BBCases[i].Dest);
   1151             PTIHandled.erase(
   1152                 BBCases[i].Value); // This constant is taken care of
   1153           }
   1154 
   1155         // If there are any constants vectored to BB that TI doesn't handle,
   1156         // they must go to the default destination of TI.
   1157         for (ConstantInt *I : PTIHandled) {
   1158           if (PredHasWeights || SuccHasWeights)
   1159             Weights.push_back(WeightsForHandled[I]);
   1160           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
   1161           NewSuccessors.push_back(BBDefault);
   1162         }
   1163       }
   1164 
   1165       // Okay, at this point, we know which new successor Pred will get.  Make
   1166       // sure we update the number of entries in the PHI nodes for these
   1167       // successors.
   1168       for (BasicBlock *NewSuccessor : NewSuccessors)
   1169         AddPredecessorToBlock(NewSuccessor, Pred, BB);
   1170 
   1171       Builder.SetInsertPoint(PTI);
   1172       // Convert pointer to int before we switch.
   1173       if (CV->getType()->isPointerTy()) {
   1174         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
   1175                                     "magicptr");
   1176       }
   1177 
   1178       // Now that the successors are updated, create the new Switch instruction.
   1179       SwitchInst *NewSI =
   1180           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
   1181       NewSI->setDebugLoc(PTI->getDebugLoc());
   1182       for (ValueEqualityComparisonCase &V : PredCases)
   1183         NewSI->addCase(V.Value, V.Dest);
   1184 
   1185       if (PredHasWeights || SuccHasWeights) {
   1186         // Halve the weights if any of them cannot fit in an uint32_t
   1187         FitWeights(Weights);
   1188 
   1189         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   1190 
   1191         setBranchWeights(NewSI, MDWeights);
   1192       }
   1193 
   1194       EraseTerminatorInstAndDCECond(PTI);
   1195 
   1196       // Okay, last check.  If BB is still a successor of PSI, then we must
   1197       // have an infinite loop case.  If so, add an infinitely looping block
   1198       // to handle the case to preserve the behavior of the code.
   1199       BasicBlock *InfLoopBlock = nullptr;
   1200       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
   1201         if (NewSI->getSuccessor(i) == BB) {
   1202           if (!InfLoopBlock) {
   1203             // Insert it at the end of the function, because it's either code,
   1204             // or it won't matter if it's hot. :)
   1205             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
   1206                                               BB->getParent());
   1207             BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1208           }
   1209           NewSI->setSuccessor(i, InfLoopBlock);
   1210         }
   1211 
   1212       Changed = true;
   1213     }
   1214   }
   1215   return Changed;
   1216 }
   1217 
   1218 // If we would need to insert a select that uses the value of this invoke
   1219 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
   1220 // can't hoist the invoke, as there is nowhere to put the select in this case.
   1221 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
   1222                                 Instruction *I1, Instruction *I2) {
   1223   for (BasicBlock *Succ : successors(BB1)) {
   1224     for (const PHINode &PN : Succ->phis()) {
   1225       Value *BB1V = PN.getIncomingValueForBlock(BB1);
   1226       Value *BB2V = PN.getIncomingValueForBlock(BB2);
   1227       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
   1228         return false;
   1229       }
   1230     }
   1231   }
   1232   return true;
   1233 }
   1234 
   1235 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
   1236 
   1237 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
   1238 /// in the two blocks up into the branch block. The caller of this function
   1239 /// guarantees that BI's block dominates BB1 and BB2.
   1240 static bool HoistThenElseCodeToIf(BranchInst *BI,
   1241                                   const TargetTransformInfo &TTI) {
   1242   // This does very trivial matching, with limited scanning, to find identical
   1243   // instructions in the two blocks.  In particular, we don't want to get into
   1244   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1245   // such, we currently just scan for obviously identical instructions in an
   1246   // identical order.
   1247   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
   1248   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
   1249 
   1250   BasicBlock::iterator BB1_Itr = BB1->begin();
   1251   BasicBlock::iterator BB2_Itr = BB2->begin();
   1252 
   1253   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
   1254   // Skip debug info if it is not identical.
   1255   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1256   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1257   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1258     while (isa<DbgInfoIntrinsic>(I1))
   1259       I1 = &*BB1_Itr++;
   1260     while (isa<DbgInfoIntrinsic>(I2))
   1261       I2 = &*BB2_Itr++;
   1262   }
   1263   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1264       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1265     return false;
   1266 
   1267   BasicBlock *BIParent = BI->getParent();
   1268 
   1269   bool Changed = false;
   1270   do {
   1271     // If we are hoisting the terminator instruction, don't move one (making a
   1272     // broken BB), instead clone it, and remove BI.
   1273     if (isa<TerminatorInst>(I1))
   1274       goto HoistTerminator;
   1275 
   1276     // If we're going to hoist a call, make sure that the two instructions we're
   1277     // commoning/hoisting are both marked with musttail, or neither of them is
   1278     // marked as such. Otherwise, we might end up in a situation where we hoist
   1279     // from a block where the terminator is a `ret` to a block where the terminator
   1280     // is a `br`, and `musttail` calls expect to be followed by a return.
   1281     auto *C1 = dyn_cast<CallInst>(I1);
   1282     auto *C2 = dyn_cast<CallInst>(I2);
   1283     if (C1 && C2)
   1284       if (C1->isMustTailCall() != C2->isMustTailCall())
   1285         return Changed;
   1286 
   1287     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
   1288       return Changed;
   1289 
   1290     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
   1291       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
   1292       // The debug location is an integral part of a debug info intrinsic
   1293       // and can't be separated from it or replaced.  Instead of attempting
   1294       // to merge locations, simply hoist both copies of the intrinsic.
   1295       BIParent->getInstList().splice(BI->getIterator(),
   1296                                      BB1->getInstList(), I1);
   1297       BIParent->getInstList().splice(BI->getIterator(),
   1298                                      BB2->getInstList(), I2);
   1299       Changed = true;
   1300     } else {
   1301       // For a normal instruction, we just move one to right before the branch,
   1302       // then replace all uses of the other with the first.  Finally, we remove
   1303       // the now redundant second instruction.
   1304       BIParent->getInstList().splice(BI->getIterator(),
   1305                                      BB1->getInstList(), I1);
   1306       if (!I2->use_empty())
   1307         I2->replaceAllUsesWith(I1);
   1308       I1->andIRFlags(I2);
   1309       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
   1310                              LLVMContext::MD_range,
   1311                              LLVMContext::MD_fpmath,
   1312                              LLVMContext::MD_invariant_load,
   1313                              LLVMContext::MD_nonnull,
   1314                              LLVMContext::MD_invariant_group,
   1315                              LLVMContext::MD_align,
   1316                              LLVMContext::MD_dereferenceable,
   1317                              LLVMContext::MD_dereferenceable_or_null,
   1318                              LLVMContext::MD_mem_parallel_loop_access};
   1319       combineMetadata(I1, I2, KnownIDs);
   1320 
   1321       // I1 and I2 are being combined into a single instruction.  Its debug
   1322       // location is the merged locations of the original instructions.
   1323       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
   1324 
   1325       I2->eraseFromParent();
   1326       Changed = true;
   1327     }
   1328 
   1329     I1 = &*BB1_Itr++;
   1330     I2 = &*BB2_Itr++;
   1331     // Skip debug info if it is not identical.
   1332     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1333     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1334     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1335       while (isa<DbgInfoIntrinsic>(I1))
   1336         I1 = &*BB1_Itr++;
   1337       while (isa<DbgInfoIntrinsic>(I2))
   1338         I2 = &*BB2_Itr++;
   1339     }
   1340   } while (I1->isIdenticalToWhenDefined(I2));
   1341 
   1342   return true;
   1343 
   1344 HoistTerminator:
   1345   // It may not be possible to hoist an invoke.
   1346   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1347     return Changed;
   1348 
   1349   for (BasicBlock *Succ : successors(BB1)) {
   1350     for (PHINode &PN : Succ->phis()) {
   1351       Value *BB1V = PN.getIncomingValueForBlock(BB1);
   1352       Value *BB2V = PN.getIncomingValueForBlock(BB2);
   1353       if (BB1V == BB2V)
   1354         continue;
   1355 
   1356       // Check for passingValueIsAlwaysUndefined here because we would rather
   1357       // eliminate undefined control flow then converting it to a select.
   1358       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
   1359           passingValueIsAlwaysUndefined(BB2V, &PN))
   1360         return Changed;
   1361 
   1362       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
   1363         return Changed;
   1364       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
   1365         return Changed;
   1366     }
   1367   }
   1368 
   1369   // Okay, it is safe to hoist the terminator.
   1370   Instruction *NT = I1->clone();
   1371   BIParent->getInstList().insert(BI->getIterator(), NT);
   1372   if (!NT->getType()->isVoidTy()) {
   1373     I1->replaceAllUsesWith(NT);
   1374     I2->replaceAllUsesWith(NT);
   1375     NT->takeName(I1);
   1376   }
   1377 
   1378   IRBuilder<NoFolder> Builder(NT);
   1379   // Hoisting one of the terminators from our successor is a great thing.
   1380   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1381   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1382   // nodes, so we insert select instruction to compute the final result.
   1383   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
   1384   for (BasicBlock *Succ : successors(BB1)) {
   1385     for (PHINode &PN : Succ->phis()) {
   1386       Value *BB1V = PN.getIncomingValueForBlock(BB1);
   1387       Value *BB2V = PN.getIncomingValueForBlock(BB2);
   1388       if (BB1V == BB2V)
   1389         continue;
   1390 
   1391       // These values do not agree.  Insert a select instruction before NT
   1392       // that determines the right value.
   1393       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1394       if (!SI)
   1395         SI = cast<SelectInst>(
   1396             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1397                                  BB1V->getName() + "." + BB2V->getName(), BI));
   1398 
   1399       // Make the PHI node use the select for all incoming values for BB1/BB2
   1400       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
   1401         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
   1402           PN.setIncomingValue(i, SI);
   1403     }
   1404   }
   1405 
   1406   // Update any PHI nodes in our new successors.
   1407   for (BasicBlock *Succ : successors(BB1))
   1408     AddPredecessorToBlock(Succ, BIParent, BB1);
   1409 
   1410   EraseTerminatorInstAndDCECond(BI);
   1411   return true;
   1412 }
   1413 
   1414 // All instructions in Insts belong to different blocks that all unconditionally
   1415 // branch to a common successor. Analyze each instruction and return true if it
   1416 // would be possible to sink them into their successor, creating one common
   1417 // instruction instead. For every value that would be required to be provided by
   1418 // PHI node (because an operand varies in each input block), add to PHIOperands.
   1419 static bool canSinkInstructions(
   1420     ArrayRef<Instruction *> Insts,
   1421     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
   1422   // Prune out obviously bad instructions to move. Any non-store instruction
   1423   // must have exactly one use, and we check later that use is by a single,
   1424   // common PHI instruction in the successor.
   1425   for (auto *I : Insts) {
   1426     // These instructions may change or break semantics if moved.
   1427     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
   1428         I->getType()->isTokenTy())
   1429       return false;
   1430 
   1431     // Conservatively return false if I is an inline-asm instruction. Sinking
   1432     // and merging inline-asm instructions can potentially create arguments
   1433     // that cannot satisfy the inline-asm constraints.
   1434     if (const auto *C = dyn_cast<CallInst>(I))
   1435       if (C->isInlineAsm())
   1436         return false;
   1437 
   1438     // Everything must have only one use too, apart from stores which
   1439     // have no uses.
   1440     if (!isa<StoreInst>(I) && !I->hasOneUse())
   1441       return false;
   1442   }
   1443 
   1444   const Instruction *I0 = Insts.front();
   1445   for (auto *I : Insts)
   1446     if (!I->isSameOperationAs(I0))
   1447       return false;
   1448 
   1449   // All instructions in Insts are known to be the same opcode. If they aren't
   1450   // stores, check the only user of each is a PHI or in the same block as the
   1451   // instruction, because if a user is in the same block as an instruction
   1452   // we're contemplating sinking, it must already be determined to be sinkable.
   1453   if (!isa<StoreInst>(I0)) {
   1454     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
   1455     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
   1456     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
   1457           auto *U = cast<Instruction>(*I->user_begin());
   1458           return (PNUse &&
   1459                   PNUse->getParent() == Succ &&
   1460                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
   1461                  U->getParent() == I->getParent();
   1462         }))
   1463       return false;
   1464   }
   1465 
   1466   // Because SROA can't handle speculating stores of selects, try not
   1467   // to sink loads or stores of allocas when we'd have to create a PHI for
   1468   // the address operand. Also, because it is likely that loads or stores
   1469   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
   1470   // This can cause code churn which can have unintended consequences down
   1471   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
   1472   // FIXME: This is a workaround for a deficiency in SROA - see
   1473   // https://llvm.org/bugs/show_bug.cgi?id=30188
   1474   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
   1475         return isa<AllocaInst>(I->getOperand(1));
   1476       }))
   1477     return false;
   1478   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
   1479         return isa<AllocaInst>(I->getOperand(0));
   1480       }))
   1481     return false;
   1482 
   1483   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
   1484     if (I0->getOperand(OI)->getType()->isTokenTy())
   1485       // Don't touch any operand of token type.
   1486       return false;
   1487 
   1488     auto SameAsI0 = [&I0, OI](const Instruction *I) {
   1489       assert(I->getNumOperands() == I0->getNumOperands());
   1490       return I->getOperand(OI) == I0->getOperand(OI);
   1491     };
   1492     if (!all_of(Insts, SameAsI0)) {
   1493       if (!canReplaceOperandWithVariable(I0, OI))
   1494         // We can't create a PHI from this GEP.
   1495         return false;
   1496       // Don't create indirect calls! The called value is the final operand.
   1497       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
   1498         // FIXME: if the call was *already* indirect, we should do this.
   1499         return false;
   1500       }
   1501       for (auto *I : Insts)
   1502         PHIOperands[I].push_back(I->getOperand(OI));
   1503     }
   1504   }
   1505   return true;
   1506 }
   1507 
   1508 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
   1509 // instruction of every block in Blocks to their common successor, commoning
   1510 // into one instruction.
   1511 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
   1512   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
   1513 
   1514   // canSinkLastInstruction returning true guarantees that every block has at
   1515   // least one non-terminator instruction.
   1516   SmallVector<Instruction*,4> Insts;
   1517   for (auto *BB : Blocks) {
   1518     Instruction *I = BB->getTerminator();
   1519     do {
   1520       I = I->getPrevNode();
   1521     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
   1522     if (!isa<DbgInfoIntrinsic>(I))
   1523       Insts.push_back(I);
   1524   }
   1525 
   1526   // The only checking we need to do now is that all users of all instructions
   1527   // are the same PHI node. canSinkLastInstruction should have checked this but
   1528   // it is slightly over-aggressive - it gets confused by commutative instructions
   1529   // so double-check it here.
   1530   Instruction *I0 = Insts.front();
   1531   if (!isa<StoreInst>(I0)) {
   1532     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
   1533     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
   1534           auto *U = cast<Instruction>(*I->user_begin());
   1535           return U == PNUse;
   1536         }))
   1537       return false;
   1538   }
   1539 
   1540   // We don't need to do any more checking here; canSinkLastInstruction should
   1541   // have done it all for us.
   1542   SmallVector<Value*, 4> NewOperands;
   1543   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
   1544     // This check is different to that in canSinkLastInstruction. There, we
   1545     // cared about the global view once simplifycfg (and instcombine) have
   1546     // completed - it takes into account PHIs that become trivially
   1547     // simplifiable.  However here we need a more local view; if an operand
   1548     // differs we create a PHI and rely on instcombine to clean up the very
   1549     // small mess we may make.
   1550     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
   1551       return I->getOperand(O) != I0->getOperand(O);
   1552     });
   1553     if (!NeedPHI) {
   1554       NewOperands.push_back(I0->getOperand(O));
   1555       continue;
   1556     }
   1557 
   1558     // Create a new PHI in the successor block and populate it.
   1559     auto *Op = I0->getOperand(O);
   1560     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
   1561     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
   1562                                Op->getName() + ".sink", &BBEnd->front());
   1563     for (auto *I : Insts)
   1564       PN->addIncoming(I->getOperand(O), I->getParent());
   1565     NewOperands.push_back(PN);
   1566   }
   1567 
   1568   // Arbitrarily use I0 as the new "common" instruction; remap its operands
   1569   // and move it to the start of the successor block.
   1570   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
   1571     I0->getOperandUse(O).set(NewOperands[O]);
   1572   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
   1573 
   1574   // Update metadata and IR flags, and merge debug locations.
   1575   for (auto *I : Insts)
   1576     if (I != I0) {
   1577       // The debug location for the "common" instruction is the merged locations
   1578       // of all the commoned instructions.  We start with the original location
   1579       // of the "common" instruction and iteratively merge each location in the
   1580       // loop below.
   1581       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
   1582       // However, as N-way merge for CallInst is rare, so we use simplified API
   1583       // instead of using complex API for N-way merge.
   1584       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
   1585       combineMetadataForCSE(I0, I);
   1586       I0->andIRFlags(I);
   1587     }
   1588 
   1589   if (!isa<StoreInst>(I0)) {
   1590     // canSinkLastInstruction checked that all instructions were used by
   1591     // one and only one PHI node. Find that now, RAUW it to our common
   1592     // instruction and nuke it.
   1593     assert(I0->hasOneUse());
   1594     auto *PN = cast<PHINode>(*I0->user_begin());
   1595     PN->replaceAllUsesWith(I0);
   1596     PN->eraseFromParent();
   1597   }
   1598 
   1599   // Finally nuke all instructions apart from the common instruction.
   1600   for (auto *I : Insts)
   1601     if (I != I0)
   1602       I->eraseFromParent();
   1603 
   1604   return true;
   1605 }
   1606 
   1607 namespace {
   1608 
   1609   // LockstepReverseIterator - Iterates through instructions
   1610   // in a set of blocks in reverse order from the first non-terminator.
   1611   // For example (assume all blocks have size n):
   1612   //   LockstepReverseIterator I([B1, B2, B3]);
   1613   //   *I-- = [B1[n], B2[n], B3[n]];
   1614   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
   1615   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
   1616   //   ...
   1617   class LockstepReverseIterator {
   1618     ArrayRef<BasicBlock*> Blocks;
   1619     SmallVector<Instruction*,4> Insts;
   1620     bool Fail;
   1621 
   1622   public:
   1623     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
   1624       reset();
   1625     }
   1626 
   1627     void reset() {
   1628       Fail = false;
   1629       Insts.clear();
   1630       for (auto *BB : Blocks) {
   1631         Instruction *Inst = BB->getTerminator();
   1632         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
   1633           Inst = Inst->getPrevNode();
   1634         if (!Inst) {
   1635           // Block wasn't big enough.
   1636           Fail = true;
   1637           return;
   1638         }
   1639         Insts.push_back(Inst);
   1640       }
   1641     }
   1642 
   1643     bool isValid() const {
   1644       return !Fail;
   1645     }
   1646 
   1647     void operator--() {
   1648       if (Fail)
   1649         return;
   1650       for (auto *&Inst : Insts) {
   1651         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
   1652           Inst = Inst->getPrevNode();
   1653         // Already at beginning of block.
   1654         if (!Inst) {
   1655           Fail = true;
   1656           return;
   1657         }
   1658       }
   1659     }
   1660 
   1661     ArrayRef<Instruction*> operator * () const {
   1662       return Insts;
   1663     }
   1664   };
   1665 
   1666 } // end anonymous namespace
   1667 
   1668 /// Check whether BB's predecessors end with unconditional branches. If it is
   1669 /// true, sink any common code from the predecessors to BB.
   1670 /// We also allow one predecessor to end with conditional branch (but no more
   1671 /// than one).
   1672 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
   1673   // We support two situations:
   1674   //   (1) all incoming arcs are unconditional
   1675   //   (2) one incoming arc is conditional
   1676   //
   1677   // (2) is very common in switch defaults and
   1678   // else-if patterns;
   1679   //
   1680   //   if (a) f(1);
   1681   //   else if (b) f(2);
   1682   //
   1683   // produces:
   1684   //
   1685   //       [if]
   1686   //      /    \
   1687   //    [f(1)] [if]
   1688   //      |     | \
   1689   //      |     |  |
   1690   //      |  [f(2)]|
   1691   //       \    | /
   1692   //        [ end ]
   1693   //
   1694   // [end] has two unconditional predecessor arcs and one conditional. The
   1695   // conditional refers to the implicit empty 'else' arc. This conditional
   1696   // arc can also be caused by an empty default block in a switch.
   1697   //
   1698   // In this case, we attempt to sink code from all *unconditional* arcs.
   1699   // If we can sink instructions from these arcs (determined during the scan
   1700   // phase below) we insert a common successor for all unconditional arcs and
   1701   // connect that to [end], to enable sinking:
   1702   //
   1703   //       [if]
   1704   //      /    \
   1705   //    [x(1)] [if]
   1706   //      |     | \
   1707   //      |     |  \
   1708   //      |  [x(2)] |
   1709   //       \   /    |
   1710   //   [sink.split] |
   1711   //         \     /
   1712   //         [ end ]
   1713   //
   1714   SmallVector<BasicBlock*,4> UnconditionalPreds;
   1715   Instruction *Cond = nullptr;
   1716   for (auto *B : predecessors(BB)) {
   1717     auto *T = B->getTerminator();
   1718     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
   1719       UnconditionalPreds.push_back(B);
   1720     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
   1721       Cond = T;
   1722     else
   1723       return false;
   1724   }
   1725   if (UnconditionalPreds.size() < 2)
   1726     return false;
   1727 
   1728   bool Changed = false;
   1729   // We take a two-step approach to tail sinking. First we scan from the end of
   1730   // each block upwards in lockstep. If the n'th instruction from the end of each
   1731   // block can be sunk, those instructions are added to ValuesToSink and we
   1732   // carry on. If we can sink an instruction but need to PHI-merge some operands
   1733   // (because they're not identical in each instruction) we add these to
   1734   // PHIOperands.
   1735   unsigned ScanIdx = 0;
   1736   SmallPtrSet<Value*,4> InstructionsToSink;
   1737   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
   1738   LockstepReverseIterator LRI(UnconditionalPreds);
   1739   while (LRI.isValid() &&
   1740          canSinkInstructions(*LRI, PHIOperands)) {
   1741     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
   1742                       << "\n");
   1743     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
   1744     ++ScanIdx;
   1745     --LRI;
   1746   }
   1747 
   1748   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
   1749     unsigned NumPHIdValues = 0;
   1750     for (auto *I : *LRI)
   1751       for (auto *V : PHIOperands[I])
   1752         if (InstructionsToSink.count(V) == 0)
   1753           ++NumPHIdValues;
   1754     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
   1755     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
   1756     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
   1757         NumPHIInsts++;
   1758 
   1759     return NumPHIInsts <= 1;
   1760   };
   1761 
   1762   if (ScanIdx > 0 && Cond) {
   1763     // Check if we would actually sink anything first! This mutates the CFG and
   1764     // adds an extra block. The goal in doing this is to allow instructions that
   1765     // couldn't be sunk before to be sunk - obviously, speculatable instructions
   1766     // (such as trunc, add) can be sunk and predicated already. So we check that
   1767     // we're going to sink at least one non-speculatable instruction.
   1768     LRI.reset();
   1769     unsigned Idx = 0;
   1770     bool Profitable = false;
   1771     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
   1772       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
   1773         Profitable = true;
   1774         break;
   1775       }
   1776       --LRI;
   1777       ++Idx;
   1778     }
   1779     if (!Profitable)
   1780       return false;
   1781 
   1782     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
   1783     // We have a conditional edge and we're going to sink some instructions.
   1784     // Insert a new block postdominating all blocks we're going to sink from.
   1785     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
   1786       // Edges couldn't be split.
   1787       return false;
   1788     Changed = true;
   1789   }
   1790 
   1791   // Now that we've analyzed all potential sinking candidates, perform the
   1792   // actual sink. We iteratively sink the last non-terminator of the source
   1793   // blocks into their common successor unless doing so would require too
   1794   // many PHI instructions to be generated (currently only one PHI is allowed
   1795   // per sunk instruction).
   1796   //
   1797   // We can use InstructionsToSink to discount values needing PHI-merging that will
   1798   // actually be sunk in a later iteration. This allows us to be more
   1799   // aggressive in what we sink. This does allow a false positive where we
   1800   // sink presuming a later value will also be sunk, but stop half way through
   1801   // and never actually sink it which means we produce more PHIs than intended.
   1802   // This is unlikely in practice though.
   1803   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
   1804     LLVM_DEBUG(dbgs() << "SINK: Sink: "
   1805                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
   1806                       << "\n");
   1807 
   1808     // Because we've sunk every instruction in turn, the current instruction to
   1809     // sink is always at index 0.
   1810     LRI.reset();
   1811     if (!ProfitableToSinkInstruction(LRI)) {
   1812       // Too many PHIs would be created.
   1813       LLVM_DEBUG(
   1814           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
   1815       break;
   1816     }
   1817 
   1818     if (!sinkLastInstruction(UnconditionalPreds))
   1819       return Changed;
   1820     NumSinkCommons++;
   1821     Changed = true;
   1822   }
   1823   return Changed;
   1824 }
   1825 
   1826 /// Determine if we can hoist sink a sole store instruction out of a
   1827 /// conditional block.
   1828 ///
   1829 /// We are looking for code like the following:
   1830 ///   BrBB:
   1831 ///     store i32 %add, i32* %arrayidx2
   1832 ///     ... // No other stores or function calls (we could be calling a memory
   1833 ///     ... // function).
   1834 ///     %cmp = icmp ult %x, %y
   1835 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1836 ///   ThenBB:
   1837 ///     store i32 %add5, i32* %arrayidx2
   1838 ///     br label EndBB
   1839 ///   EndBB:
   1840 ///     ...
   1841 ///   We are going to transform this into:
   1842 ///   BrBB:
   1843 ///     store i32 %add, i32* %arrayidx2
   1844 ///     ... //
   1845 ///     %cmp = icmp ult %x, %y
   1846 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
   1847 ///     store i32 %add.add5, i32* %arrayidx2
   1848 ///     ...
   1849 ///
   1850 /// \return The pointer to the value of the previous store if the store can be
   1851 ///         hoisted into the predecessor block. 0 otherwise.
   1852 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
   1853                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
   1854   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
   1855   if (!StoreToHoist)
   1856     return nullptr;
   1857 
   1858   // Volatile or atomic.
   1859   if (!StoreToHoist->isSimple())
   1860     return nullptr;
   1861 
   1862   Value *StorePtr = StoreToHoist->getPointerOperand();
   1863 
   1864   // Look for a store to the same pointer in BrBB.
   1865   unsigned MaxNumInstToLookAt = 9;
   1866   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
   1867     if (!MaxNumInstToLookAt)
   1868       break;
   1869     --MaxNumInstToLookAt;
   1870 
   1871     // Could be calling an instruction that affects memory like free().
   1872     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
   1873       return nullptr;
   1874 
   1875     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
   1876       // Found the previous store make sure it stores to the same location.
   1877       if (SI->getPointerOperand() == StorePtr)
   1878         // Found the previous store, return its value operand.
   1879         return SI->getValueOperand();
   1880       return nullptr; // Unknown store.
   1881     }
   1882   }
   1883 
   1884   return nullptr;
   1885 }
   1886 
   1887 /// Speculate a conditional basic block flattening the CFG.
   1888 ///
   1889 /// Note that this is a very risky transform currently. Speculating
   1890 /// instructions like this is most often not desirable. Instead, there is an MI
   1891 /// pass which can do it with full awareness of the resource constraints.
   1892 /// However, some cases are "obvious" and we should do directly. An example of
   1893 /// this is speculating a single, reasonably cheap instruction.
   1894 ///
   1895 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1896 /// it makes very common but simplistic optimizations such as are common in
   1897 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1898 /// modeling their effects with easier to reason about SSA value graphs.
   1899 ///
   1900 ///
   1901 /// An illustration of this transform is turning this IR:
   1902 /// \code
   1903 ///   BB:
   1904 ///     %cmp = icmp ult %x, %y
   1905 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1906 ///   ThenBB:
   1907 ///     %sub = sub %x, %y
   1908 ///     br label BB2
   1909 ///   EndBB:
   1910 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1911 ///     ...
   1912 /// \endcode
   1913 ///
   1914 /// Into this IR:
   1915 /// \code
   1916 ///   BB:
   1917 ///     %cmp = icmp ult %x, %y
   1918 ///     %sub = sub %x, %y
   1919 ///     %cond = select i1 %cmp, 0, %sub
   1920 ///     ...
   1921 /// \endcode
   1922 ///
   1923 /// \returns true if the conditional block is removed.
   1924 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
   1925                                    const TargetTransformInfo &TTI) {
   1926   // Be conservative for now. FP select instruction can often be expensive.
   1927   Value *BrCond = BI->getCondition();
   1928   if (isa<FCmpInst>(BrCond))
   1929     return false;
   1930 
   1931   BasicBlock *BB = BI->getParent();
   1932   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1933 
   1934   // If ThenBB is actually on the false edge of the conditional branch, remember
   1935   // to swap the select operands later.
   1936   bool Invert = false;
   1937   if (ThenBB != BI->getSuccessor(0)) {
   1938     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1939     Invert = true;
   1940   }
   1941   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1942 
   1943   // Keep a count of how many times instructions are used within CondBB when
   1944   // they are candidates for sinking into CondBB. Specifically:
   1945   // - They are defined in BB, and
   1946   // - They have no side effects, and
   1947   // - All of their uses are in CondBB.
   1948   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1949 
   1950   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
   1951 
   1952   unsigned SpeculationCost = 0;
   1953   Value *SpeculatedStoreValue = nullptr;
   1954   StoreInst *SpeculatedStore = nullptr;
   1955   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1956                             BBE = std::prev(ThenBB->end());
   1957        BBI != BBE; ++BBI) {
   1958     Instruction *I = &*BBI;
   1959     // Skip debug info.
   1960     if (isa<DbgInfoIntrinsic>(I)) {
   1961       SpeculatedDbgIntrinsics.push_back(I);
   1962       continue;
   1963     }
   1964 
   1965     // Only speculatively execute a single instruction (not counting the
   1966     // terminator) for now.
   1967     ++SpeculationCost;
   1968     if (SpeculationCost > 1)
   1969       return false;
   1970 
   1971     // Don't hoist the instruction if it's unsafe or expensive.
   1972     if (!isSafeToSpeculativelyExecute(I) &&
   1973         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
   1974                                   I, BB, ThenBB, EndBB))))
   1975       return false;
   1976     if (!SpeculatedStoreValue &&
   1977         ComputeSpeculationCost(I, TTI) >
   1978             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
   1979       return false;
   1980 
   1981     // Store the store speculation candidate.
   1982     if (SpeculatedStoreValue)
   1983       SpeculatedStore = cast<StoreInst>(I);
   1984 
   1985     // Do not hoist the instruction if any of its operands are defined but not
   1986     // used in BB. The transformation will prevent the operand from
   1987     // being sunk into the use block.
   1988     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
   1989       Instruction *OpI = dyn_cast<Instruction>(*i);
   1990       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
   1991         continue; // Not a candidate for sinking.
   1992 
   1993       ++SinkCandidateUseCounts[OpI];
   1994     }
   1995   }
   1996 
   1997   // Consider any sink candidates which are only used in CondBB as costs for
   1998   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1999   // and so iteration order isn't significant.
   2000   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
   2001            I = SinkCandidateUseCounts.begin(),
   2002            E = SinkCandidateUseCounts.end();
   2003        I != E; ++I)
   2004     if (I->first->getNumUses() == I->second) {
   2005       ++SpeculationCost;
   2006       if (SpeculationCost > 1)
   2007         return false;
   2008     }
   2009 
   2010   // Check that the PHI nodes can be converted to selects.
   2011   bool HaveRewritablePHIs = false;
   2012   for (PHINode &PN : EndBB->phis()) {
   2013     Value *OrigV = PN.getIncomingValueForBlock(BB);
   2014     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
   2015 
   2016     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
   2017     // Skip PHIs which are trivial.
   2018     if (ThenV == OrigV)
   2019       continue;
   2020 
   2021     // Don't convert to selects if we could remove undefined behavior instead.
   2022     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
   2023         passingValueIsAlwaysUndefined(ThenV, &PN))
   2024       return false;
   2025 
   2026     HaveRewritablePHIs = true;
   2027     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
   2028     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
   2029     if (!OrigCE && !ThenCE)
   2030       continue; // Known safe and cheap.
   2031 
   2032     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
   2033         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
   2034       return false;
   2035     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
   2036     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
   2037     unsigned MaxCost =
   2038         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
   2039     if (OrigCost + ThenCost > MaxCost)
   2040       return false;
   2041 
   2042     // Account for the cost of an unfolded ConstantExpr which could end up
   2043     // getting expanded into Instructions.
   2044     // FIXME: This doesn't account for how many operations are combined in the
   2045     // constant expression.
   2046     ++SpeculationCost;
   2047     if (SpeculationCost > 1)
   2048       return false;
   2049   }
   2050 
   2051   // If there are no PHIs to process, bail early. This helps ensure idempotence
   2052   // as well.
   2053   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
   2054     return false;
   2055 
   2056   // If we get here, we can hoist the instruction and if-convert.
   2057   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   2058 
   2059   // Insert a select of the value of the speculated store.
   2060   if (SpeculatedStoreValue) {
   2061     IRBuilder<NoFolder> Builder(BI);
   2062     Value *TrueV = SpeculatedStore->getValueOperand();
   2063     Value *FalseV = SpeculatedStoreValue;
   2064     if (Invert)
   2065       std::swap(TrueV, FalseV);
   2066     Value *S = Builder.CreateSelect(
   2067         BrCond, TrueV, FalseV, "spec.store.select", BI);
   2068     SpeculatedStore->setOperand(0, S);
   2069     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
   2070                                          SpeculatedStore->getDebugLoc());
   2071   }
   2072 
   2073   // Metadata can be dependent on the condition we are hoisting above.
   2074   // Conservatively strip all metadata on the instruction.
   2075   for (auto &I : *ThenBB)
   2076     I.dropUnknownNonDebugMetadata();
   2077 
   2078   // Hoist the instructions.
   2079   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
   2080                            ThenBB->begin(), std::prev(ThenBB->end()));
   2081 
   2082   // Insert selects and rewrite the PHI operands.
   2083   IRBuilder<NoFolder> Builder(BI);
   2084   for (PHINode &PN : EndBB->phis()) {
   2085     unsigned OrigI = PN.getBasicBlockIndex(BB);
   2086     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
   2087     Value *OrigV = PN.getIncomingValue(OrigI);
   2088     Value *ThenV = PN.getIncomingValue(ThenI);
   2089 
   2090     // Skip PHIs which are trivial.
   2091     if (OrigV == ThenV)
   2092       continue;
   2093 
   2094     // Create a select whose true value is the speculatively executed value and
   2095     // false value is the preexisting value. Swap them if the branch
   2096     // destinations were inverted.
   2097     Value *TrueV = ThenV, *FalseV = OrigV;
   2098     if (Invert)
   2099       std::swap(TrueV, FalseV);
   2100     Value *V = Builder.CreateSelect(
   2101         BrCond, TrueV, FalseV, "spec.select", BI);
   2102     PN.setIncomingValue(OrigI, V);
   2103     PN.setIncomingValue(ThenI, V);
   2104   }
   2105 
   2106   // Remove speculated dbg intrinsics.
   2107   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
   2108   // dbg value for the different flows and inserting it after the select.
   2109   for (Instruction *I : SpeculatedDbgIntrinsics)
   2110     I->eraseFromParent();
   2111 
   2112   ++NumSpeculations;
   2113   return true;
   2114 }
   2115 
   2116 /// Return true if we can thread a branch across this block.
   2117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   2118   unsigned Size = 0;
   2119 
   2120   for (Instruction &I : BB->instructionsWithoutDebug()) {
   2121     if (Size > 10)
   2122       return false; // Don't clone large BB's.
   2123     ++Size;
   2124 
   2125     // We can only support instructions that do not define values that are
   2126     // live outside of the current basic block.
   2127     for (User *U : I.users()) {
   2128       Instruction *UI = cast<Instruction>(U);
   2129       if (UI->getParent() != BB || isa<PHINode>(UI))
   2130         return false;
   2131     }
   2132 
   2133     // Looks ok, continue checking.
   2134   }
   2135 
   2136   return true;
   2137 }
   2138 
   2139 /// If we have a conditional branch on a PHI node value that is defined in the
   2140 /// same block as the branch and if any PHI entries are constants, thread edges
   2141 /// corresponding to that entry to be branches to their ultimate destination.
   2142 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
   2143                                 AssumptionCache *AC) {
   2144   BasicBlock *BB = BI->getParent();
   2145   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   2146   // NOTE: we currently cannot transform this case if the PHI node is used
   2147   // outside of the block.
   2148   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   2149     return false;
   2150 
   2151   // Degenerate case of a single entry PHI.
   2152   if (PN->getNumIncomingValues() == 1) {
   2153     FoldSingleEntryPHINodes(PN->getParent());
   2154     return true;
   2155   }
   2156 
   2157   // Now we know that this block has multiple preds and two succs.
   2158   if (!BlockIsSimpleEnoughToThreadThrough(BB))
   2159     return false;
   2160 
   2161   // Can't fold blocks that contain noduplicate or convergent calls.
   2162   if (any_of(*BB, [](const Instruction &I) {
   2163         const CallInst *CI = dyn_cast<CallInst>(&I);
   2164         return CI && (CI->cannotDuplicate() || CI->isConvergent());
   2165       }))
   2166     return false;
   2167 
   2168   // Okay, this is a simple enough basic block.  See if any phi values are
   2169   // constants.
   2170   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2171     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   2172     if (!CB || !CB->getType()->isIntegerTy(1))
   2173       continue;
   2174 
   2175     // Okay, we now know that all edges from PredBB should be revectored to
   2176     // branch to RealDest.
   2177     BasicBlock *PredBB = PN->getIncomingBlock(i);
   2178     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   2179 
   2180     if (RealDest == BB)
   2181       continue; // Skip self loops.
   2182     // Skip if the predecessor's terminator is an indirect branch.
   2183     if (isa<IndirectBrInst>(PredBB->getTerminator()))
   2184       continue;
   2185 
   2186     // The dest block might have PHI nodes, other predecessors and other
   2187     // difficult cases.  Instead of being smart about this, just insert a new
   2188     // block that jumps to the destination block, effectively splitting
   2189     // the edge we are about to create.
   2190     BasicBlock *EdgeBB =
   2191         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
   2192                            RealDest->getParent(), RealDest);
   2193     BranchInst::Create(RealDest, EdgeBB);
   2194 
   2195     // Update PHI nodes.
   2196     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   2197 
   2198     // BB may have instructions that are being threaded over.  Clone these
   2199     // instructions into EdgeBB.  We know that there will be no uses of the
   2200     // cloned instructions outside of EdgeBB.
   2201     BasicBlock::iterator InsertPt = EdgeBB->begin();
   2202     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
   2203     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   2204       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   2205         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   2206         continue;
   2207       }
   2208       // Clone the instruction.
   2209       Instruction *N = BBI->clone();
   2210       if (BBI->hasName())
   2211         N->setName(BBI->getName() + ".c");
   2212 
   2213       // Update operands due to translation.
   2214       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
   2215         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
   2216         if (PI != TranslateMap.end())
   2217           *i = PI->second;
   2218       }
   2219 
   2220       // Check for trivial simplification.
   2221       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
   2222         if (!BBI->use_empty())
   2223           TranslateMap[&*BBI] = V;
   2224         if (!N->mayHaveSideEffects()) {
   2225           N->deleteValue(); // Instruction folded away, don't need actual inst
   2226           N = nullptr;
   2227         }
   2228       } else {
   2229         if (!BBI->use_empty())
   2230           TranslateMap[&*BBI] = N;
   2231       }
   2232       // Insert the new instruction into its new home.
   2233       if (N)
   2234         EdgeBB->getInstList().insert(InsertPt, N);
   2235 
   2236       // Register the new instruction with the assumption cache if necessary.
   2237       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
   2238         if (II->getIntrinsicID() == Intrinsic::assume)
   2239           AC->registerAssumption(II);
   2240     }
   2241 
   2242     // Loop over all of the edges from PredBB to BB, changing them to branch
   2243     // to EdgeBB instead.
   2244     TerminatorInst *PredBBTI = PredBB->getTerminator();
   2245     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   2246       if (PredBBTI->getSuccessor(i) == BB) {
   2247         BB->removePredecessor(PredBB);
   2248         PredBBTI->setSuccessor(i, EdgeBB);
   2249       }
   2250 
   2251     // Recurse, simplifying any other constants.
   2252     return FoldCondBranchOnPHI(BI, DL, AC) | true;
   2253   }
   2254 
   2255   return false;
   2256 }
   2257 
   2258 /// Given a BB that starts with the specified two-entry PHI node,
   2259 /// see if we can eliminate it.
   2260 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
   2261                                 const DataLayout &DL) {
   2262   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   2263   // statement", which has a very simple dominance structure.  Basically, we
   2264   // are trying to find the condition that is being branched on, which
   2265   // subsequently causes this merge to happen.  We really want control
   2266   // dependence information for this check, but simplifycfg can't keep it up
   2267   // to date, and this catches most of the cases we care about anyway.
   2268   BasicBlock *BB = PN->getParent();
   2269   const Function *Fn = BB->getParent();
   2270   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
   2271     return false;
   2272 
   2273   BasicBlock *IfTrue, *IfFalse;
   2274   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   2275   if (!IfCond ||
   2276       // Don't bother if the branch will be constant folded trivially.
   2277       isa<ConstantInt>(IfCond))
   2278     return false;
   2279 
   2280   // Okay, we found that we can merge this two-entry phi node into a select.
   2281   // Doing so would require us to fold *all* two entry phi nodes in this block.
   2282   // At some point this becomes non-profitable (particularly if the target
   2283   // doesn't support cmov's).  Only do this transformation if there are two or
   2284   // fewer PHI nodes in this block.
   2285   unsigned NumPhis = 0;
   2286   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   2287     if (NumPhis > 2)
   2288       return false;
   2289 
   2290   // Loop over the PHI's seeing if we can promote them all to select
   2291   // instructions.  While we are at it, keep track of the instructions
   2292   // that need to be moved to the dominating block.
   2293   SmallPtrSet<Instruction *, 4> AggressiveInsts;
   2294   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   2295            MaxCostVal1 = PHINodeFoldingThreshold;
   2296   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
   2297   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
   2298 
   2299   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   2300     PHINode *PN = cast<PHINode>(II++);
   2301     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
   2302       PN->replaceAllUsesWith(V);
   2303       PN->eraseFromParent();
   2304       continue;
   2305     }
   2306 
   2307     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   2308                              MaxCostVal0, TTI) ||
   2309         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   2310                              MaxCostVal1, TTI))
   2311       return false;
   2312   }
   2313 
   2314   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   2315   // we ran out of PHIs then we simplified them all.
   2316   PN = dyn_cast<PHINode>(BB->begin());
   2317   if (!PN)
   2318     return true;
   2319 
   2320   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   2321   // often be turned into switches and other things.
   2322   if (PN->getType()->isIntegerTy(1) &&
   2323       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   2324        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   2325        isa<BinaryOperator>(IfCond)))
   2326     return false;
   2327 
   2328   // If all PHI nodes are promotable, check to make sure that all instructions
   2329   // in the predecessor blocks can be promoted as well. If not, we won't be able
   2330   // to get rid of the control flow, so it's not worth promoting to select
   2331   // instructions.
   2332   BasicBlock *DomBlock = nullptr;
   2333   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   2334   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   2335   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   2336     IfBlock1 = nullptr;
   2337   } else {
   2338     DomBlock = *pred_begin(IfBlock1);
   2339     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
   2340          ++I)
   2341       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
   2342         // This is not an aggressive instruction that we can promote.
   2343         // Because of this, we won't be able to get rid of the control flow, so
   2344         // the xform is not worth it.
   2345         return false;
   2346       }
   2347   }
   2348 
   2349   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   2350     IfBlock2 = nullptr;
   2351   } else {
   2352     DomBlock = *pred_begin(IfBlock2);
   2353     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
   2354          ++I)
   2355       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
   2356         // This is not an aggressive instruction that we can promote.
   2357         // Because of this, we won't be able to get rid of the control flow, so
   2358         // the xform is not worth it.
   2359         return false;
   2360       }
   2361   }
   2362 
   2363   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
   2364                     << "  T: " << IfTrue->getName()
   2365                     << "  F: " << IfFalse->getName() << "\n");
   2366 
   2367   // If we can still promote the PHI nodes after this gauntlet of tests,
   2368   // do all of the PHI's now.
   2369   Instruction *InsertPt = DomBlock->getTerminator();
   2370   IRBuilder<NoFolder> Builder(InsertPt);
   2371 
   2372   // Move all 'aggressive' instructions, which are defined in the
   2373   // conditional parts of the if's up to the dominating block.
   2374   if (IfBlock1) {
   2375     for (auto &I : *IfBlock1)
   2376       I.dropUnknownNonDebugMetadata();
   2377     DomBlock->getInstList().splice(InsertPt->getIterator(),
   2378                                    IfBlock1->getInstList(), IfBlock1->begin(),
   2379                                    IfBlock1->getTerminator()->getIterator());
   2380   }
   2381   if (IfBlock2) {
   2382     for (auto &I : *IfBlock2)
   2383       I.dropUnknownNonDebugMetadata();
   2384     DomBlock->getInstList().splice(InsertPt->getIterator(),
   2385                                    IfBlock2->getInstList(), IfBlock2->begin(),
   2386                                    IfBlock2->getTerminator()->getIterator());
   2387   }
   2388 
   2389   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   2390     // Change the PHI node into a select instruction.
   2391     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   2392     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   2393 
   2394     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
   2395     PN->replaceAllUsesWith(Sel);
   2396     Sel->takeName(PN);
   2397     PN->eraseFromParent();
   2398   }
   2399 
   2400   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   2401   // has been flattened.  Change DomBlock to jump directly to our new block to
   2402   // avoid other simplifycfg's kicking in on the diamond.
   2403   TerminatorInst *OldTI = DomBlock->getTerminator();
   2404   Builder.SetInsertPoint(OldTI);
   2405   Builder.CreateBr(BB);
   2406   OldTI->eraseFromParent();
   2407   return true;
   2408 }
   2409 
   2410 /// If we found a conditional branch that goes to two returning blocks,
   2411 /// try to merge them together into one return,
   2412 /// introducing a select if the return values disagree.
   2413 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   2414                                            IRBuilder<> &Builder) {
   2415   assert(BI->isConditional() && "Must be a conditional branch");
   2416   BasicBlock *TrueSucc = BI->getSuccessor(0);
   2417   BasicBlock *FalseSucc = BI->getSuccessor(1);
   2418   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   2419   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   2420 
   2421   // Check to ensure both blocks are empty (just a return) or optionally empty
   2422   // with PHI nodes.  If there are other instructions, merging would cause extra
   2423   // computation on one path or the other.
   2424   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   2425     return false;
   2426   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   2427     return false;
   2428 
   2429   Builder.SetInsertPoint(BI);
   2430   // Okay, we found a branch that is going to two return nodes.  If
   2431   // there is no return value for this function, just change the
   2432   // branch into a return.
   2433   if (FalseRet->getNumOperands() == 0) {
   2434     TrueSucc->removePredecessor(BI->getParent());
   2435     FalseSucc->removePredecessor(BI->getParent());
   2436     Builder.CreateRetVoid();
   2437     EraseTerminatorInstAndDCECond(BI);
   2438     return true;
   2439   }
   2440 
   2441   // Otherwise, figure out what the true and false return values are
   2442   // so we can insert a new select instruction.
   2443   Value *TrueValue = TrueRet->getReturnValue();
   2444   Value *FalseValue = FalseRet->getReturnValue();
   2445 
   2446   // Unwrap any PHI nodes in the return blocks.
   2447   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   2448     if (TVPN->getParent() == TrueSucc)
   2449       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   2450   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   2451     if (FVPN->getParent() == FalseSucc)
   2452       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   2453 
   2454   // In order for this transformation to be safe, we must be able to
   2455   // unconditionally execute both operands to the return.  This is
   2456   // normally the case, but we could have a potentially-trapping
   2457   // constant expression that prevents this transformation from being
   2458   // safe.
   2459   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   2460     if (TCV->canTrap())
   2461       return false;
   2462   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   2463     if (FCV->canTrap())
   2464       return false;
   2465 
   2466   // Okay, we collected all the mapped values and checked them for sanity, and
   2467   // defined to really do this transformation.  First, update the CFG.
   2468   TrueSucc->removePredecessor(BI->getParent());
   2469   FalseSucc->removePredecessor(BI->getParent());
   2470 
   2471   // Insert select instructions where needed.
   2472   Value *BrCond = BI->getCondition();
   2473   if (TrueValue) {
   2474     // Insert a select if the results differ.
   2475     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   2476     } else if (isa<UndefValue>(TrueValue)) {
   2477       TrueValue = FalseValue;
   2478     } else {
   2479       TrueValue =
   2480           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
   2481     }
   2482   }
   2483 
   2484   Value *RI =
   2485       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   2486 
   2487   (void)RI;
   2488 
   2489   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   2490                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
   2491                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
   2492 
   2493   EraseTerminatorInstAndDCECond(BI);
   2494 
   2495   return true;
   2496 }
   2497 
   2498 /// Return true if the given instruction is available
   2499 /// in its predecessor block. If yes, the instruction will be removed.
   2500 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
   2501   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   2502     return false;
   2503   for (Instruction &I : *PB) {
   2504     Instruction *PBI = &I;
   2505     // Check whether Inst and PBI generate the same value.
   2506     if (Inst->isIdenticalTo(PBI)) {
   2507       Inst->replaceAllUsesWith(PBI);
   2508       Inst->eraseFromParent();
   2509       return true;
   2510     }
   2511   }
   2512   return false;
   2513 }
   2514 
   2515 /// Return true if either PBI or BI has branch weight available, and store
   2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
   2517 /// not have branch weight, use 1:1 as its weight.
   2518 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
   2519                                    uint64_t &PredTrueWeight,
   2520                                    uint64_t &PredFalseWeight,
   2521                                    uint64_t &SuccTrueWeight,
   2522                                    uint64_t &SuccFalseWeight) {
   2523   bool PredHasWeights =
   2524       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
   2525   bool SuccHasWeights =
   2526       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
   2527   if (PredHasWeights || SuccHasWeights) {
   2528     if (!PredHasWeights)
   2529       PredTrueWeight = PredFalseWeight = 1;
   2530     if (!SuccHasWeights)
   2531       SuccTrueWeight = SuccFalseWeight = 1;
   2532     return true;
   2533   } else {
   2534     return false;
   2535   }
   2536 }
   2537 
   2538 /// If this basic block is simple enough, and if a predecessor branches to us
   2539 /// and one of our successors, fold the block into the predecessor and use
   2540 /// logical operations to pick the right destination.
   2541 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
   2542   BasicBlock *BB = BI->getParent();
   2543 
   2544   Instruction *Cond = nullptr;
   2545   if (BI->isConditional())
   2546     Cond = dyn_cast<Instruction>(BI->getCondition());
   2547   else {
   2548     // For unconditional branch, check for a simple CFG pattern, where
   2549     // BB has a single predecessor and BB's successor is also its predecessor's
   2550     // successor. If such pattern exists, check for CSE between BB and its
   2551     // predecessor.
   2552     if (BasicBlock *PB = BB->getSinglePredecessor())
   2553       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   2554         if (PBI->isConditional() &&
   2555             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   2556              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   2557           for (auto I = BB->instructionsWithoutDebug().begin(),
   2558                     E = BB->instructionsWithoutDebug().end();
   2559                I != E;) {
   2560             Instruction *Curr = &*I++;
   2561             if (isa<CmpInst>(Curr)) {
   2562               Cond = Curr;
   2563               break;
   2564             }
   2565             // Quit if we can't remove this instruction.
   2566             if (!tryCSEWithPredecessor(Curr, PB))
   2567               return false;
   2568           }
   2569         }
   2570 
   2571     if (!Cond)
   2572       return false;
   2573   }
   2574 
   2575   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   2576       Cond->getParent() != BB || !Cond->hasOneUse())
   2577     return false;
   2578 
   2579   // Make sure the instruction after the condition is the cond branch.
   2580   BasicBlock::iterator CondIt = ++Cond->getIterator();
   2581 
   2582   // Ignore dbg intrinsics.
   2583   while (isa<DbgInfoIntrinsic>(CondIt))
   2584     ++CondIt;
   2585 
   2586   if (&*CondIt != BI)
   2587     return false;
   2588 
   2589   // Only allow this transformation if computing the condition doesn't involve
   2590   // too many instructions and these involved instructions can be executed
   2591   // unconditionally. We denote all involved instructions except the condition
   2592   // as "bonus instructions", and only allow this transformation when the
   2593   // number of the bonus instructions does not exceed a certain threshold.
   2594   unsigned NumBonusInsts = 0;
   2595   for (auto I = BB->begin(); Cond != &*I; ++I) {
   2596     // Ignore dbg intrinsics.
   2597     if (isa<DbgInfoIntrinsic>(I))
   2598       continue;
   2599     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
   2600       return false;
   2601     // I has only one use and can be executed unconditionally.
   2602     Instruction *User = dyn_cast<Instruction>(I->user_back());
   2603     if (User == nullptr || User->getParent() != BB)
   2604       return false;
   2605     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
   2606     // to use any other instruction, User must be an instruction between next(I)
   2607     // and Cond.
   2608     ++NumBonusInsts;
   2609     // Early exits once we reach the limit.
   2610     if (NumBonusInsts > BonusInstThreshold)
   2611       return false;
   2612   }
   2613 
   2614   // Cond is known to be a compare or binary operator.  Check to make sure that
   2615   // neither operand is a potentially-trapping constant expression.
   2616   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   2617     if (CE->canTrap())
   2618       return false;
   2619   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   2620     if (CE->canTrap())
   2621       return false;
   2622 
   2623   // Finally, don't infinitely unroll conditional loops.
   2624   BasicBlock *TrueDest = BI->getSuccessor(0);
   2625   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
   2626   if (TrueDest == BB || FalseDest == BB)
   2627     return false;
   2628 
   2629   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2630     BasicBlock *PredBlock = *PI;
   2631     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   2632 
   2633     // Check that we have two conditional branches.  If there is a PHI node in
   2634     // the common successor, verify that the same value flows in from both
   2635     // blocks.
   2636     SmallVector<PHINode *, 4> PHIs;
   2637     if (!PBI || PBI->isUnconditional() ||
   2638         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
   2639         (!BI->isConditional() &&
   2640          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2641       continue;
   2642 
   2643     // Determine if the two branches share a common destination.
   2644     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2645     bool InvertPredCond = false;
   2646 
   2647     if (BI->isConditional()) {
   2648       if (PBI->getSuccessor(0) == TrueDest) {
   2649         Opc = Instruction::Or;
   2650       } else if (PBI->getSuccessor(1) == FalseDest) {
   2651         Opc = Instruction::And;
   2652       } else if (PBI->getSuccessor(0) == FalseDest) {
   2653         Opc = Instruction::And;
   2654         InvertPredCond = true;
   2655       } else if (PBI->getSuccessor(1) == TrueDest) {
   2656         Opc = Instruction::Or;
   2657         InvertPredCond = true;
   2658       } else {
   2659         continue;
   2660       }
   2661     } else {
   2662       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2663         continue;
   2664     }
   2665 
   2666     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2667     IRBuilder<> Builder(PBI);
   2668 
   2669     // If we need to invert the condition in the pred block to match, do so now.
   2670     if (InvertPredCond) {
   2671       Value *NewCond = PBI->getCondition();
   2672 
   2673       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2674         CmpInst *CI = cast<CmpInst>(NewCond);
   2675         CI->setPredicate(CI->getInversePredicate());
   2676       } else {
   2677         NewCond =
   2678             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
   2679       }
   2680 
   2681       PBI->setCondition(NewCond);
   2682       PBI->swapSuccessors();
   2683     }
   2684 
   2685     // If we have bonus instructions, clone them into the predecessor block.
   2686     // Note that there may be multiple predecessor blocks, so we cannot move
   2687     // bonus instructions to a predecessor block.
   2688     ValueToValueMapTy VMap; // maps original values to cloned values
   2689     // We already make sure Cond is the last instruction before BI. Therefore,
   2690     // all instructions before Cond other than DbgInfoIntrinsic are bonus
   2691     // instructions.
   2692     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
   2693       if (isa<DbgInfoIntrinsic>(BonusInst))
   2694         continue;
   2695       Instruction *NewBonusInst = BonusInst->clone();
   2696       RemapInstruction(NewBonusInst, VMap,
   2697                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
   2698       VMap[&*BonusInst] = NewBonusInst;
   2699 
   2700       // If we moved a load, we cannot any longer claim any knowledge about
   2701       // its potential value. The previous information might have been valid
   2702       // only given the branch precondition.
   2703       // For an analogous reason, we must also drop all the metadata whose
   2704       // semantics we don't understand.
   2705       NewBonusInst->dropUnknownNonDebugMetadata();
   2706 
   2707       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
   2708       NewBonusInst->takeName(&*BonusInst);
   2709       BonusInst->setName(BonusInst->getName() + ".old");
   2710     }
   2711 
   2712     // Clone Cond into the predecessor basic block, and or/and the
   2713     // two conditions together.
   2714     Instruction *New = Cond->clone();
   2715     RemapInstruction(New, VMap,
   2716                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
   2717     PredBlock->getInstList().insert(PBI->getIterator(), New);
   2718     New->takeName(Cond);
   2719     Cond->setName(New->getName() + ".old");
   2720 
   2721     if (BI->isConditional()) {
   2722       Instruction *NewCond = cast<Instruction>(
   2723           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
   2724       PBI->setCondition(NewCond);
   2725 
   2726       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2727       bool HasWeights =
   2728           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
   2729                                  SuccTrueWeight, SuccFalseWeight);
   2730       SmallVector<uint64_t, 8> NewWeights;
   2731 
   2732       if (PBI->getSuccessor(0) == BB) {
   2733         if (HasWeights) {
   2734           // PBI: br i1 %x, BB, FalseDest
   2735           // BI:  br i1 %y, TrueDest, FalseDest
   2736           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2737           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2738           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2739           //               TrueWeight for PBI * FalseWeight for BI.
   2740           // We assume that total weights of a BranchInst can fit into 32 bits.
   2741           // Therefore, we will not have overflow using 64-bit arithmetic.
   2742           NewWeights.push_back(PredFalseWeight *
   2743                                    (SuccFalseWeight + SuccTrueWeight) +
   2744                                PredTrueWeight * SuccFalseWeight);
   2745         }
   2746         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2747         PBI->setSuccessor(0, TrueDest);
   2748       }
   2749       if (PBI->getSuccessor(1) == BB) {
   2750         if (HasWeights) {
   2751           // PBI: br i1 %x, TrueDest, BB
   2752           // BI:  br i1 %y, TrueDest, FalseDest
   2753           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2754           //              FalseWeight for PBI * TrueWeight for BI.
   2755           NewWeights.push_back(PredTrueWeight *
   2756                                    (SuccFalseWeight + SuccTrueWeight) +
   2757                                PredFalseWeight * SuccTrueWeight);
   2758           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2759           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2760         }
   2761         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2762         PBI->setSuccessor(1, FalseDest);
   2763       }
   2764       if (NewWeights.size() == 2) {
   2765         // Halve the weights if any of them cannot fit in an uint32_t
   2766         FitWeights(NewWeights);
   2767 
   2768         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
   2769                                            NewWeights.end());
   2770         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
   2771       } else
   2772         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
   2773     } else {
   2774       // Update PHI nodes in the common successors.
   2775       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2776         ConstantInt *PBI_C = cast<ConstantInt>(
   2777             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2778         assert(PBI_C->getType()->isIntegerTy(1));
   2779         Instruction *MergedCond = nullptr;
   2780         if (PBI->getSuccessor(0) == TrueDest) {
   2781           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2782           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2783           //       is false: !PBI_Cond and BI_Value
   2784           Instruction *NotCond = cast<Instruction>(
   2785               Builder.CreateNot(PBI->getCondition(), "not.cond"));
   2786           MergedCond = cast<Instruction>(
   2787               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
   2788           if (PBI_C->isOne())
   2789             MergedCond = cast<Instruction>(Builder.CreateBinOp(
   2790                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
   2791         } else {
   2792           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2793           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2794           //       is false: PBI_Cond and BI_Value
   2795           MergedCond = cast<Instruction>(Builder.CreateBinOp(
   2796               Instruction::And, PBI->getCondition(), New, "and.cond"));
   2797           if (PBI_C->isOne()) {
   2798             Instruction *NotCond = cast<Instruction>(
   2799                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
   2800             MergedCond = cast<Instruction>(Builder.CreateBinOp(
   2801                 Instruction::Or, NotCond, MergedCond, "or.cond"));
   2802           }
   2803         }
   2804         // Update PHI Node.
   2805         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2806                                   MergedCond);
   2807       }
   2808       // Change PBI from Conditional to Unconditional.
   2809       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2810       EraseTerminatorInstAndDCECond(PBI);
   2811       PBI = New_PBI;
   2812     }
   2813 
   2814     // If BI was a loop latch, it may have had associated loop metadata.
   2815     // We need to copy it to the new latch, that is, PBI.
   2816     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
   2817       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
   2818 
   2819     // TODO: If BB is reachable from all paths through PredBlock, then we
   2820     // could replace PBI's branch probabilities with BI's.
   2821 
   2822     // Copy any debug value intrinsics into the end of PredBlock.
   2823     for (Instruction &I : *BB)
   2824       if (isa<DbgInfoIntrinsic>(I))
   2825         I.clone()->insertBefore(PBI);
   2826 
   2827     return true;
   2828   }
   2829   return false;
   2830 }
   2831 
   2832 // If there is only one store in BB1 and BB2, return it, otherwise return
   2833 // nullptr.
   2834 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
   2835   StoreInst *S = nullptr;
   2836   for (auto *BB : {BB1, BB2}) {
   2837     if (!BB)
   2838       continue;
   2839     for (auto &I : *BB)
   2840       if (auto *SI = dyn_cast<StoreInst>(&I)) {
   2841         if (S)
   2842           // Multiple stores seen.
   2843           return nullptr;
   2844         else
   2845           S = SI;
   2846       }
   2847   }
   2848   return S;
   2849 }
   2850 
   2851 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
   2852                                               Value *AlternativeV = nullptr) {
   2853   // PHI is going to be a PHI node that allows the value V that is defined in
   2854   // BB to be referenced in BB's only successor.
   2855   //
   2856   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
   2857   // doesn't matter to us what the other operand is (it'll never get used). We
   2858   // could just create a new PHI with an undef incoming value, but that could
   2859   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
   2860   // other PHI. So here we directly look for some PHI in BB's successor with V
   2861   // as an incoming operand. If we find one, we use it, else we create a new
   2862   // one.
   2863   //
   2864   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
   2865   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
   2866   // where OtherBB is the single other predecessor of BB's only successor.
   2867   PHINode *PHI = nullptr;
   2868   BasicBlock *Succ = BB->getSingleSuccessor();
   2869 
   2870   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
   2871     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
   2872       PHI = cast<PHINode>(I);
   2873       if (!AlternativeV)
   2874         break;
   2875 
   2876       assert(pred_size(Succ) == 2);
   2877       auto PredI = pred_begin(Succ);
   2878       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
   2879       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
   2880         break;
   2881       PHI = nullptr;
   2882     }
   2883   if (PHI)
   2884     return PHI;
   2885 
   2886   // If V is not an instruction defined in BB, just return it.
   2887   if (!AlternativeV &&
   2888       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
   2889     return V;
   2890 
   2891   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
   2892   PHI->addIncoming(V, BB);
   2893   for (BasicBlock *PredBB : predecessors(Succ))
   2894     if (PredBB != BB)
   2895       PHI->addIncoming(
   2896           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
   2897   return PHI;
   2898 }
   2899 
   2900 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
   2901                                            BasicBlock *QTB, BasicBlock *QFB,
   2902                                            BasicBlock *PostBB, Value *Address,
   2903                                            bool InvertPCond, bool InvertQCond,
   2904                                            const DataLayout &DL) {
   2905   auto IsaBitcastOfPointerType = [](const Instruction &I) {
   2906     return Operator::getOpcode(&I) == Instruction::BitCast &&
   2907            I.getType()->isPointerTy();
   2908   };
   2909 
   2910   // If we're not in aggressive mode, we only optimize if we have some
   2911   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
   2912   auto IsWorthwhile = [&](BasicBlock *BB) {
   2913     if (!BB)
   2914       return true;
   2915     // Heuristic: if the block can be if-converted/phi-folded and the
   2916     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
   2917     // thread this store.
   2918     unsigned N = 0;
   2919     for (auto &I : BB->instructionsWithoutDebug()) {
   2920       // Cheap instructions viable for folding.
   2921       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
   2922           isa<StoreInst>(I))
   2923         ++N;
   2924       // Free instructions.
   2925       else if (isa<TerminatorInst>(I) || IsaBitcastOfPointerType(I))
   2926         continue;
   2927       else
   2928         return false;
   2929     }
   2930     // The store we want to merge is counted in N, so add 1 to make sure
   2931     // we're counting the instructions that would be left.
   2932     return N <= (PHINodeFoldingThreshold + 1);
   2933   };
   2934 
   2935   if (!MergeCondStoresAggressively &&
   2936       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
   2937        !IsWorthwhile(QFB)))
   2938     return false;
   2939 
   2940   // For every pointer, there must be exactly two stores, one coming from
   2941   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
   2942   // store (to any address) in PTB,PFB or QTB,QFB.
   2943   // FIXME: We could relax this restriction with a bit more work and performance
   2944   // testing.
   2945   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
   2946   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
   2947   if (!PStore || !QStore)
   2948     return false;
   2949 
   2950   // Now check the stores are compatible.
   2951   if (!QStore->isUnordered() || !PStore->isUnordered())
   2952     return false;
   2953 
   2954   // Check that sinking the store won't cause program behavior changes. Sinking
   2955   // the store out of the Q blocks won't change any behavior as we're sinking
   2956   // from a block to its unconditional successor. But we're moving a store from
   2957   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
   2958   // So we need to check that there are no aliasing loads or stores in
   2959   // QBI, QTB and QFB. We also need to check there are no conflicting memory
   2960   // operations between PStore and the end of its parent block.
   2961   //
   2962   // The ideal way to do this is to query AliasAnalysis, but we don't
   2963   // preserve AA currently so that is dangerous. Be super safe and just
   2964   // check there are no other memory operations at all.
   2965   for (auto &I : *QFB->getSinglePredecessor())
   2966     if (I.mayReadOrWriteMemory())
   2967       return false;
   2968   for (auto &I : *QFB)
   2969     if (&I != QStore && I.mayReadOrWriteMemory())
   2970       return false;
   2971   if (QTB)
   2972     for (auto &I : *QTB)
   2973       if (&I != QStore && I.mayReadOrWriteMemory())
   2974         return false;
   2975   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
   2976        I != E; ++I)
   2977     if (&*I != PStore && I->mayReadOrWriteMemory())
   2978       return false;
   2979 
   2980   // If PostBB has more than two predecessors, we need to split it so we can
   2981   // sink the store.
   2982   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
   2983     // We know that QFB's only successor is PostBB. And QFB has a single
   2984     // predecessor. If QTB exists, then its only successor is also PostBB.
   2985     // If QTB does not exist, then QFB's only predecessor has a conditional
   2986     // branch to QFB and PostBB.
   2987     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
   2988     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
   2989                                                "condstore.split");
   2990     if (!NewBB)
   2991       return false;
   2992     PostBB = NewBB;
   2993   }
   2994 
   2995   // OK, we're going to sink the stores to PostBB. The store has to be
   2996   // conditional though, so first create the predicate.
   2997   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
   2998                      ->getCondition();
   2999   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
   3000                      ->getCondition();
   3001 
   3002   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
   3003                                                 PStore->getParent());
   3004   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
   3005                                                 QStore->getParent(), PPHI);
   3006 
   3007   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
   3008 
   3009   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
   3010   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
   3011 
   3012   if (InvertPCond)
   3013     PPred = QB.CreateNot(PPred);
   3014   if (InvertQCond)
   3015     QPred = QB.CreateNot(QPred);
   3016   Value *CombinedPred = QB.CreateOr(PPred, QPred);
   3017 
   3018   auto *T =
   3019       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
   3020   QB.SetInsertPoint(T);
   3021   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
   3022   AAMDNodes AAMD;
   3023   PStore->getAAMetadata(AAMD, /*Merge=*/false);
   3024   PStore->getAAMetadata(AAMD, /*Merge=*/true);
   3025   SI->setAAMetadata(AAMD);
   3026   unsigned PAlignment = PStore->getAlignment();
   3027   unsigned QAlignment = QStore->getAlignment();
   3028   unsigned TypeAlignment =
   3029       DL.getABITypeAlignment(SI->getValueOperand()->getType());
   3030   unsigned MinAlignment;
   3031   unsigned MaxAlignment;
   3032   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
   3033   // Choose the minimum alignment. If we could prove both stores execute, we
   3034   // could use biggest one.  In this case, though, we only know that one of the
   3035   // stores executes.  And we don't know it's safe to take the alignment from a
   3036   // store that doesn't execute.
   3037   if (MinAlignment != 0) {
   3038     // Choose the minimum of all non-zero alignments.
   3039     SI->setAlignment(MinAlignment);
   3040   } else if (MaxAlignment != 0) {
   3041     // Choose the minimal alignment between the non-zero alignment and the ABI
   3042     // default alignment for the type of the stored value.
   3043     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
   3044   } else {
   3045     // If both alignments are zero, use ABI default alignment for the type of
   3046     // the stored value.
   3047     SI->setAlignment(TypeAlignment);
   3048   }
   3049 
   3050   QStore->eraseFromParent();
   3051   PStore->eraseFromParent();
   3052 
   3053   return true;
   3054 }
   3055 
   3056 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
   3057                                    const DataLayout &DL) {
   3058   // The intention here is to find diamonds or triangles (see below) where each
   3059   // conditional block contains a store to the same address. Both of these
   3060   // stores are conditional, so they can't be unconditionally sunk. But it may
   3061   // be profitable to speculatively sink the stores into one merged store at the
   3062   // end, and predicate the merged store on the union of the two conditions of
   3063   // PBI and QBI.
   3064   //
   3065   // This can reduce the number of stores executed if both of the conditions are
   3066   // true, and can allow the blocks to become small enough to be if-converted.
   3067   // This optimization will also chain, so that ladders of test-and-set
   3068   // sequences can be if-converted away.
   3069   //
   3070   // We only deal with simple diamonds or triangles:
   3071   //
   3072   //     PBI       or      PBI        or a combination of the two
   3073   //    /   \               | \
   3074   //   PTB  PFB             |  PFB
   3075   //    \   /               | /
   3076   //     QBI                QBI
   3077   //    /  \                | \
   3078   //   QTB  QFB             |  QFB
   3079   //    \  /                | /
   3080   //    PostBB            PostBB
   3081   //
   3082   // We model triangles as a type of diamond with a nullptr "true" block.
   3083   // Triangles are canonicalized so that the fallthrough edge is represented by
   3084   // a true condition, as in the diagram above.
   3085   BasicBlock *PTB = PBI->getSuccessor(0);
   3086   BasicBlock *PFB = PBI->getSuccessor(1);
   3087   BasicBlock *QTB = QBI->getSuccessor(0);
   3088   BasicBlock *QFB = QBI->getSuccessor(1);
   3089   BasicBlock *PostBB = QFB->getSingleSuccessor();
   3090 
   3091   // Make sure we have a good guess for PostBB. If QTB's only successor is
   3092   // QFB, then QFB is a better PostBB.
   3093   if (QTB->getSingleSuccessor() == QFB)
   3094     PostBB = QFB;
   3095 
   3096   // If we couldn't find a good PostBB, stop.
   3097   if (!PostBB)
   3098     return false;
   3099 
   3100   bool InvertPCond = false, InvertQCond = false;
   3101   // Canonicalize fallthroughs to the true branches.
   3102   if (PFB == QBI->getParent()) {
   3103     std::swap(PFB, PTB);
   3104     InvertPCond = true;
   3105   }
   3106   if (QFB == PostBB) {
   3107     std::swap(QFB, QTB);
   3108     InvertQCond = true;
   3109   }
   3110 
   3111   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
   3112   // and QFB may not. Model fallthroughs as a nullptr block.
   3113   if (PTB == QBI->getParent())
   3114     PTB = nullptr;
   3115   if (QTB == PostBB)
   3116     QTB = nullptr;
   3117 
   3118   // Legality bailouts. We must have at least the non-fallthrough blocks and
   3119   // the post-dominating block, and the non-fallthroughs must only have one
   3120   // predecessor.
   3121   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
   3122     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
   3123   };
   3124   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
   3125       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
   3126     return false;
   3127   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
   3128       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
   3129     return false;
   3130   if (!QBI->getParent()->hasNUses(2))
   3131     return false;
   3132 
   3133   // OK, this is a sequence of two diamonds or triangles.
   3134   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
   3135   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
   3136   for (auto *BB : {PTB, PFB}) {
   3137     if (!BB)
   3138       continue;
   3139     for (auto &I : *BB)
   3140       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
   3141         PStoreAddresses.insert(SI->getPointerOperand());
   3142   }
   3143   for (auto *BB : {QTB, QFB}) {
   3144     if (!BB)
   3145       continue;
   3146     for (auto &I : *BB)
   3147       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
   3148         QStoreAddresses.insert(SI->getPointerOperand());
   3149   }
   3150 
   3151   set_intersect(PStoreAddresses, QStoreAddresses);
   3152   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
   3153   // clear what it contains.
   3154   auto &CommonAddresses = PStoreAddresses;
   3155 
   3156   bool Changed = false;
   3157   for (auto *Address : CommonAddresses)
   3158     Changed |= mergeConditionalStoreToAddress(
   3159         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
   3160   return Changed;
   3161 }
   3162 
   3163 /// If we have a conditional branch as a predecessor of another block,
   3164 /// this function tries to simplify it.  We know
   3165 /// that PBI and BI are both conditional branches, and BI is in one of the
   3166 /// successor blocks of PBI - PBI branches to BI.
   3167 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
   3168                                            const DataLayout &DL) {
   3169   assert(PBI->isConditional() && BI->isConditional());
   3170   BasicBlock *BB = BI->getParent();
   3171 
   3172   // If this block ends with a branch instruction, and if there is a
   3173   // predecessor that ends on a branch of the same condition, make
   3174   // this conditional branch redundant.
   3175   if (PBI->getCondition() == BI->getCondition() &&
   3176       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   3177     // Okay, the outcome of this conditional branch is statically
   3178     // knowable.  If this block had a single pred, handle specially.
   3179     if (BB->getSinglePredecessor()) {
   3180       // Turn this into a branch on constant.
   3181       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   3182       BI->setCondition(
   3183           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
   3184       return true; // Nuke the branch on constant.
   3185     }
   3186 
   3187     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   3188     // in the constant and simplify the block result.  Subsequent passes of
   3189     // simplifycfg will thread the block.
   3190     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   3191       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   3192       PHINode *NewPN = PHINode::Create(
   3193           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
   3194           BI->getCondition()->getName() + ".pr", &BB->front());
   3195       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   3196       // predecessor, compute the PHI'd conditional value for all of the preds.
   3197       // Any predecessor where the condition is not computable we keep symbolic.
   3198       for (pred_iterator PI = PB; PI != PE; ++PI) {
   3199         BasicBlock *P = *PI;
   3200         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
   3201             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
   3202             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   3203           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   3204           NewPN->addIncoming(
   3205               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
   3206               P);
   3207         } else {
   3208           NewPN->addIncoming(BI->getCondition(), P);
   3209         }
   3210       }
   3211 
   3212       BI->setCondition(NewPN);
   3213       return true;
   3214     }
   3215   }
   3216 
   3217   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   3218     if (CE->canTrap())
   3219       return false;
   3220 
   3221   // If both branches are conditional and both contain stores to the same
   3222   // address, remove the stores from the conditionals and create a conditional
   3223   // merged store at the end.
   3224   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
   3225     return true;
   3226 
   3227   // If this is a conditional branch in an empty block, and if any
   3228   // predecessors are a conditional branch to one of our destinations,
   3229   // fold the conditions into logical ops and one cond br.
   3230 
   3231   // Ignore dbg intrinsics.
   3232   if (&*BB->instructionsWithoutDebug().begin() != BI)
   3233     return false;
   3234 
   3235   int PBIOp, BIOp;
   3236   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
   3237     PBIOp = 0;
   3238     BIOp = 0;
   3239   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
   3240     PBIOp = 0;
   3241     BIOp = 1;
   3242   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
   3243     PBIOp = 1;
   3244     BIOp = 0;
   3245   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
   3246     PBIOp = 1;
   3247     BIOp = 1;
   3248   } else {
   3249     return false;
   3250   }
   3251 
   3252   // Check to make sure that the other destination of this branch
   3253   // isn't BB itself.  If so, this is an infinite loop that will
   3254   // keep getting unwound.
   3255   if (PBI->getSuccessor(PBIOp) == BB)
   3256     return false;
   3257 
   3258   // Do not perform this transformation if it would require
   3259   // insertion of a large number of select instructions. For targets
   3260   // without predication/cmovs, this is a big pessimization.
   3261 
   3262   // Also do not perform this transformation if any phi node in the common
   3263   // destination block can trap when reached by BB or PBB (PR17073). In that
   3264   // case, it would be unsafe to hoist the operation into a select instruction.
   3265 
   3266   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   3267   unsigned NumPhis = 0;
   3268   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
   3269        ++II, ++NumPhis) {
   3270     if (NumPhis > 2) // Disable this xform.
   3271       return false;
   3272 
   3273     PHINode *PN = cast<PHINode>(II);
   3274     Value *BIV = PN->getIncomingValueForBlock(BB);
   3275     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
   3276       if (CE->canTrap())
   3277         return false;
   3278 
   3279     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   3280     Value *PBIV = PN->getIncomingValue(PBBIdx);
   3281     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
   3282       if (CE->canTrap())
   3283         return false;
   3284   }
   3285 
   3286   // Finally, if everything is ok, fold the branches to logical ops.
   3287   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
   3288 
   3289   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   3290                     << "AND: " << *BI->getParent());
   3291 
   3292   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   3293   // branch in it, where one edge (OtherDest) goes back to itself but the other
   3294   // exits.  We don't *know* that the program avoids the infinite loop
   3295   // (even though that seems likely).  If we do this xform naively, we'll end up
   3296   // recursively unpeeling the loop.  Since we know that (after the xform is
   3297   // done) that the block *is* infinite if reached, we just make it an obviously
   3298   // infinite loop with no cond branch.
   3299   if (OtherDest == BB) {
   3300     // Insert it at the end of the function, because it's either code,
   3301     // or it won't matter if it's hot. :)
   3302     BasicBlock *InfLoopBlock =
   3303         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
   3304     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   3305     OtherDest = InfLoopBlock;
   3306   }
   3307 
   3308   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
   3309 
   3310   // BI may have other predecessors.  Because of this, we leave
   3311   // it alone, but modify PBI.
   3312 
   3313   // Make sure we get to CommonDest on True&True directions.
   3314   Value *PBICond = PBI->getCondition();
   3315   IRBuilder<NoFolder> Builder(PBI);
   3316   if (PBIOp)
   3317     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
   3318 
   3319   Value *BICond = BI->getCondition();
   3320   if (BIOp)
   3321     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
   3322 
   3323   // Merge the conditions.
   3324   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   3325 
   3326   // Modify PBI to branch on the new condition to the new dests.
   3327   PBI->setCondition(Cond);
   3328   PBI->setSuccessor(0, CommonDest);
   3329   PBI->setSuccessor(1, OtherDest);
   3330 
   3331   // Update branch weight for PBI.
   3332   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   3333   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
   3334   bool HasWeights =
   3335       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
   3336                              SuccTrueWeight, SuccFalseWeight);
   3337   if (HasWeights) {
   3338     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   3339     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
   3340     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   3341     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   3342     // The weight to CommonDest should be PredCommon * SuccTotal +
   3343     //                                    PredOther * SuccCommon.
   3344     // The weight to OtherDest should be PredOther * SuccOther.
   3345     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
   3346                                   PredOther * SuccCommon,
   3347                               PredOther * SuccOther};
   3348     // Halve the weights if any of them cannot fit in an uint32_t
   3349     FitWeights(NewWeights);
   3350 
   3351     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
   3352   }
   3353 
   3354   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   3355   // block that are identical to the entries for BI's block.
   3356   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   3357 
   3358   // We know that the CommonDest already had an edge from PBI to
   3359   // it.  If it has PHIs though, the PHIs may have different
   3360   // entries for BB and PBI's BB.  If so, insert a select to make
   3361   // them agree.
   3362   for (PHINode &PN : CommonDest->phis()) {
   3363     Value *BIV = PN.getIncomingValueForBlock(BB);
   3364     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
   3365     Value *PBIV = PN.getIncomingValue(PBBIdx);
   3366     if (BIV != PBIV) {
   3367       // Insert a select in PBI to pick the right value.
   3368       SelectInst *NV = cast<SelectInst>(
   3369           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
   3370       PN.setIncomingValue(PBBIdx, NV);
   3371       // Although the select has the same condition as PBI, the original branch
   3372       // weights for PBI do not apply to the new select because the select's
   3373       // 'logical' edges are incoming edges of the phi that is eliminated, not
   3374       // the outgoing edges of PBI.
   3375       if (HasWeights) {
   3376         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   3377         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
   3378         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   3379         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   3380         // The weight to PredCommonDest should be PredCommon * SuccTotal.
   3381         // The weight to PredOtherDest should be PredOther * SuccCommon.
   3382         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
   3383                                   PredOther * SuccCommon};
   3384 
   3385         FitWeights(NewWeights);
   3386 
   3387         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
   3388       }
   3389     }
   3390   }
   3391 
   3392   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   3393   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
   3394 
   3395   // This basic block is probably dead.  We know it has at least
   3396   // one fewer predecessor.
   3397   return true;
   3398 }
   3399 
   3400 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
   3401 // true or to FalseBB if Cond is false.
   3402 // Takes care of updating the successors and removing the old terminator.
   3403 // Also makes sure not to introduce new successors by assuming that edges to
   3404 // non-successor TrueBBs and FalseBBs aren't reachable.
   3405 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   3406                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   3407                                        uint32_t TrueWeight,
   3408                                        uint32_t FalseWeight) {
   3409   // Remove any superfluous successor edges from the CFG.
   3410   // First, figure out which successors to preserve.
   3411   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   3412   // successor.
   3413   BasicBlock *KeepEdge1 = TrueBB;
   3414   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
   3415 
   3416   // Then remove the rest.
   3417   for (BasicBlock *Succ : OldTerm->successors()) {
   3418     // Make sure only to keep exactly one copy of each edge.
   3419     if (Succ == KeepEdge1)
   3420       KeepEdge1 = nullptr;
   3421     else if (Succ == KeepEdge2)
   3422       KeepEdge2 = nullptr;
   3423     else
   3424       Succ->removePredecessor(OldTerm->getParent(),
   3425                               /*DontDeleteUselessPHIs=*/true);
   3426   }
   3427 
   3428   IRBuilder<> Builder(OldTerm);
   3429   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   3430 
   3431   // Insert an appropriate new terminator.
   3432   if (!KeepEdge1 && !KeepEdge2) {
   3433     if (TrueBB == FalseBB)
   3434       // We were only looking for one successor, and it was present.
   3435       // Create an unconditional branch to it.
   3436       Builder.CreateBr(TrueBB);
   3437     else {
   3438       // We found both of the successors we were looking for.
   3439       // Create a conditional branch sharing the condition of the select.
   3440       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   3441       if (TrueWeight != FalseWeight)
   3442         setBranchWeights(NewBI, TrueWeight, FalseWeight);
   3443     }
   3444   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   3445     // Neither of the selected blocks were successors, so this
   3446     // terminator must be unreachable.
   3447     new UnreachableInst(OldTerm->getContext(), OldTerm);
   3448   } else {
   3449     // One of the selected values was a successor, but the other wasn't.
   3450     // Insert an unconditional branch to the one that was found;
   3451     // the edge to the one that wasn't must be unreachable.
   3452     if (!KeepEdge1)
   3453       // Only TrueBB was found.
   3454       Builder.CreateBr(TrueBB);
   3455     else
   3456       // Only FalseBB was found.
   3457       Builder.CreateBr(FalseBB);
   3458   }
   3459 
   3460   EraseTerminatorInstAndDCECond(OldTerm);
   3461   return true;
   3462 }
   3463 
   3464 // Replaces
   3465 //   (switch (select cond, X, Y)) on constant X, Y
   3466 // with a branch - conditional if X and Y lead to distinct BBs,
   3467 // unconditional otherwise.
   3468 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   3469   // Check for constant integer values in the select.
   3470   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   3471   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   3472   if (!TrueVal || !FalseVal)
   3473     return false;
   3474 
   3475   // Find the relevant condition and destinations.
   3476   Value *Condition = Select->getCondition();
   3477   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
   3478   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
   3479 
   3480   // Get weight for TrueBB and FalseBB.
   3481   uint32_t TrueWeight = 0, FalseWeight = 0;
   3482   SmallVector<uint64_t, 8> Weights;
   3483   bool HasWeights = HasBranchWeights(SI);
   3484   if (HasWeights) {
   3485     GetBranchWeights(SI, Weights);
   3486     if (Weights.size() == 1 + SI->getNumCases()) {
   3487       TrueWeight =
   3488           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
   3489       FalseWeight =
   3490           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
   3491     }
   3492   }
   3493 
   3494   // Perform the actual simplification.
   3495   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
   3496                                     FalseWeight);
   3497 }
   3498 
   3499 // Replaces
   3500 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   3501 //                             blockaddress(@fn, BlockB)))
   3502 // with
   3503 //   (br cond, BlockA, BlockB).
   3504 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   3505   // Check that both operands of the select are block addresses.
   3506   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   3507   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   3508   if (!TBA || !FBA)
   3509     return false;
   3510 
   3511   // Extract the actual blocks.
   3512   BasicBlock *TrueBB = TBA->getBasicBlock();
   3513   BasicBlock *FalseBB = FBA->getBasicBlock();
   3514 
   3515   // Perform the actual simplification.
   3516   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
   3517                                     0);
   3518 }
   3519 
   3520 /// This is called when we find an icmp instruction
   3521 /// (a seteq/setne with a constant) as the only instruction in a
   3522 /// block that ends with an uncond branch.  We are looking for a very specific
   3523 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   3524 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   3525 /// default value goes to an uncond block with a seteq in it, we get something
   3526 /// like:
   3527 ///
   3528 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   3529 /// DEFAULT:
   3530 ///   %tmp = icmp eq i8 %A, 92
   3531 ///   br label %end
   3532 /// end:
   3533 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   3534 ///
   3535 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   3536 /// the PHI, merging the third icmp into the switch.
   3537 static bool tryToSimplifyUncondBranchWithICmpInIt(
   3538     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
   3539     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
   3540   BasicBlock *BB = ICI->getParent();
   3541 
   3542   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   3543   // complex.
   3544   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
   3545     return false;
   3546 
   3547   Value *V = ICI->getOperand(0);
   3548   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   3549 
   3550   // The pattern we're looking for is where our only predecessor is a switch on
   3551   // 'V' and this block is the default case for the switch.  In this case we can
   3552   // fold the compared value into the switch to simplify things.
   3553   BasicBlock *Pred = BB->getSinglePredecessor();
   3554   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
   3555     return false;
   3556 
   3557   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   3558   if (SI->getCondition() != V)
   3559     return false;
   3560 
   3561   // If BB is reachable on a non-default case, then we simply know the value of
   3562   // V in this block.  Substitute it and constant fold the icmp instruction
   3563   // away.
   3564   if (SI->getDefaultDest() != BB) {
   3565     ConstantInt *VVal = SI->findCaseDest(BB);
   3566     assert(VVal && "Should have a unique destination value");
   3567     ICI->setOperand(0, VVal);
   3568 
   3569     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
   3570       ICI->replaceAllUsesWith(V);
   3571       ICI->eraseFromParent();
   3572     }
   3573     // BB is now empty, so it is likely to simplify away.
   3574     return simplifyCFG(BB, TTI, Options) | true;
   3575   }
   3576 
   3577   // Ok, the block is reachable from the default dest.  If the constant we're
   3578   // comparing exists in one of the other edges, then we can constant fold ICI
   3579   // and zap it.
   3580   if (SI->findCaseValue(Cst) != SI->case_default()) {
   3581     Value *V;
   3582     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   3583       V = ConstantInt::getFalse(BB->getContext());
   3584     else
   3585       V = ConstantInt::getTrue(BB->getContext());
   3586 
   3587     ICI->replaceAllUsesWith(V);
   3588     ICI->eraseFromParent();
   3589     // BB is now empty, so it is likely to simplify away.
   3590     return simplifyCFG(BB, TTI, Options) | true;
   3591   }
   3592 
   3593   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   3594   // the block.
   3595   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   3596   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
   3597   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
   3598       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   3599     return false;
   3600 
   3601   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   3602   // true in the PHI.
   3603   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   3604   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
   3605 
   3606   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   3607     std::swap(DefaultCst, NewCst);
   3608 
   3609   // Replace ICI (which is used by the PHI for the default value) with true or
   3610   // false depending on if it is EQ or NE.
   3611   ICI->replaceAllUsesWith(DefaultCst);
   3612   ICI->eraseFromParent();
   3613 
   3614   // Okay, the switch goes to this block on a default value.  Add an edge from
   3615   // the switch to the merge point on the compared value.
   3616   BasicBlock *NewBB =
   3617       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
   3618   SmallVector<uint64_t, 8> Weights;
   3619   bool HasWeights = HasBranchWeights(SI);
   3620   if (HasWeights) {
   3621     GetBranchWeights(SI, Weights);
   3622     if (Weights.size() == 1 + SI->getNumCases()) {
   3623       // Split weight for default case to case for "Cst".
   3624       Weights[0] = (Weights[0] + 1) >> 1;
   3625       Weights.push_back(Weights[0]);
   3626 
   3627       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3628       setBranchWeights(SI, MDWeights);
   3629     }
   3630   }
   3631   SI->addCase(Cst, NewBB);
   3632 
   3633   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   3634   Builder.SetInsertPoint(NewBB);
   3635   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   3636   Builder.CreateBr(SuccBlock);
   3637   PHIUse->addIncoming(NewCst, NewBB);
   3638   return true;
   3639 }
   3640 
   3641 /// The specified branch is a conditional branch.
   3642 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   3643 /// fold it into a switch instruction if so.
   3644 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
   3645                                       const DataLayout &DL) {
   3646   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   3647   if (!Cond)
   3648     return false;
   3649 
   3650   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   3651   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   3652   // 'setne's and'ed together, collect them.
   3653 
   3654   // Try to gather values from a chain of and/or to be turned into a switch
   3655   ConstantComparesGatherer ConstantCompare(Cond, DL);
   3656   // Unpack the result
   3657   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
   3658   Value *CompVal = ConstantCompare.CompValue;
   3659   unsigned UsedICmps = ConstantCompare.UsedICmps;
   3660   Value *ExtraCase = ConstantCompare.Extra;
   3661 
   3662   // If we didn't have a multiply compared value, fail.
   3663   if (!CompVal)
   3664     return false;
   3665 
   3666   // Avoid turning single icmps into a switch.
   3667   if (UsedICmps <= 1)
   3668     return false;
   3669 
   3670   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
   3671 
   3672   // There might be duplicate constants in the list, which the switch
   3673   // instruction can't handle, remove them now.
   3674   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   3675   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   3676 
   3677   // If Extra was used, we require at least two switch values to do the
   3678   // transformation.  A switch with one value is just a conditional branch.
   3679   if (ExtraCase && Values.size() < 2)
   3680     return false;
   3681 
   3682   // TODO: Preserve branch weight metadata, similarly to how
   3683   // FoldValueComparisonIntoPredecessors preserves it.
   3684 
   3685   // Figure out which block is which destination.
   3686   BasicBlock *DefaultBB = BI->getSuccessor(1);
   3687   BasicBlock *EdgeBB = BI->getSuccessor(0);
   3688   if (!TrueWhenEqual)
   3689     std::swap(DefaultBB, EdgeBB);
   3690 
   3691   BasicBlock *BB = BI->getParent();
   3692 
   3693   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   3694                     << " cases into SWITCH.  BB is:\n"
   3695                     << *BB);
   3696 
   3697   // If there are any extra values that couldn't be folded into the switch
   3698   // then we evaluate them with an explicit branch first.  Split the block
   3699   // right before the condbr to handle it.
   3700   if (ExtraCase) {
   3701     BasicBlock *NewBB =
   3702         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
   3703     // Remove the uncond branch added to the old block.
   3704     TerminatorInst *OldTI = BB->getTerminator();
   3705     Builder.SetInsertPoint(OldTI);
   3706 
   3707     if (TrueWhenEqual)
   3708       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   3709     else
   3710       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   3711 
   3712     OldTI->eraseFromParent();
   3713 
   3714     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   3715     // for the edge we just added.
   3716     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   3717 
   3718     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   3719                       << "\nEXTRABB = " << *BB);
   3720     BB = NewBB;
   3721   }
   3722 
   3723   Builder.SetInsertPoint(BI);
   3724   // Convert pointer to int before we switch.
   3725   if (CompVal->getType()->isPointerTy()) {
   3726     CompVal = Builder.CreatePtrToInt(
   3727         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
   3728   }
   3729 
   3730   // Create the new switch instruction now.
   3731   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   3732 
   3733   // Add all of the 'cases' to the switch instruction.
   3734   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   3735     New->addCase(Values[i], EdgeBB);
   3736 
   3737   // We added edges from PI to the EdgeBB.  As such, if there were any
   3738   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   3739   // the number of edges added.
   3740   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
   3741     PHINode *PN = cast<PHINode>(BBI);
   3742     Value *InVal = PN->getIncomingValueForBlock(BB);
   3743     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
   3744       PN->addIncoming(InVal, BB);
   3745   }
   3746 
   3747   // Erase the old branch instruction.
   3748   EraseTerminatorInstAndDCECond(BI);
   3749 
   3750   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   3751   return true;
   3752 }
   3753 
   3754 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   3755   if (isa<PHINode>(RI->getValue()))
   3756     return SimplifyCommonResume(RI);
   3757   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
   3758            RI->getValue() == RI->getParent()->getFirstNonPHI())
   3759     // The resume must unwind the exception that caused control to branch here.
   3760     return SimplifySingleResume(RI);
   3761 
   3762   return false;
   3763 }
   3764 
   3765 // Simplify resume that is shared by several landing pads (phi of landing pad).
   3766 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
   3767   BasicBlock *BB = RI->getParent();
   3768 
   3769   // Check that there are no other instructions except for debug intrinsics
   3770   // between the phi of landing pads (RI->getValue()) and resume instruction.
   3771   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
   3772                        E = RI->getIterator();
   3773   while (++I != E)
   3774     if (!isa<DbgInfoIntrinsic>(I))
   3775       return false;
   3776 
   3777   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
   3778   auto *PhiLPInst = cast<PHINode>(RI->getValue());
   3779 
   3780   // Check incoming blocks to see if any of them are trivial.
   3781   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
   3782        Idx++) {
   3783     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
   3784     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
   3785 
   3786     // If the block has other successors, we can not delete it because
   3787     // it has other dependents.
   3788     if (IncomingBB->getUniqueSuccessor() != BB)
   3789       continue;
   3790 
   3791     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
   3792     // Not the landing pad that caused the control to branch here.
   3793     if (IncomingValue != LandingPad)
   3794       continue;
   3795 
   3796     bool isTrivial = true;
   3797 
   3798     I = IncomingBB->getFirstNonPHI()->getIterator();
   3799     E = IncomingBB->getTerminator()->getIterator();
   3800     while (++I != E)
   3801       if (!isa<DbgInfoIntrinsic>(I)) {
   3802         isTrivial = false;
   3803         break;
   3804       }
   3805 
   3806     if (isTrivial)
   3807       TrivialUnwindBlocks.insert(IncomingBB);
   3808   }
   3809 
   3810   // If no trivial unwind blocks, don't do any simplifications.
   3811   if (TrivialUnwindBlocks.empty())
   3812     return false;
   3813 
   3814   // Turn all invokes that unwind here into calls.
   3815   for (auto *TrivialBB : TrivialUnwindBlocks) {
   3816     // Blocks that will be simplified should be removed from the phi node.
   3817     // Note there could be multiple edges to the resume block, and we need
   3818     // to remove them all.
   3819     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
   3820       BB->removePredecessor(TrivialBB, true);
   3821 
   3822     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
   3823          PI != PE;) {
   3824       BasicBlock *Pred = *PI++;
   3825       removeUnwindEdge(Pred);
   3826     }
   3827 
   3828     // In each SimplifyCFG run, only the current processed block can be erased.
   3829     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
   3830     // of erasing TrivialBB, we only remove the branch to the common resume
   3831     // block so that we can later erase the resume block since it has no
   3832     // predecessors.
   3833     TrivialBB->getTerminator()->eraseFromParent();
   3834     new UnreachableInst(RI->getContext(), TrivialBB);
   3835   }
   3836 
   3837   // Delete the resume block if all its predecessors have been removed.
   3838   if (pred_empty(BB))
   3839     BB->eraseFromParent();
   3840 
   3841   return !TrivialUnwindBlocks.empty();
   3842 }
   3843 
   3844 // Simplify resume that is only used by a single (non-phi) landing pad.
   3845 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
   3846   BasicBlock *BB = RI->getParent();
   3847   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   3848   assert(RI->getValue() == LPInst &&
   3849          "Resume must unwind the exception that caused control to here");
   3850 
   3851   // Check that there are no other instructions except for debug intrinsics.
   3852   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
   3853   while (++I != E)
   3854     if (!isa<DbgInfoIntrinsic>(I))
   3855       return false;
   3856 
   3857   // Turn all invokes that unwind here into calls and delete the basic block.
   3858   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   3859     BasicBlock *Pred = *PI++;
   3860     removeUnwindEdge(Pred);
   3861   }
   3862 
   3863   // The landingpad is now unreachable.  Zap it.
   3864   BB->eraseFromParent();
   3865   if (LoopHeaders)
   3866     LoopHeaders->erase(BB);
   3867   return true;
   3868 }
   3869 
   3870 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
   3871   // If this is a trivial cleanup pad that executes no instructions, it can be
   3872   // eliminated.  If the cleanup pad continues to the caller, any predecessor
   3873   // that is an EH pad will be updated to continue to the caller and any
   3874   // predecessor that terminates with an invoke instruction will have its invoke
   3875   // instruction converted to a call instruction.  If the cleanup pad being
   3876   // simplified does not continue to the caller, each predecessor will be
   3877   // updated to continue to the unwind destination of the cleanup pad being
   3878   // simplified.
   3879   BasicBlock *BB = RI->getParent();
   3880   CleanupPadInst *CPInst = RI->getCleanupPad();
   3881   if (CPInst->getParent() != BB)
   3882     // This isn't an empty cleanup.
   3883     return false;
   3884 
   3885   // We cannot kill the pad if it has multiple uses.  This typically arises
   3886   // from unreachable basic blocks.
   3887   if (!CPInst->hasOneUse())
   3888     return false;
   3889 
   3890   // Check that there are no other instructions except for benign intrinsics.
   3891   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
   3892   while (++I != E) {
   3893     auto *II = dyn_cast<IntrinsicInst>(I);
   3894     if (!II)
   3895       return false;
   3896 
   3897     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
   3898     switch (IntrinsicID) {
   3899     case Intrinsic::dbg_declare:
   3900     case Intrinsic::dbg_value:
   3901     case Intrinsic::dbg_label:
   3902     case Intrinsic::lifetime_end:
   3903       break;
   3904     default:
   3905       return false;
   3906     }
   3907   }
   3908 
   3909   // If the cleanup return we are simplifying unwinds to the caller, this will
   3910   // set UnwindDest to nullptr.
   3911   BasicBlock *UnwindDest = RI->getUnwindDest();
   3912   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
   3913 
   3914   // We're about to remove BB from the control flow.  Before we do, sink any
   3915   // PHINodes into the unwind destination.  Doing this before changing the
   3916   // control flow avoids some potentially slow checks, since we can currently
   3917   // be certain that UnwindDest and BB have no common predecessors (since they
   3918   // are both EH pads).
   3919   if (UnwindDest) {
   3920     // First, go through the PHI nodes in UnwindDest and update any nodes that
   3921     // reference the block we are removing
   3922     for (BasicBlock::iterator I = UnwindDest->begin(),
   3923                               IE = DestEHPad->getIterator();
   3924          I != IE; ++I) {
   3925       PHINode *DestPN = cast<PHINode>(I);
   3926 
   3927       int Idx = DestPN->getBasicBlockIndex(BB);
   3928       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
   3929       assert(Idx != -1);
   3930       // This PHI node has an incoming value that corresponds to a control
   3931       // path through the cleanup pad we are removing.  If the incoming
   3932       // value is in the cleanup pad, it must be a PHINode (because we
   3933       // verified above that the block is otherwise empty).  Otherwise, the
   3934       // value is either a constant or a value that dominates the cleanup
   3935       // pad being removed.
   3936       //
   3937       // Because BB and UnwindDest are both EH pads, all of their
   3938       // predecessors must unwind to these blocks, and since no instruction
   3939       // can have multiple unwind destinations, there will be no overlap in
   3940       // incoming blocks between SrcPN and DestPN.
   3941       Value *SrcVal = DestPN->getIncomingValue(Idx);
   3942       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
   3943 
   3944       // Remove the entry for the block we are deleting.
   3945       DestPN->removeIncomingValue(Idx, false);
   3946 
   3947       if (SrcPN && SrcPN->getParent() == BB) {
   3948         // If the incoming value was a PHI node in the cleanup pad we are
   3949         // removing, we need to merge that PHI node's incoming values into
   3950         // DestPN.
   3951         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
   3952              SrcIdx != SrcE; ++SrcIdx) {
   3953           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
   3954                               SrcPN->getIncomingBlock(SrcIdx));
   3955         }
   3956       } else {
   3957         // Otherwise, the incoming value came from above BB and
   3958         // so we can just reuse it.  We must associate all of BB's
   3959         // predecessors with this value.
   3960         for (auto *pred : predecessors(BB)) {
   3961           DestPN->addIncoming(SrcVal, pred);
   3962         }
   3963       }
   3964     }
   3965 
   3966     // Sink any remaining PHI nodes directly into UnwindDest.
   3967     Instruction *InsertPt = DestEHPad;
   3968     for (BasicBlock::iterator I = BB->begin(),
   3969                               IE = BB->getFirstNonPHI()->getIterator();
   3970          I != IE;) {
   3971       // The iterator must be incremented here because the instructions are
   3972       // being moved to another block.
   3973       PHINode *PN = cast<PHINode>(I++);
   3974       if (PN->use_empty())
   3975         // If the PHI node has no uses, just leave it.  It will be erased
   3976         // when we erase BB below.
   3977         continue;
   3978 
   3979       // Otherwise, sink this PHI node into UnwindDest.
   3980       // Any predecessors to UnwindDest which are not already represented
   3981       // must be back edges which inherit the value from the path through
   3982       // BB.  In this case, the PHI value must reference itself.
   3983       for (auto *pred : predecessors(UnwindDest))
   3984         if (pred != BB)
   3985           PN->addIncoming(PN, pred);
   3986       PN->moveBefore(InsertPt);
   3987     }
   3988   }
   3989 
   3990   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   3991     // The iterator must be updated here because we are removing this pred.
   3992     BasicBlock *PredBB = *PI++;
   3993     if (UnwindDest == nullptr) {
   3994       removeUnwindEdge(PredBB);
   3995     } else {
   3996       TerminatorInst *TI = PredBB->getTerminator();
   3997       TI->replaceUsesOfWith(BB, UnwindDest);
   3998     }
   3999   }
   4000 
   4001   // The cleanup pad is now unreachable.  Zap it.
   4002   BB->eraseFromParent();
   4003   return true;
   4004 }
   4005 
   4006 // Try to merge two cleanuppads together.
   4007 static bool mergeCleanupPad(CleanupReturnInst *RI) {
   4008   // Skip any cleanuprets which unwind to caller, there is nothing to merge
   4009   // with.
   4010   BasicBlock *UnwindDest = RI->getUnwindDest();
   4011   if (!UnwindDest)
   4012     return false;
   4013 
   4014   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
   4015   // be safe to merge without code duplication.
   4016   if (UnwindDest->getSinglePredecessor() != RI->getParent())
   4017     return false;
   4018 
   4019   // Verify that our cleanuppad's unwind destination is another cleanuppad.
   4020   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
   4021   if (!SuccessorCleanupPad)
   4022     return false;
   4023 
   4024   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
   4025   // Replace any uses of the successor cleanupad with the predecessor pad
   4026   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
   4027   // funclet bundle operands.
   4028   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
   4029   // Remove the old cleanuppad.
   4030   SuccessorCleanupPad->eraseFromParent();
   4031   // Now, we simply replace the cleanupret with a branch to the unwind
   4032   // destination.
   4033   BranchInst::Create(UnwindDest, RI->getParent());
   4034   RI->eraseFromParent();
   4035 
   4036   return true;
   4037 }
   4038 
   4039 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
   4040   // It is possible to transiantly have an undef cleanuppad operand because we
   4041   // have deleted some, but not all, dead blocks.
   4042   // Eventually, this block will be deleted.
   4043   if (isa<UndefValue>(RI->getOperand(0)))
   4044     return false;
   4045 
   4046   if (mergeCleanupPad(RI))
   4047     return true;
   4048 
   4049   if (removeEmptyCleanup(RI))
   4050     return true;
   4051 
   4052   return false;
   4053 }
   4054 
   4055 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   4056   BasicBlock *BB = RI->getParent();
   4057   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
   4058     return false;
   4059 
   4060   // Find predecessors that end with branches.
   4061   SmallVector<BasicBlock *, 8> UncondBranchPreds;
   4062   SmallVector<BranchInst *, 8> CondBranchPreds;
   4063   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   4064     BasicBlock *P = *PI;
   4065     TerminatorInst *PTI = P->getTerminator();
   4066     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   4067       if (BI->isUnconditional())
   4068         UncondBranchPreds.push_back(P);
   4069       else
   4070         CondBranchPreds.push_back(BI);
   4071     }
   4072   }
   4073 
   4074   // If we found some, do the transformation!
   4075   if (!UncondBranchPreds.empty() && DupRet) {
   4076     while (!UncondBranchPreds.empty()) {
   4077       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   4078       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
   4079                         << "INTO UNCOND BRANCH PRED: " << *Pred);
   4080       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   4081     }
   4082 
   4083     // If we eliminated all predecessors of the block, delete the block now.
   4084     if (pred_empty(BB)) {
   4085       // We know there are no successors, so just nuke the block.
   4086       BB->eraseFromParent();
   4087       if (LoopHeaders)
   4088         LoopHeaders->erase(BB);
   4089     }
   4090 
   4091     return true;
   4092   }
   4093 
   4094   // Check out all of the conditional branches going to this return
   4095   // instruction.  If any of them just select between returns, change the
   4096   // branch itself into a select/return pair.
   4097   while (!CondBranchPreds.empty()) {
   4098     BranchInst *BI = CondBranchPreds.pop_back_val();
   4099 
   4100     // Check to see if the non-BB successor is also a return block.
   4101     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   4102         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   4103         SimplifyCondBranchToTwoReturns(BI, Builder))
   4104       return true;
   4105   }
   4106   return false;
   4107 }
   4108 
   4109 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   4110   BasicBlock *BB = UI->getParent();
   4111 
   4112   bool Changed = false;
   4113 
   4114   // If there are any instructions immediately before the unreachable that can
   4115   // be removed, do so.
   4116   while (UI->getIterator() != BB->begin()) {
   4117     BasicBlock::iterator BBI = UI->getIterator();
   4118     --BBI;
   4119     // Do not delete instructions that can have side effects which might cause
   4120     // the unreachable to not be reachable; specifically, calls and volatile
   4121     // operations may have this effect.
   4122     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
   4123       break;
   4124 
   4125     if (BBI->mayHaveSideEffects()) {
   4126       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
   4127         if (SI->isVolatile())
   4128           break;
   4129       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
   4130         if (LI->isVolatile())
   4131           break;
   4132       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   4133         if (RMWI->isVolatile())
   4134           break;
   4135       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   4136         if (CXI->isVolatile())
   4137           break;
   4138       } else if (isa<CatchPadInst>(BBI)) {
   4139         // A catchpad may invoke exception object constructors and such, which
   4140         // in some languages can be arbitrary code, so be conservative by
   4141         // default.
   4142         // For CoreCLR, it just involves a type test, so can be removed.
   4143         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
   4144             EHPersonality::CoreCLR)
   4145           break;
   4146       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   4147                  !isa<LandingPadInst>(BBI)) {
   4148         break;
   4149       }
   4150       // Note that deleting LandingPad's here is in fact okay, although it
   4151       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   4152       // all the predecessors of this block will be the unwind edges of Invokes,
   4153       // and we can therefore guarantee this block will be erased.
   4154     }
   4155 
   4156     // Delete this instruction (any uses are guaranteed to be dead)
   4157     if (!BBI->use_empty())
   4158       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   4159     BBI->eraseFromParent();
   4160     Changed = true;
   4161   }
   4162 
   4163   // If the unreachable instruction is the first in the block, take a gander
   4164   // at all of the predecessors of this instruction, and simplify them.
   4165   if (&BB->front() != UI)
   4166     return Changed;
   4167 
   4168   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
   4169   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   4170     TerminatorInst *TI = Preds[i]->getTerminator();
   4171     IRBuilder<> Builder(TI);
   4172     if (auto *BI = dyn_cast<BranchInst>(TI)) {
   4173       if (BI->isUnconditional()) {
   4174         if (BI->getSuccessor(0) == BB) {
   4175           new UnreachableInst(TI->getContext(), TI);
   4176           TI->eraseFromParent();
   4177           Changed = true;
   4178         }
   4179       } else {
   4180         if (BI->getSuccessor(0) == BB) {
   4181           Builder.CreateBr(BI->getSuccessor(1));
   4182           EraseTerminatorInstAndDCECond(BI);
   4183         } else if (BI->getSuccessor(1) == BB) {
   4184           Builder.CreateBr(BI->getSuccessor(0));
   4185           EraseTerminatorInstAndDCECond(BI);
   4186           Changed = true;
   4187         }
   4188       }
   4189     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
   4190       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
   4191         if (i->getCaseSuccessor() != BB) {
   4192           ++i;
   4193           continue;
   4194         }
   4195         BB->removePredecessor(SI->getParent());
   4196         i = SI->removeCase(i);
   4197         e = SI->case_end();
   4198         Changed = true;
   4199       }
   4200     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
   4201       if (II->getUnwindDest() == BB) {
   4202         removeUnwindEdge(TI->getParent());
   4203         Changed = true;
   4204       }
   4205     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
   4206       if (CSI->getUnwindDest() == BB) {
   4207         removeUnwindEdge(TI->getParent());
   4208         Changed = true;
   4209         continue;
   4210       }
   4211 
   4212       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
   4213                                              E = CSI->handler_end();
   4214            I != E; ++I) {
   4215         if (*I == BB) {
   4216           CSI->removeHandler(I);
   4217           --I;
   4218           --E;
   4219           Changed = true;
   4220         }
   4221       }
   4222       if (CSI->getNumHandlers() == 0) {
   4223         BasicBlock *CatchSwitchBB = CSI->getParent();
   4224         if (CSI->hasUnwindDest()) {
   4225           // Redirect preds to the unwind dest
   4226           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
   4227         } else {
   4228           // Rewrite all preds to unwind to caller (or from invoke to call).
   4229           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
   4230           for (BasicBlock *EHPred : EHPreds)
   4231             removeUnwindEdge(EHPred);
   4232         }
   4233         // The catchswitch is no longer reachable.
   4234         new UnreachableInst(CSI->getContext(), CSI);
   4235         CSI->eraseFromParent();
   4236         Changed = true;
   4237       }
   4238     } else if (isa<CleanupReturnInst>(TI)) {
   4239       new UnreachableInst(TI->getContext(), TI);
   4240       TI->eraseFromParent();
   4241       Changed = true;
   4242     }
   4243   }
   4244 
   4245   // If this block is now dead, remove it.
   4246   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
   4247     // We know there are no successors, so just nuke the block.
   4248     BB->eraseFromParent();
   4249     if (LoopHeaders)
   4250       LoopHeaders->erase(BB);
   4251     return true;
   4252   }
   4253 
   4254   return Changed;
   4255 }
   4256 
   4257 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
   4258   assert(Cases.size() >= 1);
   4259 
   4260   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   4261   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
   4262     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
   4263       return false;
   4264   }
   4265   return true;
   4266 }
   4267 
   4268 /// Turn a switch with two reachable destinations into an integer range
   4269 /// comparison and branch.
   4270 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   4271   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   4272 
   4273   bool HasDefault =
   4274       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   4275 
   4276   // Partition the cases into two sets with different destinations.
   4277   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
   4278   BasicBlock *DestB = nullptr;
   4279   SmallVector<ConstantInt *, 16> CasesA;
   4280   SmallVector<ConstantInt *, 16> CasesB;
   4281 
   4282   for (auto Case : SI->cases()) {
   4283     BasicBlock *Dest = Case.getCaseSuccessor();
   4284     if (!DestA)
   4285       DestA = Dest;
   4286     if (Dest == DestA) {
   4287       CasesA.push_back(Case.getCaseValue());
   4288       continue;
   4289     }
   4290     if (!DestB)
   4291       DestB = Dest;
   4292     if (Dest == DestB) {
   4293       CasesB.push_back(Case.getCaseValue());
   4294       continue;
   4295     }
   4296     return false; // More than two destinations.
   4297   }
   4298 
   4299   assert(DestA && DestB &&
   4300          "Single-destination switch should have been folded.");
   4301   assert(DestA != DestB);
   4302   assert(DestB != SI->getDefaultDest());
   4303   assert(!CasesB.empty() && "There must be non-default cases.");
   4304   assert(!CasesA.empty() || HasDefault);
   4305 
   4306   // Figure out if one of the sets of cases form a contiguous range.
   4307   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
   4308   BasicBlock *ContiguousDest = nullptr;
   4309   BasicBlock *OtherDest = nullptr;
   4310   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
   4311     ContiguousCases = &CasesA;
   4312     ContiguousDest = DestA;
   4313     OtherDest = DestB;
   4314   } else if (CasesAreContiguous(CasesB)) {
   4315     ContiguousCases = &CasesB;
   4316     ContiguousDest = DestB;
   4317     OtherDest = DestA;
   4318   } else
   4319     return false;
   4320 
   4321   // Start building the compare and branch.
   4322 
   4323   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
   4324   Constant *NumCases =
   4325       ConstantInt::get(Offset->getType(), ContiguousCases->size());
   4326 
   4327   Value *Sub = SI->getCondition();
   4328   if (!Offset->isNullValue())
   4329     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
   4330 
   4331   Value *Cmp;
   4332   // If NumCases overflowed, then all possible values jump to the successor.
   4333   if (NumCases->isNullValue() && !ContiguousCases->empty())
   4334     Cmp = ConstantInt::getTrue(SI->getContext());
   4335   else
   4336     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   4337   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
   4338 
   4339   // Update weight for the newly-created conditional branch.
   4340   if (HasBranchWeights(SI)) {
   4341     SmallVector<uint64_t, 8> Weights;
   4342     GetBranchWeights(SI, Weights);
   4343     if (Weights.size() == 1 + SI->getNumCases()) {
   4344       uint64_t TrueWeight = 0;
   4345       uint64_t FalseWeight = 0;
   4346       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
   4347         if (SI->getSuccessor(I) == ContiguousDest)
   4348           TrueWeight += Weights[I];
   4349         else
   4350           FalseWeight += Weights[I];
   4351       }
   4352       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
   4353         TrueWeight /= 2;
   4354         FalseWeight /= 2;
   4355       }
   4356       setBranchWeights(NewBI, TrueWeight, FalseWeight);
   4357     }
   4358   }
   4359 
   4360   // Prune obsolete incoming values off the successors' PHI nodes.
   4361   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
   4362     unsigned PreviousEdges = ContiguousCases->size();
   4363     if (ContiguousDest == SI->getDefaultDest())
   4364       ++PreviousEdges;
   4365     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   4366       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   4367   }
   4368   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
   4369     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
   4370     if (OtherDest == SI->getDefaultDest())
   4371       ++PreviousEdges;
   4372     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   4373       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   4374   }
   4375 
   4376   // Drop the switch.
   4377   SI->eraseFromParent();
   4378 
   4379   return true;
   4380 }
   4381 
   4382 /// Compute masked bits for the condition of a switch
   4383 /// and use it to remove dead cases.
   4384 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
   4385                                      const DataLayout &DL) {
   4386   Value *Cond = SI->getCondition();
   4387   unsigned Bits = Cond->getType()->getIntegerBitWidth();
   4388   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
   4389 
   4390   // We can also eliminate cases by determining that their values are outside of
   4391   // the limited range of the condition based on how many significant (non-sign)
   4392   // bits are in the condition value.
   4393   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
   4394   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
   4395 
   4396   // Gather dead cases.
   4397   SmallVector<ConstantInt *, 8> DeadCases;
   4398   for (auto &Case : SI->cases()) {
   4399     const APInt &CaseVal = Case.getCaseValue()->getValue();
   4400     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
   4401         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
   4402       DeadCases.push_back(Case.getCaseValue());
   4403       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
   4404                         << " is dead.\n");
   4405     }
   4406   }
   4407 
   4408   // If we can prove that the cases must cover all possible values, the
   4409   // default destination becomes dead and we can remove it.  If we know some
   4410   // of the bits in the value, we can use that to more precisely compute the
   4411   // number of possible unique case values.
   4412   bool HasDefault =
   4413       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   4414   const unsigned NumUnknownBits =
   4415       Bits - (Known.Zero | Known.One).countPopulation();
   4416   assert(NumUnknownBits <= Bits);
   4417   if (HasDefault && DeadCases.empty() &&
   4418       NumUnknownBits < 64 /* avoid overflow */ &&
   4419       SI->getNumCases() == (1ULL << NumUnknownBits)) {
   4420     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
   4421     BasicBlock *NewDefault =
   4422         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
   4423     SI->setDefaultDest(&*NewDefault);
   4424     SplitBlock(&*NewDefault, &NewDefault->front());
   4425     auto *OldTI = NewDefault->getTerminator();
   4426     new UnreachableInst(SI->getContext(), OldTI);
   4427     EraseTerminatorInstAndDCECond(OldTI);
   4428     return true;
   4429   }
   4430 
   4431   SmallVector<uint64_t, 8> Weights;
   4432   bool HasWeight = HasBranchWeights(SI);
   4433   if (HasWeight) {
   4434     GetBranchWeights(SI, Weights);
   4435     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   4436   }
   4437 
   4438   // Remove dead cases from the switch.
   4439   for (ConstantInt *DeadCase : DeadCases) {
   4440     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
   4441     assert(CaseI != SI->case_default() &&
   4442            "Case was not found. Probably mistake in DeadCases forming.");
   4443     if (HasWeight) {
   4444       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
   4445       Weights.pop_back();
   4446     }
   4447 
   4448     // Prune unused values from PHI nodes.
   4449     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
   4450     SI->removeCase(CaseI);
   4451   }
   4452   if (HasWeight && Weights.size() >= 2) {
   4453     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   4454     setBranchWeights(SI, MDWeights);
   4455   }
   4456 
   4457   return !DeadCases.empty();
   4458 }
   4459 
   4460 /// If BB would be eligible for simplification by
   4461 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   4462 /// by an unconditional branch), look at the phi node for BB in the successor
   4463 /// block and see if the incoming value is equal to CaseValue. If so, return
   4464 /// the phi node, and set PhiIndex to BB's index in the phi node.
   4465 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   4466                                               BasicBlock *BB, int *PhiIndex) {
   4467   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   4468     return nullptr; // BB must be empty to be a candidate for simplification.
   4469   if (!BB->getSinglePredecessor())
   4470     return nullptr; // BB must be dominated by the switch.
   4471 
   4472   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   4473   if (!Branch || !Branch->isUnconditional())
   4474     return nullptr; // Terminator must be unconditional branch.
   4475 
   4476   BasicBlock *Succ = Branch->getSuccessor(0);
   4477 
   4478   for (PHINode &PHI : Succ->phis()) {
   4479     int Idx = PHI.getBasicBlockIndex(BB);
   4480     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   4481 
   4482     Value *InValue = PHI.getIncomingValue(Idx);
   4483     if (InValue != CaseValue)
   4484       continue;
   4485 
   4486     *PhiIndex = Idx;
   4487     return &PHI;
   4488   }
   4489 
   4490   return nullptr;
   4491 }
   4492 
   4493 /// Try to forward the condition of a switch instruction to a phi node
   4494 /// dominated by the switch, if that would mean that some of the destination
   4495 /// blocks of the switch can be folded away. Return true if a change is made.
   4496 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   4497   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
   4498 
   4499   ForwardingNodesMap ForwardingNodes;
   4500   BasicBlock *SwitchBlock = SI->getParent();
   4501   bool Changed = false;
   4502   for (auto &Case : SI->cases()) {
   4503     ConstantInt *CaseValue = Case.getCaseValue();
   4504     BasicBlock *CaseDest = Case.getCaseSuccessor();
   4505 
   4506     // Replace phi operands in successor blocks that are using the constant case
   4507     // value rather than the switch condition variable:
   4508     //   switchbb:
   4509     //   switch i32 %x, label %default [
   4510     //     i32 17, label %succ
   4511     //   ...
   4512     //   succ:
   4513     //     %r = phi i32 ... [ 17, %switchbb ] ...
   4514     // -->
   4515     //     %r = phi i32 ... [ %x, %switchbb ] ...
   4516 
   4517     for (PHINode &Phi : CaseDest->phis()) {
   4518       // This only works if there is exactly 1 incoming edge from the switch to
   4519       // a phi. If there is >1, that means multiple cases of the switch map to 1
   4520       // value in the phi, and that phi value is not the switch condition. Thus,
   4521       // this transform would not make sense (the phi would be invalid because
   4522       // a phi can't have different incoming values from the same block).
   4523       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
   4524       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
   4525           count(Phi.blocks(), SwitchBlock) == 1) {
   4526         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
   4527         Changed = true;
   4528       }
   4529     }
   4530 
   4531     // Collect phi nodes that are indirectly using this switch's case constants.
   4532     int PhiIdx;
   4533     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
   4534       ForwardingNodes[Phi].push_back(PhiIdx);
   4535   }
   4536 
   4537   for (auto &ForwardingNode : ForwardingNodes) {
   4538     PHINode *Phi = ForwardingNode.first;
   4539     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
   4540     if (Indexes.size() < 2)
   4541       continue;
   4542 
   4543     for (int Index : Indexes)
   4544       Phi->setIncomingValue(Index, SI->getCondition());
   4545     Changed = true;
   4546   }
   4547 
   4548   return Changed;
   4549 }
   4550 
   4551 /// Return true if the backend will be able to handle
   4552 /// initializing an array of constants like C.
   4553 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
   4554   if (C->isThreadDependent())
   4555     return false;
   4556   if (C->isDLLImportDependent())
   4557     return false;
   4558 
   4559   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
   4560       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
   4561       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
   4562     return false;
   4563 
   4564   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   4565     if (!CE->isGEPWithNoNotionalOverIndexing())
   4566       return false;
   4567     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
   4568       return false;
   4569   }
   4570 
   4571   if (!TTI.shouldBuildLookupTablesForConstant(C))
   4572     return false;
   4573 
   4574   return true;
   4575 }
   4576 
   4577 /// If V is a Constant, return it. Otherwise, try to look up
   4578 /// its constant value in ConstantPool, returning 0 if it's not there.
   4579 static Constant *
   4580 LookupConstant(Value *V,
   4581                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
   4582   if (Constant *C = dyn_cast<Constant>(V))
   4583     return C;
   4584   return ConstantPool.lookup(V);
   4585 }
   4586 
   4587 /// Try to fold instruction I into a constant. This works for
   4588 /// simple instructions such as binary operations where both operands are
   4589 /// constant or can be replaced by constants from the ConstantPool. Returns the
   4590 /// resulting constant on success, 0 otherwise.
   4591 static Constant *
   4592 ConstantFold(Instruction *I, const DataLayout &DL,
   4593              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
   4594   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   4595     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   4596     if (!A)
   4597       return nullptr;
   4598     if (A->isAllOnesValue())
   4599       return LookupConstant(Select->getTrueValue(), ConstantPool);
   4600     if (A->isNullValue())
   4601       return LookupConstant(Select->getFalseValue(), ConstantPool);
   4602     return nullptr;
   4603   }
   4604 
   4605   SmallVector<Constant *, 4> COps;
   4606   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
   4607     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
   4608       COps.push_back(A);
   4609     else
   4610       return nullptr;
   4611   }
   4612 
   4613   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
   4614     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
   4615                                            COps[1], DL);
   4616   }
   4617 
   4618   return ConstantFoldInstOperands(I, COps, DL);
   4619 }
   4620 
   4621 /// Try to determine the resulting constant values in phi nodes
   4622 /// at the common destination basic block, *CommonDest, for one of the case
   4623 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   4624 /// case), of a switch instruction SI.
   4625 static bool
   4626 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
   4627                BasicBlock **CommonDest,
   4628                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
   4629                const DataLayout &DL, const TargetTransformInfo &TTI) {
   4630   // The block from which we enter the common destination.
   4631   BasicBlock *Pred = SI->getParent();
   4632 
   4633   // If CaseDest is empty except for some side-effect free instructions through
   4634   // which we can constant-propagate the CaseVal, continue to its successor.
   4635   SmallDenseMap<Value *, Constant *> ConstantPool;
   4636   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   4637   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
   4638     if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) {
   4639       // If the terminator is a simple branch, continue to the next block.
   4640       if (T->getNumSuccessors() != 1 || T->isExceptional())
   4641         return false;
   4642       Pred = CaseDest;
   4643       CaseDest = T->getSuccessor(0);
   4644     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
   4645       // Instruction is side-effect free and constant.
   4646 
   4647       // If the instruction has uses outside this block or a phi node slot for
   4648       // the block, it is not safe to bypass the instruction since it would then
   4649       // no longer dominate all its uses.
   4650       for (auto &Use : I.uses()) {
   4651         User *User = Use.getUser();
   4652         if (Instruction *I = dyn_cast<Instruction>(User))
   4653           if (I->getParent() == CaseDest)
   4654             continue;
   4655         if (PHINode *Phi = dyn_cast<PHINode>(User))
   4656           if (Phi->getIncomingBlock(Use) == CaseDest)
   4657             continue;
   4658         return false;
   4659       }
   4660 
   4661       ConstantPool.insert(std::make_pair(&I, C));
   4662     } else {
   4663       break;
   4664     }
   4665   }
   4666 
   4667   // If we did not have a CommonDest before, use the current one.
   4668   if (!*CommonDest)
   4669     *CommonDest = CaseDest;
   4670   // If the destination isn't the common one, abort.
   4671   if (CaseDest != *CommonDest)
   4672     return false;
   4673 
   4674   // Get the values for this case from phi nodes in the destination block.
   4675   for (PHINode &PHI : (*CommonDest)->phis()) {
   4676     int Idx = PHI.getBasicBlockIndex(Pred);
   4677     if (Idx == -1)
   4678       continue;
   4679 
   4680     Constant *ConstVal =
   4681         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
   4682     if (!ConstVal)
   4683       return false;
   4684 
   4685     // Be conservative about which kinds of constants we support.
   4686     if (!ValidLookupTableConstant(ConstVal, TTI))
   4687       return false;
   4688 
   4689     Res.push_back(std::make_pair(&PHI, ConstVal));
   4690   }
   4691 
   4692   return Res.size() > 0;
   4693 }
   4694 
   4695 // Helper function used to add CaseVal to the list of cases that generate
   4696 // Result. Returns the updated number of cases that generate this result.
   4697 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
   4698                                  SwitchCaseResultVectorTy &UniqueResults,
   4699                                  Constant *Result) {
   4700   for (auto &I : UniqueResults) {
   4701     if (I.first == Result) {
   4702       I.second.push_back(CaseVal);
   4703       return I.second.size();
   4704     }
   4705   }
   4706   UniqueResults.push_back(
   4707       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
   4708   return 1;
   4709 }
   4710 
   4711 // Helper function that initializes a map containing
   4712 // results for the PHI node of the common destination block for a switch
   4713 // instruction. Returns false if multiple PHI nodes have been found or if
   4714 // there is not a common destination block for the switch.
   4715 static bool
   4716 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
   4717                       SwitchCaseResultVectorTy &UniqueResults,
   4718                       Constant *&DefaultResult, const DataLayout &DL,
   4719                       const TargetTransformInfo &TTI,
   4720                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
   4721   for (auto &I : SI->cases()) {
   4722     ConstantInt *CaseVal = I.getCaseValue();
   4723 
   4724     // Resulting value at phi nodes for this case value.
   4725     SwitchCaseResultsTy Results;
   4726     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
   4727                         DL, TTI))
   4728       return false;
   4729 
   4730     // Only one value per case is permitted.
   4731     if (Results.size() > 1)
   4732       return false;
   4733 
   4734     // Add the case->result mapping to UniqueResults.
   4735     const uintptr_t NumCasesForResult =
   4736         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
   4737 
   4738     // Early out if there are too many cases for this result.
   4739     if (NumCasesForResult > MaxCasesPerResult)
   4740       return false;
   4741 
   4742     // Early out if there are too many unique results.
   4743     if (UniqueResults.size() > MaxUniqueResults)
   4744       return false;
   4745 
   4746     // Check the PHI consistency.
   4747     if (!PHI)
   4748       PHI = Results[0].first;
   4749     else if (PHI != Results[0].first)
   4750       return false;
   4751   }
   4752   // Find the default result value.
   4753   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
   4754   BasicBlock *DefaultDest = SI->getDefaultDest();
   4755   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
   4756                  DL, TTI);
   4757   // If the default value is not found abort unless the default destination
   4758   // is unreachable.
   4759   DefaultResult =
   4760       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
   4761   if ((!DefaultResult &&
   4762        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
   4763     return false;
   4764 
   4765   return true;
   4766 }
   4767 
   4768 // Helper function that checks if it is possible to transform a switch with only
   4769 // two cases (or two cases + default) that produces a result into a select.
   4770 // Example:
   4771 // switch (a) {
   4772 //   case 10:                %0 = icmp eq i32 %a, 10
   4773 //     return 10;            %1 = select i1 %0, i32 10, i32 4
   4774 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
   4775 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
   4776 //   default:
   4777 //     return 4;
   4778 // }
   4779 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
   4780                                    Constant *DefaultResult, Value *Condition,
   4781                                    IRBuilder<> &Builder) {
   4782   assert(ResultVector.size() == 2 &&
   4783          "We should have exactly two unique results at this point");
   4784   // If we are selecting between only two cases transform into a simple
   4785   // select or a two-way select if default is possible.
   4786   if (ResultVector[0].second.size() == 1 &&
   4787       ResultVector[1].second.size() == 1) {
   4788     ConstantInt *const FirstCase = ResultVector[0].second[0];
   4789     ConstantInt *const SecondCase = ResultVector[1].second[0];
   4790 
   4791     bool DefaultCanTrigger = DefaultResult;
   4792     Value *SelectValue = ResultVector[1].first;
   4793     if (DefaultCanTrigger) {
   4794       Value *const ValueCompare =
   4795           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
   4796       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
   4797                                          DefaultResult, "switch.select");
   4798     }
   4799     Value *const ValueCompare =
   4800         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
   4801     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
   4802                                 SelectValue, "switch.select");
   4803   }
   4804 
   4805   return nullptr;
   4806 }
   4807 
   4808 // Helper function to cleanup a switch instruction that has been converted into
   4809 // a select, fixing up PHI nodes and basic blocks.
   4810 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
   4811                                               Value *SelectValue,
   4812                                               IRBuilder<> &Builder) {
   4813   BasicBlock *SelectBB = SI->getParent();
   4814   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
   4815     PHI->removeIncomingValue(SelectBB);
   4816   PHI->addIncoming(SelectValue, SelectBB);
   4817 
   4818   Builder.CreateBr(PHI->getParent());
   4819 
   4820   // Remove the switch.
   4821   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   4822     BasicBlock *Succ = SI->getSuccessor(i);
   4823 
   4824     if (Succ == PHI->getParent())
   4825       continue;
   4826     Succ->removePredecessor(SelectBB);
   4827   }
   4828   SI->eraseFromParent();
   4829 }
   4830 
   4831 /// If the switch is only used to initialize one or more
   4832 /// phi nodes in a common successor block with only two different
   4833 /// constant values, replace the switch with select.
   4834 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
   4835                            const DataLayout &DL,
   4836                            const TargetTransformInfo &TTI) {
   4837   Value *const Cond = SI->getCondition();
   4838   PHINode *PHI = nullptr;
   4839   BasicBlock *CommonDest = nullptr;
   4840   Constant *DefaultResult;
   4841   SwitchCaseResultVectorTy UniqueResults;
   4842   // Collect all the cases that will deliver the same value from the switch.
   4843   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
   4844                              DL, TTI, 2, 1))
   4845     return false;
   4846   // Selects choose between maximum two values.
   4847   if (UniqueResults.size() != 2)
   4848     return false;
   4849   assert(PHI != nullptr && "PHI for value select not found");
   4850 
   4851   Builder.SetInsertPoint(SI);
   4852   Value *SelectValue =
   4853       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
   4854   if (SelectValue) {
   4855     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
   4856     return true;
   4857   }
   4858   // The switch couldn't be converted into a select.
   4859   return false;
   4860 }
   4861 
   4862 namespace {
   4863 
   4864 /// This class represents a lookup table that can be used to replace a switch.
   4865 class SwitchLookupTable {
   4866 public:
   4867   /// Create a lookup table to use as a switch replacement with the contents
   4868   /// of Values, using DefaultValue to fill any holes in the table.
   4869   SwitchLookupTable(
   4870       Module &M, uint64_t TableSize, ConstantInt *Offset,
   4871       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   4872       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
   4873 
   4874   /// Build instructions with Builder to retrieve the value at
   4875   /// the position given by Index in the lookup table.
   4876   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   4877 
   4878   /// Return true if a table with TableSize elements of
   4879   /// type ElementType would fit in a target-legal register.
   4880   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
   4881                                  Type *ElementType);
   4882 
   4883 private:
   4884   // Depending on the contents of the table, it can be represented in
   4885   // different ways.
   4886   enum {
   4887     // For tables where each element contains the same value, we just have to
   4888     // store that single value and return it for each lookup.
   4889     SingleValueKind,
   4890 
   4891     // For tables where there is a linear relationship between table index
   4892     // and values. We calculate the result with a simple multiplication
   4893     // and addition instead of a table lookup.
   4894     LinearMapKind,
   4895 
   4896     // For small tables with integer elements, we can pack them into a bitmap
   4897     // that fits into a target-legal register. Values are retrieved by
   4898     // shift and mask operations.
   4899     BitMapKind,
   4900 
   4901     // The table is stored as an array of values. Values are retrieved by load
   4902     // instructions from the table.
   4903     ArrayKind
   4904   } Kind;
   4905 
   4906   // For SingleValueKind, this is the single value.
   4907   Constant *SingleValue = nullptr;
   4908 
   4909   // For BitMapKind, this is the bitmap.
   4910   ConstantInt *BitMap = nullptr;
   4911   IntegerType *BitMapElementTy = nullptr;
   4912 
   4913   // For LinearMapKind, these are the constants used to derive the value.
   4914   ConstantInt *LinearOffset = nullptr;
   4915   ConstantInt *LinearMultiplier = nullptr;
   4916 
   4917   // For ArrayKind, this is the array.
   4918   GlobalVariable *Array = nullptr;
   4919 };
   4920 
   4921 } // end anonymous namespace
   4922 
   4923 SwitchLookupTable::SwitchLookupTable(
   4924     Module &M, uint64_t TableSize, ConstantInt *Offset,
   4925     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   4926     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
   4927   assert(Values.size() && "Can't build lookup table without values!");
   4928   assert(TableSize >= Values.size() && "Can't fit values in table!");
   4929 
   4930   // If all values in the table are equal, this is that value.
   4931   SingleValue = Values.begin()->second;
   4932 
   4933   Type *ValueType = Values.begin()->second->getType();
   4934 
   4935   // Build up the table contents.
   4936   SmallVector<Constant *, 64> TableContents(TableSize);
   4937   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   4938     ConstantInt *CaseVal = Values[I].first;
   4939     Constant *CaseRes = Values[I].second;
   4940     assert(CaseRes->getType() == ValueType);
   4941 
   4942     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
   4943     TableContents[Idx] = CaseRes;
   4944 
   4945     if (CaseRes != SingleValue)
   4946       SingleValue = nullptr;
   4947   }
   4948 
   4949   // Fill in any holes in the table with the default result.
   4950   if (Values.size() < TableSize) {
   4951     assert(DefaultValue &&
   4952            "Need a default value to fill the lookup table holes.");
   4953     assert(DefaultValue->getType() == ValueType);
   4954     for (uint64_t I = 0; I < TableSize; ++I) {
   4955       if (!TableContents[I])
   4956         TableContents[I] = DefaultValue;
   4957     }
   4958 
   4959     if (DefaultValue != SingleValue)
   4960       SingleValue = nullptr;
   4961   }
   4962 
   4963   // If each element in the table contains the same value, we only need to store
   4964   // that single value.
   4965   if (SingleValue) {
   4966     Kind = SingleValueKind;
   4967     return;
   4968   }
   4969 
   4970   // Check if we can derive the value with a linear transformation from the
   4971   // table index.
   4972   if (isa<IntegerType>(ValueType)) {
   4973     bool LinearMappingPossible = true;
   4974     APInt PrevVal;
   4975     APInt DistToPrev;
   4976     assert(TableSize >= 2 && "Should be a SingleValue table.");
   4977     // Check if there is the same distance between two consecutive values.
   4978     for (uint64_t I = 0; I < TableSize; ++I) {
   4979       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
   4980       if (!ConstVal) {
   4981         // This is an undef. We could deal with it, but undefs in lookup tables
   4982         // are very seldom. It's probably not worth the additional complexity.
   4983         LinearMappingPossible = false;
   4984         break;
   4985       }
   4986       const APInt &Val = ConstVal->getValue();
   4987       if (I != 0) {
   4988         APInt Dist = Val - PrevVal;
   4989         if (I == 1) {
   4990           DistToPrev = Dist;
   4991         } else if (Dist != DistToPrev) {
   4992           LinearMappingPossible = false;
   4993           break;
   4994         }
   4995       }
   4996       PrevVal = Val;
   4997     }
   4998     if (LinearMappingPossible) {
   4999       LinearOffset = cast<ConstantInt>(TableContents[0]);
   5000       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
   5001       Kind = LinearMapKind;
   5002       ++NumLinearMaps;
   5003       return;
   5004     }
   5005   }
   5006 
   5007   // If the type is integer and the table fits in a register, build a bitmap.
   5008   if (WouldFitInRegister(DL, TableSize, ValueType)) {
   5009     IntegerType *IT = cast<IntegerType>(ValueType);
   5010     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   5011     for (uint64_t I = TableSize; I > 0; --I) {
   5012       TableInt <<= IT->getBitWidth();
   5013       // Insert values into the bitmap. Undef values are set to zero.
   5014       if (!isa<UndefValue>(TableContents[I - 1])) {
   5015         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   5016         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   5017       }
   5018     }
   5019     BitMap = ConstantInt::get(M.getContext(), TableInt);
   5020     BitMapElementTy = IT;
   5021     Kind = BitMapKind;
   5022     ++NumBitMaps;
   5023     return;
   5024   }
   5025 
   5026   // Store the table in an array.
   5027   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
   5028   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   5029 
   5030   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
   5031                              GlobalVariable::PrivateLinkage, Initializer,
   5032                              "switch.table." + FuncName);
   5033   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
   5034   Kind = ArrayKind;
   5035 }
   5036 
   5037 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   5038   switch (Kind) {
   5039   case SingleValueKind:
   5040     return SingleValue;
   5041   case LinearMapKind: {
   5042     // Derive the result value from the input value.
   5043     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
   5044                                           false, "switch.idx.cast");
   5045     if (!LinearMultiplier->isOne())
   5046       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
   5047     if (!LinearOffset->isZero())
   5048       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
   5049     return Result;
   5050   }
   5051   case BitMapKind: {
   5052     // Type of the bitmap (e.g. i59).
   5053     IntegerType *MapTy = BitMap->getType();
   5054 
   5055     // Cast Index to the same type as the bitmap.
   5056     // Note: The Index is <= the number of elements in the table, so
   5057     // truncating it to the width of the bitmask is safe.
   5058     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   5059 
   5060     // Multiply the shift amount by the element width.
   5061     ShiftAmt = Builder.CreateMul(
   5062         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   5063         "switch.shiftamt");
   5064 
   5065     // Shift down.
   5066     Value *DownShifted =
   5067         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
   5068     // Mask off.
   5069     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
   5070   }
   5071   case ArrayKind: {
   5072     // Make sure the table index will not overflow when treated as signed.
   5073     IntegerType *IT = cast<IntegerType>(Index->getType());
   5074     uint64_t TableSize =
   5075         Array->getInitializer()->getType()->getArrayNumElements();
   5076     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
   5077       Index = Builder.CreateZExt(
   5078           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
   5079           "switch.tableidx.zext");
   5080 
   5081     Value *GEPIndices[] = {Builder.getInt32(0), Index};
   5082     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
   5083                                            GEPIndices, "switch.gep");
   5084     return Builder.CreateLoad(GEP, "switch.load");
   5085   }
   5086   }
   5087   llvm_unreachable("Unknown lookup table kind!");
   5088 }
   5089 
   5090 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
   5091                                            uint64_t TableSize,
   5092                                            Type *ElementType) {
   5093   auto *IT = dyn_cast<IntegerType>(ElementType);
   5094   if (!IT)
   5095     return false;
   5096   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   5097   // are <= 15, we could try to narrow the type.
   5098 
   5099   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   5100   if (TableSize >= UINT_MAX / IT->getBitWidth())
   5101     return false;
   5102   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
   5103 }
   5104 
   5105 /// Determine whether a lookup table should be built for this switch, based on
   5106 /// the number of cases, size of the table, and the types of the results.
   5107 static bool
   5108 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
   5109                        const TargetTransformInfo &TTI, const DataLayout &DL,
   5110                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
   5111   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   5112     return false; // TableSize overflowed, or mul below might overflow.
   5113 
   5114   bool AllTablesFitInRegister = true;
   5115   bool HasIllegalType = false;
   5116   for (const auto &I : ResultTypes) {
   5117     Type *Ty = I.second;
   5118 
   5119     // Saturate this flag to true.
   5120     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   5121 
   5122     // Saturate this flag to false.
   5123     AllTablesFitInRegister =
   5124         AllTablesFitInRegister &&
   5125         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
   5126 
   5127     // If both flags saturate, we're done. NOTE: This *only* works with
   5128     // saturating flags, and all flags have to saturate first due to the
   5129     // non-deterministic behavior of iterating over a dense map.
   5130     if (HasIllegalType && !AllTablesFitInRegister)
   5131       break;
   5132   }
   5133 
   5134   // If each table would fit in a register, we should build it anyway.
   5135   if (AllTablesFitInRegister)
   5136     return true;
   5137 
   5138   // Don't build a table that doesn't fit in-register if it has illegal types.
   5139   if (HasIllegalType)
   5140     return false;
   5141 
   5142   // The table density should be at least 40%. This is the same criterion as for
   5143   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   5144   // FIXME: Find the best cut-off.
   5145   return SI->getNumCases() * 10 >= TableSize * 4;
   5146 }
   5147 
   5148 /// Try to reuse the switch table index compare. Following pattern:
   5149 /// \code
   5150 ///     if (idx < tablesize)
   5151 ///        r = table[idx]; // table does not contain default_value
   5152 ///     else
   5153 ///        r = default_value;
   5154 ///     if (r != default_value)
   5155 ///        ...
   5156 /// \endcode
   5157 /// Is optimized to:
   5158 /// \code
   5159 ///     cond = idx < tablesize;
   5160 ///     if (cond)
   5161 ///        r = table[idx];
   5162 ///     else
   5163 ///        r = default_value;
   5164 ///     if (cond)
   5165 ///        ...
   5166 /// \endcode
   5167 /// Jump threading will then eliminate the second if(cond).
   5168 static void reuseTableCompare(
   5169     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
   5170     Constant *DefaultValue,
   5171     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
   5172   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
   5173   if (!CmpInst)
   5174     return;
   5175 
   5176   // We require that the compare is in the same block as the phi so that jump
   5177   // threading can do its work afterwards.
   5178   if (CmpInst->getParent() != PhiBlock)
   5179     return;
   5180 
   5181   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
   5182   if (!CmpOp1)
   5183     return;
   5184 
   5185   Value *RangeCmp = RangeCheckBranch->getCondition();
   5186   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
   5187   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
   5188 
   5189   // Check if the compare with the default value is constant true or false.
   5190   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   5191                                                  DefaultValue, CmpOp1, true);
   5192   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
   5193     return;
   5194 
   5195   // Check if the compare with the case values is distinct from the default
   5196   // compare result.
   5197   for (auto ValuePair : Values) {
   5198     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   5199                                                 ValuePair.second, CmpOp1, true);
   5200     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
   5201       return;
   5202     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
   5203            "Expect true or false as compare result.");
   5204   }
   5205 
   5206   // Check if the branch instruction dominates the phi node. It's a simple
   5207   // dominance check, but sufficient for our needs.
   5208   // Although this check is invariant in the calling loops, it's better to do it
   5209   // at this late stage. Practically we do it at most once for a switch.
   5210   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
   5211   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
   5212     BasicBlock *Pred = *PI;
   5213     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
   5214       return;
   5215   }
   5216 
   5217   if (DefaultConst == FalseConst) {
   5218     // The compare yields the same result. We can replace it.
   5219     CmpInst->replaceAllUsesWith(RangeCmp);
   5220     ++NumTableCmpReuses;
   5221   } else {
   5222     // The compare yields the same result, just inverted. We can replace it.
   5223     Value *InvertedTableCmp = BinaryOperator::CreateXor(
   5224         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
   5225         RangeCheckBranch);
   5226     CmpInst->replaceAllUsesWith(InvertedTableCmp);
   5227     ++NumTableCmpReuses;
   5228   }
   5229 }
   5230 
   5231 /// If the switch is only used to initialize one or more phi nodes in a common
   5232 /// successor block with different constant values, replace the switch with
   5233 /// lookup tables.
   5234 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
   5235                                 const DataLayout &DL,
   5236                                 const TargetTransformInfo &TTI) {
   5237   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   5238 
   5239   Function *Fn = SI->getParent()->getParent();
   5240   // Only build lookup table when we have a target that supports it or the
   5241   // attribute is not set.
   5242   if (!TTI.shouldBuildLookupTables() ||
   5243       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
   5244     return false;
   5245 
   5246   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   5247   // split off a dense part and build a lookup table for that.
   5248 
   5249   // FIXME: This creates arrays of GEPs to constant strings, which means each
   5250   // GEP needs a runtime relocation in PIC code. We should just build one big
   5251   // string and lookup indices into that.
   5252 
   5253   // Ignore switches with less than three cases. Lookup tables will not make
   5254   // them faster, so we don't analyze them.
   5255   if (SI->getNumCases() < 3)
   5256     return false;
   5257 
   5258   // Figure out the corresponding result for each case value and phi node in the
   5259   // common destination, as well as the min and max case values.
   5260   assert(SI->case_begin() != SI->case_end());
   5261   SwitchInst::CaseIt CI = SI->case_begin();
   5262   ConstantInt *MinCaseVal = CI->getCaseValue();
   5263   ConstantInt *MaxCaseVal = CI->getCaseValue();
   5264 
   5265   BasicBlock *CommonDest = nullptr;
   5266 
   5267   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
   5268   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
   5269 
   5270   SmallDenseMap<PHINode *, Constant *> DefaultResults;
   5271   SmallDenseMap<PHINode *, Type *> ResultTypes;
   5272   SmallVector<PHINode *, 4> PHIs;
   5273 
   5274   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   5275     ConstantInt *CaseVal = CI->getCaseValue();
   5276     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   5277       MinCaseVal = CaseVal;
   5278     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   5279       MaxCaseVal = CaseVal;
   5280 
   5281     // Resulting value at phi nodes for this case value.
   5282     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
   5283     ResultsTy Results;
   5284     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
   5285                         Results, DL, TTI))
   5286       return false;
   5287 
   5288     // Append the result from this case to the list for each phi.
   5289     for (const auto &I : Results) {
   5290       PHINode *PHI = I.first;
   5291       Constant *Value = I.second;
   5292       if (!ResultLists.count(PHI))
   5293         PHIs.push_back(PHI);
   5294       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
   5295     }
   5296   }
   5297 
   5298   // Keep track of the result types.
   5299   for (PHINode *PHI : PHIs) {
   5300     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
   5301   }
   5302 
   5303   uint64_t NumResults = ResultLists[PHIs[0]].size();
   5304   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   5305   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   5306   bool TableHasHoles = (NumResults < TableSize);
   5307 
   5308   // If the table has holes, we need a constant result for the default case
   5309   // or a bitmask that fits in a register.
   5310   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
   5311   bool HasDefaultResults =
   5312       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
   5313                      DefaultResultsList, DL, TTI);
   5314 
   5315   bool NeedMask = (TableHasHoles && !HasDefaultResults);
   5316   if (NeedMask) {
   5317     // As an extra penalty for the validity test we require more cases.
   5318     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
   5319       return false;
   5320     if (!DL.fitsInLegalInteger(TableSize))
   5321       return false;
   5322   }
   5323 
   5324   for (const auto &I : DefaultResultsList) {
   5325     PHINode *PHI = I.first;
   5326     Constant *Result = I.second;
   5327     DefaultResults[PHI] = Result;
   5328   }
   5329 
   5330   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
   5331     return false;
   5332 
   5333   // Create the BB that does the lookups.
   5334   Module &Mod = *CommonDest->getParent()->getParent();
   5335   BasicBlock *LookupBB = BasicBlock::Create(
   5336       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
   5337 
   5338   // Compute the table index value.
   5339   Builder.SetInsertPoint(SI);
   5340   Value *TableIndex;
   5341   if (MinCaseVal->isNullValue())
   5342     TableIndex = SI->getCondition();
   5343   else
   5344     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
   5345                                    "switch.tableidx");
   5346 
   5347   // Compute the maximum table size representable by the integer type we are
   5348   // switching upon.
   5349   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
   5350   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
   5351   assert(MaxTableSize >= TableSize &&
   5352          "It is impossible for a switch to have more entries than the max "
   5353          "representable value of its input integer type's size.");
   5354 
   5355   // If the default destination is unreachable, or if the lookup table covers
   5356   // all values of the conditional variable, branch directly to the lookup table
   5357   // BB. Otherwise, check that the condition is within the case range.
   5358   const bool DefaultIsReachable =
   5359       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   5360   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
   5361   BranchInst *RangeCheckBranch = nullptr;
   5362 
   5363   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   5364     Builder.CreateBr(LookupBB);
   5365     // Note: We call removeProdecessor later since we need to be able to get the
   5366     // PHI value for the default case in case we're using a bit mask.
   5367   } else {
   5368     Value *Cmp = Builder.CreateICmpULT(
   5369         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
   5370     RangeCheckBranch =
   5371         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   5372   }
   5373 
   5374   // Populate the BB that does the lookups.
   5375   Builder.SetInsertPoint(LookupBB);
   5376 
   5377   if (NeedMask) {
   5378     // Before doing the lookup, we do the hole check. The LookupBB is therefore
   5379     // re-purposed to do the hole check, and we create a new LookupBB.
   5380     BasicBlock *MaskBB = LookupBB;
   5381     MaskBB->setName("switch.hole_check");
   5382     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
   5383                                   CommonDest->getParent(), CommonDest);
   5384 
   5385     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
   5386     // unnecessary illegal types.
   5387     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
   5388     APInt MaskInt(TableSizePowOf2, 0);
   5389     APInt One(TableSizePowOf2, 1);
   5390     // Build bitmask; fill in a 1 bit for every case.
   5391     const ResultListTy &ResultList = ResultLists[PHIs[0]];
   5392     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
   5393       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
   5394                          .getLimitedValue();
   5395       MaskInt |= One << Idx;
   5396     }
   5397     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
   5398 
   5399     // Get the TableIndex'th bit of the bitmask.
   5400     // If this bit is 0 (meaning hole) jump to the default destination,
   5401     // else continue with table lookup.
   5402     IntegerType *MapTy = TableMask->getType();
   5403     Value *MaskIndex =
   5404         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
   5405     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
   5406     Value *LoBit = Builder.CreateTrunc(
   5407         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
   5408     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
   5409 
   5410     Builder.SetInsertPoint(LookupBB);
   5411     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
   5412   }
   5413 
   5414   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   5415     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
   5416     // do not delete PHINodes here.
   5417     SI->getDefaultDest()->removePredecessor(SI->getParent(),
   5418                                             /*DontDeleteUselessPHIs=*/true);
   5419   }
   5420 
   5421   bool ReturnedEarly = false;
   5422   for (PHINode *PHI : PHIs) {
   5423     const ResultListTy &ResultList = ResultLists[PHI];
   5424 
   5425     // If using a bitmask, use any value to fill the lookup table holes.
   5426     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
   5427     StringRef FuncName = Fn->getName();
   5428     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
   5429                             FuncName);
   5430 
   5431     Value *Result = Table.BuildLookup(TableIndex, Builder);
   5432 
   5433     // If the result is used to return immediately from the function, we want to
   5434     // do that right here.
   5435     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
   5436         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
   5437       Builder.CreateRet(Result);
   5438       ReturnedEarly = true;
   5439       break;
   5440     }
   5441 
   5442     // Do a small peephole optimization: re-use the switch table compare if
   5443     // possible.
   5444     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
   5445       BasicBlock *PhiBlock = PHI->getParent();
   5446       // Search for compare instructions which use the phi.
   5447       for (auto *User : PHI->users()) {
   5448         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
   5449       }
   5450     }
   5451 
   5452     PHI->addIncoming(Result, LookupBB);
   5453   }
   5454 
   5455   if (!ReturnedEarly)
   5456     Builder.CreateBr(CommonDest);
   5457 
   5458   // Remove the switch.
   5459   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   5460     BasicBlock *Succ = SI->getSuccessor(i);
   5461 
   5462     if (Succ == SI->getDefaultDest())
   5463       continue;
   5464     Succ->removePredecessor(SI->getParent());
   5465   }
   5466   SI->eraseFromParent();
   5467 
   5468   ++NumLookupTables;
   5469   if (NeedMask)
   5470     ++NumLookupTablesHoles;
   5471   return true;
   5472 }
   5473 
   5474 static bool isSwitchDense(ArrayRef<int64_t> Values) {
   5475   // See also SelectionDAGBuilder::isDense(), which this function was based on.
   5476   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
   5477   uint64_t Range = Diff + 1;
   5478   uint64_t NumCases = Values.size();
   5479   // 40% is the default density for building a jump table in optsize/minsize mode.
   5480   uint64_t MinDensity = 40;
   5481 
   5482   return NumCases * 100 >= Range * MinDensity;
   5483 }
   5484 
   5485 /// Try to transform a switch that has "holes" in it to a contiguous sequence
   5486 /// of cases.
   5487 ///
   5488 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
   5489 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
   5490 ///
   5491 /// This converts a sparse switch into a dense switch which allows better
   5492 /// lowering and could also allow transforming into a lookup table.
   5493 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
   5494                               const DataLayout &DL,
   5495                               const TargetTransformInfo &TTI) {
   5496   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
   5497   if (CondTy->getIntegerBitWidth() > 64 ||
   5498       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
   5499     return false;
   5500   // Only bother with this optimization if there are more than 3 switch cases;
   5501   // SDAG will only bother creating jump tables for 4 or more cases.
   5502   if (SI->getNumCases() < 4)
   5503     return false;
   5504 
   5505   // This transform is agnostic to the signedness of the input or case values. We
   5506   // can treat the case values as signed or unsigned. We can optimize more common
   5507   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
   5508   // as signed.
   5509   SmallVector<int64_t,4> Values;
   5510   for (auto &C : SI->cases())
   5511     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
   5512   llvm::sort(Values.begin(), Values.end());
   5513 
   5514   // If the switch is already dense, there's nothing useful to do here.
   5515   if (isSwitchDense(Values))
   5516     return false;
   5517 
   5518   // First, transform the values such that they start at zero and ascend.
   5519   int64_t Base = Values[0];
   5520   for (auto &V : Values)
   5521     V -= (uint64_t)(Base);
   5522 
   5523   // Now we have signed numbers that have been shifted so that, given enough
   5524   // precision, there are no negative values. Since the rest of the transform
   5525   // is bitwise only, we switch now to an unsigned representation.
   5526   uint64_t GCD = 0;
   5527   for (auto &V : Values)
   5528     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
   5529 
   5530   // This transform can be done speculatively because it is so cheap - it results
   5531   // in a single rotate operation being inserted. This can only happen if the
   5532   // factor extracted is a power of 2.
   5533   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
   5534   // inverse of GCD and then perform this transform.
   5535   // FIXME: It's possible that optimizing a switch on powers of two might also
   5536   // be beneficial - flag values are often powers of two and we could use a CLZ
   5537   // as the key function.
   5538   if (GCD <= 1 || !isPowerOf2_64(GCD))
   5539     // No common divisor found or too expensive to compute key function.
   5540     return false;
   5541 
   5542   unsigned Shift = Log2_64(GCD);
   5543   for (auto &V : Values)
   5544     V = (int64_t)((uint64_t)V >> Shift);
   5545 
   5546   if (!isSwitchDense(Values))
   5547     // Transform didn't create a dense switch.
   5548     return false;
   5549 
   5550   // The obvious transform is to shift the switch condition right and emit a
   5551   // check that the condition actually cleanly divided by GCD, i.e.
   5552   //   C & (1 << Shift - 1) == 0
   5553   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
   5554   //
   5555   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
   5556   // shift and puts the shifted-off bits in the uppermost bits. If any of these
   5557   // are nonzero then the switch condition will be very large and will hit the
   5558   // default case.
   5559 
   5560   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
   5561   Builder.SetInsertPoint(SI);
   5562   auto *ShiftC = ConstantInt::get(Ty, Shift);
   5563   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
   5564   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
   5565   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
   5566   auto *Rot = Builder.CreateOr(LShr, Shl);
   5567   SI->replaceUsesOfWith(SI->getCondition(), Rot);
   5568 
   5569   for (auto Case : SI->cases()) {
   5570     auto *Orig = Case.getCaseValue();
   5571     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
   5572     Case.setValue(
   5573         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
   5574   }
   5575   return true;
   5576 }
   5577 
   5578 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   5579   BasicBlock *BB = SI->getParent();
   5580 
   5581   if (isValueEqualityComparison(SI)) {
   5582     // If we only have one predecessor, and if it is a branch on this value,
   5583     // see if that predecessor totally determines the outcome of this switch.
   5584     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   5585       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   5586         return simplifyCFG(BB, TTI, Options) | true;
   5587 
   5588     Value *Cond = SI->getCondition();
   5589     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   5590       if (SimplifySwitchOnSelect(SI, Select))
   5591         return simplifyCFG(BB, TTI, Options) | true;
   5592 
   5593     // If the block only contains the switch, see if we can fold the block
   5594     // away into any preds.
   5595     if (SI == &*BB->instructionsWithoutDebug().begin())
   5596       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   5597         return simplifyCFG(BB, TTI, Options) | true;
   5598   }
   5599 
   5600   // Try to transform the switch into an icmp and a branch.
   5601   if (TurnSwitchRangeIntoICmp(SI, Builder))
   5602     return simplifyCFG(BB, TTI, Options) | true;
   5603 
   5604   // Remove unreachable cases.
   5605   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
   5606     return simplifyCFG(BB, TTI, Options) | true;
   5607 
   5608   if (switchToSelect(SI, Builder, DL, TTI))
   5609     return simplifyCFG(BB, TTI, Options) | true;
   5610 
   5611   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
   5612     return simplifyCFG(BB, TTI, Options) | true;
   5613 
   5614   // The conversion from switch to lookup tables results in difficult-to-analyze
   5615   // code and makes pruning branches much harder. This is a problem if the
   5616   // switch expression itself can still be restricted as a result of inlining or
   5617   // CVP. Therefore, only apply this transformation during late stages of the
   5618   // optimisation pipeline.
   5619   if (Options.ConvertSwitchToLookupTable &&
   5620       SwitchToLookupTable(SI, Builder, DL, TTI))
   5621     return simplifyCFG(BB, TTI, Options) | true;
   5622 
   5623   if (ReduceSwitchRange(SI, Builder, DL, TTI))
   5624     return simplifyCFG(BB, TTI, Options) | true;
   5625 
   5626   return false;
   5627 }
   5628 
   5629 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   5630   BasicBlock *BB = IBI->getParent();
   5631   bool Changed = false;
   5632 
   5633   // Eliminate redundant destinations.
   5634   SmallPtrSet<Value *, 8> Succs;
   5635   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   5636     BasicBlock *Dest = IBI->getDestination(i);
   5637     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
   5638       Dest->removePredecessor(BB);
   5639       IBI->removeDestination(i);
   5640       --i;
   5641       --e;
   5642       Changed = true;
   5643     }
   5644   }
   5645 
   5646   if (IBI->getNumDestinations() == 0) {
   5647     // If the indirectbr has no successors, change it to unreachable.
   5648     new UnreachableInst(IBI->getContext(), IBI);
   5649     EraseTerminatorInstAndDCECond(IBI);
   5650     return true;
   5651   }
   5652 
   5653   if (IBI->getNumDestinations() == 1) {
   5654     // If the indirectbr has one successor, change it to a direct branch.
   5655     BranchInst::Create(IBI->getDestination(0), IBI);
   5656     EraseTerminatorInstAndDCECond(IBI);
   5657     return true;
   5658   }
   5659 
   5660   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   5661     if (SimplifyIndirectBrOnSelect(IBI, SI))
   5662       return simplifyCFG(BB, TTI, Options) | true;
   5663   }
   5664   return Changed;
   5665 }
   5666 
   5667 /// Given an block with only a single landing pad and a unconditional branch
   5668 /// try to find another basic block which this one can be merged with.  This
   5669 /// handles cases where we have multiple invokes with unique landing pads, but
   5670 /// a shared handler.
   5671 ///
   5672 /// We specifically choose to not worry about merging non-empty blocks
   5673 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
   5674 /// practice, the optimizer produces empty landing pad blocks quite frequently
   5675 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
   5676 /// sinking in this file)
   5677 ///
   5678 /// This is primarily a code size optimization.  We need to avoid performing
   5679 /// any transform which might inhibit optimization (such as our ability to
   5680 /// specialize a particular handler via tail commoning).  We do this by not
   5681 /// merging any blocks which require us to introduce a phi.  Since the same
   5682 /// values are flowing through both blocks, we don't lose any ability to
   5683 /// specialize.  If anything, we make such specialization more likely.
   5684 ///
   5685 /// TODO - This transformation could remove entries from a phi in the target
   5686 /// block when the inputs in the phi are the same for the two blocks being
   5687 /// merged.  In some cases, this could result in removal of the PHI entirely.
   5688 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
   5689                                  BasicBlock *BB) {
   5690   auto Succ = BB->getUniqueSuccessor();
   5691   assert(Succ);
   5692   // If there's a phi in the successor block, we'd likely have to introduce
   5693   // a phi into the merged landing pad block.
   5694   if (isa<PHINode>(*Succ->begin()))
   5695     return false;
   5696 
   5697   for (BasicBlock *OtherPred : predecessors(Succ)) {
   5698     if (BB == OtherPred)
   5699       continue;
   5700     BasicBlock::iterator I = OtherPred->begin();
   5701     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
   5702     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
   5703       continue;
   5704     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   5705       ;
   5706     BranchInst *BI2 = dyn_cast<BranchInst>(I);
   5707     if (!BI2 || !BI2->isIdenticalTo(BI))
   5708       continue;
   5709 
   5710     // We've found an identical block.  Update our predecessors to take that
   5711     // path instead and make ourselves dead.
   5712     SmallPtrSet<BasicBlock *, 16> Preds;
   5713     Preds.insert(pred_begin(BB), pred_end(BB));
   5714     for (BasicBlock *Pred : Preds) {
   5715       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
   5716       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
   5717              "unexpected successor");
   5718       II->setUnwindDest(OtherPred);
   5719     }
   5720 
   5721     // The debug info in OtherPred doesn't cover the merged control flow that
   5722     // used to go through BB.  We need to delete it or update it.
   5723     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
   5724       Instruction &Inst = *I;
   5725       I++;
   5726       if (isa<DbgInfoIntrinsic>(Inst))
   5727         Inst.eraseFromParent();
   5728     }
   5729 
   5730     SmallPtrSet<BasicBlock *, 16> Succs;
   5731     Succs.insert(succ_begin(BB), succ_end(BB));
   5732     for (BasicBlock *Succ : Succs) {
   5733       Succ->removePredecessor(BB);
   5734     }
   5735 
   5736     IRBuilder<> Builder(BI);
   5737     Builder.CreateUnreachable();
   5738     BI->eraseFromParent();
   5739     return true;
   5740   }
   5741   return false;
   5742 }
   5743 
   5744 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
   5745                                           IRBuilder<> &Builder) {
   5746   BasicBlock *BB = BI->getParent();
   5747   BasicBlock *Succ = BI->getSuccessor(0);
   5748 
   5749   // If the Terminator is the only non-phi instruction, simplify the block.
   5750   // If LoopHeader is provided, check if the block or its successor is a loop
   5751   // header. (This is for early invocations before loop simplify and
   5752   // vectorization to keep canonical loop forms for nested loops. These blocks
   5753   // can be eliminated when the pass is invoked later in the back-end.)
   5754   // Note that if BB has only one predecessor then we do not introduce new
   5755   // backedge, so we can eliminate BB.
   5756   bool NeedCanonicalLoop =
   5757       Options.NeedCanonicalLoop &&
   5758       (LoopHeaders && pred_size(BB) > 1 &&
   5759        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
   5760   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
   5761   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   5762       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
   5763     return true;
   5764 
   5765   // If the only instruction in the block is a seteq/setne comparison against a
   5766   // constant, try to simplify the block.
   5767   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   5768     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   5769       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   5770         ;
   5771       if (I->isTerminator() &&
   5772           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
   5773         return true;
   5774     }
   5775 
   5776   // See if we can merge an empty landing pad block with another which is
   5777   // equivalent.
   5778   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
   5779     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   5780       ;
   5781     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
   5782       return true;
   5783   }
   5784 
   5785   // If this basic block is ONLY a compare and a branch, and if a predecessor
   5786   // branches to us and our successor, fold the comparison into the
   5787   // predecessor and use logical operations to update the incoming value
   5788   // for PHI nodes in common successor.
   5789   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
   5790     return simplifyCFG(BB, TTI, Options) | true;
   5791   return false;
   5792 }
   5793 
   5794 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
   5795   BasicBlock *PredPred = nullptr;
   5796   for (auto *P : predecessors(BB)) {
   5797     BasicBlock *PPred = P->getSinglePredecessor();
   5798     if (!PPred || (PredPred && PredPred != PPred))
   5799       return nullptr;
   5800     PredPred = PPred;
   5801   }
   5802   return PredPred;
   5803 }
   5804 
   5805 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   5806   BasicBlock *BB = BI->getParent();
   5807   const Function *Fn = BB->getParent();
   5808   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
   5809     return false;
   5810 
   5811   // Conditional branch
   5812   if (isValueEqualityComparison(BI)) {
   5813     // If we only have one predecessor, and if it is a branch on this value,
   5814     // see if that predecessor totally determines the outcome of this
   5815     // switch.
   5816     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   5817       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   5818         return simplifyCFG(BB, TTI, Options) | true;
   5819 
   5820     // This block must be empty, except for the setcond inst, if it exists.
   5821     // Ignore dbg intrinsics.
   5822     auto I = BB->instructionsWithoutDebug().begin();
   5823     if (&*I == BI) {
   5824       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   5825         return simplifyCFG(BB, TTI, Options) | true;
   5826     } else if (&*I == cast<Instruction>(BI->getCondition())) {
   5827       ++I;
   5828       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   5829         return simplifyCFG(BB, TTI, Options) | true;
   5830     }
   5831   }
   5832 
   5833   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   5834   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
   5835     return true;
   5836 
   5837   // If this basic block has a single dominating predecessor block and the
   5838   // dominating block's condition implies BI's condition, we know the direction
   5839   // of the BI branch.
   5840   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
   5841     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
   5842     if (PBI && PBI->isConditional() &&
   5843         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   5844       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
   5845       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   5846       Optional<bool> Implication = isImpliedCondition(
   5847           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
   5848       if (Implication) {
   5849         // Turn this into a branch on constant.
   5850         auto *OldCond = BI->getCondition();
   5851         ConstantInt *CI = *Implication
   5852                               ? ConstantInt::getTrue(BB->getContext())
   5853                               : ConstantInt::getFalse(BB->getContext());
   5854         BI->setCondition(CI);
   5855         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
   5856         return simplifyCFG(BB, TTI, Options) | true;
   5857       }
   5858     }
   5859   }
   5860 
   5861   // If this basic block is ONLY a compare and a branch, and if a predecessor
   5862   // branches to us and one of our successors, fold the comparison into the
   5863   // predecessor and use logical operations to pick the right destination.
   5864   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
   5865     return simplifyCFG(BB, TTI, Options) | true;
   5866 
   5867   // We have a conditional branch to two blocks that are only reachable
   5868   // from BI.  We know that the condbr dominates the two blocks, so see if
   5869   // there is any identical code in the "then" and "else" blocks.  If so, we
   5870   // can hoist it up to the branching block.
   5871   if (BI->getSuccessor(0)->getSinglePredecessor()) {
   5872     if (BI->getSuccessor(1)->getSinglePredecessor()) {
   5873       if (HoistThenElseCodeToIf(BI, TTI))
   5874         return simplifyCFG(BB, TTI, Options) | true;
   5875     } else {
   5876       // If Successor #1 has multiple preds, we may be able to conditionally
   5877       // execute Successor #0 if it branches to Successor #1.
   5878       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   5879       if (Succ0TI->getNumSuccessors() == 1 &&
   5880           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   5881         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
   5882           return simplifyCFG(BB, TTI, Options) | true;
   5883     }
   5884   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
   5885     // If Successor #0 has multiple preds, we may be able to conditionally
   5886     // execute Successor #1 if it branches to Successor #0.
   5887     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   5888     if (Succ1TI->getNumSuccessors() == 1 &&
   5889         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   5890       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
   5891         return simplifyCFG(BB, TTI, Options) | true;
   5892   }
   5893 
   5894   // If this is a branch on a phi node in the current block, thread control
   5895   // through this block if any PHI node entries are constants.
   5896   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   5897     if (PN->getParent() == BI->getParent())
   5898       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
   5899         return simplifyCFG(BB, TTI, Options) | true;
   5900 
   5901   // Scan predecessor blocks for conditional branches.
   5902   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   5903     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   5904       if (PBI != BI && PBI->isConditional())
   5905         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
   5906           return simplifyCFG(BB, TTI, Options) | true;
   5907 
   5908   // Look for diamond patterns.
   5909   if (MergeCondStores)
   5910     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
   5911       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
   5912         if (PBI != BI && PBI->isConditional())
   5913           if (mergeConditionalStores(PBI, BI, DL))
   5914             return simplifyCFG(BB, TTI, Options) | true;
   5915 
   5916   return false;
   5917 }
   5918 
   5919 /// Check if passing a value to an instruction will cause undefined behavior.
   5920 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   5921   Constant *C = dyn_cast<Constant>(V);
   5922   if (!C)
   5923     return false;
   5924 
   5925   if (I->use_empty())
   5926     return false;
   5927 
   5928   if (C->isNullValue() || isa<UndefValue>(C)) {
   5929     // Only look at the first use, avoid hurting compile time with long uselists
   5930     User *Use = *I->user_begin();
   5931 
   5932     // Now make sure that there are no instructions in between that can alter
   5933     // control flow (eg. calls)
   5934     for (BasicBlock::iterator
   5935              i = ++BasicBlock::iterator(I),
   5936              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
   5937          i != UI; ++i)
   5938       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   5939         return false;
   5940 
   5941     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   5942     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   5943       if (GEP->getPointerOperand() == I)
   5944         return passingValueIsAlwaysUndefined(V, GEP);
   5945 
   5946     // Look through bitcasts.
   5947     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   5948       return passingValueIsAlwaysUndefined(V, BC);
   5949 
   5950     // Load from null is undefined.
   5951     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   5952       if (!LI->isVolatile())
   5953         return !NullPointerIsDefined(LI->getFunction(),
   5954                                      LI->getPointerAddressSpace());
   5955 
   5956     // Store to null is undefined.
   5957     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   5958       if (!SI->isVolatile())
   5959         return (!NullPointerIsDefined(SI->getFunction(),
   5960                                       SI->getPointerAddressSpace())) &&
   5961                SI->getPointerOperand() == I;
   5962 
   5963     // A call to null is undefined.
   5964     if (auto CS = CallSite(Use))
   5965       return !NullPointerIsDefined(CS->getFunction()) &&
   5966              CS.getCalledValue() == I;
   5967   }
   5968   return false;
   5969 }
   5970 
   5971 /// If BB has an incoming value that will always trigger undefined behavior
   5972 /// (eg. null pointer dereference), remove the branch leading here.
   5973 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   5974   for (PHINode &PHI : BB->phis())
   5975     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
   5976       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
   5977         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
   5978         IRBuilder<> Builder(T);
   5979         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   5980           BB->removePredecessor(PHI.getIncomingBlock(i));
   5981           // Turn uncoditional branches into unreachables and remove the dead
   5982           // destination from conditional branches.
   5983           if (BI->isUnconditional())
   5984             Builder.CreateUnreachable();
   5985           else
   5986             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
   5987                                                        : BI->getSuccessor(0));
   5988           BI->eraseFromParent();
   5989           return true;
   5990         }
   5991         // TODO: SwitchInst.
   5992       }
   5993 
   5994   return false;
   5995 }
   5996 
   5997 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   5998   bool Changed = false;
   5999 
   6000   assert(BB && BB->getParent() && "Block not embedded in function!");
   6001   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   6002 
   6003   // Remove basic blocks that have no predecessors (except the entry block)...
   6004   // or that just have themself as a predecessor.  These are unreachable.
   6005   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
   6006       BB->getSinglePredecessor() == BB) {
   6007     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
   6008     DeleteDeadBlock(BB);
   6009     return true;
   6010   }
   6011 
   6012   // Check to see if we can constant propagate this terminator instruction
   6013   // away...
   6014   Changed |= ConstantFoldTerminator(BB, true);
   6015 
   6016   // Check for and eliminate duplicate PHI nodes in this block.
   6017   Changed |= EliminateDuplicatePHINodes(BB);
   6018 
   6019   // Check for and remove branches that will always cause undefined behavior.
   6020   Changed |= removeUndefIntroducingPredecessor(BB);
   6021 
   6022   // Merge basic blocks into their predecessor if there is only one distinct
   6023   // pred, and if there is only one distinct successor of the predecessor, and
   6024   // if there are no PHI nodes.
   6025   if (MergeBlockIntoPredecessor(BB))
   6026     return true;
   6027 
   6028   if (SinkCommon && Options.SinkCommonInsts)
   6029     Changed |= SinkCommonCodeFromPredecessors(BB);
   6030 
   6031   IRBuilder<> Builder(BB);
   6032 
   6033   // If there is a trivial two-entry PHI node in this basic block, and we can
   6034   // eliminate it, do so now.
   6035   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
   6036     if (PN->getNumIncomingValues() == 2)
   6037       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
   6038 
   6039   Builder.SetInsertPoint(BB->getTerminator());
   6040   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   6041     if (BI->isUnconditional()) {
   6042       if (SimplifyUncondBranch(BI, Builder))
   6043         return true;
   6044     } else {
   6045       if (SimplifyCondBranch(BI, Builder))
   6046         return true;
   6047     }
   6048   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   6049     if (SimplifyReturn(RI, Builder))
   6050       return true;
   6051   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   6052     if (SimplifyResume(RI, Builder))
   6053       return true;
   6054   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
   6055     if (SimplifyCleanupReturn(RI))
   6056       return true;
   6057   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   6058     if (SimplifySwitch(SI, Builder))
   6059       return true;
   6060   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
   6061     if (SimplifyUnreachable(UI))
   6062       return true;
   6063   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   6064     if (SimplifyIndirectBr(IBI))
   6065       return true;
   6066   }
   6067 
   6068   return Changed;
   6069 }
   6070 
   6071 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   6072                        const SimplifyCFGOptions &Options,
   6073                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
   6074   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
   6075                         Options)
   6076       .run(BB);
   6077 }
   6078