Home | History | Annotate | Download | only in Analysis
      1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements routines for folding instructions into simpler forms
     11 // that do not require creating new instructions.  This does constant folding
     12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
     13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
     14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
     15 // simplified: This is usually true and assuming it simplifies the logic (if
     16 // they have not been simplified then results are correct but maybe suboptimal).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/AssumptionCache.h"
     25 #include "llvm/Analysis/CaptureTracking.h"
     26 #include "llvm/Analysis/CmpInstAnalysis.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/LoopAnalysisManager.h"
     29 #include "llvm/Analysis/MemoryBuiltins.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/Analysis/VectorUtils.h"
     32 #include "llvm/IR/ConstantRange.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/GetElementPtrTypeIterator.h"
     36 #include "llvm/IR/GlobalAlias.h"
     37 #include "llvm/IR/Operator.h"
     38 #include "llvm/IR/PatternMatch.h"
     39 #include "llvm/IR/ValueHandle.h"
     40 #include "llvm/Support/KnownBits.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 using namespace llvm::PatternMatch;
     44 
     45 #define DEBUG_TYPE "instsimplify"
     46 
     47 enum { RecursionLimit = 3 };
     48 
     49 STATISTIC(NumExpand,  "Number of expansions");
     50 STATISTIC(NumReassoc, "Number of reassociations");
     51 
     52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
     53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
     54                             unsigned);
     55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
     56                               const SimplifyQuery &, unsigned);
     57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
     58                               unsigned);
     59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
     60                                const SimplifyQuery &Q, unsigned MaxRecurse);
     61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
     62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
     63 static Value *SimplifyCastInst(unsigned, Value *, Type *,
     64                                const SimplifyQuery &, unsigned);
     65 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
     66                               unsigned);
     67 
     68 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
     69                                      Value *FalseVal) {
     70   BinaryOperator::BinaryOps BinOpCode;
     71   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
     72     BinOpCode = BO->getOpcode();
     73   else
     74     return nullptr;
     75 
     76   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
     77   if (BinOpCode == BinaryOperator::Or) {
     78     ExpectedPred = ICmpInst::ICMP_NE;
     79   } else if (BinOpCode == BinaryOperator::And) {
     80     ExpectedPred = ICmpInst::ICMP_EQ;
     81   } else
     82     return nullptr;
     83 
     84   // %A = icmp eq %TV, %FV
     85   // %B = icmp eq %X, %Y (and one of these is a select operand)
     86   // %C = and %A, %B
     87   // %D = select %C, %TV, %FV
     88   // -->
     89   // %FV
     90 
     91   // %A = icmp ne %TV, %FV
     92   // %B = icmp ne %X, %Y (and one of these is a select operand)
     93   // %C = or %A, %B
     94   // %D = select %C, %TV, %FV
     95   // -->
     96   // %TV
     97   Value *X, *Y;
     98   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
     99                                       m_Specific(FalseVal)),
    100                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
    101       Pred1 != Pred2 || Pred1 != ExpectedPred)
    102     return nullptr;
    103 
    104   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
    105     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
    106 
    107   return nullptr;
    108 }
    109 
    110 /// For a boolean type or a vector of boolean type, return false or a vector
    111 /// with every element false.
    112 static Constant *getFalse(Type *Ty) {
    113   return ConstantInt::getFalse(Ty);
    114 }
    115 
    116 /// For a boolean type or a vector of boolean type, return true or a vector
    117 /// with every element true.
    118 static Constant *getTrue(Type *Ty) {
    119   return ConstantInt::getTrue(Ty);
    120 }
    121 
    122 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
    123 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
    124                           Value *RHS) {
    125   CmpInst *Cmp = dyn_cast<CmpInst>(V);
    126   if (!Cmp)
    127     return false;
    128   CmpInst::Predicate CPred = Cmp->getPredicate();
    129   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
    130   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
    131     return true;
    132   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
    133     CRHS == LHS;
    134 }
    135 
    136 /// Does the given value dominate the specified phi node?
    137 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
    138   Instruction *I = dyn_cast<Instruction>(V);
    139   if (!I)
    140     // Arguments and constants dominate all instructions.
    141     return true;
    142 
    143   // If we are processing instructions (and/or basic blocks) that have not been
    144   // fully added to a function, the parent nodes may still be null. Simply
    145   // return the conservative answer in these cases.
    146   if (!I->getParent() || !P->getParent() || !I->getFunction())
    147     return false;
    148 
    149   // If we have a DominatorTree then do a precise test.
    150   if (DT)
    151     return DT->dominates(I, P);
    152 
    153   // Otherwise, if the instruction is in the entry block and is not an invoke,
    154   // then it obviously dominates all phi nodes.
    155   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
    156       !isa<InvokeInst>(I))
    157     return true;
    158 
    159   return false;
    160 }
    161 
    162 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
    163 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
    164 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
    165 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
    166 /// Returns the simplified value, or null if no simplification was performed.
    167 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
    168                           Instruction::BinaryOps OpcodeToExpand,
    169                           const SimplifyQuery &Q, unsigned MaxRecurse) {
    170   // Recursion is always used, so bail out at once if we already hit the limit.
    171   if (!MaxRecurse--)
    172     return nullptr;
    173 
    174   // Check whether the expression has the form "(A op' B) op C".
    175   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    176     if (Op0->getOpcode() == OpcodeToExpand) {
    177       // It does!  Try turning it into "(A op C) op' (B op C)".
    178       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    179       // Do "A op C" and "B op C" both simplify?
    180       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
    181         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    182           // They do! Return "L op' R" if it simplifies or is already available.
    183           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    184           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
    185                                      && L == B && R == A)) {
    186             ++NumExpand;
    187             return LHS;
    188           }
    189           // Otherwise return "L op' R" if it simplifies.
    190           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    191             ++NumExpand;
    192             return V;
    193           }
    194         }
    195     }
    196 
    197   // Check whether the expression has the form "A op (B op' C)".
    198   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    199     if (Op1->getOpcode() == OpcodeToExpand) {
    200       // It does!  Try turning it into "(A op B) op' (A op C)".
    201       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    202       // Do "A op B" and "A op C" both simplify?
    203       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
    204         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
    205           // They do! Return "L op' R" if it simplifies or is already available.
    206           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    207           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
    208                                      && L == C && R == B)) {
    209             ++NumExpand;
    210             return RHS;
    211           }
    212           // Otherwise return "L op' R" if it simplifies.
    213           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    214             ++NumExpand;
    215             return V;
    216           }
    217         }
    218     }
    219 
    220   return nullptr;
    221 }
    222 
    223 /// Generic simplifications for associative binary operations.
    224 /// Returns the simpler value, or null if none was found.
    225 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
    226                                        Value *LHS, Value *RHS,
    227                                        const SimplifyQuery &Q,
    228                                        unsigned MaxRecurse) {
    229   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
    230 
    231   // Recursion is always used, so bail out at once if we already hit the limit.
    232   if (!MaxRecurse--)
    233     return nullptr;
    234 
    235   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    236   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    237 
    238   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
    239   if (Op0 && Op0->getOpcode() == Opcode) {
    240     Value *A = Op0->getOperand(0);
    241     Value *B = Op0->getOperand(1);
    242     Value *C = RHS;
    243 
    244     // Does "B op C" simplify?
    245     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    246       // It does!  Return "A op V" if it simplifies or is already available.
    247       // If V equals B then "A op V" is just the LHS.
    248       if (V == B) return LHS;
    249       // Otherwise return "A op V" if it simplifies.
    250       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
    251         ++NumReassoc;
    252         return W;
    253       }
    254     }
    255   }
    256 
    257   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
    258   if (Op1 && Op1->getOpcode() == Opcode) {
    259     Value *A = LHS;
    260     Value *B = Op1->getOperand(0);
    261     Value *C = Op1->getOperand(1);
    262 
    263     // Does "A op B" simplify?
    264     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
    265       // It does!  Return "V op C" if it simplifies or is already available.
    266       // If V equals B then "V op C" is just the RHS.
    267       if (V == B) return RHS;
    268       // Otherwise return "V op C" if it simplifies.
    269       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
    270         ++NumReassoc;
    271         return W;
    272       }
    273     }
    274   }
    275 
    276   // The remaining transforms require commutativity as well as associativity.
    277   if (!Instruction::isCommutative(Opcode))
    278     return nullptr;
    279 
    280   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
    281   if (Op0 && Op0->getOpcode() == Opcode) {
    282     Value *A = Op0->getOperand(0);
    283     Value *B = Op0->getOperand(1);
    284     Value *C = RHS;
    285 
    286     // Does "C op A" simplify?
    287     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    288       // It does!  Return "V op B" if it simplifies or is already available.
    289       // If V equals A then "V op B" is just the LHS.
    290       if (V == A) return LHS;
    291       // Otherwise return "V op B" if it simplifies.
    292       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
    293         ++NumReassoc;
    294         return W;
    295       }
    296     }
    297   }
    298 
    299   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
    300   if (Op1 && Op1->getOpcode() == Opcode) {
    301     Value *A = LHS;
    302     Value *B = Op1->getOperand(0);
    303     Value *C = Op1->getOperand(1);
    304 
    305     // Does "C op A" simplify?
    306     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    307       // It does!  Return "B op V" if it simplifies or is already available.
    308       // If V equals C then "B op V" is just the RHS.
    309       if (V == C) return RHS;
    310       // Otherwise return "B op V" if it simplifies.
    311       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
    312         ++NumReassoc;
    313         return W;
    314       }
    315     }
    316   }
    317 
    318   return nullptr;
    319 }
    320 
    321 /// In the case of a binary operation with a select instruction as an operand,
    322 /// try to simplify the binop by seeing whether evaluating it on both branches
    323 /// of the select results in the same value. Returns the common value if so,
    324 /// otherwise returns null.
    325 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
    326                                     Value *RHS, const SimplifyQuery &Q,
    327                                     unsigned MaxRecurse) {
    328   // Recursion is always used, so bail out at once if we already hit the limit.
    329   if (!MaxRecurse--)
    330     return nullptr;
    331 
    332   SelectInst *SI;
    333   if (isa<SelectInst>(LHS)) {
    334     SI = cast<SelectInst>(LHS);
    335   } else {
    336     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    337     SI = cast<SelectInst>(RHS);
    338   }
    339 
    340   // Evaluate the BinOp on the true and false branches of the select.
    341   Value *TV;
    342   Value *FV;
    343   if (SI == LHS) {
    344     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
    345     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
    346   } else {
    347     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
    348     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
    349   }
    350 
    351   // If they simplified to the same value, then return the common value.
    352   // If they both failed to simplify then return null.
    353   if (TV == FV)
    354     return TV;
    355 
    356   // If one branch simplified to undef, return the other one.
    357   if (TV && isa<UndefValue>(TV))
    358     return FV;
    359   if (FV && isa<UndefValue>(FV))
    360     return TV;
    361 
    362   // If applying the operation did not change the true and false select values,
    363   // then the result of the binop is the select itself.
    364   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    365     return SI;
    366 
    367   // If one branch simplified and the other did not, and the simplified
    368   // value is equal to the unsimplified one, return the simplified value.
    369   // For example, select (cond, X, X & Z) & Z -> X & Z.
    370   if ((FV && !TV) || (TV && !FV)) {
    371     // Check that the simplified value has the form "X op Y" where "op" is the
    372     // same as the original operation.
    373     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    374     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
    375       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
    376       // We already know that "op" is the same as for the simplified value.  See
    377       // if the operands match too.  If so, return the simplified value.
    378       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
    379       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
    380       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
    381       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
    382           Simplified->getOperand(1) == UnsimplifiedRHS)
    383         return Simplified;
    384       if (Simplified->isCommutative() &&
    385           Simplified->getOperand(1) == UnsimplifiedLHS &&
    386           Simplified->getOperand(0) == UnsimplifiedRHS)
    387         return Simplified;
    388     }
    389   }
    390 
    391   return nullptr;
    392 }
    393 
    394 /// In the case of a comparison with a select instruction, try to simplify the
    395 /// comparison by seeing whether both branches of the select result in the same
    396 /// value. Returns the common value if so, otherwise returns null.
    397 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
    398                                   Value *RHS, const SimplifyQuery &Q,
    399                                   unsigned MaxRecurse) {
    400   // Recursion is always used, so bail out at once if we already hit the limit.
    401   if (!MaxRecurse--)
    402     return nullptr;
    403 
    404   // Make sure the select is on the LHS.
    405   if (!isa<SelectInst>(LHS)) {
    406     std::swap(LHS, RHS);
    407     Pred = CmpInst::getSwappedPredicate(Pred);
    408   }
    409   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
    410   SelectInst *SI = cast<SelectInst>(LHS);
    411   Value *Cond = SI->getCondition();
    412   Value *TV = SI->getTrueValue();
    413   Value *FV = SI->getFalseValue();
    414 
    415   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
    416   // Does "cmp TV, RHS" simplify?
    417   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
    418   if (TCmp == Cond) {
    419     // It not only simplified, it simplified to the select condition.  Replace
    420     // it with 'true'.
    421     TCmp = getTrue(Cond->getType());
    422   } else if (!TCmp) {
    423     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
    424     // condition then we can replace it with 'true'.  Otherwise give up.
    425     if (!isSameCompare(Cond, Pred, TV, RHS))
    426       return nullptr;
    427     TCmp = getTrue(Cond->getType());
    428   }
    429 
    430   // Does "cmp FV, RHS" simplify?
    431   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
    432   if (FCmp == Cond) {
    433     // It not only simplified, it simplified to the select condition.  Replace
    434     // it with 'false'.
    435     FCmp = getFalse(Cond->getType());
    436   } else if (!FCmp) {
    437     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
    438     // condition then we can replace it with 'false'.  Otherwise give up.
    439     if (!isSameCompare(Cond, Pred, FV, RHS))
    440       return nullptr;
    441     FCmp = getFalse(Cond->getType());
    442   }
    443 
    444   // If both sides simplified to the same value, then use it as the result of
    445   // the original comparison.
    446   if (TCmp == FCmp)
    447     return TCmp;
    448 
    449   // The remaining cases only make sense if the select condition has the same
    450   // type as the result of the comparison, so bail out if this is not so.
    451   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
    452     return nullptr;
    453   // If the false value simplified to false, then the result of the compare
    454   // is equal to "Cond && TCmp".  This also catches the case when the false
    455   // value simplified to false and the true value to true, returning "Cond".
    456   if (match(FCmp, m_Zero()))
    457     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
    458       return V;
    459   // If the true value simplified to true, then the result of the compare
    460   // is equal to "Cond || FCmp".
    461   if (match(TCmp, m_One()))
    462     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
    463       return V;
    464   // Finally, if the false value simplified to true and the true value to
    465   // false, then the result of the compare is equal to "!Cond".
    466   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
    467     if (Value *V =
    468         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
    469                         Q, MaxRecurse))
    470       return V;
    471 
    472   return nullptr;
    473 }
    474 
    475 /// In the case of a binary operation with an operand that is a PHI instruction,
    476 /// try to simplify the binop by seeing whether evaluating it on the incoming
    477 /// phi values yields the same result for every value. If so returns the common
    478 /// value, otherwise returns null.
    479 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
    480                                  Value *RHS, const SimplifyQuery &Q,
    481                                  unsigned MaxRecurse) {
    482   // Recursion is always used, so bail out at once if we already hit the limit.
    483   if (!MaxRecurse--)
    484     return nullptr;
    485 
    486   PHINode *PI;
    487   if (isa<PHINode>(LHS)) {
    488     PI = cast<PHINode>(LHS);
    489     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    490     if (!valueDominatesPHI(RHS, PI, Q.DT))
    491       return nullptr;
    492   } else {
    493     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    494     PI = cast<PHINode>(RHS);
    495     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    496     if (!valueDominatesPHI(LHS, PI, Q.DT))
    497       return nullptr;
    498   }
    499 
    500   // Evaluate the BinOp on the incoming phi values.
    501   Value *CommonValue = nullptr;
    502   for (Value *Incoming : PI->incoming_values()) {
    503     // If the incoming value is the phi node itself, it can safely be skipped.
    504     if (Incoming == PI) continue;
    505     Value *V = PI == LHS ?
    506       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
    507       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
    508     // If the operation failed to simplify, or simplified to a different value
    509     // to previously, then give up.
    510     if (!V || (CommonValue && V != CommonValue))
    511       return nullptr;
    512     CommonValue = V;
    513   }
    514 
    515   return CommonValue;
    516 }
    517 
    518 /// In the case of a comparison with a PHI instruction, try to simplify the
    519 /// comparison by seeing whether comparing with all of the incoming phi values
    520 /// yields the same result every time. If so returns the common result,
    521 /// otherwise returns null.
    522 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
    523                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    524   // Recursion is always used, so bail out at once if we already hit the limit.
    525   if (!MaxRecurse--)
    526     return nullptr;
    527 
    528   // Make sure the phi is on the LHS.
    529   if (!isa<PHINode>(LHS)) {
    530     std::swap(LHS, RHS);
    531     Pred = CmpInst::getSwappedPredicate(Pred);
    532   }
    533   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
    534   PHINode *PI = cast<PHINode>(LHS);
    535 
    536   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    537   if (!valueDominatesPHI(RHS, PI, Q.DT))
    538     return nullptr;
    539 
    540   // Evaluate the BinOp on the incoming phi values.
    541   Value *CommonValue = nullptr;
    542   for (Value *Incoming : PI->incoming_values()) {
    543     // If the incoming value is the phi node itself, it can safely be skipped.
    544     if (Incoming == PI) continue;
    545     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
    546     // If the operation failed to simplify, or simplified to a different value
    547     // to previously, then give up.
    548     if (!V || (CommonValue && V != CommonValue))
    549       return nullptr;
    550     CommonValue = V;
    551   }
    552 
    553   return CommonValue;
    554 }
    555 
    556 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
    557                                        Value *&Op0, Value *&Op1,
    558                                        const SimplifyQuery &Q) {
    559   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
    560     if (auto *CRHS = dyn_cast<Constant>(Op1))
    561       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
    562 
    563     // Canonicalize the constant to the RHS if this is a commutative operation.
    564     if (Instruction::isCommutative(Opcode))
    565       std::swap(Op0, Op1);
    566   }
    567   return nullptr;
    568 }
    569 
    570 /// Given operands for an Add, see if we can fold the result.
    571 /// If not, this returns null.
    572 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
    573                               const SimplifyQuery &Q, unsigned MaxRecurse) {
    574   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
    575     return C;
    576 
    577   // X + undef -> undef
    578   if (match(Op1, m_Undef()))
    579     return Op1;
    580 
    581   // X + 0 -> X
    582   if (match(Op1, m_Zero()))
    583     return Op0;
    584 
    585   // If two operands are negative, return 0.
    586   if (isKnownNegation(Op0, Op1))
    587     return Constant::getNullValue(Op0->getType());
    588 
    589   // X + (Y - X) -> Y
    590   // (Y - X) + X -> Y
    591   // Eg: X + -X -> 0
    592   Value *Y = nullptr;
    593   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
    594       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    595     return Y;
    596 
    597   // X + ~X -> -1   since   ~X = -X-1
    598   Type *Ty = Op0->getType();
    599   if (match(Op0, m_Not(m_Specific(Op1))) ||
    600       match(Op1, m_Not(m_Specific(Op0))))
    601     return Constant::getAllOnesValue(Ty);
    602 
    603   // add nsw/nuw (xor Y, signmask), signmask --> Y
    604   // The no-wrapping add guarantees that the top bit will be set by the add.
    605   // Therefore, the xor must be clearing the already set sign bit of Y.
    606   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
    607       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
    608     return Y;
    609 
    610   // add nuw %x, -1  ->  -1, because %x can only be 0.
    611   if (IsNUW && match(Op1, m_AllOnes()))
    612     return Op1; // Which is -1.
    613 
    614   /// i1 add -> xor.
    615   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
    616     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    617       return V;
    618 
    619   // Try some generic simplifications for associative operations.
    620   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
    621                                           MaxRecurse))
    622     return V;
    623 
    624   // Threading Add over selects and phi nodes is pointless, so don't bother.
    625   // Threading over the select in "A + select(cond, B, C)" means evaluating
    626   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
    627   // only if B and C are equal.  If B and C are equal then (since we assume
    628   // that operands have already been simplified) "select(cond, B, C)" should
    629   // have been simplified to the common value of B and C already.  Analysing
    630   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
    631   // for threading over phi nodes.
    632 
    633   return nullptr;
    634 }
    635 
    636 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
    637                              const SimplifyQuery &Query) {
    638   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
    639 }
    640 
    641 /// Compute the base pointer and cumulative constant offsets for V.
    642 ///
    643 /// This strips all constant offsets off of V, leaving it the base pointer, and
    644 /// accumulates the total constant offset applied in the returned constant. It
    645 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    646 /// no constant offsets applied.
    647 ///
    648 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
    649 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
    650 /// folding.
    651 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
    652                                                 bool AllowNonInbounds = false) {
    653   assert(V->getType()->isPtrOrPtrVectorTy());
    654 
    655   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
    656   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
    657 
    658   // Even though we don't look through PHI nodes, we could be called on an
    659   // instruction in an unreachable block, which may be on a cycle.
    660   SmallPtrSet<Value *, 4> Visited;
    661   Visited.insert(V);
    662   do {
    663     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    664       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
    665           !GEP->accumulateConstantOffset(DL, Offset))
    666         break;
    667       V = GEP->getPointerOperand();
    668     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    669       V = cast<Operator>(V)->getOperand(0);
    670     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    671       if (GA->isInterposable())
    672         break;
    673       V = GA->getAliasee();
    674     } else {
    675       if (auto CS = CallSite(V))
    676         if (Value *RV = CS.getReturnedArgOperand()) {
    677           V = RV;
    678           continue;
    679         }
    680       break;
    681     }
    682     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
    683   } while (Visited.insert(V).second);
    684 
    685   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
    686   if (V->getType()->isVectorTy())
    687     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
    688                                     OffsetIntPtr);
    689   return OffsetIntPtr;
    690 }
    691 
    692 /// Compute the constant difference between two pointer values.
    693 /// If the difference is not a constant, returns zero.
    694 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
    695                                           Value *RHS) {
    696   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
    697   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
    698 
    699   // If LHS and RHS are not related via constant offsets to the same base
    700   // value, there is nothing we can do here.
    701   if (LHS != RHS)
    702     return nullptr;
    703 
    704   // Otherwise, the difference of LHS - RHS can be computed as:
    705   //    LHS - RHS
    706   //  = (LHSOffset + Base) - (RHSOffset + Base)
    707   //  = LHSOffset - RHSOffset
    708   return ConstantExpr::getSub(LHSOffset, RHSOffset);
    709 }
    710 
    711 /// Given operands for a Sub, see if we can fold the result.
    712 /// If not, this returns null.
    713 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    714                               const SimplifyQuery &Q, unsigned MaxRecurse) {
    715   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
    716     return C;
    717 
    718   // X - undef -> undef
    719   // undef - X -> undef
    720   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    721     return UndefValue::get(Op0->getType());
    722 
    723   // X - 0 -> X
    724   if (match(Op1, m_Zero()))
    725     return Op0;
    726 
    727   // X - X -> 0
    728   if (Op0 == Op1)
    729     return Constant::getNullValue(Op0->getType());
    730 
    731   // Is this a negation?
    732   if (match(Op0, m_Zero())) {
    733     // 0 - X -> 0 if the sub is NUW.
    734     if (isNUW)
    735       return Constant::getNullValue(Op0->getType());
    736 
    737     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    738     if (Known.Zero.isMaxSignedValue()) {
    739       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
    740       // Op1 must be 0 because negating the minimum signed value is undefined.
    741       if (isNSW)
    742         return Constant::getNullValue(Op0->getType());
    743 
    744       // 0 - X -> X if X is 0 or the minimum signed value.
    745       return Op1;
    746     }
    747   }
    748 
    749   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
    750   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
    751   Value *X = nullptr, *Y = nullptr, *Z = Op1;
    752   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    753     // See if "V === Y - Z" simplifies.
    754     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
    755       // It does!  Now see if "X + V" simplifies.
    756       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
    757         // It does, we successfully reassociated!
    758         ++NumReassoc;
    759         return W;
    760       }
    761     // See if "V === X - Z" simplifies.
    762     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    763       // It does!  Now see if "Y + V" simplifies.
    764       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
    765         // It does, we successfully reassociated!
    766         ++NumReassoc;
    767         return W;
    768       }
    769   }
    770 
    771   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
    772   // For example, X - (X + 1) -> -1
    773   X = Op0;
    774   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    775     // See if "V === X - Y" simplifies.
    776     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    777       // It does!  Now see if "V - Z" simplifies.
    778       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
    779         // It does, we successfully reassociated!
    780         ++NumReassoc;
    781         return W;
    782       }
    783     // See if "V === X - Z" simplifies.
    784     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    785       // It does!  Now see if "V - Y" simplifies.
    786       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
    787         // It does, we successfully reassociated!
    788         ++NumReassoc;
    789         return W;
    790       }
    791   }
    792 
    793   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
    794   // For example, X - (X - Y) -> Y.
    795   Z = Op0;
    796   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    797     // See if "V === Z - X" simplifies.
    798     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
    799       // It does!  Now see if "V + Y" simplifies.
    800       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
    801         // It does, we successfully reassociated!
    802         ++NumReassoc;
    803         return W;
    804       }
    805 
    806   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
    807   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
    808       match(Op1, m_Trunc(m_Value(Y))))
    809     if (X->getType() == Y->getType())
    810       // See if "V === X - Y" simplifies.
    811       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    812         // It does!  Now see if "trunc V" simplifies.
    813         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
    814                                         Q, MaxRecurse - 1))
    815           // It does, return the simplified "trunc V".
    816           return W;
    817 
    818   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
    819   if (match(Op0, m_PtrToInt(m_Value(X))) &&
    820       match(Op1, m_PtrToInt(m_Value(Y))))
    821     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
    822       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
    823 
    824   // i1 sub -> xor.
    825   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
    826     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    827       return V;
    828 
    829   // Threading Sub over selects and phi nodes is pointless, so don't bother.
    830   // Threading over the select in "A - select(cond, B, C)" means evaluating
    831   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
    832   // only if B and C are equal.  If B and C are equal then (since we assume
    833   // that operands have already been simplified) "select(cond, B, C)" should
    834   // have been simplified to the common value of B and C already.  Analysing
    835   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
    836   // for threading over phi nodes.
    837 
    838   return nullptr;
    839 }
    840 
    841 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    842                              const SimplifyQuery &Q) {
    843   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
    844 }
    845 
    846 /// Given operands for a Mul, see if we can fold the result.
    847 /// If not, this returns null.
    848 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    849                               unsigned MaxRecurse) {
    850   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
    851     return C;
    852 
    853   // X * undef -> 0
    854   // X * 0 -> 0
    855   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
    856     return Constant::getNullValue(Op0->getType());
    857 
    858   // X * 1 -> X
    859   if (match(Op1, m_One()))
    860     return Op0;
    861 
    862   // (X / Y) * Y -> X if the division is exact.
    863   Value *X = nullptr;
    864   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
    865       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
    866     return X;
    867 
    868   // i1 mul -> and.
    869   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
    870     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
    871       return V;
    872 
    873   // Try some generic simplifications for associative operations.
    874   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
    875                                           MaxRecurse))
    876     return V;
    877 
    878   // Mul distributes over Add. Try some generic simplifications based on this.
    879   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
    880                              Q, MaxRecurse))
    881     return V;
    882 
    883   // If the operation is with the result of a select instruction, check whether
    884   // operating on either branch of the select always yields the same value.
    885   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    886     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
    887                                          MaxRecurse))
    888       return V;
    889 
    890   // If the operation is with the result of a phi instruction, check whether
    891   // operating on all incoming values of the phi always yields the same value.
    892   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    893     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
    894                                       MaxRecurse))
    895       return V;
    896 
    897   return nullptr;
    898 }
    899 
    900 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    901   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
    902 }
    903 
    904 /// Check for common or similar folds of integer division or integer remainder.
    905 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
    906 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
    907   Type *Ty = Op0->getType();
    908 
    909   // X / undef -> undef
    910   // X % undef -> undef
    911   if (match(Op1, m_Undef()))
    912     return Op1;
    913 
    914   // X / 0 -> undef
    915   // X % 0 -> undef
    916   // We don't need to preserve faults!
    917   if (match(Op1, m_Zero()))
    918     return UndefValue::get(Ty);
    919 
    920   // If any element of a constant divisor vector is zero or undef, the whole op
    921   // is undef.
    922   auto *Op1C = dyn_cast<Constant>(Op1);
    923   if (Op1C && Ty->isVectorTy()) {
    924     unsigned NumElts = Ty->getVectorNumElements();
    925     for (unsigned i = 0; i != NumElts; ++i) {
    926       Constant *Elt = Op1C->getAggregateElement(i);
    927       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
    928         return UndefValue::get(Ty);
    929     }
    930   }
    931 
    932   // undef / X -> 0
    933   // undef % X -> 0
    934   if (match(Op0, m_Undef()))
    935     return Constant::getNullValue(Ty);
    936 
    937   // 0 / X -> 0
    938   // 0 % X -> 0
    939   if (match(Op0, m_Zero()))
    940     return Constant::getNullValue(Op0->getType());
    941 
    942   // X / X -> 1
    943   // X % X -> 0
    944   if (Op0 == Op1)
    945     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
    946 
    947   // X / 1 -> X
    948   // X % 1 -> 0
    949   // If this is a boolean op (single-bit element type), we can't have
    950   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
    951   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
    952   Value *X;
    953   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
    954       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
    955     return IsDiv ? Op0 : Constant::getNullValue(Ty);
    956 
    957   return nullptr;
    958 }
    959 
    960 /// Given a predicate and two operands, return true if the comparison is true.
    961 /// This is a helper for div/rem simplification where we return some other value
    962 /// when we can prove a relationship between the operands.
    963 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
    964                        const SimplifyQuery &Q, unsigned MaxRecurse) {
    965   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
    966   Constant *C = dyn_cast_or_null<Constant>(V);
    967   return (C && C->isAllOnesValue());
    968 }
    969 
    970 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
    971 /// to simplify X % Y to X.
    972 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
    973                       unsigned MaxRecurse, bool IsSigned) {
    974   // Recursion is always used, so bail out at once if we already hit the limit.
    975   if (!MaxRecurse--)
    976     return false;
    977 
    978   if (IsSigned) {
    979     // |X| / |Y| --> 0
    980     //
    981     // We require that 1 operand is a simple constant. That could be extended to
    982     // 2 variables if we computed the sign bit for each.
    983     //
    984     // Make sure that a constant is not the minimum signed value because taking
    985     // the abs() of that is undefined.
    986     Type *Ty = X->getType();
    987     const APInt *C;
    988     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
    989       // Is the variable divisor magnitude always greater than the constant
    990       // dividend magnitude?
    991       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
    992       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
    993       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
    994       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
    995           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
    996         return true;
    997     }
    998     if (match(Y, m_APInt(C))) {
    999       // Special-case: we can't take the abs() of a minimum signed value. If
   1000       // that's the divisor, then all we have to do is prove that the dividend
   1001       // is also not the minimum signed value.
   1002       if (C->isMinSignedValue())
   1003         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
   1004 
   1005       // Is the variable dividend magnitude always less than the constant
   1006       // divisor magnitude?
   1007       // |X| < |C| --> X > -abs(C) and X < abs(C)
   1008       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
   1009       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
   1010       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
   1011           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
   1012         return true;
   1013     }
   1014     return false;
   1015   }
   1016 
   1017   // IsSigned == false.
   1018   // Is the dividend unsigned less than the divisor?
   1019   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
   1020 }
   1021 
   1022 /// These are simplifications common to SDiv and UDiv.
   1023 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   1024                           const SimplifyQuery &Q, unsigned MaxRecurse) {
   1025   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
   1026     return C;
   1027 
   1028   if (Value *V = simplifyDivRem(Op0, Op1, true))
   1029     return V;
   1030 
   1031   bool IsSigned = Opcode == Instruction::SDiv;
   1032 
   1033   // (X * Y) / Y -> X if the multiplication does not overflow.
   1034   Value *X;
   1035   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
   1036     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
   1037     // If the Mul does not overflow, then we are good to go.
   1038     if ((IsSigned && Mul->hasNoSignedWrap()) ||
   1039         (!IsSigned && Mul->hasNoUnsignedWrap()))
   1040       return X;
   1041     // If X has the form X = A / Y, then X * Y cannot overflow.
   1042     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
   1043         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
   1044       return X;
   1045   }
   1046 
   1047   // (X rem Y) / Y -> 0
   1048   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1049       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1050     return Constant::getNullValue(Op0->getType());
   1051 
   1052   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
   1053   ConstantInt *C1, *C2;
   1054   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
   1055       match(Op1, m_ConstantInt(C2))) {
   1056     bool Overflow;
   1057     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
   1058     if (Overflow)
   1059       return Constant::getNullValue(Op0->getType());
   1060   }
   1061 
   1062   // If the operation is with the result of a select instruction, check whether
   1063   // operating on either branch of the select always yields the same value.
   1064   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1065     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1066       return V;
   1067 
   1068   // If the operation is with the result of a phi instruction, check whether
   1069   // operating on all incoming values of the phi always yields the same value.
   1070   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1071     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1072       return V;
   1073 
   1074   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
   1075     return Constant::getNullValue(Op0->getType());
   1076 
   1077   return nullptr;
   1078 }
   1079 
   1080 /// These are simplifications common to SRem and URem.
   1081 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   1082                           const SimplifyQuery &Q, unsigned MaxRecurse) {
   1083   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
   1084     return C;
   1085 
   1086   if (Value *V = simplifyDivRem(Op0, Op1, false))
   1087     return V;
   1088 
   1089   // (X % Y) % Y -> X % Y
   1090   if ((Opcode == Instruction::SRem &&
   1091        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1092       (Opcode == Instruction::URem &&
   1093        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1094     return Op0;
   1095 
   1096   // (X << Y) % X -> 0
   1097   if ((Opcode == Instruction::SRem &&
   1098        match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
   1099       (Opcode == Instruction::URem &&
   1100        match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))
   1101     return Constant::getNullValue(Op0->getType());
   1102 
   1103   // If the operation is with the result of a select instruction, check whether
   1104   // operating on either branch of the select always yields the same value.
   1105   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1106     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1107       return V;
   1108 
   1109   // If the operation is with the result of a phi instruction, check whether
   1110   // operating on all incoming values of the phi always yields the same value.
   1111   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1112     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1113       return V;
   1114 
   1115   // If X / Y == 0, then X % Y == X.
   1116   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
   1117     return Op0;
   1118 
   1119   return nullptr;
   1120 }
   1121 
   1122 /// Given operands for an SDiv, see if we can fold the result.
   1123 /// If not, this returns null.
   1124 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   1125                                unsigned MaxRecurse) {
   1126   // If two operands are negated and no signed overflow, return -1.
   1127   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
   1128     return Constant::getAllOnesValue(Op0->getType());
   1129 
   1130   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
   1131 }
   1132 
   1133 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   1134   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
   1135 }
   1136 
   1137 /// Given operands for a UDiv, see if we can fold the result.
   1138 /// If not, this returns null.
   1139 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   1140                                unsigned MaxRecurse) {
   1141   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
   1142 }
   1143 
   1144 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   1145   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
   1146 }
   1147 
   1148 /// Given operands for an SRem, see if we can fold the result.
   1149 /// If not, this returns null.
   1150 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   1151                                unsigned MaxRecurse) {
   1152   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
   1153   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
   1154   Value *X;
   1155   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
   1156     return ConstantInt::getNullValue(Op0->getType());
   1157 
   1158   // If the two operands are negated, return 0.
   1159   if (isKnownNegation(Op0, Op1))
   1160     return ConstantInt::getNullValue(Op0->getType());
   1161 
   1162   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
   1163 }
   1164 
   1165 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   1166   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
   1167 }
   1168 
   1169 /// Given operands for a URem, see if we can fold the result.
   1170 /// If not, this returns null.
   1171 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   1172                                unsigned MaxRecurse) {
   1173   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
   1174 }
   1175 
   1176 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   1177   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
   1178 }
   1179 
   1180 /// Returns true if a shift by \c Amount always yields undef.
   1181 static bool isUndefShift(Value *Amount) {
   1182   Constant *C = dyn_cast<Constant>(Amount);
   1183   if (!C)
   1184     return false;
   1185 
   1186   // X shift by undef -> undef because it may shift by the bitwidth.
   1187   if (isa<UndefValue>(C))
   1188     return true;
   1189 
   1190   // Shifting by the bitwidth or more is undefined.
   1191   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1192     if (CI->getValue().getLimitedValue() >=
   1193         CI->getType()->getScalarSizeInBits())
   1194       return true;
   1195 
   1196   // If all lanes of a vector shift are undefined the whole shift is.
   1197   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
   1198     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
   1199       if (!isUndefShift(C->getAggregateElement(I)))
   1200         return false;
   1201     return true;
   1202   }
   1203 
   1204   return false;
   1205 }
   1206 
   1207 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
   1208 /// If not, this returns null.
   1209 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
   1210                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
   1211   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
   1212     return C;
   1213 
   1214   // 0 shift by X -> 0
   1215   if (match(Op0, m_Zero()))
   1216     return Constant::getNullValue(Op0->getType());
   1217 
   1218   // X shift by 0 -> X
   1219   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
   1220   // would be poison.
   1221   Value *X;
   1222   if (match(Op1, m_Zero()) ||
   1223       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
   1224     return Op0;
   1225 
   1226   // Fold undefined shifts.
   1227   if (isUndefShift(Op1))
   1228     return UndefValue::get(Op0->getType());
   1229 
   1230   // If the operation is with the result of a select instruction, check whether
   1231   // operating on either branch of the select always yields the same value.
   1232   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1233     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1234       return V;
   1235 
   1236   // If the operation is with the result of a phi instruction, check whether
   1237   // operating on all incoming values of the phi always yields the same value.
   1238   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1239     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1240       return V;
   1241 
   1242   // If any bits in the shift amount make that value greater than or equal to
   1243   // the number of bits in the type, the shift is undefined.
   1244   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1245   if (Known.One.getLimitedValue() >= Known.getBitWidth())
   1246     return UndefValue::get(Op0->getType());
   1247 
   1248   // If all valid bits in the shift amount are known zero, the first operand is
   1249   // unchanged.
   1250   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
   1251   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
   1252     return Op0;
   1253 
   1254   return nullptr;
   1255 }
   1256 
   1257 /// Given operands for an Shl, LShr or AShr, see if we can
   1258 /// fold the result.  If not, this returns null.
   1259 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
   1260                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
   1261                                  unsigned MaxRecurse) {
   1262   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
   1263     return V;
   1264 
   1265   // X >> X -> 0
   1266   if (Op0 == Op1)
   1267     return Constant::getNullValue(Op0->getType());
   1268 
   1269   // undef >> X -> 0
   1270   // undef >> X -> undef (if it's exact)
   1271   if (match(Op0, m_Undef()))
   1272     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
   1273 
   1274   // The low bit cannot be shifted out of an exact shift if it is set.
   1275   if (isExact) {
   1276     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
   1277     if (Op0Known.One[0])
   1278       return Op0;
   1279   }
   1280 
   1281   return nullptr;
   1282 }
   1283 
   1284 /// Given operands for an Shl, see if we can fold the result.
   1285 /// If not, this returns null.
   1286 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1287                               const SimplifyQuery &Q, unsigned MaxRecurse) {
   1288   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
   1289     return V;
   1290 
   1291   // undef << X -> 0
   1292   // undef << X -> undef if (if it's NSW/NUW)
   1293   if (match(Op0, m_Undef()))
   1294     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
   1295 
   1296   // (X >> A) << A -> X
   1297   Value *X;
   1298   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
   1299     return X;
   1300 
   1301   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
   1302   if (isNUW && match(Op0, m_Negative()))
   1303     return Op0;
   1304   // NOTE: could use computeKnownBits() / LazyValueInfo,
   1305   // but the cost-benefit analysis suggests it isn't worth it.
   1306 
   1307   return nullptr;
   1308 }
   1309 
   1310 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1311                              const SimplifyQuery &Q) {
   1312   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
   1313 }
   1314 
   1315 /// Given operands for an LShr, see if we can fold the result.
   1316 /// If not, this returns null.
   1317 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1318                                const SimplifyQuery &Q, unsigned MaxRecurse) {
   1319   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
   1320                                     MaxRecurse))
   1321       return V;
   1322 
   1323   // (X << A) >> A -> X
   1324   Value *X;
   1325   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
   1326     return X;
   1327 
   1328   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
   1329   // We can return X as we do in the above case since OR alters no bits in X.
   1330   // SimplifyDemandedBits in InstCombine can do more general optimization for
   1331   // bit manipulation. This pattern aims to provide opportunities for other
   1332   // optimizers by supporting a simple but common case in InstSimplify.
   1333   Value *Y;
   1334   const APInt *ShRAmt, *ShLAmt;
   1335   if (match(Op1, m_APInt(ShRAmt)) &&
   1336       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
   1337       *ShRAmt == *ShLAmt) {
   1338     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1339     const unsigned Width = Op0->getType()->getScalarSizeInBits();
   1340     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
   1341     if (ShRAmt->uge(EffWidthY))
   1342       return X;
   1343   }
   1344 
   1345   return nullptr;
   1346 }
   1347 
   1348 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1349                               const SimplifyQuery &Q) {
   1350   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
   1351 }
   1352 
   1353 /// Given operands for an AShr, see if we can fold the result.
   1354 /// If not, this returns null.
   1355 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1356                                const SimplifyQuery &Q, unsigned MaxRecurse) {
   1357   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
   1358                                     MaxRecurse))
   1359     return V;
   1360 
   1361   // all ones >>a X -> -1
   1362   // Do not return Op0 because it may contain undef elements if it's a vector.
   1363   if (match(Op0, m_AllOnes()))
   1364     return Constant::getAllOnesValue(Op0->getType());
   1365 
   1366   // (X << A) >> A -> X
   1367   Value *X;
   1368   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
   1369     return X;
   1370 
   1371   // Arithmetic shifting an all-sign-bit value is a no-op.
   1372   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1373   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
   1374     return Op0;
   1375 
   1376   return nullptr;
   1377 }
   1378 
   1379 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1380                               const SimplifyQuery &Q) {
   1381   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
   1382 }
   1383 
   1384 /// Commuted variants are assumed to be handled by calling this function again
   1385 /// with the parameters swapped.
   1386 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
   1387                                          ICmpInst *UnsignedICmp, bool IsAnd) {
   1388   Value *X, *Y;
   1389 
   1390   ICmpInst::Predicate EqPred;
   1391   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
   1392       !ICmpInst::isEquality(EqPred))
   1393     return nullptr;
   1394 
   1395   ICmpInst::Predicate UnsignedPred;
   1396   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
   1397       ICmpInst::isUnsigned(UnsignedPred))
   1398     ;
   1399   else if (match(UnsignedICmp,
   1400                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
   1401            ICmpInst::isUnsigned(UnsignedPred))
   1402     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
   1403   else
   1404     return nullptr;
   1405 
   1406   // X < Y && Y != 0  -->  X < Y
   1407   // X < Y || Y != 0  -->  Y != 0
   1408   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
   1409     return IsAnd ? UnsignedICmp : ZeroICmp;
   1410 
   1411   // X >= Y || Y != 0  -->  true
   1412   // X >= Y || Y == 0  -->  X >= Y
   1413   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
   1414     if (EqPred == ICmpInst::ICMP_NE)
   1415       return getTrue(UnsignedICmp->getType());
   1416     return UnsignedICmp;
   1417   }
   1418 
   1419   // X < Y && Y == 0  -->  false
   1420   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
   1421       IsAnd)
   1422     return getFalse(UnsignedICmp->getType());
   1423 
   1424   return nullptr;
   1425 }
   1426 
   1427 /// Commuted variants are assumed to be handled by calling this function again
   1428 /// with the parameters swapped.
   1429 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
   1430   ICmpInst::Predicate Pred0, Pred1;
   1431   Value *A ,*B;
   1432   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
   1433       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
   1434     return nullptr;
   1435 
   1436   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
   1437   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
   1438   // can eliminate Op1 from this 'and'.
   1439   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
   1440     return Op0;
   1441 
   1442   // Check for any combination of predicates that are guaranteed to be disjoint.
   1443   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
   1444       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
   1445       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
   1446       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
   1447     return getFalse(Op0->getType());
   1448 
   1449   return nullptr;
   1450 }
   1451 
   1452 /// Commuted variants are assumed to be handled by calling this function again
   1453 /// with the parameters swapped.
   1454 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
   1455   ICmpInst::Predicate Pred0, Pred1;
   1456   Value *A ,*B;
   1457   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
   1458       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
   1459     return nullptr;
   1460 
   1461   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
   1462   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
   1463   // can eliminate Op0 from this 'or'.
   1464   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
   1465     return Op1;
   1466 
   1467   // Check for any combination of predicates that cover the entire range of
   1468   // possibilities.
   1469   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
   1470       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
   1471       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
   1472       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
   1473     return getTrue(Op0->getType());
   1474 
   1475   return nullptr;
   1476 }
   1477 
   1478 /// Test if a pair of compares with a shared operand and 2 constants has an
   1479 /// empty set intersection, full set union, or if one compare is a superset of
   1480 /// the other.
   1481 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
   1482                                                 bool IsAnd) {
   1483   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
   1484   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
   1485     return nullptr;
   1486 
   1487   const APInt *C0, *C1;
   1488   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
   1489       !match(Cmp1->getOperand(1), m_APInt(C1)))
   1490     return nullptr;
   1491 
   1492   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
   1493   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
   1494 
   1495   // For and-of-compares, check if the intersection is empty:
   1496   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
   1497   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
   1498     return getFalse(Cmp0->getType());
   1499 
   1500   // For or-of-compares, check if the union is full:
   1501   // (icmp X, C0) || (icmp X, C1) --> full set --> true
   1502   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
   1503     return getTrue(Cmp0->getType());
   1504 
   1505   // Is one range a superset of the other?
   1506   // If this is and-of-compares, take the smaller set:
   1507   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
   1508   // If this is or-of-compares, take the larger set:
   1509   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
   1510   if (Range0.contains(Range1))
   1511     return IsAnd ? Cmp1 : Cmp0;
   1512   if (Range1.contains(Range0))
   1513     return IsAnd ? Cmp0 : Cmp1;
   1514 
   1515   return nullptr;
   1516 }
   1517 
   1518 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
   1519                                            bool IsAnd) {
   1520   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
   1521   if (!match(Cmp0->getOperand(1), m_Zero()) ||
   1522       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
   1523     return nullptr;
   1524 
   1525   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
   1526     return nullptr;
   1527 
   1528   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
   1529   Value *X = Cmp0->getOperand(0);
   1530   Value *Y = Cmp1->getOperand(0);
   1531 
   1532   // If one of the compares is a masked version of a (not) null check, then
   1533   // that compare implies the other, so we eliminate the other. Optionally, look
   1534   // through a pointer-to-int cast to match a null check of a pointer type.
   1535 
   1536   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
   1537   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
   1538   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
   1539   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
   1540   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
   1541       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
   1542     return Cmp1;
   1543 
   1544   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
   1545   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
   1546   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
   1547   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
   1548   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
   1549       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
   1550     return Cmp0;
   1551 
   1552   return nullptr;
   1553 }
   1554 
   1555 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
   1556   // (icmp (add V, C0), C1) & (icmp V, C0)
   1557   ICmpInst::Predicate Pred0, Pred1;
   1558   const APInt *C0, *C1;
   1559   Value *V;
   1560   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
   1561     return nullptr;
   1562 
   1563   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
   1564     return nullptr;
   1565 
   1566   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
   1567   if (AddInst->getOperand(1) != Op1->getOperand(1))
   1568     return nullptr;
   1569 
   1570   Type *ITy = Op0->getType();
   1571   bool isNSW = AddInst->hasNoSignedWrap();
   1572   bool isNUW = AddInst->hasNoUnsignedWrap();
   1573 
   1574   const APInt Delta = *C1 - *C0;
   1575   if (C0->isStrictlyPositive()) {
   1576     if (Delta == 2) {
   1577       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
   1578         return getFalse(ITy);
   1579       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
   1580         return getFalse(ITy);
   1581     }
   1582     if (Delta == 1) {
   1583       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
   1584         return getFalse(ITy);
   1585       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
   1586         return getFalse(ITy);
   1587     }
   1588   }
   1589   if (C0->getBoolValue() && isNUW) {
   1590     if (Delta == 2)
   1591       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
   1592         return getFalse(ITy);
   1593     if (Delta == 1)
   1594       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
   1595         return getFalse(ITy);
   1596   }
   1597 
   1598   return nullptr;
   1599 }
   1600 
   1601 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
   1602   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
   1603     return X;
   1604   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
   1605     return X;
   1606 
   1607   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
   1608     return X;
   1609   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
   1610     return X;
   1611 
   1612   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
   1613     return X;
   1614 
   1615   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
   1616     return X;
   1617 
   1618   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
   1619     return X;
   1620   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
   1621     return X;
   1622 
   1623   return nullptr;
   1624 }
   1625 
   1626 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
   1627   // (icmp (add V, C0), C1) | (icmp V, C0)
   1628   ICmpInst::Predicate Pred0, Pred1;
   1629   const APInt *C0, *C1;
   1630   Value *V;
   1631   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
   1632     return nullptr;
   1633 
   1634   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
   1635     return nullptr;
   1636 
   1637   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
   1638   if (AddInst->getOperand(1) != Op1->getOperand(1))
   1639     return nullptr;
   1640 
   1641   Type *ITy = Op0->getType();
   1642   bool isNSW = AddInst->hasNoSignedWrap();
   1643   bool isNUW = AddInst->hasNoUnsignedWrap();
   1644 
   1645   const APInt Delta = *C1 - *C0;
   1646   if (C0->isStrictlyPositive()) {
   1647     if (Delta == 2) {
   1648       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
   1649         return getTrue(ITy);
   1650       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
   1651         return getTrue(ITy);
   1652     }
   1653     if (Delta == 1) {
   1654       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
   1655         return getTrue(ITy);
   1656       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
   1657         return getTrue(ITy);
   1658     }
   1659   }
   1660   if (C0->getBoolValue() && isNUW) {
   1661     if (Delta == 2)
   1662       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
   1663         return getTrue(ITy);
   1664     if (Delta == 1)
   1665       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
   1666         return getTrue(ITy);
   1667   }
   1668 
   1669   return nullptr;
   1670 }
   1671 
   1672 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
   1673   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
   1674     return X;
   1675   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
   1676     return X;
   1677 
   1678   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
   1679     return X;
   1680   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
   1681     return X;
   1682 
   1683   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
   1684     return X;
   1685 
   1686   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
   1687     return X;
   1688 
   1689   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
   1690     return X;
   1691   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
   1692     return X;
   1693 
   1694   return nullptr;
   1695 }
   1696 
   1697 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
   1698   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
   1699   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
   1700   if (LHS0->getType() != RHS0->getType())
   1701     return nullptr;
   1702 
   1703   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
   1704   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
   1705       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
   1706     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
   1707     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
   1708     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
   1709     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
   1710     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
   1711     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
   1712     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
   1713     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
   1714     if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
   1715         (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1)))
   1716       return RHS;
   1717 
   1718     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
   1719     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
   1720     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
   1721     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
   1722     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
   1723     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
   1724     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
   1725     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
   1726     if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
   1727         (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1)))
   1728       return LHS;
   1729   }
   1730 
   1731   return nullptr;
   1732 }
   1733 
   1734 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) {
   1735   // Look through casts of the 'and' operands to find compares.
   1736   auto *Cast0 = dyn_cast<CastInst>(Op0);
   1737   auto *Cast1 = dyn_cast<CastInst>(Op1);
   1738   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
   1739       Cast0->getSrcTy() == Cast1->getSrcTy()) {
   1740     Op0 = Cast0->getOperand(0);
   1741     Op1 = Cast1->getOperand(0);
   1742   }
   1743 
   1744   Value *V = nullptr;
   1745   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
   1746   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
   1747   if (ICmp0 && ICmp1)
   1748     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) :
   1749                 simplifyOrOfICmps(ICmp0, ICmp1);
   1750 
   1751   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
   1752   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
   1753   if (FCmp0 && FCmp1)
   1754     V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd);
   1755 
   1756   if (!V)
   1757     return nullptr;
   1758   if (!Cast0)
   1759     return V;
   1760 
   1761   // If we looked through casts, we can only handle a constant simplification
   1762   // because we are not allowed to create a cast instruction here.
   1763   if (auto *C = dyn_cast<Constant>(V))
   1764     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
   1765 
   1766   return nullptr;
   1767 }
   1768 
   1769 /// Given operands for an And, see if we can fold the result.
   1770 /// If not, this returns null.
   1771 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   1772                               unsigned MaxRecurse) {
   1773   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
   1774     return C;
   1775 
   1776   // X & undef -> 0
   1777   if (match(Op1, m_Undef()))
   1778     return Constant::getNullValue(Op0->getType());
   1779 
   1780   // X & X = X
   1781   if (Op0 == Op1)
   1782     return Op0;
   1783 
   1784   // X & 0 = 0
   1785   if (match(Op1, m_Zero()))
   1786     return Constant::getNullValue(Op0->getType());
   1787 
   1788   // X & -1 = X
   1789   if (match(Op1, m_AllOnes()))
   1790     return Op0;
   1791 
   1792   // A & ~A  =  ~A & A  =  0
   1793   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1794       match(Op1, m_Not(m_Specific(Op0))))
   1795     return Constant::getNullValue(Op0->getType());
   1796 
   1797   // (A | ?) & A = A
   1798   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
   1799     return Op1;
   1800 
   1801   // A & (A | ?) = A
   1802   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
   1803     return Op0;
   1804 
   1805   // A mask that only clears known zeros of a shifted value is a no-op.
   1806   Value *X;
   1807   const APInt *Mask;
   1808   const APInt *ShAmt;
   1809   if (match(Op1, m_APInt(Mask))) {
   1810     // If all bits in the inverted and shifted mask are clear:
   1811     // and (shl X, ShAmt), Mask --> shl X, ShAmt
   1812     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
   1813         (~(*Mask)).lshr(*ShAmt).isNullValue())
   1814       return Op0;
   1815 
   1816     // If all bits in the inverted and shifted mask are clear:
   1817     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
   1818     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
   1819         (~(*Mask)).shl(*ShAmt).isNullValue())
   1820       return Op0;
   1821   }
   1822 
   1823   // A & (-A) = A if A is a power of two or zero.
   1824   if (match(Op0, m_Neg(m_Specific(Op1))) ||
   1825       match(Op1, m_Neg(m_Specific(Op0)))) {
   1826     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
   1827                                Q.DT))
   1828       return Op0;
   1829     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
   1830                                Q.DT))
   1831       return Op1;
   1832   }
   1833 
   1834   if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true))
   1835     return V;
   1836 
   1837   // Try some generic simplifications for associative operations.
   1838   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
   1839                                           MaxRecurse))
   1840     return V;
   1841 
   1842   // And distributes over Or.  Try some generic simplifications based on this.
   1843   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1844                              Q, MaxRecurse))
   1845     return V;
   1846 
   1847   // And distributes over Xor.  Try some generic simplifications based on this.
   1848   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
   1849                              Q, MaxRecurse))
   1850     return V;
   1851 
   1852   // If the operation is with the result of a select instruction, check whether
   1853   // operating on either branch of the select always yields the same value.
   1854   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1855     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
   1856                                          MaxRecurse))
   1857       return V;
   1858 
   1859   // If the operation is with the result of a phi instruction, check whether
   1860   // operating on all incoming values of the phi always yields the same value.
   1861   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1862     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
   1863                                       MaxRecurse))
   1864       return V;
   1865 
   1866   // Assuming the effective width of Y is not larger than A, i.e. all bits
   1867   // from X and Y are disjoint in (X << A) | Y,
   1868   // if the mask of this AND op covers all bits of X or Y, while it covers
   1869   // no bits from the other, we can bypass this AND op. E.g.,
   1870   // ((X << A) | Y) & Mask -> Y,
   1871   //     if Mask = ((1 << effective_width_of(Y)) - 1)
   1872   // ((X << A) | Y) & Mask -> X << A,
   1873   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
   1874   // SimplifyDemandedBits in InstCombine can optimize the general case.
   1875   // This pattern aims to help other passes for a common case.
   1876   Value *Y, *XShifted;
   1877   if (match(Op1, m_APInt(Mask)) &&
   1878       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
   1879                                      m_Value(XShifted)),
   1880                         m_Value(Y)))) {
   1881     const unsigned Width = Op0->getType()->getScalarSizeInBits();
   1882     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
   1883     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1884     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
   1885     if (EffWidthY <= ShftCnt) {
   1886       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
   1887                                                 Q.DT);
   1888       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
   1889       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
   1890       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
   1891       // If the mask is extracting all bits from X or Y as is, we can skip
   1892       // this AND op.
   1893       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
   1894         return Y;
   1895       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
   1896         return XShifted;
   1897     }
   1898   }
   1899 
   1900   return nullptr;
   1901 }
   1902 
   1903 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   1904   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
   1905 }
   1906 
   1907 /// Given operands for an Or, see if we can fold the result.
   1908 /// If not, this returns null.
   1909 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   1910                              unsigned MaxRecurse) {
   1911   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
   1912     return C;
   1913 
   1914   // X | undef -> -1
   1915   // X | -1 = -1
   1916   // Do not return Op1 because it may contain undef elements if it's a vector.
   1917   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
   1918     return Constant::getAllOnesValue(Op0->getType());
   1919 
   1920   // X | X = X
   1921   // X | 0 = X
   1922   if (Op0 == Op1 || match(Op1, m_Zero()))
   1923     return Op0;
   1924 
   1925   // A | ~A  =  ~A | A  =  -1
   1926   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1927       match(Op1, m_Not(m_Specific(Op0))))
   1928     return Constant::getAllOnesValue(Op0->getType());
   1929 
   1930   // (A & ?) | A = A
   1931   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
   1932     return Op1;
   1933 
   1934   // A | (A & ?) = A
   1935   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
   1936     return Op0;
   1937 
   1938   // ~(A & ?) | A = -1
   1939   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
   1940     return Constant::getAllOnesValue(Op1->getType());
   1941 
   1942   // A | ~(A & ?) = -1
   1943   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
   1944     return Constant::getAllOnesValue(Op0->getType());
   1945 
   1946   Value *A, *B;
   1947   // (A & ~B) | (A ^ B) -> (A ^ B)
   1948   // (~B & A) | (A ^ B) -> (A ^ B)
   1949   // (A & ~B) | (B ^ A) -> (B ^ A)
   1950   // (~B & A) | (B ^ A) -> (B ^ A)
   1951   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   1952       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
   1953        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
   1954     return Op1;
   1955 
   1956   // Commute the 'or' operands.
   1957   // (A ^ B) | (A & ~B) -> (A ^ B)
   1958   // (A ^ B) | (~B & A) -> (A ^ B)
   1959   // (B ^ A) | (A & ~B) -> (B ^ A)
   1960   // (B ^ A) | (~B & A) -> (B ^ A)
   1961   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
   1962       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
   1963        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
   1964     return Op0;
   1965 
   1966   // (A & B) | (~A ^ B) -> (~A ^ B)
   1967   // (B & A) | (~A ^ B) -> (~A ^ B)
   1968   // (A & B) | (B ^ ~A) -> (B ^ ~A)
   1969   // (B & A) | (B ^ ~A) -> (B ^ ~A)
   1970   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1971       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
   1972        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
   1973     return Op1;
   1974 
   1975   // (~A ^ B) | (A & B) -> (~A ^ B)
   1976   // (~A ^ B) | (B & A) -> (~A ^ B)
   1977   // (B ^ ~A) | (A & B) -> (B ^ ~A)
   1978   // (B ^ ~A) | (B & A) -> (B ^ ~A)
   1979   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
   1980       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
   1981        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
   1982     return Op0;
   1983 
   1984   if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false))
   1985     return V;
   1986 
   1987   // Try some generic simplifications for associative operations.
   1988   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
   1989                                           MaxRecurse))
   1990     return V;
   1991 
   1992   // Or distributes over And.  Try some generic simplifications based on this.
   1993   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
   1994                              MaxRecurse))
   1995     return V;
   1996 
   1997   // If the operation is with the result of a select instruction, check whether
   1998   // operating on either branch of the select always yields the same value.
   1999   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   2000     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
   2001                                          MaxRecurse))
   2002       return V;
   2003 
   2004   // (A & C1)|(B & C2)
   2005   const APInt *C1, *C2;
   2006   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
   2007       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
   2008     if (*C1 == ~*C2) {
   2009       // (A & C1)|(B & C2)
   2010       // If we have: ((V + N) & C1) | (V & C2)
   2011       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   2012       // replace with V+N.
   2013       Value *N;
   2014       if (C2->isMask() && // C2 == 0+1+
   2015           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
   2016         // Add commutes, try both ways.
   2017         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2018           return A;
   2019       }
   2020       // Or commutes, try both ways.
   2021       if (C1->isMask() &&
   2022           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
   2023         // Add commutes, try both ways.
   2024         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2025           return B;
   2026       }
   2027     }
   2028   }
   2029 
   2030   // If the operation is with the result of a phi instruction, check whether
   2031   // operating on all incoming values of the phi always yields the same value.
   2032   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   2033     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
   2034       return V;
   2035 
   2036   return nullptr;
   2037 }
   2038 
   2039 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   2040   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
   2041 }
   2042 
   2043 /// Given operands for a Xor, see if we can fold the result.
   2044 /// If not, this returns null.
   2045 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
   2046                               unsigned MaxRecurse) {
   2047   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
   2048     return C;
   2049 
   2050   // A ^ undef -> undef
   2051   if (match(Op1, m_Undef()))
   2052     return Op1;
   2053 
   2054   // A ^ 0 = A
   2055   if (match(Op1, m_Zero()))
   2056     return Op0;
   2057 
   2058   // A ^ A = 0
   2059   if (Op0 == Op1)
   2060     return Constant::getNullValue(Op0->getType());
   2061 
   2062   // A ^ ~A  =  ~A ^ A  =  -1
   2063   if (match(Op0, m_Not(m_Specific(Op1))) ||
   2064       match(Op1, m_Not(m_Specific(Op0))))
   2065     return Constant::getAllOnesValue(Op0->getType());
   2066 
   2067   // Try some generic simplifications for associative operations.
   2068   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
   2069                                           MaxRecurse))
   2070     return V;
   2071 
   2072   // Threading Xor over selects and phi nodes is pointless, so don't bother.
   2073   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
   2074   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
   2075   // only if B and C are equal.  If B and C are equal then (since we assume
   2076   // that operands have already been simplified) "select(cond, B, C)" should
   2077   // have been simplified to the common value of B and C already.  Analysing
   2078   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
   2079   // for threading over phi nodes.
   2080 
   2081   return nullptr;
   2082 }
   2083 
   2084 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
   2085   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
   2086 }
   2087 
   2088 
   2089 static Type *GetCompareTy(Value *Op) {
   2090   return CmpInst::makeCmpResultType(Op->getType());
   2091 }
   2092 
   2093 /// Rummage around inside V looking for something equivalent to the comparison
   2094 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
   2095 /// Helper function for analyzing max/min idioms.
   2096 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
   2097                                          Value *LHS, Value *RHS) {
   2098   SelectInst *SI = dyn_cast<SelectInst>(V);
   2099   if (!SI)
   2100     return nullptr;
   2101   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   2102   if (!Cmp)
   2103     return nullptr;
   2104   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
   2105   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
   2106     return Cmp;
   2107   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
   2108       LHS == CmpRHS && RHS == CmpLHS)
   2109     return Cmp;
   2110   return nullptr;
   2111 }
   2112 
   2113 // A significant optimization not implemented here is assuming that alloca
   2114 // addresses are not equal to incoming argument values. They don't *alias*,
   2115 // as we say, but that doesn't mean they aren't equal, so we take a
   2116 // conservative approach.
   2117 //
   2118 // This is inspired in part by C++11 5.10p1:
   2119 //   "Two pointers of the same type compare equal if and only if they are both
   2120 //    null, both point to the same function, or both represent the same
   2121 //    address."
   2122 //
   2123 // This is pretty permissive.
   2124 //
   2125 // It's also partly due to C11 6.5.9p6:
   2126 //   "Two pointers compare equal if and only if both are null pointers, both are
   2127 //    pointers to the same object (including a pointer to an object and a
   2128 //    subobject at its beginning) or function, both are pointers to one past the
   2129 //    last element of the same array object, or one is a pointer to one past the
   2130 //    end of one array object and the other is a pointer to the start of a
   2131 //    different array object that happens to immediately follow the first array
   2132 //    object in the address space.)
   2133 //
   2134 // C11's version is more restrictive, however there's no reason why an argument
   2135 // couldn't be a one-past-the-end value for a stack object in the caller and be
   2136 // equal to the beginning of a stack object in the callee.
   2137 //
   2138 // If the C and C++ standards are ever made sufficiently restrictive in this
   2139 // area, it may be possible to update LLVM's semantics accordingly and reinstate
   2140 // this optimization.
   2141 static Constant *
   2142 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
   2143                    const DominatorTree *DT, CmpInst::Predicate Pred,
   2144                    AssumptionCache *AC, const Instruction *CxtI,
   2145                    Value *LHS, Value *RHS) {
   2146   // First, skip past any trivial no-ops.
   2147   LHS = LHS->stripPointerCasts();
   2148   RHS = RHS->stripPointerCasts();
   2149 
   2150   // A non-null pointer is not equal to a null pointer.
   2151   if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) &&
   2152       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
   2153     return ConstantInt::get(GetCompareTy(LHS),
   2154                             !CmpInst::isTrueWhenEqual(Pred));
   2155 
   2156   // We can only fold certain predicates on pointer comparisons.
   2157   switch (Pred) {
   2158   default:
   2159     return nullptr;
   2160 
   2161     // Equality comaprisons are easy to fold.
   2162   case CmpInst::ICMP_EQ:
   2163   case CmpInst::ICMP_NE:
   2164     break;
   2165 
   2166     // We can only handle unsigned relational comparisons because 'inbounds' on
   2167     // a GEP only protects against unsigned wrapping.
   2168   case CmpInst::ICMP_UGT:
   2169   case CmpInst::ICMP_UGE:
   2170   case CmpInst::ICMP_ULT:
   2171   case CmpInst::ICMP_ULE:
   2172     // However, we have to switch them to their signed variants to handle
   2173     // negative indices from the base pointer.
   2174     Pred = ICmpInst::getSignedPredicate(Pred);
   2175     break;
   2176   }
   2177 
   2178   // Strip off any constant offsets so that we can reason about them.
   2179   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
   2180   // here and compare base addresses like AliasAnalysis does, however there are
   2181   // numerous hazards. AliasAnalysis and its utilities rely on special rules
   2182   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
   2183   // doesn't need to guarantee pointer inequality when it says NoAlias.
   2184   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
   2185   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
   2186 
   2187   // If LHS and RHS are related via constant offsets to the same base
   2188   // value, we can replace it with an icmp which just compares the offsets.
   2189   if (LHS == RHS)
   2190     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
   2191 
   2192   // Various optimizations for (in)equality comparisons.
   2193   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
   2194     // Different non-empty allocations that exist at the same time have
   2195     // different addresses (if the program can tell). Global variables always
   2196     // exist, so they always exist during the lifetime of each other and all
   2197     // allocas. Two different allocas usually have different addresses...
   2198     //
   2199     // However, if there's an @llvm.stackrestore dynamically in between two
   2200     // allocas, they may have the same address. It's tempting to reduce the
   2201     // scope of the problem by only looking at *static* allocas here. That would
   2202     // cover the majority of allocas while significantly reducing the likelihood
   2203     // of having an @llvm.stackrestore pop up in the middle. However, it's not
   2204     // actually impossible for an @llvm.stackrestore to pop up in the middle of
   2205     // an entry block. Also, if we have a block that's not attached to a
   2206     // function, we can't tell if it's "static" under the current definition.
   2207     // Theoretically, this problem could be fixed by creating a new kind of
   2208     // instruction kind specifically for static allocas. Such a new instruction
   2209     // could be required to be at the top of the entry block, thus preventing it
   2210     // from being subject to a @llvm.stackrestore. Instcombine could even
   2211     // convert regular allocas into these special allocas. It'd be nifty.
   2212     // However, until then, this problem remains open.
   2213     //
   2214     // So, we'll assume that two non-empty allocas have different addresses
   2215     // for now.
   2216     //
   2217     // With all that, if the offsets are within the bounds of their allocations
   2218     // (and not one-past-the-end! so we can't use inbounds!), and their
   2219     // allocations aren't the same, the pointers are not equal.
   2220     //
   2221     // Note that it's not necessary to check for LHS being a global variable
   2222     // address, due to canonicalization and constant folding.
   2223     if (isa<AllocaInst>(LHS) &&
   2224         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
   2225       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
   2226       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
   2227       uint64_t LHSSize, RHSSize;
   2228       ObjectSizeOpts Opts;
   2229       Opts.NullIsUnknownSize =
   2230           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
   2231       if (LHSOffsetCI && RHSOffsetCI &&
   2232           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
   2233           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
   2234         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
   2235         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
   2236         if (!LHSOffsetValue.isNegative() &&
   2237             !RHSOffsetValue.isNegative() &&
   2238             LHSOffsetValue.ult(LHSSize) &&
   2239             RHSOffsetValue.ult(RHSSize)) {
   2240           return ConstantInt::get(GetCompareTy(LHS),
   2241                                   !CmpInst::isTrueWhenEqual(Pred));
   2242         }
   2243       }
   2244 
   2245       // Repeat the above check but this time without depending on DataLayout
   2246       // or being able to compute a precise size.
   2247       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
   2248           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
   2249           LHSOffset->isNullValue() &&
   2250           RHSOffset->isNullValue())
   2251         return ConstantInt::get(GetCompareTy(LHS),
   2252                                 !CmpInst::isTrueWhenEqual(Pred));
   2253     }
   2254 
   2255     // Even if an non-inbounds GEP occurs along the path we can still optimize
   2256     // equality comparisons concerning the result. We avoid walking the whole
   2257     // chain again by starting where the last calls to
   2258     // stripAndComputeConstantOffsets left off and accumulate the offsets.
   2259     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
   2260     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
   2261     if (LHS == RHS)
   2262       return ConstantExpr::getICmp(Pred,
   2263                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
   2264                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
   2265 
   2266     // If one side of the equality comparison must come from a noalias call
   2267     // (meaning a system memory allocation function), and the other side must
   2268     // come from a pointer that cannot overlap with dynamically-allocated
   2269     // memory within the lifetime of the current function (allocas, byval
   2270     // arguments, globals), then determine the comparison result here.
   2271     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
   2272     GetUnderlyingObjects(LHS, LHSUObjs, DL);
   2273     GetUnderlyingObjects(RHS, RHSUObjs, DL);
   2274 
   2275     // Is the set of underlying objects all noalias calls?
   2276     auto IsNAC = [](ArrayRef<Value *> Objects) {
   2277       return all_of(Objects, isNoAliasCall);
   2278     };
   2279 
   2280     // Is the set of underlying objects all things which must be disjoint from
   2281     // noalias calls. For allocas, we consider only static ones (dynamic
   2282     // allocas might be transformed into calls to malloc not simultaneously
   2283     // live with the compared-to allocation). For globals, we exclude symbols
   2284     // that might be resolve lazily to symbols in another dynamically-loaded
   2285     // library (and, thus, could be malloc'ed by the implementation).
   2286     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
   2287       return all_of(Objects, [](Value *V) {
   2288         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
   2289           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
   2290         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
   2291           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
   2292                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
   2293                  !GV->isThreadLocal();
   2294         if (const Argument *A = dyn_cast<Argument>(V))
   2295           return A->hasByValAttr();
   2296         return false;
   2297       });
   2298     };
   2299 
   2300     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
   2301         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
   2302         return ConstantInt::get(GetCompareTy(LHS),
   2303                                 !CmpInst::isTrueWhenEqual(Pred));
   2304 
   2305     // Fold comparisons for non-escaping pointer even if the allocation call
   2306     // cannot be elided. We cannot fold malloc comparison to null. Also, the
   2307     // dynamic allocation call could be either of the operands.
   2308     Value *MI = nullptr;
   2309     if (isAllocLikeFn(LHS, TLI) &&
   2310         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
   2311       MI = LHS;
   2312     else if (isAllocLikeFn(RHS, TLI) &&
   2313              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
   2314       MI = RHS;
   2315     // FIXME: We should also fold the compare when the pointer escapes, but the
   2316     // compare dominates the pointer escape
   2317     if (MI && !PointerMayBeCaptured(MI, true, true))
   2318       return ConstantInt::get(GetCompareTy(LHS),
   2319                               CmpInst::isFalseWhenEqual(Pred));
   2320   }
   2321 
   2322   // Otherwise, fail.
   2323   return nullptr;
   2324 }
   2325 
   2326 /// Fold an icmp when its operands have i1 scalar type.
   2327 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
   2328                                   Value *RHS, const SimplifyQuery &Q) {
   2329   Type *ITy = GetCompareTy(LHS); // The return type.
   2330   Type *OpTy = LHS->getType();   // The operand type.
   2331   if (!OpTy->isIntOrIntVectorTy(1))
   2332     return nullptr;
   2333 
   2334   // A boolean compared to true/false can be simplified in 14 out of the 20
   2335   // (10 predicates * 2 constants) possible combinations. Cases not handled here
   2336   // require a 'not' of the LHS, so those must be transformed in InstCombine.
   2337   if (match(RHS, m_Zero())) {
   2338     switch (Pred) {
   2339     case CmpInst::ICMP_NE:  // X !=  0 -> X
   2340     case CmpInst::ICMP_UGT: // X >u  0 -> X
   2341     case CmpInst::ICMP_SLT: // X <s  0 -> X
   2342       return LHS;
   2343 
   2344     case CmpInst::ICMP_ULT: // X <u  0 -> false
   2345     case CmpInst::ICMP_SGT: // X >s  0 -> false
   2346       return getFalse(ITy);
   2347 
   2348     case CmpInst::ICMP_UGE: // X >=u 0 -> true
   2349     case CmpInst::ICMP_SLE: // X <=s 0 -> true
   2350       return getTrue(ITy);
   2351 
   2352     default: break;
   2353     }
   2354   } else if (match(RHS, m_One())) {
   2355     switch (Pred) {
   2356     case CmpInst::ICMP_EQ:  // X ==   1 -> X
   2357     case CmpInst::ICMP_UGE: // X >=u  1 -> X
   2358     case CmpInst::ICMP_SLE: // X <=s -1 -> X
   2359       return LHS;
   2360 
   2361     case CmpInst::ICMP_UGT: // X >u   1 -> false
   2362     case CmpInst::ICMP_SLT: // X <s  -1 -> false
   2363       return getFalse(ITy);
   2364 
   2365     case CmpInst::ICMP_ULE: // X <=u  1 -> true
   2366     case CmpInst::ICMP_SGE: // X >=s -1 -> true
   2367       return getTrue(ITy);
   2368 
   2369     default: break;
   2370     }
   2371   }
   2372 
   2373   switch (Pred) {
   2374   default:
   2375     break;
   2376   case ICmpInst::ICMP_UGE:
   2377     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
   2378       return getTrue(ITy);
   2379     break;
   2380   case ICmpInst::ICMP_SGE:
   2381     /// For signed comparison, the values for an i1 are 0 and -1
   2382     /// respectively. This maps into a truth table of:
   2383     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
   2384     ///  0  |  0  |  1 (0 >= 0)   |  1
   2385     ///  0  |  1  |  1 (0 >= -1)  |  1
   2386     ///  1  |  0  |  0 (-1 >= 0)  |  0
   2387     ///  1  |  1  |  1 (-1 >= -1) |  1
   2388     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
   2389       return getTrue(ITy);
   2390     break;
   2391   case ICmpInst::ICMP_ULE:
   2392     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
   2393       return getTrue(ITy);
   2394     break;
   2395   }
   2396 
   2397   return nullptr;
   2398 }
   2399 
   2400 /// Try hard to fold icmp with zero RHS because this is a common case.
   2401 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
   2402                                    Value *RHS, const SimplifyQuery &Q) {
   2403   if (!match(RHS, m_Zero()))
   2404     return nullptr;
   2405 
   2406   Type *ITy = GetCompareTy(LHS); // The return type.
   2407   switch (Pred) {
   2408   default:
   2409     llvm_unreachable("Unknown ICmp predicate!");
   2410   case ICmpInst::ICMP_ULT:
   2411     return getFalse(ITy);
   2412   case ICmpInst::ICMP_UGE:
   2413     return getTrue(ITy);
   2414   case ICmpInst::ICMP_EQ:
   2415   case ICmpInst::ICMP_ULE:
   2416     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2417       return getFalse(ITy);
   2418     break;
   2419   case ICmpInst::ICMP_NE:
   2420   case ICmpInst::ICMP_UGT:
   2421     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2422       return getTrue(ITy);
   2423     break;
   2424   case ICmpInst::ICMP_SLT: {
   2425     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2426     if (LHSKnown.isNegative())
   2427       return getTrue(ITy);
   2428     if (LHSKnown.isNonNegative())
   2429       return getFalse(ITy);
   2430     break;
   2431   }
   2432   case ICmpInst::ICMP_SLE: {
   2433     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2434     if (LHSKnown.isNegative())
   2435       return getTrue(ITy);
   2436     if (LHSKnown.isNonNegative() &&
   2437         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2438       return getFalse(ITy);
   2439     break;
   2440   }
   2441   case ICmpInst::ICMP_SGE: {
   2442     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2443     if (LHSKnown.isNegative())
   2444       return getFalse(ITy);
   2445     if (LHSKnown.isNonNegative())
   2446       return getTrue(ITy);
   2447     break;
   2448   }
   2449   case ICmpInst::ICMP_SGT: {
   2450     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2451     if (LHSKnown.isNegative())
   2452       return getFalse(ITy);
   2453     if (LHSKnown.isNonNegative() &&
   2454         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2455       return getTrue(ITy);
   2456     break;
   2457   }
   2458   }
   2459 
   2460   return nullptr;
   2461 }
   2462 
   2463 /// Many binary operators with a constant operand have an easy-to-compute
   2464 /// range of outputs. This can be used to fold a comparison to always true or
   2465 /// always false.
   2466 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
   2467   unsigned Width = Lower.getBitWidth();
   2468   const APInt *C;
   2469   switch (BO.getOpcode()) {
   2470   case Instruction::Add:
   2471     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
   2472       // FIXME: If we have both nuw and nsw, we should reduce the range further.
   2473       if (BO.hasNoUnsignedWrap()) {
   2474         // 'add nuw x, C' produces [C, UINT_MAX].
   2475         Lower = *C;
   2476       } else if (BO.hasNoSignedWrap()) {
   2477         if (C->isNegative()) {
   2478           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
   2479           Lower = APInt::getSignedMinValue(Width);
   2480           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
   2481         } else {
   2482           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
   2483           Lower = APInt::getSignedMinValue(Width) + *C;
   2484           Upper = APInt::getSignedMaxValue(Width) + 1;
   2485         }
   2486       }
   2487     }
   2488     break;
   2489 
   2490   case Instruction::And:
   2491     if (match(BO.getOperand(1), m_APInt(C)))
   2492       // 'and x, C' produces [0, C].
   2493       Upper = *C + 1;
   2494     break;
   2495 
   2496   case Instruction::Or:
   2497     if (match(BO.getOperand(1), m_APInt(C)))
   2498       // 'or x, C' produces [C, UINT_MAX].
   2499       Lower = *C;
   2500     break;
   2501 
   2502   case Instruction::AShr:
   2503     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
   2504       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
   2505       Lower = APInt::getSignedMinValue(Width).ashr(*C);
   2506       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
   2507     } else if (match(BO.getOperand(0), m_APInt(C))) {
   2508       unsigned ShiftAmount = Width - 1;
   2509       if (!C->isNullValue() && BO.isExact())
   2510         ShiftAmount = C->countTrailingZeros();
   2511       if (C->isNegative()) {
   2512         // 'ashr C, x' produces [C, C >> (Width-1)]
   2513         Lower = *C;
   2514         Upper = C->ashr(ShiftAmount) + 1;
   2515       } else {
   2516         // 'ashr C, x' produces [C >> (Width-1), C]
   2517         Lower = C->ashr(ShiftAmount);
   2518         Upper = *C + 1;
   2519       }
   2520     }
   2521     break;
   2522 
   2523   case Instruction::LShr:
   2524     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
   2525       // 'lshr x, C' produces [0, UINT_MAX >> C].
   2526       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
   2527     } else if (match(BO.getOperand(0), m_APInt(C))) {
   2528       // 'lshr C, x' produces [C >> (Width-1), C].
   2529       unsigned ShiftAmount = Width - 1;
   2530       if (!C->isNullValue() && BO.isExact())
   2531         ShiftAmount = C->countTrailingZeros();
   2532       Lower = C->lshr(ShiftAmount);
   2533       Upper = *C + 1;
   2534     }
   2535     break;
   2536 
   2537   case Instruction::Shl:
   2538     if (match(BO.getOperand(0), m_APInt(C))) {
   2539       if (BO.hasNoUnsignedWrap()) {
   2540         // 'shl nuw C, x' produces [C, C << CLZ(C)]
   2541         Lower = *C;
   2542         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
   2543       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
   2544         if (C->isNegative()) {
   2545           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
   2546           unsigned ShiftAmount = C->countLeadingOnes() - 1;
   2547           Lower = C->shl(ShiftAmount);
   2548           Upper = *C + 1;
   2549         } else {
   2550           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
   2551           unsigned ShiftAmount = C->countLeadingZeros() - 1;
   2552           Lower = *C;
   2553           Upper = C->shl(ShiftAmount) + 1;
   2554         }
   2555       }
   2556     }
   2557     break;
   2558 
   2559   case Instruction::SDiv:
   2560     if (match(BO.getOperand(1), m_APInt(C))) {
   2561       APInt IntMin = APInt::getSignedMinValue(Width);
   2562       APInt IntMax = APInt::getSignedMaxValue(Width);
   2563       if (C->isAllOnesValue()) {
   2564         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
   2565         //    where C != -1 and C != 0 and C != 1
   2566         Lower = IntMin + 1;
   2567         Upper = IntMax + 1;
   2568       } else if (C->countLeadingZeros() < Width - 1) {
   2569         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
   2570         //    where C != -1 and C != 0 and C != 1
   2571         Lower = IntMin.sdiv(*C);
   2572         Upper = IntMax.sdiv(*C);
   2573         if (Lower.sgt(Upper))
   2574           std::swap(Lower, Upper);
   2575         Upper = Upper + 1;
   2576         assert(Upper != Lower && "Upper part of range has wrapped!");
   2577       }
   2578     } else if (match(BO.getOperand(0), m_APInt(C))) {
   2579       if (C->isMinSignedValue()) {
   2580         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
   2581         Lower = *C;
   2582         Upper = Lower.lshr(1) + 1;
   2583       } else {
   2584         // 'sdiv C, x' produces [-|C|, |C|].
   2585         Upper = C->abs() + 1;
   2586         Lower = (-Upper) + 1;
   2587       }
   2588     }
   2589     break;
   2590 
   2591   case Instruction::UDiv:
   2592     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
   2593       // 'udiv x, C' produces [0, UINT_MAX / C].
   2594       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
   2595     } else if (match(BO.getOperand(0), m_APInt(C))) {
   2596       // 'udiv C, x' produces [0, C].
   2597       Upper = *C + 1;
   2598     }
   2599     break;
   2600 
   2601   case Instruction::SRem:
   2602     if (match(BO.getOperand(1), m_APInt(C))) {
   2603       // 'srem x, C' produces (-|C|, |C|).
   2604       Upper = C->abs();
   2605       Lower = (-Upper) + 1;
   2606     }
   2607     break;
   2608 
   2609   case Instruction::URem:
   2610     if (match(BO.getOperand(1), m_APInt(C)))
   2611       // 'urem x, C' produces [0, C).
   2612       Upper = *C;
   2613     break;
   2614 
   2615   default:
   2616     break;
   2617   }
   2618 }
   2619 
   2620 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
   2621                                        Value *RHS) {
   2622   Type *ITy = GetCompareTy(RHS); // The return type.
   2623 
   2624   Value *X;
   2625   // Sign-bit checks can be optimized to true/false after unsigned
   2626   // floating-point casts:
   2627   // icmp slt (bitcast (uitofp X)),  0 --> false
   2628   // icmp sgt (bitcast (uitofp X)), -1 --> true
   2629   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
   2630     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
   2631       return ConstantInt::getFalse(ITy);
   2632     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
   2633       return ConstantInt::getTrue(ITy);
   2634   }
   2635 
   2636   const APInt *C;
   2637   if (!match(RHS, m_APInt(C)))
   2638     return nullptr;
   2639 
   2640   // Rule out tautological comparisons (eg., ult 0 or uge 0).
   2641   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
   2642   if (RHS_CR.isEmptySet())
   2643     return ConstantInt::getFalse(ITy);
   2644   if (RHS_CR.isFullSet())
   2645     return ConstantInt::getTrue(ITy);
   2646 
   2647   // Find the range of possible values for binary operators.
   2648   unsigned Width = C->getBitWidth();
   2649   APInt Lower = APInt(Width, 0);
   2650   APInt Upper = APInt(Width, 0);
   2651   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
   2652     setLimitsForBinOp(*BO, Lower, Upper);
   2653 
   2654   ConstantRange LHS_CR =
   2655       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
   2656 
   2657   if (auto *I = dyn_cast<Instruction>(LHS))
   2658     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
   2659       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
   2660 
   2661   if (!LHS_CR.isFullSet()) {
   2662     if (RHS_CR.contains(LHS_CR))
   2663       return ConstantInt::getTrue(ITy);
   2664     if (RHS_CR.inverse().contains(LHS_CR))
   2665       return ConstantInt::getFalse(ITy);
   2666   }
   2667 
   2668   return nullptr;
   2669 }
   2670 
   2671 /// TODO: A large part of this logic is duplicated in InstCombine's
   2672 /// foldICmpBinOp(). We should be able to share that and avoid the code
   2673 /// duplication.
   2674 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
   2675                                     Value *RHS, const SimplifyQuery &Q,
   2676                                     unsigned MaxRecurse) {
   2677   Type *ITy = GetCompareTy(LHS); // The return type.
   2678 
   2679   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   2680   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
   2681   if (MaxRecurse && (LBO || RBO)) {
   2682     // Analyze the case when either LHS or RHS is an add instruction.
   2683     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   2684     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
   2685     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
   2686     if (LBO && LBO->getOpcode() == Instruction::Add) {
   2687       A = LBO->getOperand(0);
   2688       B = LBO->getOperand(1);
   2689       NoLHSWrapProblem =
   2690           ICmpInst::isEquality(Pred) ||
   2691           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
   2692           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
   2693     }
   2694     if (RBO && RBO->getOpcode() == Instruction::Add) {
   2695       C = RBO->getOperand(0);
   2696       D = RBO->getOperand(1);
   2697       NoRHSWrapProblem =
   2698           ICmpInst::isEquality(Pred) ||
   2699           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
   2700           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
   2701     }
   2702 
   2703     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2704     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
   2705       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
   2706                                       Constant::getNullValue(RHS->getType()), Q,
   2707                                       MaxRecurse - 1))
   2708         return V;
   2709 
   2710     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2711     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
   2712       if (Value *V =
   2713               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
   2714                                C == LHS ? D : C, Q, MaxRecurse - 1))
   2715         return V;
   2716 
   2717     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
   2718     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
   2719         NoRHSWrapProblem) {
   2720       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2721       Value *Y, *Z;
   2722       if (A == C) {
   2723         // C + B == C + D  ->  B == D
   2724         Y = B;
   2725         Z = D;
   2726       } else if (A == D) {
   2727         // D + B == C + D  ->  B == C
   2728         Y = B;
   2729         Z = C;
   2730       } else if (B == C) {
   2731         // A + C == C + D  ->  A == D
   2732         Y = A;
   2733         Z = D;
   2734       } else {
   2735         assert(B == D);
   2736         // A + D == C + D  ->  A == C
   2737         Y = A;
   2738         Z = C;
   2739       }
   2740       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
   2741         return V;
   2742     }
   2743   }
   2744 
   2745   {
   2746     Value *Y = nullptr;
   2747     // icmp pred (or X, Y), X
   2748     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
   2749       if (Pred == ICmpInst::ICMP_ULT)
   2750         return getFalse(ITy);
   2751       if (Pred == ICmpInst::ICMP_UGE)
   2752         return getTrue(ITy);
   2753 
   2754       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
   2755         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2756         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2757         if (RHSKnown.isNonNegative() && YKnown.isNegative())
   2758           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
   2759         if (RHSKnown.isNegative() || YKnown.isNonNegative())
   2760           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
   2761       }
   2762     }
   2763     // icmp pred X, (or X, Y)
   2764     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
   2765       if (Pred == ICmpInst::ICMP_ULE)
   2766         return getTrue(ITy);
   2767       if (Pred == ICmpInst::ICMP_UGT)
   2768         return getFalse(ITy);
   2769 
   2770       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
   2771         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2772         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2773         if (LHSKnown.isNonNegative() && YKnown.isNegative())
   2774           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
   2775         if (LHSKnown.isNegative() || YKnown.isNonNegative())
   2776           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
   2777       }
   2778     }
   2779   }
   2780 
   2781   // icmp pred (and X, Y), X
   2782   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
   2783     if (Pred == ICmpInst::ICMP_UGT)
   2784       return getFalse(ITy);
   2785     if (Pred == ICmpInst::ICMP_ULE)
   2786       return getTrue(ITy);
   2787   }
   2788   // icmp pred X, (and X, Y)
   2789   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
   2790     if (Pred == ICmpInst::ICMP_UGE)
   2791       return getTrue(ITy);
   2792     if (Pred == ICmpInst::ICMP_ULT)
   2793       return getFalse(ITy);
   2794   }
   2795 
   2796   // 0 - (zext X) pred C
   2797   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
   2798     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   2799       if (RHSC->getValue().isStrictlyPositive()) {
   2800         if (Pred == ICmpInst::ICMP_SLT)
   2801           return ConstantInt::getTrue(RHSC->getContext());
   2802         if (Pred == ICmpInst::ICMP_SGE)
   2803           return ConstantInt::getFalse(RHSC->getContext());
   2804         if (Pred == ICmpInst::ICMP_EQ)
   2805           return ConstantInt::getFalse(RHSC->getContext());
   2806         if (Pred == ICmpInst::ICMP_NE)
   2807           return ConstantInt::getTrue(RHSC->getContext());
   2808       }
   2809       if (RHSC->getValue().isNonNegative()) {
   2810         if (Pred == ICmpInst::ICMP_SLE)
   2811           return ConstantInt::getTrue(RHSC->getContext());
   2812         if (Pred == ICmpInst::ICMP_SGT)
   2813           return ConstantInt::getFalse(RHSC->getContext());
   2814       }
   2815     }
   2816   }
   2817 
   2818   // icmp pred (urem X, Y), Y
   2819   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
   2820     switch (Pred) {
   2821     default:
   2822       break;
   2823     case ICmpInst::ICMP_SGT:
   2824     case ICmpInst::ICMP_SGE: {
   2825       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2826       if (!Known.isNonNegative())
   2827         break;
   2828       LLVM_FALLTHROUGH;
   2829     }
   2830     case ICmpInst::ICMP_EQ:
   2831     case ICmpInst::ICMP_UGT:
   2832     case ICmpInst::ICMP_UGE:
   2833       return getFalse(ITy);
   2834     case ICmpInst::ICMP_SLT:
   2835     case ICmpInst::ICMP_SLE: {
   2836       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2837       if (!Known.isNonNegative())
   2838         break;
   2839       LLVM_FALLTHROUGH;
   2840     }
   2841     case ICmpInst::ICMP_NE:
   2842     case ICmpInst::ICMP_ULT:
   2843     case ICmpInst::ICMP_ULE:
   2844       return getTrue(ITy);
   2845     }
   2846   }
   2847 
   2848   // icmp pred X, (urem Y, X)
   2849   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
   2850     switch (Pred) {
   2851     default:
   2852       break;
   2853     case ICmpInst::ICMP_SGT:
   2854     case ICmpInst::ICMP_SGE: {
   2855       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2856       if (!Known.isNonNegative())
   2857         break;
   2858       LLVM_FALLTHROUGH;
   2859     }
   2860     case ICmpInst::ICMP_NE:
   2861     case ICmpInst::ICMP_UGT:
   2862     case ICmpInst::ICMP_UGE:
   2863       return getTrue(ITy);
   2864     case ICmpInst::ICMP_SLT:
   2865     case ICmpInst::ICMP_SLE: {
   2866       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   2867       if (!Known.isNonNegative())
   2868         break;
   2869       LLVM_FALLTHROUGH;
   2870     }
   2871     case ICmpInst::ICMP_EQ:
   2872     case ICmpInst::ICMP_ULT:
   2873     case ICmpInst::ICMP_ULE:
   2874       return getFalse(ITy);
   2875     }
   2876   }
   2877 
   2878   // x >> y <=u x
   2879   // x udiv y <=u x.
   2880   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
   2881               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
   2882     // icmp pred (X op Y), X
   2883     if (Pred == ICmpInst::ICMP_UGT)
   2884       return getFalse(ITy);
   2885     if (Pred == ICmpInst::ICMP_ULE)
   2886       return getTrue(ITy);
   2887   }
   2888 
   2889   // x >=u x >> y
   2890   // x >=u x udiv y.
   2891   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
   2892               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
   2893     // icmp pred X, (X op Y)
   2894     if (Pred == ICmpInst::ICMP_ULT)
   2895       return getFalse(ITy);
   2896     if (Pred == ICmpInst::ICMP_UGE)
   2897       return getTrue(ITy);
   2898   }
   2899 
   2900   // handle:
   2901   //   CI2 << X == CI
   2902   //   CI2 << X != CI
   2903   //
   2904   //   where CI2 is a power of 2 and CI isn't
   2905   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
   2906     const APInt *CI2Val, *CIVal = &CI->getValue();
   2907     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
   2908         CI2Val->isPowerOf2()) {
   2909       if (!CIVal->isPowerOf2()) {
   2910         // CI2 << X can equal zero in some circumstances,
   2911         // this simplification is unsafe if CI is zero.
   2912         //
   2913         // We know it is safe if:
   2914         // - The shift is nsw, we can't shift out the one bit.
   2915         // - The shift is nuw, we can't shift out the one bit.
   2916         // - CI2 is one
   2917         // - CI isn't zero
   2918         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
   2919             CI2Val->isOneValue() || !CI->isZero()) {
   2920           if (Pred == ICmpInst::ICMP_EQ)
   2921             return ConstantInt::getFalse(RHS->getContext());
   2922           if (Pred == ICmpInst::ICMP_NE)
   2923             return ConstantInt::getTrue(RHS->getContext());
   2924         }
   2925       }
   2926       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
   2927         if (Pred == ICmpInst::ICMP_UGT)
   2928           return ConstantInt::getFalse(RHS->getContext());
   2929         if (Pred == ICmpInst::ICMP_ULE)
   2930           return ConstantInt::getTrue(RHS->getContext());
   2931       }
   2932     }
   2933   }
   2934 
   2935   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
   2936       LBO->getOperand(1) == RBO->getOperand(1)) {
   2937     switch (LBO->getOpcode()) {
   2938     default:
   2939       break;
   2940     case Instruction::UDiv:
   2941     case Instruction::LShr:
   2942       if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
   2943         break;
   2944       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2945                                       RBO->getOperand(0), Q, MaxRecurse - 1))
   2946           return V;
   2947       break;
   2948     case Instruction::SDiv:
   2949       if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
   2950         break;
   2951       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2952                                       RBO->getOperand(0), Q, MaxRecurse - 1))
   2953         return V;
   2954       break;
   2955     case Instruction::AShr:
   2956       if (!LBO->isExact() || !RBO->isExact())
   2957         break;
   2958       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2959                                       RBO->getOperand(0), Q, MaxRecurse - 1))
   2960         return V;
   2961       break;
   2962     case Instruction::Shl: {
   2963       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
   2964       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
   2965       if (!NUW && !NSW)
   2966         break;
   2967       if (!NSW && ICmpInst::isSigned(Pred))
   2968         break;
   2969       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2970                                       RBO->getOperand(0), Q, MaxRecurse - 1))
   2971         return V;
   2972       break;
   2973     }
   2974     }
   2975   }
   2976   return nullptr;
   2977 }
   2978 
   2979 /// Simplify integer comparisons where at least one operand of the compare
   2980 /// matches an integer min/max idiom.
   2981 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
   2982                                      Value *RHS, const SimplifyQuery &Q,
   2983                                      unsigned MaxRecurse) {
   2984   Type *ITy = GetCompareTy(LHS); // The return type.
   2985   Value *A, *B;
   2986   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
   2987   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
   2988 
   2989   // Signed variants on "max(a,b)>=a -> true".
   2990   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2991     if (A != RHS)
   2992       std::swap(A, B);       // smax(A, B) pred A.
   2993     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2994     // We analyze this as smax(A, B) pred A.
   2995     P = Pred;
   2996   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
   2997              (A == LHS || B == LHS)) {
   2998     if (A != LHS)
   2999       std::swap(A, B);       // A pred smax(A, B).
   3000     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   3001     // We analyze this as smax(A, B) swapped-pred A.
   3002     P = CmpInst::getSwappedPredicate(Pred);
   3003   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   3004              (A == RHS || B == RHS)) {
   3005     if (A != RHS)
   3006       std::swap(A, B);       // smin(A, B) pred A.
   3007     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   3008     // We analyze this as smax(-A, -B) swapped-pred -A.
   3009     // Note that we do not need to actually form -A or -B thanks to EqP.
   3010     P = CmpInst::getSwappedPredicate(Pred);
   3011   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
   3012              (A == LHS || B == LHS)) {
   3013     if (A != LHS)
   3014       std::swap(A, B);       // A pred smin(A, B).
   3015     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   3016     // We analyze this as smax(-A, -B) pred -A.
   3017     // Note that we do not need to actually form -A or -B thanks to EqP.
   3018     P = Pred;
   3019   }
   3020   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   3021     // Cases correspond to "max(A, B) p A".
   3022     switch (P) {
   3023     default:
   3024       break;
   3025     case CmpInst::ICMP_EQ:
   3026     case CmpInst::ICMP_SLE:
   3027       // Equivalent to "A EqP B".  This may be the same as the condition tested
   3028       // in the max/min; if so, we can just return that.
   3029       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   3030         return V;
   3031       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   3032         return V;
   3033       // Otherwise, see if "A EqP B" simplifies.
   3034       if (MaxRecurse)
   3035         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
   3036           return V;
   3037       break;
   3038     case CmpInst::ICMP_NE:
   3039     case CmpInst::ICMP_SGT: {
   3040       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   3041       // Equivalent to "A InvEqP B".  This may be the same as the condition
   3042       // tested in the max/min; if so, we can just return that.
   3043       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   3044         return V;
   3045       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   3046         return V;
   3047       // Otherwise, see if "A InvEqP B" simplifies.
   3048       if (MaxRecurse)
   3049         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
   3050           return V;
   3051       break;
   3052     }
   3053     case CmpInst::ICMP_SGE:
   3054       // Always true.
   3055       return getTrue(ITy);
   3056     case CmpInst::ICMP_SLT:
   3057       // Always false.
   3058       return getFalse(ITy);
   3059     }
   3060   }
   3061 
   3062   // Unsigned variants on "max(a,b)>=a -> true".
   3063   P = CmpInst::BAD_ICMP_PREDICATE;
   3064   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   3065     if (A != RHS)
   3066       std::swap(A, B);       // umax(A, B) pred A.
   3067     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   3068     // We analyze this as umax(A, B) pred A.
   3069     P = Pred;
   3070   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
   3071              (A == LHS || B == LHS)) {
   3072     if (A != LHS)
   3073       std::swap(A, B);       // A pred umax(A, B).
   3074     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   3075     // We analyze this as umax(A, B) swapped-pred A.
   3076     P = CmpInst::getSwappedPredicate(Pred);
   3077   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   3078              (A == RHS || B == RHS)) {
   3079     if (A != RHS)
   3080       std::swap(A, B);       // umin(A, B) pred A.
   3081     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   3082     // We analyze this as umax(-A, -B) swapped-pred -A.
   3083     // Note that we do not need to actually form -A or -B thanks to EqP.
   3084     P = CmpInst::getSwappedPredicate(Pred);
   3085   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
   3086              (A == LHS || B == LHS)) {
   3087     if (A != LHS)
   3088       std::swap(A, B);       // A pred umin(A, B).
   3089     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   3090     // We analyze this as umax(-A, -B) pred -A.
   3091     // Note that we do not need to actually form -A or -B thanks to EqP.
   3092     P = Pred;
   3093   }
   3094   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   3095     // Cases correspond to "max(A, B) p A".
   3096     switch (P) {
   3097     default:
   3098       break;
   3099     case CmpInst::ICMP_EQ:
   3100     case CmpInst::ICMP_ULE:
   3101       // Equivalent to "A EqP B".  This may be the same as the condition tested
   3102       // in the max/min; if so, we can just return that.
   3103       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   3104         return V;
   3105       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   3106         return V;
   3107       // Otherwise, see if "A EqP B" simplifies.
   3108       if (MaxRecurse)
   3109         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
   3110           return V;
   3111       break;
   3112     case CmpInst::ICMP_NE:
   3113     case CmpInst::ICMP_UGT: {
   3114       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   3115       // Equivalent to "A InvEqP B".  This may be the same as the condition
   3116       // tested in the max/min; if so, we can just return that.
   3117       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   3118         return V;
   3119       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   3120         return V;
   3121       // Otherwise, see if "A InvEqP B" simplifies.
   3122       if (MaxRecurse)
   3123         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
   3124           return V;
   3125       break;
   3126     }
   3127     case CmpInst::ICMP_UGE:
   3128       // Always true.
   3129       return getTrue(ITy);
   3130     case CmpInst::ICMP_ULT:
   3131       // Always false.
   3132       return getFalse(ITy);
   3133     }
   3134   }
   3135 
   3136   // Variants on "max(x,y) >= min(x,z)".
   3137   Value *C, *D;
   3138   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
   3139       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
   3140       (A == C || A == D || B == C || B == D)) {
   3141     // max(x, ?) pred min(x, ?).
   3142     if (Pred == CmpInst::ICMP_SGE)
   3143       // Always true.
   3144       return getTrue(ITy);
   3145     if (Pred == CmpInst::ICMP_SLT)
   3146       // Always false.
   3147       return getFalse(ITy);
   3148   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   3149              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
   3150              (A == C || A == D || B == C || B == D)) {
   3151     // min(x, ?) pred max(x, ?).
   3152     if (Pred == CmpInst::ICMP_SLE)
   3153       // Always true.
   3154       return getTrue(ITy);
   3155     if (Pred == CmpInst::ICMP_SGT)
   3156       // Always false.
   3157       return getFalse(ITy);
   3158   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
   3159              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
   3160              (A == C || A == D || B == C || B == D)) {
   3161     // max(x, ?) pred min(x, ?).
   3162     if (Pred == CmpInst::ICMP_UGE)
   3163       // Always true.
   3164       return getTrue(ITy);
   3165     if (Pred == CmpInst::ICMP_ULT)
   3166       // Always false.
   3167       return getFalse(ITy);
   3168   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   3169              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
   3170              (A == C || A == D || B == C || B == D)) {
   3171     // min(x, ?) pred max(x, ?).
   3172     if (Pred == CmpInst::ICMP_ULE)
   3173       // Always true.
   3174       return getTrue(ITy);
   3175     if (Pred == CmpInst::ICMP_UGT)
   3176       // Always false.
   3177       return getFalse(ITy);
   3178   }
   3179 
   3180   return nullptr;
   3181 }
   3182 
   3183 /// Given operands for an ICmpInst, see if we can fold the result.
   3184 /// If not, this returns null.
   3185 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3186                                const SimplifyQuery &Q, unsigned MaxRecurse) {
   3187   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   3188   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
   3189 
   3190   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   3191     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   3192       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   3193 
   3194     // If we have a constant, make sure it is on the RHS.
   3195     std::swap(LHS, RHS);
   3196     Pred = CmpInst::getSwappedPredicate(Pred);
   3197   }
   3198 
   3199   Type *ITy = GetCompareTy(LHS); // The return type.
   3200 
   3201   // icmp X, X -> true/false
   3202   // icmp X, undef -> true/false because undef could be X.
   3203   if (LHS == RHS || isa<UndefValue>(RHS))
   3204     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   3205 
   3206   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
   3207     return V;
   3208 
   3209   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
   3210     return V;
   3211 
   3212   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
   3213     return V;
   3214 
   3215   // If both operands have range metadata, use the metadata
   3216   // to simplify the comparison.
   3217   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
   3218     auto RHS_Instr = cast<Instruction>(RHS);
   3219     auto LHS_Instr = cast<Instruction>(LHS);
   3220 
   3221     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
   3222         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
   3223       auto RHS_CR = getConstantRangeFromMetadata(
   3224           *RHS_Instr->getMetadata(LLVMContext::MD_range));
   3225       auto LHS_CR = getConstantRangeFromMetadata(
   3226           *LHS_Instr->getMetadata(LLVMContext::MD_range));
   3227 
   3228       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
   3229       if (Satisfied_CR.contains(LHS_CR))
   3230         return ConstantInt::getTrue(RHS->getContext());
   3231 
   3232       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
   3233                 CmpInst::getInversePredicate(Pred), RHS_CR);
   3234       if (InversedSatisfied_CR.contains(LHS_CR))
   3235         return ConstantInt::getFalse(RHS->getContext());
   3236     }
   3237   }
   3238 
   3239   // Compare of cast, for example (zext X) != 0 -> X != 0
   3240   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
   3241     Instruction *LI = cast<CastInst>(LHS);
   3242     Value *SrcOp = LI->getOperand(0);
   3243     Type *SrcTy = SrcOp->getType();
   3244     Type *DstTy = LI->getType();
   3245 
   3246     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
   3247     // if the integer type is the same size as the pointer type.
   3248     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
   3249         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
   3250       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   3251         // Transfer the cast to the constant.
   3252         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
   3253                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
   3254                                         Q, MaxRecurse-1))
   3255           return V;
   3256       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
   3257         if (RI->getOperand(0)->getType() == SrcTy)
   3258           // Compare without the cast.
   3259           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   3260                                           Q, MaxRecurse-1))
   3261             return V;
   3262       }
   3263     }
   3264 
   3265     if (isa<ZExtInst>(LHS)) {
   3266       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
   3267       // same type.
   3268       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
   3269         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   3270           // Compare X and Y.  Note that signed predicates become unsigned.
   3271           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   3272                                           SrcOp, RI->getOperand(0), Q,
   3273                                           MaxRecurse-1))
   3274             return V;
   3275       }
   3276       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
   3277       // too.  If not, then try to deduce the result of the comparison.
   3278       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   3279         // Compute the constant that would happen if we truncated to SrcTy then
   3280         // reextended to DstTy.
   3281         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   3282         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
   3283 
   3284         // If the re-extended constant didn't change then this is effectively
   3285         // also a case of comparing two zero-extended values.
   3286         if (RExt == CI && MaxRecurse)
   3287           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   3288                                         SrcOp, Trunc, Q, MaxRecurse-1))
   3289             return V;
   3290 
   3291         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
   3292         // there.  Use this to work out the result of the comparison.
   3293         if (RExt != CI) {
   3294           switch (Pred) {
   3295           default: llvm_unreachable("Unknown ICmp predicate!");
   3296           // LHS <u RHS.
   3297           case ICmpInst::ICMP_EQ:
   3298           case ICmpInst::ICMP_UGT:
   3299           case ICmpInst::ICMP_UGE:
   3300             return ConstantInt::getFalse(CI->getContext());
   3301 
   3302           case ICmpInst::ICMP_NE:
   3303           case ICmpInst::ICMP_ULT:
   3304           case ICmpInst::ICMP_ULE:
   3305             return ConstantInt::getTrue(CI->getContext());
   3306 
   3307           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
   3308           // is non-negative then LHS <s RHS.
   3309           case ICmpInst::ICMP_SGT:
   3310           case ICmpInst::ICMP_SGE:
   3311             return CI->getValue().isNegative() ?
   3312               ConstantInt::getTrue(CI->getContext()) :
   3313               ConstantInt::getFalse(CI->getContext());
   3314 
   3315           case ICmpInst::ICMP_SLT:
   3316           case ICmpInst::ICMP_SLE:
   3317             return CI->getValue().isNegative() ?
   3318               ConstantInt::getFalse(CI->getContext()) :
   3319               ConstantInt::getTrue(CI->getContext());
   3320           }
   3321         }
   3322       }
   3323     }
   3324 
   3325     if (isa<SExtInst>(LHS)) {
   3326       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
   3327       // same type.
   3328       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
   3329         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   3330           // Compare X and Y.  Note that the predicate does not change.
   3331           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   3332                                           Q, MaxRecurse-1))
   3333             return V;
   3334       }
   3335       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
   3336       // too.  If not, then try to deduce the result of the comparison.
   3337       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   3338         // Compute the constant that would happen if we truncated to SrcTy then
   3339         // reextended to DstTy.
   3340         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   3341         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
   3342 
   3343         // If the re-extended constant didn't change then this is effectively
   3344         // also a case of comparing two sign-extended values.
   3345         if (RExt == CI && MaxRecurse)
   3346           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
   3347             return V;
   3348 
   3349         // Otherwise the upper bits of LHS are all equal, while RHS has varying
   3350         // bits there.  Use this to work out the result of the comparison.
   3351         if (RExt != CI) {
   3352           switch (Pred) {
   3353           default: llvm_unreachable("Unknown ICmp predicate!");
   3354           case ICmpInst::ICMP_EQ:
   3355             return ConstantInt::getFalse(CI->getContext());
   3356           case ICmpInst::ICMP_NE:
   3357             return ConstantInt::getTrue(CI->getContext());
   3358 
   3359           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
   3360           // LHS >s RHS.
   3361           case ICmpInst::ICMP_SGT:
   3362           case ICmpInst::ICMP_SGE:
   3363             return CI->getValue().isNegative() ?
   3364               ConstantInt::getTrue(CI->getContext()) :
   3365               ConstantInt::getFalse(CI->getContext());
   3366           case ICmpInst::ICMP_SLT:
   3367           case ICmpInst::ICMP_SLE:
   3368             return CI->getValue().isNegative() ?
   3369               ConstantInt::getFalse(CI->getContext()) :
   3370               ConstantInt::getTrue(CI->getContext());
   3371 
   3372           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
   3373           // LHS >u RHS.
   3374           case ICmpInst::ICMP_UGT:
   3375           case ICmpInst::ICMP_UGE:
   3376             // Comparison is true iff the LHS <s 0.
   3377             if (MaxRecurse)
   3378               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
   3379                                               Constant::getNullValue(SrcTy),
   3380                                               Q, MaxRecurse-1))
   3381                 return V;
   3382             break;
   3383           case ICmpInst::ICMP_ULT:
   3384           case ICmpInst::ICMP_ULE:
   3385             // Comparison is true iff the LHS >=s 0.
   3386             if (MaxRecurse)
   3387               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
   3388                                               Constant::getNullValue(SrcTy),
   3389                                               Q, MaxRecurse-1))
   3390                 return V;
   3391             break;
   3392           }
   3393         }
   3394       }
   3395     }
   3396   }
   3397 
   3398   // icmp eq|ne X, Y -> false|true if X != Y
   3399   if (ICmpInst::isEquality(Pred) &&
   3400       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
   3401     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
   3402   }
   3403 
   3404   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
   3405     return V;
   3406 
   3407   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
   3408     return V;
   3409 
   3410   // Simplify comparisons of related pointers using a powerful, recursive
   3411   // GEP-walk when we have target data available..
   3412   if (LHS->getType()->isPointerTy())
   3413     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS,
   3414                                      RHS))
   3415       return C;
   3416   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
   3417     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
   3418       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
   3419               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
   3420           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
   3421               Q.DL.getTypeSizeInBits(CRHS->getType()))
   3422         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
   3423                                          CLHS->getPointerOperand(),
   3424                                          CRHS->getPointerOperand()))
   3425           return C;
   3426 
   3427   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
   3428     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
   3429       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
   3430           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
   3431           (ICmpInst::isEquality(Pred) ||
   3432            (GLHS->isInBounds() && GRHS->isInBounds() &&
   3433             Pred == ICmpInst::getSignedPredicate(Pred)))) {
   3434         // The bases are equal and the indices are constant.  Build a constant
   3435         // expression GEP with the same indices and a null base pointer to see
   3436         // what constant folding can make out of it.
   3437         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
   3438         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
   3439         Constant *NewLHS = ConstantExpr::getGetElementPtr(
   3440             GLHS->getSourceElementType(), Null, IndicesLHS);
   3441 
   3442         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
   3443         Constant *NewRHS = ConstantExpr::getGetElementPtr(
   3444             GLHS->getSourceElementType(), Null, IndicesRHS);
   3445         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
   3446       }
   3447     }
   3448   }
   3449 
   3450   // If the comparison is with the result of a select instruction, check whether
   3451   // comparing with either branch of the select always yields the same value.
   3452   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3453     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   3454       return V;
   3455 
   3456   // If the comparison is with the result of a phi instruction, check whether
   3457   // doing the compare with each incoming phi value yields a common result.
   3458   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3459     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   3460       return V;
   3461 
   3462   return nullptr;
   3463 }
   3464 
   3465 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3466                               const SimplifyQuery &Q) {
   3467   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
   3468 }
   3469 
   3470 /// Given operands for an FCmpInst, see if we can fold the result.
   3471 /// If not, this returns null.
   3472 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3473                                FastMathFlags FMF, const SimplifyQuery &Q,
   3474                                unsigned MaxRecurse) {
   3475   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   3476   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
   3477 
   3478   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   3479     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   3480       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   3481 
   3482     // If we have a constant, make sure it is on the RHS.
   3483     std::swap(LHS, RHS);
   3484     Pred = CmpInst::getSwappedPredicate(Pred);
   3485   }
   3486 
   3487   // Fold trivial predicates.
   3488   Type *RetTy = GetCompareTy(LHS);
   3489   if (Pred == FCmpInst::FCMP_FALSE)
   3490     return getFalse(RetTy);
   3491   if (Pred == FCmpInst::FCMP_TRUE)
   3492     return getTrue(RetTy);
   3493 
   3494   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
   3495   if (FMF.noNaNs()) {
   3496     if (Pred == FCmpInst::FCMP_UNO)
   3497       return getFalse(RetTy);
   3498     if (Pred == FCmpInst::FCMP_ORD)
   3499       return getTrue(RetTy);
   3500   }
   3501 
   3502   // NaN is unordered; NaN is not ordered.
   3503   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
   3504          "Comparison must be either ordered or unordered");
   3505   if (match(RHS, m_NaN()))
   3506     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
   3507 
   3508   // fcmp pred x, undef  and  fcmp pred undef, x
   3509   // fold to true if unordered, false if ordered
   3510   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
   3511     // Choosing NaN for the undef will always make unordered comparison succeed
   3512     // and ordered comparison fail.
   3513     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
   3514   }
   3515 
   3516   // fcmp x,x -> true/false.  Not all compares are foldable.
   3517   if (LHS == RHS) {
   3518     if (CmpInst::isTrueWhenEqual(Pred))
   3519       return getTrue(RetTy);
   3520     if (CmpInst::isFalseWhenEqual(Pred))
   3521       return getFalse(RetTy);
   3522   }
   3523 
   3524   // Handle fcmp with constant RHS.
   3525   const APFloat *C;
   3526   if (match(RHS, m_APFloat(C))) {
   3527     // Check whether the constant is an infinity.
   3528     if (C->isInfinity()) {
   3529       if (C->isNegative()) {
   3530         switch (Pred) {
   3531         case FCmpInst::FCMP_OLT:
   3532           // No value is ordered and less than negative infinity.
   3533           return getFalse(RetTy);
   3534         case FCmpInst::FCMP_UGE:
   3535           // All values are unordered with or at least negative infinity.
   3536           return getTrue(RetTy);
   3537         default:
   3538           break;
   3539         }
   3540       } else {
   3541         switch (Pred) {
   3542         case FCmpInst::FCMP_OGT:
   3543           // No value is ordered and greater than infinity.
   3544           return getFalse(RetTy);
   3545         case FCmpInst::FCMP_ULE:
   3546           // All values are unordered with and at most infinity.
   3547           return getTrue(RetTy);
   3548         default:
   3549           break;
   3550         }
   3551       }
   3552     }
   3553     if (C->isZero()) {
   3554       switch (Pred) {
   3555       case FCmpInst::FCMP_UGE:
   3556         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
   3557           return getTrue(RetTy);
   3558         break;
   3559       case FCmpInst::FCMP_OLT:
   3560         // X < 0
   3561         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
   3562           return getFalse(RetTy);
   3563         break;
   3564       default:
   3565         break;
   3566       }
   3567     } else if (C->isNegative()) {
   3568       assert(!C->isNaN() && "Unexpected NaN constant!");
   3569       // TODO: We can catch more cases by using a range check rather than
   3570       //       relying on CannotBeOrderedLessThanZero.
   3571       switch (Pred) {
   3572       case FCmpInst::FCMP_UGE:
   3573       case FCmpInst::FCMP_UGT:
   3574       case FCmpInst::FCMP_UNE:
   3575         // (X >= 0) implies (X > C) when (C < 0)
   3576         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
   3577           return getTrue(RetTy);
   3578         break;
   3579       case FCmpInst::FCMP_OEQ:
   3580       case FCmpInst::FCMP_OLE:
   3581       case FCmpInst::FCMP_OLT:
   3582         // (X >= 0) implies !(X < C) when (C < 0)
   3583         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
   3584           return getFalse(RetTy);
   3585         break;
   3586       default:
   3587         break;
   3588       }
   3589     }
   3590   }
   3591 
   3592   // If the comparison is with the result of a select instruction, check whether
   3593   // comparing with either branch of the select always yields the same value.
   3594   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3595     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   3596       return V;
   3597 
   3598   // If the comparison is with the result of a phi instruction, check whether
   3599   // doing the compare with each incoming phi value yields a common result.
   3600   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3601     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   3602       return V;
   3603 
   3604   return nullptr;
   3605 }
   3606 
   3607 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3608                               FastMathFlags FMF, const SimplifyQuery &Q) {
   3609   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
   3610 }
   3611 
   3612 /// See if V simplifies when its operand Op is replaced with RepOp.
   3613 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
   3614                                            const SimplifyQuery &Q,
   3615                                            unsigned MaxRecurse) {
   3616   // Trivial replacement.
   3617   if (V == Op)
   3618     return RepOp;
   3619 
   3620   // We cannot replace a constant, and shouldn't even try.
   3621   if (isa<Constant>(Op))
   3622     return nullptr;
   3623 
   3624   auto *I = dyn_cast<Instruction>(V);
   3625   if (!I)
   3626     return nullptr;
   3627 
   3628   // If this is a binary operator, try to simplify it with the replaced op.
   3629   if (auto *B = dyn_cast<BinaryOperator>(I)) {
   3630     // Consider:
   3631     //   %cmp = icmp eq i32 %x, 2147483647
   3632     //   %add = add nsw i32 %x, 1
   3633     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
   3634     //
   3635     // We can't replace %sel with %add unless we strip away the flags.
   3636     if (isa<OverflowingBinaryOperator>(B))
   3637       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
   3638         return nullptr;
   3639     if (isa<PossiblyExactOperator>(B))
   3640       if (B->isExact())
   3641         return nullptr;
   3642 
   3643     if (MaxRecurse) {
   3644       if (B->getOperand(0) == Op)
   3645         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
   3646                              MaxRecurse - 1);
   3647       if (B->getOperand(1) == Op)
   3648         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
   3649                              MaxRecurse - 1);
   3650     }
   3651   }
   3652 
   3653   // Same for CmpInsts.
   3654   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
   3655     if (MaxRecurse) {
   3656       if (C->getOperand(0) == Op)
   3657         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
   3658                                MaxRecurse - 1);
   3659       if (C->getOperand(1) == Op)
   3660         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
   3661                                MaxRecurse - 1);
   3662     }
   3663   }
   3664 
   3665   // Same for GEPs.
   3666   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
   3667     if (MaxRecurse) {
   3668       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
   3669       transform(GEP->operands(), NewOps.begin(),
   3670                 [&](Value *V) { return V == Op ? RepOp : V; });
   3671       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
   3672                              MaxRecurse - 1);
   3673     }
   3674   }
   3675 
   3676   // TODO: We could hand off more cases to instsimplify here.
   3677 
   3678   // If all operands are constant after substituting Op for RepOp then we can
   3679   // constant fold the instruction.
   3680   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
   3681     // Build a list of all constant operands.
   3682     SmallVector<Constant *, 8> ConstOps;
   3683     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   3684       if (I->getOperand(i) == Op)
   3685         ConstOps.push_back(CRepOp);
   3686       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
   3687         ConstOps.push_back(COp);
   3688       else
   3689         break;
   3690     }
   3691 
   3692     // All operands were constants, fold it.
   3693     if (ConstOps.size() == I->getNumOperands()) {
   3694       if (CmpInst *C = dyn_cast<CmpInst>(I))
   3695         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
   3696                                                ConstOps[1], Q.DL, Q.TLI);
   3697 
   3698       if (LoadInst *LI = dyn_cast<LoadInst>(I))
   3699         if (!LI->isVolatile())
   3700           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
   3701 
   3702       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
   3703     }
   3704   }
   3705 
   3706   return nullptr;
   3707 }
   3708 
   3709 /// Try to simplify a select instruction when its condition operand is an
   3710 /// integer comparison where one operand of the compare is a constant.
   3711 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
   3712                                     const APInt *Y, bool TrueWhenUnset) {
   3713   const APInt *C;
   3714 
   3715   // (X & Y) == 0 ? X & ~Y : X  --> X
   3716   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
   3717   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
   3718       *Y == ~*C)
   3719     return TrueWhenUnset ? FalseVal : TrueVal;
   3720 
   3721   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
   3722   // (X & Y) != 0 ? X : X & ~Y  --> X
   3723   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
   3724       *Y == ~*C)
   3725     return TrueWhenUnset ? FalseVal : TrueVal;
   3726 
   3727   if (Y->isPowerOf2()) {
   3728     // (X & Y) == 0 ? X | Y : X  --> X | Y
   3729     // (X & Y) != 0 ? X | Y : X  --> X
   3730     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
   3731         *Y == *C)
   3732       return TrueWhenUnset ? TrueVal : FalseVal;
   3733 
   3734     // (X & Y) == 0 ? X : X | Y  --> X
   3735     // (X & Y) != 0 ? X : X | Y  --> X | Y
   3736     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
   3737         *Y == *C)
   3738       return TrueWhenUnset ? TrueVal : FalseVal;
   3739   }
   3740 
   3741   return nullptr;
   3742 }
   3743 
   3744 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
   3745 /// eq/ne.
   3746 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
   3747                                            ICmpInst::Predicate Pred,
   3748                                            Value *TrueVal, Value *FalseVal) {
   3749   Value *X;
   3750   APInt Mask;
   3751   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
   3752     return nullptr;
   3753 
   3754   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
   3755                                Pred == ICmpInst::ICMP_EQ);
   3756 }
   3757 
   3758 /// Try to simplify a select instruction when its condition operand is an
   3759 /// integer comparison.
   3760 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
   3761                                          Value *FalseVal, const SimplifyQuery &Q,
   3762                                          unsigned MaxRecurse) {
   3763   ICmpInst::Predicate Pred;
   3764   Value *CmpLHS, *CmpRHS;
   3765   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
   3766     return nullptr;
   3767 
   3768   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
   3769     Value *X;
   3770     const APInt *Y;
   3771     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
   3772       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
   3773                                            Pred == ICmpInst::ICMP_EQ))
   3774         return V;
   3775   }
   3776 
   3777   // Check for other compares that behave like bit test.
   3778   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
   3779                                               TrueVal, FalseVal))
   3780     return V;
   3781 
   3782   // If we have an equality comparison, then we know the value in one of the
   3783   // arms of the select. See if substituting this value into the arm and
   3784   // simplifying the result yields the same value as the other arm.
   3785   if (Pred == ICmpInst::ICMP_EQ) {
   3786     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3787             TrueVal ||
   3788         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3789             TrueVal)
   3790       return FalseVal;
   3791     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3792             FalseVal ||
   3793         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3794             FalseVal)
   3795       return FalseVal;
   3796   } else if (Pred == ICmpInst::ICMP_NE) {
   3797     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3798             FalseVal ||
   3799         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3800             FalseVal)
   3801       return TrueVal;
   3802     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3803             TrueVal ||
   3804         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3805             TrueVal)
   3806       return TrueVal;
   3807   }
   3808 
   3809   return nullptr;
   3810 }
   3811 
   3812 /// Given operands for a SelectInst, see if we can fold the result.
   3813 /// If not, this returns null.
   3814 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
   3815                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
   3816   if (auto *CondC = dyn_cast<Constant>(Cond)) {
   3817     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
   3818       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
   3819         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
   3820 
   3821     // select undef, X, Y -> X or Y
   3822     if (isa<UndefValue>(CondC))
   3823       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
   3824 
   3825     // TODO: Vector constants with undef elements don't simplify.
   3826 
   3827     // select true, X, Y  -> X
   3828     if (CondC->isAllOnesValue())
   3829       return TrueVal;
   3830     // select false, X, Y -> Y
   3831     if (CondC->isNullValue())
   3832       return FalseVal;
   3833   }
   3834 
   3835   // select ?, X, X -> X
   3836   if (TrueVal == FalseVal)
   3837     return TrueVal;
   3838 
   3839   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
   3840     return FalseVal;
   3841   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
   3842     return TrueVal;
   3843 
   3844   if (Value *V =
   3845           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
   3846     return V;
   3847 
   3848   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
   3849     return V;
   3850 
   3851   return nullptr;
   3852 }
   3853 
   3854 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
   3855                                 const SimplifyQuery &Q) {
   3856   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
   3857 }
   3858 
   3859 /// Given operands for an GetElementPtrInst, see if we can fold the result.
   3860 /// If not, this returns null.
   3861 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
   3862                               const SimplifyQuery &Q, unsigned) {
   3863   // The type of the GEP pointer operand.
   3864   unsigned AS =
   3865       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
   3866 
   3867   // getelementptr P -> P.
   3868   if (Ops.size() == 1)
   3869     return Ops[0];
   3870 
   3871   // Compute the (pointer) type returned by the GEP instruction.
   3872   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
   3873   Type *GEPTy = PointerType::get(LastType, AS);
   3874   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
   3875     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   3876   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
   3877     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   3878 
   3879   if (isa<UndefValue>(Ops[0]))
   3880     return UndefValue::get(GEPTy);
   3881 
   3882   if (Ops.size() == 2) {
   3883     // getelementptr P, 0 -> P.
   3884     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
   3885       return Ops[0];
   3886 
   3887     Type *Ty = SrcTy;
   3888     if (Ty->isSized()) {
   3889       Value *P;
   3890       uint64_t C;
   3891       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
   3892       // getelementptr P, N -> P if P points to a type of zero size.
   3893       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
   3894         return Ops[0];
   3895 
   3896       // The following transforms are only safe if the ptrtoint cast
   3897       // doesn't truncate the pointers.
   3898       if (Ops[1]->getType()->getScalarSizeInBits() ==
   3899           Q.DL.getIndexSizeInBits(AS)) {
   3900         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
   3901           if (match(P, m_Zero()))
   3902             return Constant::getNullValue(GEPTy);
   3903           Value *Temp;
   3904           if (match(P, m_PtrToInt(m_Value(Temp))))
   3905             if (Temp->getType() == GEPTy)
   3906               return Temp;
   3907           return nullptr;
   3908         };
   3909 
   3910         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
   3911         if (TyAllocSize == 1 &&
   3912             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
   3913           if (Value *R = PtrToIntOrZero(P))
   3914             return R;
   3915 
   3916         // getelementptr V, (ashr (sub P, V), C) -> Q
   3917         // if P points to a type of size 1 << C.
   3918         if (match(Ops[1],
   3919                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
   3920                          m_ConstantInt(C))) &&
   3921             TyAllocSize == 1ULL << C)
   3922           if (Value *R = PtrToIntOrZero(P))
   3923             return R;
   3924 
   3925         // getelementptr V, (sdiv (sub P, V), C) -> Q
   3926         // if P points to a type of size C.
   3927         if (match(Ops[1],
   3928                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
   3929                          m_SpecificInt(TyAllocSize))))
   3930           if (Value *R = PtrToIntOrZero(P))
   3931             return R;
   3932       }
   3933     }
   3934   }
   3935 
   3936   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
   3937       all_of(Ops.slice(1).drop_back(1),
   3938              [](Value *Idx) { return match(Idx, m_Zero()); })) {
   3939     unsigned IdxWidth =
   3940         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
   3941     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
   3942       APInt BasePtrOffset(IdxWidth, 0);
   3943       Value *StrippedBasePtr =
   3944           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
   3945                                                             BasePtrOffset);
   3946 
   3947       // gep (gep V, C), (sub 0, V) -> C
   3948       if (match(Ops.back(),
   3949                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
   3950         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
   3951         return ConstantExpr::getIntToPtr(CI, GEPTy);
   3952       }
   3953       // gep (gep V, C), (xor V, -1) -> C-1
   3954       if (match(Ops.back(),
   3955                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
   3956         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
   3957         return ConstantExpr::getIntToPtr(CI, GEPTy);
   3958       }
   3959     }
   3960   }
   3961 
   3962   // Check to see if this is constant foldable.
   3963   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
   3964     return nullptr;
   3965 
   3966   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
   3967                                             Ops.slice(1));
   3968   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
   3969     return CEFolded;
   3970   return CE;
   3971 }
   3972 
   3973 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
   3974                              const SimplifyQuery &Q) {
   3975   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
   3976 }
   3977 
   3978 /// Given operands for an InsertValueInst, see if we can fold the result.
   3979 /// If not, this returns null.
   3980 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
   3981                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
   3982                                       unsigned) {
   3983   if (Constant *CAgg = dyn_cast<Constant>(Agg))
   3984     if (Constant *CVal = dyn_cast<Constant>(Val))
   3985       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
   3986 
   3987   // insertvalue x, undef, n -> x
   3988   if (match(Val, m_Undef()))
   3989     return Agg;
   3990 
   3991   // insertvalue x, (extractvalue y, n), n
   3992   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
   3993     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
   3994         EV->getIndices() == Idxs) {
   3995       // insertvalue undef, (extractvalue y, n), n -> y
   3996       if (match(Agg, m_Undef()))
   3997         return EV->getAggregateOperand();
   3998 
   3999       // insertvalue y, (extractvalue y, n), n -> y
   4000       if (Agg == EV->getAggregateOperand())
   4001         return Agg;
   4002     }
   4003 
   4004   return nullptr;
   4005 }
   4006 
   4007 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
   4008                                      ArrayRef<unsigned> Idxs,
   4009                                      const SimplifyQuery &Q) {
   4010   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
   4011 }
   4012 
   4013 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
   4014                                        const SimplifyQuery &Q) {
   4015   // Try to constant fold.
   4016   auto *VecC = dyn_cast<Constant>(Vec);
   4017   auto *ValC = dyn_cast<Constant>(Val);
   4018   auto *IdxC = dyn_cast<Constant>(Idx);
   4019   if (VecC && ValC && IdxC)
   4020     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
   4021 
   4022   // Fold into undef if index is out of bounds.
   4023   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
   4024     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
   4025     if (CI->uge(NumElements))
   4026       return UndefValue::get(Vec->getType());
   4027   }
   4028 
   4029   // If index is undef, it might be out of bounds (see above case)
   4030   if (isa<UndefValue>(Idx))
   4031     return UndefValue::get(Vec->getType());
   4032 
   4033   return nullptr;
   4034 }
   4035 
   4036 /// Given operands for an ExtractValueInst, see if we can fold the result.
   4037 /// If not, this returns null.
   4038 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
   4039                                        const SimplifyQuery &, unsigned) {
   4040   if (auto *CAgg = dyn_cast<Constant>(Agg))
   4041     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
   4042 
   4043   // extractvalue x, (insertvalue y, elt, n), n -> elt
   4044   unsigned NumIdxs = Idxs.size();
   4045   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
   4046        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
   4047     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
   4048     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
   4049     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
   4050     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
   4051         Idxs.slice(0, NumCommonIdxs)) {
   4052       if (NumIdxs == NumInsertValueIdxs)
   4053         return IVI->getInsertedValueOperand();
   4054       break;
   4055     }
   4056   }
   4057 
   4058   return nullptr;
   4059 }
   4060 
   4061 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
   4062                                       const SimplifyQuery &Q) {
   4063   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
   4064 }
   4065 
   4066 /// Given operands for an ExtractElementInst, see if we can fold the result.
   4067 /// If not, this returns null.
   4068 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
   4069                                          unsigned) {
   4070   if (auto *CVec = dyn_cast<Constant>(Vec)) {
   4071     if (auto *CIdx = dyn_cast<Constant>(Idx))
   4072       return ConstantFoldExtractElementInstruction(CVec, CIdx);
   4073 
   4074     // The index is not relevant if our vector is a splat.
   4075     if (auto *Splat = CVec->getSplatValue())
   4076       return Splat;
   4077 
   4078     if (isa<UndefValue>(Vec))
   4079       return UndefValue::get(Vec->getType()->getVectorElementType());
   4080   }
   4081 
   4082   // If extracting a specified index from the vector, see if we can recursively
   4083   // find a previously computed scalar that was inserted into the vector.
   4084   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
   4085     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
   4086       // definitely out of bounds, thus undefined result
   4087       return UndefValue::get(Vec->getType()->getVectorElementType());
   4088     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
   4089       return Elt;
   4090   }
   4091 
   4092   // An undef extract index can be arbitrarily chosen to be an out-of-range
   4093   // index value, which would result in the instruction being undef.
   4094   if (isa<UndefValue>(Idx))
   4095     return UndefValue::get(Vec->getType()->getVectorElementType());
   4096 
   4097   return nullptr;
   4098 }
   4099 
   4100 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
   4101                                         const SimplifyQuery &Q) {
   4102   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
   4103 }
   4104 
   4105 /// See if we can fold the given phi. If not, returns null.
   4106 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
   4107   // If all of the PHI's incoming values are the same then replace the PHI node
   4108   // with the common value.
   4109   Value *CommonValue = nullptr;
   4110   bool HasUndefInput = false;
   4111   for (Value *Incoming : PN->incoming_values()) {
   4112     // If the incoming value is the phi node itself, it can safely be skipped.
   4113     if (Incoming == PN) continue;
   4114     if (isa<UndefValue>(Incoming)) {
   4115       // Remember that we saw an undef value, but otherwise ignore them.
   4116       HasUndefInput = true;
   4117       continue;
   4118     }
   4119     if (CommonValue && Incoming != CommonValue)
   4120       return nullptr;  // Not the same, bail out.
   4121     CommonValue = Incoming;
   4122   }
   4123 
   4124   // If CommonValue is null then all of the incoming values were either undef or
   4125   // equal to the phi node itself.
   4126   if (!CommonValue)
   4127     return UndefValue::get(PN->getType());
   4128 
   4129   // If we have a PHI node like phi(X, undef, X), where X is defined by some
   4130   // instruction, we cannot return X as the result of the PHI node unless it
   4131   // dominates the PHI block.
   4132   if (HasUndefInput)
   4133     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
   4134 
   4135   return CommonValue;
   4136 }
   4137 
   4138 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
   4139                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
   4140   if (auto *C = dyn_cast<Constant>(Op))
   4141     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
   4142 
   4143   if (auto *CI = dyn_cast<CastInst>(Op)) {
   4144     auto *Src = CI->getOperand(0);
   4145     Type *SrcTy = Src->getType();
   4146     Type *MidTy = CI->getType();
   4147     Type *DstTy = Ty;
   4148     if (Src->getType() == Ty) {
   4149       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
   4150       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
   4151       Type *SrcIntPtrTy =
   4152           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
   4153       Type *MidIntPtrTy =
   4154           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
   4155       Type *DstIntPtrTy =
   4156           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
   4157       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
   4158                                          SrcIntPtrTy, MidIntPtrTy,
   4159                                          DstIntPtrTy) == Instruction::BitCast)
   4160         return Src;
   4161     }
   4162   }
   4163 
   4164   // bitcast x -> x
   4165   if (CastOpc == Instruction::BitCast)
   4166     if (Op->getType() == Ty)
   4167       return Op;
   4168 
   4169   return nullptr;
   4170 }
   4171 
   4172 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
   4173                               const SimplifyQuery &Q) {
   4174   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
   4175 }
   4176 
   4177 /// For the given destination element of a shuffle, peek through shuffles to
   4178 /// match a root vector source operand that contains that element in the same
   4179 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
   4180 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
   4181                                    int MaskVal, Value *RootVec,
   4182                                    unsigned MaxRecurse) {
   4183   if (!MaxRecurse--)
   4184     return nullptr;
   4185 
   4186   // Bail out if any mask value is undefined. That kind of shuffle may be
   4187   // simplified further based on demanded bits or other folds.
   4188   if (MaskVal == -1)
   4189     return nullptr;
   4190 
   4191   // The mask value chooses which source operand we need to look at next.
   4192   int InVecNumElts = Op0->getType()->getVectorNumElements();
   4193   int RootElt = MaskVal;
   4194   Value *SourceOp = Op0;
   4195   if (MaskVal >= InVecNumElts) {
   4196     RootElt = MaskVal - InVecNumElts;
   4197     SourceOp = Op1;
   4198   }
   4199 
   4200   // If the source operand is a shuffle itself, look through it to find the
   4201   // matching root vector.
   4202   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
   4203     return foldIdentityShuffles(
   4204         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
   4205         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
   4206   }
   4207 
   4208   // TODO: Look through bitcasts? What if the bitcast changes the vector element
   4209   // size?
   4210 
   4211   // The source operand is not a shuffle. Initialize the root vector value for
   4212   // this shuffle if that has not been done yet.
   4213   if (!RootVec)
   4214     RootVec = SourceOp;
   4215 
   4216   // Give up as soon as a source operand does not match the existing root value.
   4217   if (RootVec != SourceOp)
   4218     return nullptr;
   4219 
   4220   // The element must be coming from the same lane in the source vector
   4221   // (although it may have crossed lanes in intermediate shuffles).
   4222   if (RootElt != DestElt)
   4223     return nullptr;
   4224 
   4225   return RootVec;
   4226 }
   4227 
   4228 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
   4229                                         Type *RetTy, const SimplifyQuery &Q,
   4230                                         unsigned MaxRecurse) {
   4231   if (isa<UndefValue>(Mask))
   4232     return UndefValue::get(RetTy);
   4233 
   4234   Type *InVecTy = Op0->getType();
   4235   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
   4236   unsigned InVecNumElts = InVecTy->getVectorNumElements();
   4237 
   4238   SmallVector<int, 32> Indices;
   4239   ShuffleVectorInst::getShuffleMask(Mask, Indices);
   4240   assert(MaskNumElts == Indices.size() &&
   4241          "Size of Indices not same as number of mask elements?");
   4242 
   4243   // Canonicalization: If mask does not select elements from an input vector,
   4244   // replace that input vector with undef.
   4245   bool MaskSelects0 = false, MaskSelects1 = false;
   4246   for (unsigned i = 0; i != MaskNumElts; ++i) {
   4247     if (Indices[i] == -1)
   4248       continue;
   4249     if ((unsigned)Indices[i] < InVecNumElts)
   4250       MaskSelects0 = true;
   4251     else
   4252       MaskSelects1 = true;
   4253   }
   4254   if (!MaskSelects0)
   4255     Op0 = UndefValue::get(InVecTy);
   4256   if (!MaskSelects1)
   4257     Op1 = UndefValue::get(InVecTy);
   4258 
   4259   auto *Op0Const = dyn_cast<Constant>(Op0);
   4260   auto *Op1Const = dyn_cast<Constant>(Op1);
   4261 
   4262   // If all operands are constant, constant fold the shuffle.
   4263   if (Op0Const && Op1Const)
   4264     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
   4265 
   4266   // Canonicalization: if only one input vector is constant, it shall be the
   4267   // second one.
   4268   if (Op0Const && !Op1Const) {
   4269     std::swap(Op0, Op1);
   4270     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
   4271   }
   4272 
   4273   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
   4274   // value type is same as the input vectors' type.
   4275   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
   4276     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
   4277         OpShuf->getMask()->getSplatValue())
   4278       return Op0;
   4279 
   4280   // Don't fold a shuffle with undef mask elements. This may get folded in a
   4281   // better way using demanded bits or other analysis.
   4282   // TODO: Should we allow this?
   4283   if (find(Indices, -1) != Indices.end())
   4284     return nullptr;
   4285 
   4286   // Check if every element of this shuffle can be mapped back to the
   4287   // corresponding element of a single root vector. If so, we don't need this
   4288   // shuffle. This handles simple identity shuffles as well as chains of
   4289   // shuffles that may widen/narrow and/or move elements across lanes and back.
   4290   Value *RootVec = nullptr;
   4291   for (unsigned i = 0; i != MaskNumElts; ++i) {
   4292     // Note that recursion is limited for each vector element, so if any element
   4293     // exceeds the limit, this will fail to simplify.
   4294     RootVec =
   4295         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
   4296 
   4297     // We can't replace a widening/narrowing shuffle with one of its operands.
   4298     if (!RootVec || RootVec->getType() != RetTy)
   4299       return nullptr;
   4300   }
   4301   return RootVec;
   4302 }
   4303 
   4304 /// Given operands for a ShuffleVectorInst, fold the result or return null.
   4305 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
   4306                                        Type *RetTy, const SimplifyQuery &Q) {
   4307   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
   4308 }
   4309 
   4310 static Constant *propagateNaN(Constant *In) {
   4311   // If the input is a vector with undef elements, just return a default NaN.
   4312   if (!In->isNaN())
   4313     return ConstantFP::getNaN(In->getType());
   4314 
   4315   // Propagate the existing NaN constant when possible.
   4316   // TODO: Should we quiet a signaling NaN?
   4317   return In;
   4318 }
   4319 
   4320 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
   4321   if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
   4322     return ConstantFP::getNaN(Op0->getType());
   4323 
   4324   if (match(Op0, m_NaN()))
   4325     return propagateNaN(cast<Constant>(Op0));
   4326   if (match(Op1, m_NaN()))
   4327     return propagateNaN(cast<Constant>(Op1));
   4328 
   4329   return nullptr;
   4330 }
   4331 
   4332 /// Given operands for an FAdd, see if we can fold the result.  If not, this
   4333 /// returns null.
   4334 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4335                                const SimplifyQuery &Q, unsigned MaxRecurse) {
   4336   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
   4337     return C;
   4338 
   4339   if (Constant *C = simplifyFPBinop(Op0, Op1))
   4340     return C;
   4341 
   4342   // fadd X, -0 ==> X
   4343   if (match(Op1, m_NegZeroFP()))
   4344     return Op0;
   4345 
   4346   // fadd X, 0 ==> X, when we know X is not -0
   4347   if (match(Op1, m_PosZeroFP()) &&
   4348       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
   4349     return Op0;
   4350 
   4351   // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant)
   4352   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
   4353   // Negative zeros are allowed because we always end up with positive zero:
   4354   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
   4355   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
   4356   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
   4357   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
   4358   if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
   4359                        match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))))
   4360     return ConstantFP::getNullValue(Op0->getType());
   4361 
   4362   return nullptr;
   4363 }
   4364 
   4365 /// Given operands for an FSub, see if we can fold the result.  If not, this
   4366 /// returns null.
   4367 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4368                                const SimplifyQuery &Q, unsigned MaxRecurse) {
   4369   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
   4370     return C;
   4371 
   4372   if (Constant *C = simplifyFPBinop(Op0, Op1))
   4373     return C;
   4374 
   4375   // fsub X, +0 ==> X
   4376   if (match(Op1, m_PosZeroFP()))
   4377     return Op0;
   4378 
   4379   // fsub X, -0 ==> X, when we know X is not -0
   4380   if (match(Op1, m_NegZeroFP()) &&
   4381       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
   4382     return Op0;
   4383 
   4384   // fsub -0.0, (fsub -0.0, X) ==> X
   4385   Value *X;
   4386   if (match(Op0, m_NegZeroFP()) &&
   4387       match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
   4388     return X;
   4389 
   4390   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
   4391   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
   4392       match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
   4393     return X;
   4394 
   4395   // fsub nnan x, x ==> 0.0
   4396   if (FMF.noNaNs() && Op0 == Op1)
   4397     return Constant::getNullValue(Op0->getType());
   4398 
   4399   return nullptr;
   4400 }
   4401 
   4402 /// Given the operands for an FMul, see if we can fold the result
   4403 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4404                                const SimplifyQuery &Q, unsigned MaxRecurse) {
   4405   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
   4406     return C;
   4407 
   4408   if (Constant *C = simplifyFPBinop(Op0, Op1))
   4409     return C;
   4410 
   4411   // fmul X, 1.0 ==> X
   4412   if (match(Op1, m_FPOne()))
   4413     return Op0;
   4414 
   4415   // fmul nnan nsz X, 0 ==> 0
   4416   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
   4417     return ConstantFP::getNullValue(Op0->getType());
   4418 
   4419   // sqrt(X) * sqrt(X) --> X, if we can:
   4420   // 1. Remove the intermediate rounding (reassociate).
   4421   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
   4422   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
   4423   Value *X;
   4424   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
   4425       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
   4426     return X;
   4427 
   4428   return nullptr;
   4429 }
   4430 
   4431 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4432                               const SimplifyQuery &Q) {
   4433   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
   4434 }
   4435 
   4436 
   4437 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4438                               const SimplifyQuery &Q) {
   4439   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
   4440 }
   4441 
   4442 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4443                               const SimplifyQuery &Q) {
   4444   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
   4445 }
   4446 
   4447 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4448                                const SimplifyQuery &Q, unsigned) {
   4449   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
   4450     return C;
   4451 
   4452   if (Constant *C = simplifyFPBinop(Op0, Op1))
   4453     return C;
   4454 
   4455   // X / 1.0 -> X
   4456   if (match(Op1, m_FPOne()))
   4457     return Op0;
   4458 
   4459   // 0 / X -> 0
   4460   // Requires that NaNs are off (X could be zero) and signed zeroes are
   4461   // ignored (X could be positive or negative, so the output sign is unknown).
   4462   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
   4463     return ConstantFP::getNullValue(Op0->getType());
   4464 
   4465   if (FMF.noNaNs()) {
   4466     // X / X -> 1.0 is legal when NaNs are ignored.
   4467     // We can ignore infinities because INF/INF is NaN.
   4468     if (Op0 == Op1)
   4469       return ConstantFP::get(Op0->getType(), 1.0);
   4470 
   4471     // (X * Y) / Y --> X if we can reassociate to the above form.
   4472     Value *X;
   4473     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
   4474       return X;
   4475 
   4476     // -X /  X -> -1.0 and
   4477     //  X / -X -> -1.0 are legal when NaNs are ignored.
   4478     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
   4479     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
   4480          BinaryOperator::getFNegArgument(Op0) == Op1) ||
   4481         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
   4482          BinaryOperator::getFNegArgument(Op1) == Op0))
   4483       return ConstantFP::get(Op0->getType(), -1.0);
   4484   }
   4485 
   4486   return nullptr;
   4487 }
   4488 
   4489 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4490                               const SimplifyQuery &Q) {
   4491   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
   4492 }
   4493 
   4494 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4495                                const SimplifyQuery &Q, unsigned) {
   4496   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
   4497     return C;
   4498 
   4499   if (Constant *C = simplifyFPBinop(Op0, Op1))
   4500     return C;
   4501 
   4502   // Unlike fdiv, the result of frem always matches the sign of the dividend.
   4503   // The constant match may include undef elements in a vector, so return a full
   4504   // zero constant as the result.
   4505   if (FMF.noNaNs()) {
   4506     // +0 % X -> 0
   4507     if (match(Op0, m_PosZeroFP()))
   4508       return ConstantFP::getNullValue(Op0->getType());
   4509     // -0 % X -> -0
   4510     if (match(Op0, m_NegZeroFP()))
   4511       return ConstantFP::getNegativeZero(Op0->getType());
   4512   }
   4513 
   4514   return nullptr;
   4515 }
   4516 
   4517 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   4518                               const SimplifyQuery &Q) {
   4519   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
   4520 }
   4521 
   4522 //=== Helper functions for higher up the class hierarchy.
   4523 
   4524 /// Given operands for a BinaryOperator, see if we can fold the result.
   4525 /// If not, this returns null.
   4526 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   4527                             const SimplifyQuery &Q, unsigned MaxRecurse) {
   4528   switch (Opcode) {
   4529   case Instruction::Add:
   4530     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
   4531   case Instruction::Sub:
   4532     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
   4533   case Instruction::Mul:
   4534     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
   4535   case Instruction::SDiv:
   4536     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
   4537   case Instruction::UDiv:
   4538     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
   4539   case Instruction::SRem:
   4540     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
   4541   case Instruction::URem:
   4542     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
   4543   case Instruction::Shl:
   4544     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
   4545   case Instruction::LShr:
   4546     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
   4547   case Instruction::AShr:
   4548     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
   4549   case Instruction::And:
   4550     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
   4551   case Instruction::Or:
   4552     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
   4553   case Instruction::Xor:
   4554     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
   4555   case Instruction::FAdd:
   4556     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   4557   case Instruction::FSub:
   4558     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   4559   case Instruction::FMul:
   4560     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   4561   case Instruction::FDiv:
   4562     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   4563   case Instruction::FRem:
   4564     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   4565   default:
   4566     llvm_unreachable("Unexpected opcode");
   4567   }
   4568 }
   4569 
   4570 /// Given operands for a BinaryOperator, see if we can fold the result.
   4571 /// If not, this returns null.
   4572 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
   4573 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
   4574 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   4575                               const FastMathFlags &FMF, const SimplifyQuery &Q,
   4576                               unsigned MaxRecurse) {
   4577   switch (Opcode) {
   4578   case Instruction::FAdd:
   4579     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
   4580   case Instruction::FSub:
   4581     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
   4582   case Instruction::FMul:
   4583     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
   4584   case Instruction::FDiv:
   4585     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
   4586   default:
   4587     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
   4588   }
   4589 }
   4590 
   4591 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   4592                            const SimplifyQuery &Q) {
   4593   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
   4594 }
   4595 
   4596 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   4597                              FastMathFlags FMF, const SimplifyQuery &Q) {
   4598   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
   4599 }
   4600 
   4601 /// Given operands for a CmpInst, see if we can fold the result.
   4602 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   4603                               const SimplifyQuery &Q, unsigned MaxRecurse) {
   4604   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
   4605     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   4606   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   4607 }
   4608 
   4609 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   4610                              const SimplifyQuery &Q) {
   4611   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
   4612 }
   4613 
   4614 static bool IsIdempotent(Intrinsic::ID ID) {
   4615   switch (ID) {
   4616   default: return false;
   4617 
   4618   // Unary idempotent: f(f(x)) = f(x)
   4619   case Intrinsic::fabs:
   4620   case Intrinsic::floor:
   4621   case Intrinsic::ceil:
   4622   case Intrinsic::trunc:
   4623   case Intrinsic::rint:
   4624   case Intrinsic::nearbyint:
   4625   case Intrinsic::round:
   4626   case Intrinsic::canonicalize:
   4627     return true;
   4628   }
   4629 }
   4630 
   4631 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
   4632                                    const DataLayout &DL) {
   4633   GlobalValue *PtrSym;
   4634   APInt PtrOffset;
   4635   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
   4636     return nullptr;
   4637 
   4638   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
   4639   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
   4640   Type *Int32PtrTy = Int32Ty->getPointerTo();
   4641   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
   4642 
   4643   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
   4644   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
   4645     return nullptr;
   4646 
   4647   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
   4648   if (OffsetInt % 4 != 0)
   4649     return nullptr;
   4650 
   4651   Constant *C = ConstantExpr::getGetElementPtr(
   4652       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
   4653       ConstantInt::get(Int64Ty, OffsetInt / 4));
   4654   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
   4655   if (!Loaded)
   4656     return nullptr;
   4657 
   4658   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
   4659   if (!LoadedCE)
   4660     return nullptr;
   4661 
   4662   if (LoadedCE->getOpcode() == Instruction::Trunc) {
   4663     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
   4664     if (!LoadedCE)
   4665       return nullptr;
   4666   }
   4667 
   4668   if (LoadedCE->getOpcode() != Instruction::Sub)
   4669     return nullptr;
   4670 
   4671   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
   4672   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
   4673     return nullptr;
   4674   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
   4675 
   4676   Constant *LoadedRHS = LoadedCE->getOperand(1);
   4677   GlobalValue *LoadedRHSSym;
   4678   APInt LoadedRHSOffset;
   4679   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
   4680                                   DL) ||
   4681       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
   4682     return nullptr;
   4683 
   4684   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
   4685 }
   4686 
   4687 static bool maskIsAllZeroOrUndef(Value *Mask) {
   4688   auto *ConstMask = dyn_cast<Constant>(Mask);
   4689   if (!ConstMask)
   4690     return false;
   4691   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
   4692     return true;
   4693   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
   4694        ++I) {
   4695     if (auto *MaskElt = ConstMask->getAggregateElement(I))
   4696       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
   4697         continue;
   4698     return false;
   4699   }
   4700   return true;
   4701 }
   4702 
   4703 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
   4704                                      const SimplifyQuery &Q) {
   4705   // Idempotent functions return the same result when called repeatedly.
   4706   Intrinsic::ID IID = F->getIntrinsicID();
   4707   if (IsIdempotent(IID))
   4708     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
   4709       if (II->getIntrinsicID() == IID)
   4710         return II;
   4711 
   4712   Value *X;
   4713   switch (IID) {
   4714   case Intrinsic::fabs:
   4715     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
   4716     break;
   4717   case Intrinsic::bswap:
   4718     // bswap(bswap(x)) -> x
   4719     if (match(Op0, m_BSwap(m_Value(X)))) return X;
   4720     break;
   4721   case Intrinsic::bitreverse:
   4722     // bitreverse(bitreverse(x)) -> x
   4723     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
   4724     break;
   4725   case Intrinsic::exp:
   4726     // exp(log(x)) -> x
   4727     if (Q.CxtI->hasAllowReassoc() &&
   4728         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
   4729     break;
   4730   case Intrinsic::exp2:
   4731     // exp2(log2(x)) -> x
   4732     if (Q.CxtI->hasAllowReassoc() &&
   4733         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
   4734     break;
   4735   case Intrinsic::log:
   4736     // log(exp(x)) -> x
   4737     if (Q.CxtI->hasAllowReassoc() &&
   4738         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
   4739     break;
   4740   case Intrinsic::log2:
   4741     // log2(exp2(x)) -> x
   4742     if (Q.CxtI->hasAllowReassoc() &&
   4743         match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X;
   4744     break;
   4745   default:
   4746     break;
   4747   }
   4748 
   4749   return nullptr;
   4750 }
   4751 
   4752 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
   4753                                       const SimplifyQuery &Q) {
   4754   Intrinsic::ID IID = F->getIntrinsicID();
   4755   Type *ReturnType = F->getReturnType();
   4756   switch (IID) {
   4757   case Intrinsic::usub_with_overflow:
   4758   case Intrinsic::ssub_with_overflow:
   4759     // X - X -> { 0, false }
   4760     if (Op0 == Op1)
   4761       return Constant::getNullValue(ReturnType);
   4762     // X - undef -> undef
   4763     // undef - X -> undef
   4764     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
   4765       return UndefValue::get(ReturnType);
   4766     break;
   4767   case Intrinsic::uadd_with_overflow:
   4768   case Intrinsic::sadd_with_overflow:
   4769     // X + undef -> undef
   4770     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
   4771       return UndefValue::get(ReturnType);
   4772     break;
   4773   case Intrinsic::umul_with_overflow:
   4774   case Intrinsic::smul_with_overflow:
   4775     // 0 * X -> { 0, false }
   4776     // X * 0 -> { 0, false }
   4777     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
   4778       return Constant::getNullValue(ReturnType);
   4779     // undef * X -> { 0, false }
   4780     // X * undef -> { 0, false }
   4781     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
   4782       return Constant::getNullValue(ReturnType);
   4783     break;
   4784   case Intrinsic::load_relative:
   4785     if (auto *C0 = dyn_cast<Constant>(Op0))
   4786       if (auto *C1 = dyn_cast<Constant>(Op1))
   4787         return SimplifyRelativeLoad(C0, C1, Q.DL);
   4788     break;
   4789   case Intrinsic::powi:
   4790     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
   4791       // powi(x, 0) -> 1.0
   4792       if (Power->isZero())
   4793         return ConstantFP::get(Op0->getType(), 1.0);
   4794       // powi(x, 1) -> x
   4795       if (Power->isOne())
   4796         return Op0;
   4797     }
   4798     break;
   4799   case Intrinsic::maxnum:
   4800   case Intrinsic::minnum:
   4801     // If one argument is NaN, return the other argument.
   4802     if (match(Op0, m_NaN())) return Op1;
   4803     if (match(Op1, m_NaN())) return Op0;
   4804     break;
   4805   default:
   4806     break;
   4807   }
   4808 
   4809   return nullptr;
   4810 }
   4811 
   4812 template <typename IterTy>
   4813 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
   4814                                 const SimplifyQuery &Q) {
   4815   // Intrinsics with no operands have some kind of side effect. Don't simplify.
   4816   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
   4817   if (NumOperands == 0)
   4818     return nullptr;
   4819 
   4820   Intrinsic::ID IID = F->getIntrinsicID();
   4821   if (NumOperands == 1)
   4822     return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
   4823 
   4824   if (NumOperands == 2)
   4825     return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
   4826 
   4827   // Handle intrinsics with 3 or more arguments.
   4828   switch (IID) {
   4829   case Intrinsic::masked_load: {
   4830     Value *MaskArg = ArgBegin[2];
   4831     Value *PassthruArg = ArgBegin[3];
   4832     // If the mask is all zeros or undef, the "passthru" argument is the result.
   4833     if (maskIsAllZeroOrUndef(MaskArg))
   4834       return PassthruArg;
   4835     return nullptr;
   4836   }
   4837   case Intrinsic::fshl:
   4838   case Intrinsic::fshr: {
   4839     Value *ShAmtArg = ArgBegin[2];
   4840     const APInt *ShAmtC;
   4841     if (match(ShAmtArg, m_APInt(ShAmtC))) {
   4842       // If there's effectively no shift, return the 1st arg or 2nd arg.
   4843       // TODO: For vectors, we could check each element of a non-splat constant.
   4844       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
   4845       if (ShAmtC->urem(BitWidth).isNullValue())
   4846         return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
   4847     }
   4848     return nullptr;
   4849   }
   4850   default:
   4851     return nullptr;
   4852   }
   4853 }
   4854 
   4855 template <typename IterTy>
   4856 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
   4857                            IterTy ArgEnd, const SimplifyQuery &Q,
   4858                            unsigned MaxRecurse) {
   4859   Type *Ty = V->getType();
   4860   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   4861     Ty = PTy->getElementType();
   4862   FunctionType *FTy = cast<FunctionType>(Ty);
   4863 
   4864   // call undef -> undef
   4865   // call null -> undef
   4866   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
   4867     return UndefValue::get(FTy->getReturnType());
   4868 
   4869   Function *F = dyn_cast<Function>(V);
   4870   if (!F)
   4871     return nullptr;
   4872 
   4873   if (F->isIntrinsic())
   4874     if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
   4875       return Ret;
   4876 
   4877   if (!canConstantFoldCallTo(CS, F))
   4878     return nullptr;
   4879 
   4880   SmallVector<Constant *, 4> ConstantArgs;
   4881   ConstantArgs.reserve(ArgEnd - ArgBegin);
   4882   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
   4883     Constant *C = dyn_cast<Constant>(*I);
   4884     if (!C)
   4885       return nullptr;
   4886     ConstantArgs.push_back(C);
   4887   }
   4888 
   4889   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
   4890 }
   4891 
   4892 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
   4893                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
   4894                           const SimplifyQuery &Q) {
   4895   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
   4896 }
   4897 
   4898 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
   4899                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
   4900   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
   4901 }
   4902 
   4903 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) {
   4904   CallSite CS(const_cast<Instruction*>(ICS.getInstruction()));
   4905   return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
   4906                         Q, RecursionLimit);
   4907 }
   4908 
   4909 /// See if we can compute a simplified version of this instruction.
   4910 /// If not, this returns null.
   4911 
   4912 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
   4913                                  OptimizationRemarkEmitter *ORE) {
   4914   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
   4915   Value *Result;
   4916 
   4917   switch (I->getOpcode()) {
   4918   default:
   4919     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
   4920     break;
   4921   case Instruction::FAdd:
   4922     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
   4923                               I->getFastMathFlags(), Q);
   4924     break;
   4925   case Instruction::Add:
   4926     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
   4927                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4928                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
   4929     break;
   4930   case Instruction::FSub:
   4931     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
   4932                               I->getFastMathFlags(), Q);
   4933     break;
   4934   case Instruction::Sub:
   4935     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
   4936                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4937                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
   4938     break;
   4939   case Instruction::FMul:
   4940     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
   4941                               I->getFastMathFlags(), Q);
   4942     break;
   4943   case Instruction::Mul:
   4944     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
   4945     break;
   4946   case Instruction::SDiv:
   4947     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
   4948     break;
   4949   case Instruction::UDiv:
   4950     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
   4951     break;
   4952   case Instruction::FDiv:
   4953     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
   4954                               I->getFastMathFlags(), Q);
   4955     break;
   4956   case Instruction::SRem:
   4957     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
   4958     break;
   4959   case Instruction::URem:
   4960     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
   4961     break;
   4962   case Instruction::FRem:
   4963     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
   4964                               I->getFastMathFlags(), Q);
   4965     break;
   4966   case Instruction::Shl:
   4967     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
   4968                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4969                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
   4970     break;
   4971   case Instruction::LShr:
   4972     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
   4973                               cast<BinaryOperator>(I)->isExact(), Q);
   4974     break;
   4975   case Instruction::AShr:
   4976     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
   4977                               cast<BinaryOperator>(I)->isExact(), Q);
   4978     break;
   4979   case Instruction::And:
   4980     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
   4981     break;
   4982   case Instruction::Or:
   4983     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
   4984     break;
   4985   case Instruction::Xor:
   4986     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
   4987     break;
   4988   case Instruction::ICmp:
   4989     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
   4990                               I->getOperand(0), I->getOperand(1), Q);
   4991     break;
   4992   case Instruction::FCmp:
   4993     Result =
   4994         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
   4995                          I->getOperand(1), I->getFastMathFlags(), Q);
   4996     break;
   4997   case Instruction::Select:
   4998     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
   4999                                 I->getOperand(2), Q);
   5000     break;
   5001   case Instruction::GetElementPtr: {
   5002     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
   5003     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
   5004                              Ops, Q);
   5005     break;
   5006   }
   5007   case Instruction::InsertValue: {
   5008     InsertValueInst *IV = cast<InsertValueInst>(I);
   5009     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
   5010                                      IV->getInsertedValueOperand(),
   5011                                      IV->getIndices(), Q);
   5012     break;
   5013   }
   5014   case Instruction::InsertElement: {
   5015     auto *IE = cast<InsertElementInst>(I);
   5016     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
   5017                                        IE->getOperand(2), Q);
   5018     break;
   5019   }
   5020   case Instruction::ExtractValue: {
   5021     auto *EVI = cast<ExtractValueInst>(I);
   5022     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
   5023                                       EVI->getIndices(), Q);
   5024     break;
   5025   }
   5026   case Instruction::ExtractElement: {
   5027     auto *EEI = cast<ExtractElementInst>(I);
   5028     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
   5029                                         EEI->getIndexOperand(), Q);
   5030     break;
   5031   }
   5032   case Instruction::ShuffleVector: {
   5033     auto *SVI = cast<ShuffleVectorInst>(I);
   5034     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
   5035                                        SVI->getMask(), SVI->getType(), Q);
   5036     break;
   5037   }
   5038   case Instruction::PHI:
   5039     Result = SimplifyPHINode(cast<PHINode>(I), Q);
   5040     break;
   5041   case Instruction::Call: {
   5042     CallSite CS(cast<CallInst>(I));
   5043     Result = SimplifyCall(CS, Q);
   5044     break;
   5045   }
   5046 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
   5047 #include "llvm/IR/Instruction.def"
   5048 #undef HANDLE_CAST_INST
   5049     Result =
   5050         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
   5051     break;
   5052   case Instruction::Alloca:
   5053     // No simplifications for Alloca and it can't be constant folded.
   5054     Result = nullptr;
   5055     break;
   5056   }
   5057 
   5058   // In general, it is possible for computeKnownBits to determine all bits in a
   5059   // value even when the operands are not all constants.
   5060   if (!Result && I->getType()->isIntOrIntVectorTy()) {
   5061     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
   5062     if (Known.isConstant())
   5063       Result = ConstantInt::get(I->getType(), Known.getConstant());
   5064   }
   5065 
   5066   /// If called on unreachable code, the above logic may report that the
   5067   /// instruction simplified to itself.  Make life easier for users by
   5068   /// detecting that case here, returning a safe value instead.
   5069   return Result == I ? UndefValue::get(I->getType()) : Result;
   5070 }
   5071 
   5072 /// Implementation of recursive simplification through an instruction's
   5073 /// uses.
   5074 ///
   5075 /// This is the common implementation of the recursive simplification routines.
   5076 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
   5077 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
   5078 /// instructions to process and attempt to simplify it using
   5079 /// InstructionSimplify.
   5080 ///
   5081 /// This routine returns 'true' only when *it* simplifies something. The passed
   5082 /// in simplified value does not count toward this.
   5083 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
   5084                                               const TargetLibraryInfo *TLI,
   5085                                               const DominatorTree *DT,
   5086                                               AssumptionCache *AC) {
   5087   bool Simplified = false;
   5088   SmallSetVector<Instruction *, 8> Worklist;
   5089   const DataLayout &DL = I->getModule()->getDataLayout();
   5090 
   5091   // If we have an explicit value to collapse to, do that round of the
   5092   // simplification loop by hand initially.
   5093   if (SimpleV) {
   5094     for (User *U : I->users())
   5095       if (U != I)
   5096         Worklist.insert(cast<Instruction>(U));
   5097 
   5098     // Replace the instruction with its simplified value.
   5099     I->replaceAllUsesWith(SimpleV);
   5100 
   5101     // Gracefully handle edge cases where the instruction is not wired into any
   5102     // parent block.
   5103     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
   5104         !I->mayHaveSideEffects())
   5105       I->eraseFromParent();
   5106   } else {
   5107     Worklist.insert(I);
   5108   }
   5109 
   5110   // Note that we must test the size on each iteration, the worklist can grow.
   5111   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
   5112     I = Worklist[Idx];
   5113 
   5114     // See if this instruction simplifies.
   5115     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
   5116     if (!SimpleV)
   5117       continue;
   5118 
   5119     Simplified = true;
   5120 
   5121     // Stash away all the uses of the old instruction so we can check them for
   5122     // recursive simplifications after a RAUW. This is cheaper than checking all
   5123     // uses of To on the recursive step in most cases.
   5124     for (User *U : I->users())
   5125       Worklist.insert(cast<Instruction>(U));
   5126 
   5127     // Replace the instruction with its simplified value.
   5128     I->replaceAllUsesWith(SimpleV);
   5129 
   5130     // Gracefully handle edge cases where the instruction is not wired into any
   5131     // parent block.
   5132     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
   5133         !I->mayHaveSideEffects())
   5134       I->eraseFromParent();
   5135   }
   5136   return Simplified;
   5137 }
   5138 
   5139 bool llvm::recursivelySimplifyInstruction(Instruction *I,
   5140                                           const TargetLibraryInfo *TLI,
   5141                                           const DominatorTree *DT,
   5142                                           AssumptionCache *AC) {
   5143   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
   5144 }
   5145 
   5146 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
   5147                                          const TargetLibraryInfo *TLI,
   5148                                          const DominatorTree *DT,
   5149                                          AssumptionCache *AC) {
   5150   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   5151   assert(SimpleV && "Must provide a simplified value.");
   5152   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
   5153 }
   5154 
   5155 namespace llvm {
   5156 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
   5157   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   5158   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
   5159   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
   5160   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
   5161   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
   5162   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
   5163   return {F.getParent()->getDataLayout(), TLI, DT, AC};
   5164 }
   5165 
   5166 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
   5167                                          const DataLayout &DL) {
   5168   return {DL, &AR.TLI, &AR.DT, &AR.AC};
   5169 }
   5170 
   5171 template <class T, class... TArgs>
   5172 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
   5173                                          Function &F) {
   5174   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
   5175   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
   5176   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
   5177   return {F.getParent()->getDataLayout(), TLI, DT, AC};
   5178 }
   5179 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
   5180                                                   Function &);
   5181 }
   5182