1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 66 unsigned); 67 68 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 69 Value *FalseVal) { 70 BinaryOperator::BinaryOps BinOpCode; 71 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 72 BinOpCode = BO->getOpcode(); 73 else 74 return nullptr; 75 76 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 77 if (BinOpCode == BinaryOperator::Or) { 78 ExpectedPred = ICmpInst::ICMP_NE; 79 } else if (BinOpCode == BinaryOperator::And) { 80 ExpectedPred = ICmpInst::ICMP_EQ; 81 } else 82 return nullptr; 83 84 // %A = icmp eq %TV, %FV 85 // %B = icmp eq %X, %Y (and one of these is a select operand) 86 // %C = and %A, %B 87 // %D = select %C, %TV, %FV 88 // --> 89 // %FV 90 91 // %A = icmp ne %TV, %FV 92 // %B = icmp ne %X, %Y (and one of these is a select operand) 93 // %C = or %A, %B 94 // %D = select %C, %TV, %FV 95 // --> 96 // %TV 97 Value *X, *Y; 98 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 99 m_Specific(FalseVal)), 100 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 101 Pred1 != Pred2 || Pred1 != ExpectedPred) 102 return nullptr; 103 104 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 105 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 106 107 return nullptr; 108 } 109 110 /// For a boolean type or a vector of boolean type, return false or a vector 111 /// with every element false. 112 static Constant *getFalse(Type *Ty) { 113 return ConstantInt::getFalse(Ty); 114 } 115 116 /// For a boolean type or a vector of boolean type, return true or a vector 117 /// with every element true. 118 static Constant *getTrue(Type *Ty) { 119 return ConstantInt::getTrue(Ty); 120 } 121 122 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 123 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 124 Value *RHS) { 125 CmpInst *Cmp = dyn_cast<CmpInst>(V); 126 if (!Cmp) 127 return false; 128 CmpInst::Predicate CPred = Cmp->getPredicate(); 129 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 130 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 131 return true; 132 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 133 CRHS == LHS; 134 } 135 136 /// Does the given value dominate the specified phi node? 137 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 138 Instruction *I = dyn_cast<Instruction>(V); 139 if (!I) 140 // Arguments and constants dominate all instructions. 141 return true; 142 143 // If we are processing instructions (and/or basic blocks) that have not been 144 // fully added to a function, the parent nodes may still be null. Simply 145 // return the conservative answer in these cases. 146 if (!I->getParent() || !P->getParent() || !I->getFunction()) 147 return false; 148 149 // If we have a DominatorTree then do a precise test. 150 if (DT) 151 return DT->dominates(I, P); 152 153 // Otherwise, if the instruction is in the entry block and is not an invoke, 154 // then it obviously dominates all phi nodes. 155 if (I->getParent() == &I->getFunction()->getEntryBlock() && 156 !isa<InvokeInst>(I)) 157 return true; 158 159 return false; 160 } 161 162 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 163 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 164 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 165 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 166 /// Returns the simplified value, or null if no simplification was performed. 167 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 168 Instruction::BinaryOps OpcodeToExpand, 169 const SimplifyQuery &Q, unsigned MaxRecurse) { 170 // Recursion is always used, so bail out at once if we already hit the limit. 171 if (!MaxRecurse--) 172 return nullptr; 173 174 // Check whether the expression has the form "(A op' B) op C". 175 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 176 if (Op0->getOpcode() == OpcodeToExpand) { 177 // It does! Try turning it into "(A op C) op' (B op C)". 178 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 179 // Do "A op C" and "B op C" both simplify? 180 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 181 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 182 // They do! Return "L op' R" if it simplifies or is already available. 183 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 184 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 185 && L == B && R == A)) { 186 ++NumExpand; 187 return LHS; 188 } 189 // Otherwise return "L op' R" if it simplifies. 190 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 191 ++NumExpand; 192 return V; 193 } 194 } 195 } 196 197 // Check whether the expression has the form "A op (B op' C)". 198 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 199 if (Op1->getOpcode() == OpcodeToExpand) { 200 // It does! Try turning it into "(A op B) op' (A op C)". 201 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 202 // Do "A op B" and "A op C" both simplify? 203 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 204 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 205 // They do! Return "L op' R" if it simplifies or is already available. 206 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 207 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 208 && L == C && R == B)) { 209 ++NumExpand; 210 return RHS; 211 } 212 // Otherwise return "L op' R" if it simplifies. 213 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 214 ++NumExpand; 215 return V; 216 } 217 } 218 } 219 220 return nullptr; 221 } 222 223 /// Generic simplifications for associative binary operations. 224 /// Returns the simpler value, or null if none was found. 225 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 226 Value *LHS, Value *RHS, 227 const SimplifyQuery &Q, 228 unsigned MaxRecurse) { 229 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 230 231 // Recursion is always used, so bail out at once if we already hit the limit. 232 if (!MaxRecurse--) 233 return nullptr; 234 235 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 236 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 237 238 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 239 if (Op0 && Op0->getOpcode() == Opcode) { 240 Value *A = Op0->getOperand(0); 241 Value *B = Op0->getOperand(1); 242 Value *C = RHS; 243 244 // Does "B op C" simplify? 245 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 246 // It does! Return "A op V" if it simplifies or is already available. 247 // If V equals B then "A op V" is just the LHS. 248 if (V == B) return LHS; 249 // Otherwise return "A op V" if it simplifies. 250 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 251 ++NumReassoc; 252 return W; 253 } 254 } 255 } 256 257 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 258 if (Op1 && Op1->getOpcode() == Opcode) { 259 Value *A = LHS; 260 Value *B = Op1->getOperand(0); 261 Value *C = Op1->getOperand(1); 262 263 // Does "A op B" simplify? 264 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 265 // It does! Return "V op C" if it simplifies or is already available. 266 // If V equals B then "V op C" is just the RHS. 267 if (V == B) return RHS; 268 // Otherwise return "V op C" if it simplifies. 269 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 270 ++NumReassoc; 271 return W; 272 } 273 } 274 } 275 276 // The remaining transforms require commutativity as well as associativity. 277 if (!Instruction::isCommutative(Opcode)) 278 return nullptr; 279 280 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 281 if (Op0 && Op0->getOpcode() == Opcode) { 282 Value *A = Op0->getOperand(0); 283 Value *B = Op0->getOperand(1); 284 Value *C = RHS; 285 286 // Does "C op A" simplify? 287 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 288 // It does! Return "V op B" if it simplifies or is already available. 289 // If V equals A then "V op B" is just the LHS. 290 if (V == A) return LHS; 291 // Otherwise return "V op B" if it simplifies. 292 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 293 ++NumReassoc; 294 return W; 295 } 296 } 297 } 298 299 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 300 if (Op1 && Op1->getOpcode() == Opcode) { 301 Value *A = LHS; 302 Value *B = Op1->getOperand(0); 303 Value *C = Op1->getOperand(1); 304 305 // Does "C op A" simplify? 306 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 307 // It does! Return "B op V" if it simplifies or is already available. 308 // If V equals C then "B op V" is just the RHS. 309 if (V == C) return RHS; 310 // Otherwise return "B op V" if it simplifies. 311 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 312 ++NumReassoc; 313 return W; 314 } 315 } 316 } 317 318 return nullptr; 319 } 320 321 /// In the case of a binary operation with a select instruction as an operand, 322 /// try to simplify the binop by seeing whether evaluating it on both branches 323 /// of the select results in the same value. Returns the common value if so, 324 /// otherwise returns null. 325 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 326 Value *RHS, const SimplifyQuery &Q, 327 unsigned MaxRecurse) { 328 // Recursion is always used, so bail out at once if we already hit the limit. 329 if (!MaxRecurse--) 330 return nullptr; 331 332 SelectInst *SI; 333 if (isa<SelectInst>(LHS)) { 334 SI = cast<SelectInst>(LHS); 335 } else { 336 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 337 SI = cast<SelectInst>(RHS); 338 } 339 340 // Evaluate the BinOp on the true and false branches of the select. 341 Value *TV; 342 Value *FV; 343 if (SI == LHS) { 344 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 345 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 346 } else { 347 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 348 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 349 } 350 351 // If they simplified to the same value, then return the common value. 352 // If they both failed to simplify then return null. 353 if (TV == FV) 354 return TV; 355 356 // If one branch simplified to undef, return the other one. 357 if (TV && isa<UndefValue>(TV)) 358 return FV; 359 if (FV && isa<UndefValue>(FV)) 360 return TV; 361 362 // If applying the operation did not change the true and false select values, 363 // then the result of the binop is the select itself. 364 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 365 return SI; 366 367 // If one branch simplified and the other did not, and the simplified 368 // value is equal to the unsimplified one, return the simplified value. 369 // For example, select (cond, X, X & Z) & Z -> X & Z. 370 if ((FV && !TV) || (TV && !FV)) { 371 // Check that the simplified value has the form "X op Y" where "op" is the 372 // same as the original operation. 373 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 374 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 375 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 376 // We already know that "op" is the same as for the simplified value. See 377 // if the operands match too. If so, return the simplified value. 378 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 379 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 380 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 381 if (Simplified->getOperand(0) == UnsimplifiedLHS && 382 Simplified->getOperand(1) == UnsimplifiedRHS) 383 return Simplified; 384 if (Simplified->isCommutative() && 385 Simplified->getOperand(1) == UnsimplifiedLHS && 386 Simplified->getOperand(0) == UnsimplifiedRHS) 387 return Simplified; 388 } 389 } 390 391 return nullptr; 392 } 393 394 /// In the case of a comparison with a select instruction, try to simplify the 395 /// comparison by seeing whether both branches of the select result in the same 396 /// value. Returns the common value if so, otherwise returns null. 397 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 398 Value *RHS, const SimplifyQuery &Q, 399 unsigned MaxRecurse) { 400 // Recursion is always used, so bail out at once if we already hit the limit. 401 if (!MaxRecurse--) 402 return nullptr; 403 404 // Make sure the select is on the LHS. 405 if (!isa<SelectInst>(LHS)) { 406 std::swap(LHS, RHS); 407 Pred = CmpInst::getSwappedPredicate(Pred); 408 } 409 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 410 SelectInst *SI = cast<SelectInst>(LHS); 411 Value *Cond = SI->getCondition(); 412 Value *TV = SI->getTrueValue(); 413 Value *FV = SI->getFalseValue(); 414 415 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 416 // Does "cmp TV, RHS" simplify? 417 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 418 if (TCmp == Cond) { 419 // It not only simplified, it simplified to the select condition. Replace 420 // it with 'true'. 421 TCmp = getTrue(Cond->getType()); 422 } else if (!TCmp) { 423 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 424 // condition then we can replace it with 'true'. Otherwise give up. 425 if (!isSameCompare(Cond, Pred, TV, RHS)) 426 return nullptr; 427 TCmp = getTrue(Cond->getType()); 428 } 429 430 // Does "cmp FV, RHS" simplify? 431 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 432 if (FCmp == Cond) { 433 // It not only simplified, it simplified to the select condition. Replace 434 // it with 'false'. 435 FCmp = getFalse(Cond->getType()); 436 } else if (!FCmp) { 437 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 438 // condition then we can replace it with 'false'. Otherwise give up. 439 if (!isSameCompare(Cond, Pred, FV, RHS)) 440 return nullptr; 441 FCmp = getFalse(Cond->getType()); 442 } 443 444 // If both sides simplified to the same value, then use it as the result of 445 // the original comparison. 446 if (TCmp == FCmp) 447 return TCmp; 448 449 // The remaining cases only make sense if the select condition has the same 450 // type as the result of the comparison, so bail out if this is not so. 451 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 452 return nullptr; 453 // If the false value simplified to false, then the result of the compare 454 // is equal to "Cond && TCmp". This also catches the case when the false 455 // value simplified to false and the true value to true, returning "Cond". 456 if (match(FCmp, m_Zero())) 457 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 458 return V; 459 // If the true value simplified to true, then the result of the compare 460 // is equal to "Cond || FCmp". 461 if (match(TCmp, m_One())) 462 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 463 return V; 464 // Finally, if the false value simplified to true and the true value to 465 // false, then the result of the compare is equal to "!Cond". 466 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 467 if (Value *V = 468 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 469 Q, MaxRecurse)) 470 return V; 471 472 return nullptr; 473 } 474 475 /// In the case of a binary operation with an operand that is a PHI instruction, 476 /// try to simplify the binop by seeing whether evaluating it on the incoming 477 /// phi values yields the same result for every value. If so returns the common 478 /// value, otherwise returns null. 479 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 480 Value *RHS, const SimplifyQuery &Q, 481 unsigned MaxRecurse) { 482 // Recursion is always used, so bail out at once if we already hit the limit. 483 if (!MaxRecurse--) 484 return nullptr; 485 486 PHINode *PI; 487 if (isa<PHINode>(LHS)) { 488 PI = cast<PHINode>(LHS); 489 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 490 if (!valueDominatesPHI(RHS, PI, Q.DT)) 491 return nullptr; 492 } else { 493 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 494 PI = cast<PHINode>(RHS); 495 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 496 if (!valueDominatesPHI(LHS, PI, Q.DT)) 497 return nullptr; 498 } 499 500 // Evaluate the BinOp on the incoming phi values. 501 Value *CommonValue = nullptr; 502 for (Value *Incoming : PI->incoming_values()) { 503 // If the incoming value is the phi node itself, it can safely be skipped. 504 if (Incoming == PI) continue; 505 Value *V = PI == LHS ? 506 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 507 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 508 // If the operation failed to simplify, or simplified to a different value 509 // to previously, then give up. 510 if (!V || (CommonValue && V != CommonValue)) 511 return nullptr; 512 CommonValue = V; 513 } 514 515 return CommonValue; 516 } 517 518 /// In the case of a comparison with a PHI instruction, try to simplify the 519 /// comparison by seeing whether comparing with all of the incoming phi values 520 /// yields the same result every time. If so returns the common result, 521 /// otherwise returns null. 522 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 523 const SimplifyQuery &Q, unsigned MaxRecurse) { 524 // Recursion is always used, so bail out at once if we already hit the limit. 525 if (!MaxRecurse--) 526 return nullptr; 527 528 // Make sure the phi is on the LHS. 529 if (!isa<PHINode>(LHS)) { 530 std::swap(LHS, RHS); 531 Pred = CmpInst::getSwappedPredicate(Pred); 532 } 533 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 534 PHINode *PI = cast<PHINode>(LHS); 535 536 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 537 if (!valueDominatesPHI(RHS, PI, Q.DT)) 538 return nullptr; 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 546 // If the operation failed to simplify, or simplified to a different value 547 // to previously, then give up. 548 if (!V || (CommonValue && V != CommonValue)) 549 return nullptr; 550 CommonValue = V; 551 } 552 553 return CommonValue; 554 } 555 556 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 557 Value *&Op0, Value *&Op1, 558 const SimplifyQuery &Q) { 559 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 560 if (auto *CRHS = dyn_cast<Constant>(Op1)) 561 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 562 563 // Canonicalize the constant to the RHS if this is a commutative operation. 564 if (Instruction::isCommutative(Opcode)) 565 std::swap(Op0, Op1); 566 } 567 return nullptr; 568 } 569 570 /// Given operands for an Add, see if we can fold the result. 571 /// If not, this returns null. 572 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 573 const SimplifyQuery &Q, unsigned MaxRecurse) { 574 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 575 return C; 576 577 // X + undef -> undef 578 if (match(Op1, m_Undef())) 579 return Op1; 580 581 // X + 0 -> X 582 if (match(Op1, m_Zero())) 583 return Op0; 584 585 // If two operands are negative, return 0. 586 if (isKnownNegation(Op0, Op1)) 587 return Constant::getNullValue(Op0->getType()); 588 589 // X + (Y - X) -> Y 590 // (Y - X) + X -> Y 591 // Eg: X + -X -> 0 592 Value *Y = nullptr; 593 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 594 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 595 return Y; 596 597 // X + ~X -> -1 since ~X = -X-1 598 Type *Ty = Op0->getType(); 599 if (match(Op0, m_Not(m_Specific(Op1))) || 600 match(Op1, m_Not(m_Specific(Op0)))) 601 return Constant::getAllOnesValue(Ty); 602 603 // add nsw/nuw (xor Y, signmask), signmask --> Y 604 // The no-wrapping add guarantees that the top bit will be set by the add. 605 // Therefore, the xor must be clearing the already set sign bit of Y. 606 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 607 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 608 return Y; 609 610 // add nuw %x, -1 -> -1, because %x can only be 0. 611 if (IsNUW && match(Op1, m_AllOnes())) 612 return Op1; // Which is -1. 613 614 /// i1 add -> xor. 615 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 616 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 617 return V; 618 619 // Try some generic simplifications for associative operations. 620 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 621 MaxRecurse)) 622 return V; 623 624 // Threading Add over selects and phi nodes is pointless, so don't bother. 625 // Threading over the select in "A + select(cond, B, C)" means evaluating 626 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 627 // only if B and C are equal. If B and C are equal then (since we assume 628 // that operands have already been simplified) "select(cond, B, C)" should 629 // have been simplified to the common value of B and C already. Analysing 630 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 631 // for threading over phi nodes. 632 633 return nullptr; 634 } 635 636 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 637 const SimplifyQuery &Query) { 638 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 639 } 640 641 /// Compute the base pointer and cumulative constant offsets for V. 642 /// 643 /// This strips all constant offsets off of V, leaving it the base pointer, and 644 /// accumulates the total constant offset applied in the returned constant. It 645 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 646 /// no constant offsets applied. 647 /// 648 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 649 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 650 /// folding. 651 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 652 bool AllowNonInbounds = false) { 653 assert(V->getType()->isPtrOrPtrVectorTy()); 654 655 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 656 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 657 658 // Even though we don't look through PHI nodes, we could be called on an 659 // instruction in an unreachable block, which may be on a cycle. 660 SmallPtrSet<Value *, 4> Visited; 661 Visited.insert(V); 662 do { 663 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 664 if ((!AllowNonInbounds && !GEP->isInBounds()) || 665 !GEP->accumulateConstantOffset(DL, Offset)) 666 break; 667 V = GEP->getPointerOperand(); 668 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 669 V = cast<Operator>(V)->getOperand(0); 670 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 671 if (GA->isInterposable()) 672 break; 673 V = GA->getAliasee(); 674 } else { 675 if (auto CS = CallSite(V)) 676 if (Value *RV = CS.getReturnedArgOperand()) { 677 V = RV; 678 continue; 679 } 680 break; 681 } 682 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 683 } while (Visited.insert(V).second); 684 685 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 686 if (V->getType()->isVectorTy()) 687 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 688 OffsetIntPtr); 689 return OffsetIntPtr; 690 } 691 692 /// Compute the constant difference between two pointer values. 693 /// If the difference is not a constant, returns zero. 694 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 695 Value *RHS) { 696 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 697 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 698 699 // If LHS and RHS are not related via constant offsets to the same base 700 // value, there is nothing we can do here. 701 if (LHS != RHS) 702 return nullptr; 703 704 // Otherwise, the difference of LHS - RHS can be computed as: 705 // LHS - RHS 706 // = (LHSOffset + Base) - (RHSOffset + Base) 707 // = LHSOffset - RHSOffset 708 return ConstantExpr::getSub(LHSOffset, RHSOffset); 709 } 710 711 /// Given operands for a Sub, see if we can fold the result. 712 /// If not, this returns null. 713 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 714 const SimplifyQuery &Q, unsigned MaxRecurse) { 715 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 716 return C; 717 718 // X - undef -> undef 719 // undef - X -> undef 720 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 721 return UndefValue::get(Op0->getType()); 722 723 // X - 0 -> X 724 if (match(Op1, m_Zero())) 725 return Op0; 726 727 // X - X -> 0 728 if (Op0 == Op1) 729 return Constant::getNullValue(Op0->getType()); 730 731 // Is this a negation? 732 if (match(Op0, m_Zero())) { 733 // 0 - X -> 0 if the sub is NUW. 734 if (isNUW) 735 return Constant::getNullValue(Op0->getType()); 736 737 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 738 if (Known.Zero.isMaxSignedValue()) { 739 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 740 // Op1 must be 0 because negating the minimum signed value is undefined. 741 if (isNSW) 742 return Constant::getNullValue(Op0->getType()); 743 744 // 0 - X -> X if X is 0 or the minimum signed value. 745 return Op1; 746 } 747 } 748 749 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 750 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 751 Value *X = nullptr, *Y = nullptr, *Z = Op1; 752 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 753 // See if "V === Y - Z" simplifies. 754 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 755 // It does! Now see if "X + V" simplifies. 756 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 757 // It does, we successfully reassociated! 758 ++NumReassoc; 759 return W; 760 } 761 // See if "V === X - Z" simplifies. 762 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 763 // It does! Now see if "Y + V" simplifies. 764 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 765 // It does, we successfully reassociated! 766 ++NumReassoc; 767 return W; 768 } 769 } 770 771 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 772 // For example, X - (X + 1) -> -1 773 X = Op0; 774 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 775 // See if "V === X - Y" simplifies. 776 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 777 // It does! Now see if "V - Z" simplifies. 778 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 779 // It does, we successfully reassociated! 780 ++NumReassoc; 781 return W; 782 } 783 // See if "V === X - Z" simplifies. 784 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 785 // It does! Now see if "V - Y" simplifies. 786 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 787 // It does, we successfully reassociated! 788 ++NumReassoc; 789 return W; 790 } 791 } 792 793 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 794 // For example, X - (X - Y) -> Y. 795 Z = Op0; 796 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 797 // See if "V === Z - X" simplifies. 798 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 799 // It does! Now see if "V + Y" simplifies. 800 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 801 // It does, we successfully reassociated! 802 ++NumReassoc; 803 return W; 804 } 805 806 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 807 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 808 match(Op1, m_Trunc(m_Value(Y)))) 809 if (X->getType() == Y->getType()) 810 // See if "V === X - Y" simplifies. 811 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 812 // It does! Now see if "trunc V" simplifies. 813 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 814 Q, MaxRecurse - 1)) 815 // It does, return the simplified "trunc V". 816 return W; 817 818 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 819 if (match(Op0, m_PtrToInt(m_Value(X))) && 820 match(Op1, m_PtrToInt(m_Value(Y)))) 821 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 822 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 823 824 // i1 sub -> xor. 825 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 826 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 827 return V; 828 829 // Threading Sub over selects and phi nodes is pointless, so don't bother. 830 // Threading over the select in "A - select(cond, B, C)" means evaluating 831 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 832 // only if B and C are equal. If B and C are equal then (since we assume 833 // that operands have already been simplified) "select(cond, B, C)" should 834 // have been simplified to the common value of B and C already. Analysing 835 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 836 // for threading over phi nodes. 837 838 return nullptr; 839 } 840 841 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 842 const SimplifyQuery &Q) { 843 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 844 } 845 846 /// Given operands for a Mul, see if we can fold the result. 847 /// If not, this returns null. 848 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 849 unsigned MaxRecurse) { 850 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 851 return C; 852 853 // X * undef -> 0 854 // X * 0 -> 0 855 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 856 return Constant::getNullValue(Op0->getType()); 857 858 // X * 1 -> X 859 if (match(Op1, m_One())) 860 return Op0; 861 862 // (X / Y) * Y -> X if the division is exact. 863 Value *X = nullptr; 864 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 865 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 866 return X; 867 868 // i1 mul -> and. 869 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 870 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 871 return V; 872 873 // Try some generic simplifications for associative operations. 874 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 875 MaxRecurse)) 876 return V; 877 878 // Mul distributes over Add. Try some generic simplifications based on this. 879 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 880 Q, MaxRecurse)) 881 return V; 882 883 // If the operation is with the result of a select instruction, check whether 884 // operating on either branch of the select always yields the same value. 885 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 886 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 887 MaxRecurse)) 888 return V; 889 890 // If the operation is with the result of a phi instruction, check whether 891 // operating on all incoming values of the phi always yields the same value. 892 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 893 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 894 MaxRecurse)) 895 return V; 896 897 return nullptr; 898 } 899 900 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 901 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 902 } 903 904 /// Check for common or similar folds of integer division or integer remainder. 905 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 906 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 907 Type *Ty = Op0->getType(); 908 909 // X / undef -> undef 910 // X % undef -> undef 911 if (match(Op1, m_Undef())) 912 return Op1; 913 914 // X / 0 -> undef 915 // X % 0 -> undef 916 // We don't need to preserve faults! 917 if (match(Op1, m_Zero())) 918 return UndefValue::get(Ty); 919 920 // If any element of a constant divisor vector is zero or undef, the whole op 921 // is undef. 922 auto *Op1C = dyn_cast<Constant>(Op1); 923 if (Op1C && Ty->isVectorTy()) { 924 unsigned NumElts = Ty->getVectorNumElements(); 925 for (unsigned i = 0; i != NumElts; ++i) { 926 Constant *Elt = Op1C->getAggregateElement(i); 927 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 928 return UndefValue::get(Ty); 929 } 930 } 931 932 // undef / X -> 0 933 // undef % X -> 0 934 if (match(Op0, m_Undef())) 935 return Constant::getNullValue(Ty); 936 937 // 0 / X -> 0 938 // 0 % X -> 0 939 if (match(Op0, m_Zero())) 940 return Constant::getNullValue(Op0->getType()); 941 942 // X / X -> 1 943 // X % X -> 0 944 if (Op0 == Op1) 945 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 946 947 // X / 1 -> X 948 // X % 1 -> 0 949 // If this is a boolean op (single-bit element type), we can't have 950 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 951 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 952 Value *X; 953 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 954 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 955 return IsDiv ? Op0 : Constant::getNullValue(Ty); 956 957 return nullptr; 958 } 959 960 /// Given a predicate and two operands, return true if the comparison is true. 961 /// This is a helper for div/rem simplification where we return some other value 962 /// when we can prove a relationship between the operands. 963 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 964 const SimplifyQuery &Q, unsigned MaxRecurse) { 965 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 966 Constant *C = dyn_cast_or_null<Constant>(V); 967 return (C && C->isAllOnesValue()); 968 } 969 970 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 971 /// to simplify X % Y to X. 972 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 973 unsigned MaxRecurse, bool IsSigned) { 974 // Recursion is always used, so bail out at once if we already hit the limit. 975 if (!MaxRecurse--) 976 return false; 977 978 if (IsSigned) { 979 // |X| / |Y| --> 0 980 // 981 // We require that 1 operand is a simple constant. That could be extended to 982 // 2 variables if we computed the sign bit for each. 983 // 984 // Make sure that a constant is not the minimum signed value because taking 985 // the abs() of that is undefined. 986 Type *Ty = X->getType(); 987 const APInt *C; 988 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 989 // Is the variable divisor magnitude always greater than the constant 990 // dividend magnitude? 991 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 992 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 993 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 994 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 995 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 996 return true; 997 } 998 if (match(Y, m_APInt(C))) { 999 // Special-case: we can't take the abs() of a minimum signed value. If 1000 // that's the divisor, then all we have to do is prove that the dividend 1001 // is also not the minimum signed value. 1002 if (C->isMinSignedValue()) 1003 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1004 1005 // Is the variable dividend magnitude always less than the constant 1006 // divisor magnitude? 1007 // |X| < |C| --> X > -abs(C) and X < abs(C) 1008 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1009 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1010 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1011 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1012 return true; 1013 } 1014 return false; 1015 } 1016 1017 // IsSigned == false. 1018 // Is the dividend unsigned less than the divisor? 1019 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1020 } 1021 1022 /// These are simplifications common to SDiv and UDiv. 1023 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1024 const SimplifyQuery &Q, unsigned MaxRecurse) { 1025 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1026 return C; 1027 1028 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1029 return V; 1030 1031 bool IsSigned = Opcode == Instruction::SDiv; 1032 1033 // (X * Y) / Y -> X if the multiplication does not overflow. 1034 Value *X; 1035 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1036 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1037 // If the Mul does not overflow, then we are good to go. 1038 if ((IsSigned && Mul->hasNoSignedWrap()) || 1039 (!IsSigned && Mul->hasNoUnsignedWrap())) 1040 return X; 1041 // If X has the form X = A / Y, then X * Y cannot overflow. 1042 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1043 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1044 return X; 1045 } 1046 1047 // (X rem Y) / Y -> 0 1048 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1049 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1050 return Constant::getNullValue(Op0->getType()); 1051 1052 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1053 ConstantInt *C1, *C2; 1054 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1055 match(Op1, m_ConstantInt(C2))) { 1056 bool Overflow; 1057 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1058 if (Overflow) 1059 return Constant::getNullValue(Op0->getType()); 1060 } 1061 1062 // If the operation is with the result of a select instruction, check whether 1063 // operating on either branch of the select always yields the same value. 1064 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1065 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1066 return V; 1067 1068 // If the operation is with the result of a phi instruction, check whether 1069 // operating on all incoming values of the phi always yields the same value. 1070 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1071 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1072 return V; 1073 1074 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1075 return Constant::getNullValue(Op0->getType()); 1076 1077 return nullptr; 1078 } 1079 1080 /// These are simplifications common to SRem and URem. 1081 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1082 const SimplifyQuery &Q, unsigned MaxRecurse) { 1083 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1084 return C; 1085 1086 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1087 return V; 1088 1089 // (X % Y) % Y -> X % Y 1090 if ((Opcode == Instruction::SRem && 1091 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1092 (Opcode == Instruction::URem && 1093 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1094 return Op0; 1095 1096 // (X << Y) % X -> 0 1097 if ((Opcode == Instruction::SRem && 1098 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1099 (Opcode == Instruction::URem && 1100 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) 1101 return Constant::getNullValue(Op0->getType()); 1102 1103 // If the operation is with the result of a select instruction, check whether 1104 // operating on either branch of the select always yields the same value. 1105 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1106 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1107 return V; 1108 1109 // If the operation is with the result of a phi instruction, check whether 1110 // operating on all incoming values of the phi always yields the same value. 1111 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1112 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1113 return V; 1114 1115 // If X / Y == 0, then X % Y == X. 1116 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1117 return Op0; 1118 1119 return nullptr; 1120 } 1121 1122 /// Given operands for an SDiv, see if we can fold the result. 1123 /// If not, this returns null. 1124 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1125 unsigned MaxRecurse) { 1126 // If two operands are negated and no signed overflow, return -1. 1127 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1128 return Constant::getAllOnesValue(Op0->getType()); 1129 1130 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1131 } 1132 1133 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1134 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1135 } 1136 1137 /// Given operands for a UDiv, see if we can fold the result. 1138 /// If not, this returns null. 1139 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1140 unsigned MaxRecurse) { 1141 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1142 } 1143 1144 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1145 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1146 } 1147 1148 /// Given operands for an SRem, see if we can fold the result. 1149 /// If not, this returns null. 1150 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1151 unsigned MaxRecurse) { 1152 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1153 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1154 Value *X; 1155 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1156 return ConstantInt::getNullValue(Op0->getType()); 1157 1158 // If the two operands are negated, return 0. 1159 if (isKnownNegation(Op0, Op1)) 1160 return ConstantInt::getNullValue(Op0->getType()); 1161 1162 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1163 } 1164 1165 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1166 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1167 } 1168 1169 /// Given operands for a URem, see if we can fold the result. 1170 /// If not, this returns null. 1171 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1172 unsigned MaxRecurse) { 1173 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1174 } 1175 1176 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1177 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1178 } 1179 1180 /// Returns true if a shift by \c Amount always yields undef. 1181 static bool isUndefShift(Value *Amount) { 1182 Constant *C = dyn_cast<Constant>(Amount); 1183 if (!C) 1184 return false; 1185 1186 // X shift by undef -> undef because it may shift by the bitwidth. 1187 if (isa<UndefValue>(C)) 1188 return true; 1189 1190 // Shifting by the bitwidth or more is undefined. 1191 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1192 if (CI->getValue().getLimitedValue() >= 1193 CI->getType()->getScalarSizeInBits()) 1194 return true; 1195 1196 // If all lanes of a vector shift are undefined the whole shift is. 1197 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1198 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1199 if (!isUndefShift(C->getAggregateElement(I))) 1200 return false; 1201 return true; 1202 } 1203 1204 return false; 1205 } 1206 1207 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1208 /// If not, this returns null. 1209 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1210 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1211 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1212 return C; 1213 1214 // 0 shift by X -> 0 1215 if (match(Op0, m_Zero())) 1216 return Constant::getNullValue(Op0->getType()); 1217 1218 // X shift by 0 -> X 1219 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1220 // would be poison. 1221 Value *X; 1222 if (match(Op1, m_Zero()) || 1223 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1224 return Op0; 1225 1226 // Fold undefined shifts. 1227 if (isUndefShift(Op1)) 1228 return UndefValue::get(Op0->getType()); 1229 1230 // If the operation is with the result of a select instruction, check whether 1231 // operating on either branch of the select always yields the same value. 1232 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1233 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1234 return V; 1235 1236 // If the operation is with the result of a phi instruction, check whether 1237 // operating on all incoming values of the phi always yields the same value. 1238 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1239 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1240 return V; 1241 1242 // If any bits in the shift amount make that value greater than or equal to 1243 // the number of bits in the type, the shift is undefined. 1244 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1245 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1246 return UndefValue::get(Op0->getType()); 1247 1248 // If all valid bits in the shift amount are known zero, the first operand is 1249 // unchanged. 1250 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1251 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1252 return Op0; 1253 1254 return nullptr; 1255 } 1256 1257 /// Given operands for an Shl, LShr or AShr, see if we can 1258 /// fold the result. If not, this returns null. 1259 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1260 Value *Op1, bool isExact, const SimplifyQuery &Q, 1261 unsigned MaxRecurse) { 1262 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1263 return V; 1264 1265 // X >> X -> 0 1266 if (Op0 == Op1) 1267 return Constant::getNullValue(Op0->getType()); 1268 1269 // undef >> X -> 0 1270 // undef >> X -> undef (if it's exact) 1271 if (match(Op0, m_Undef())) 1272 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1273 1274 // The low bit cannot be shifted out of an exact shift if it is set. 1275 if (isExact) { 1276 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1277 if (Op0Known.One[0]) 1278 return Op0; 1279 } 1280 1281 return nullptr; 1282 } 1283 1284 /// Given operands for an Shl, see if we can fold the result. 1285 /// If not, this returns null. 1286 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1287 const SimplifyQuery &Q, unsigned MaxRecurse) { 1288 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1289 return V; 1290 1291 // undef << X -> 0 1292 // undef << X -> undef if (if it's NSW/NUW) 1293 if (match(Op0, m_Undef())) 1294 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1295 1296 // (X >> A) << A -> X 1297 Value *X; 1298 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1299 return X; 1300 1301 // shl nuw i8 C, %x -> C iff C has sign bit set. 1302 if (isNUW && match(Op0, m_Negative())) 1303 return Op0; 1304 // NOTE: could use computeKnownBits() / LazyValueInfo, 1305 // but the cost-benefit analysis suggests it isn't worth it. 1306 1307 return nullptr; 1308 } 1309 1310 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1311 const SimplifyQuery &Q) { 1312 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1313 } 1314 1315 /// Given operands for an LShr, see if we can fold the result. 1316 /// If not, this returns null. 1317 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1318 const SimplifyQuery &Q, unsigned MaxRecurse) { 1319 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1320 MaxRecurse)) 1321 return V; 1322 1323 // (X << A) >> A -> X 1324 Value *X; 1325 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1326 return X; 1327 1328 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1329 // We can return X as we do in the above case since OR alters no bits in X. 1330 // SimplifyDemandedBits in InstCombine can do more general optimization for 1331 // bit manipulation. This pattern aims to provide opportunities for other 1332 // optimizers by supporting a simple but common case in InstSimplify. 1333 Value *Y; 1334 const APInt *ShRAmt, *ShLAmt; 1335 if (match(Op1, m_APInt(ShRAmt)) && 1336 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1337 *ShRAmt == *ShLAmt) { 1338 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1339 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1340 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1341 if (ShRAmt->uge(EffWidthY)) 1342 return X; 1343 } 1344 1345 return nullptr; 1346 } 1347 1348 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1349 const SimplifyQuery &Q) { 1350 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1351 } 1352 1353 /// Given operands for an AShr, see if we can fold the result. 1354 /// If not, this returns null. 1355 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1356 const SimplifyQuery &Q, unsigned MaxRecurse) { 1357 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1358 MaxRecurse)) 1359 return V; 1360 1361 // all ones >>a X -> -1 1362 // Do not return Op0 because it may contain undef elements if it's a vector. 1363 if (match(Op0, m_AllOnes())) 1364 return Constant::getAllOnesValue(Op0->getType()); 1365 1366 // (X << A) >> A -> X 1367 Value *X; 1368 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1369 return X; 1370 1371 // Arithmetic shifting an all-sign-bit value is a no-op. 1372 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1373 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1374 return Op0; 1375 1376 return nullptr; 1377 } 1378 1379 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1380 const SimplifyQuery &Q) { 1381 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1382 } 1383 1384 /// Commuted variants are assumed to be handled by calling this function again 1385 /// with the parameters swapped. 1386 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1387 ICmpInst *UnsignedICmp, bool IsAnd) { 1388 Value *X, *Y; 1389 1390 ICmpInst::Predicate EqPred; 1391 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1392 !ICmpInst::isEquality(EqPred)) 1393 return nullptr; 1394 1395 ICmpInst::Predicate UnsignedPred; 1396 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1397 ICmpInst::isUnsigned(UnsignedPred)) 1398 ; 1399 else if (match(UnsignedICmp, 1400 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1401 ICmpInst::isUnsigned(UnsignedPred)) 1402 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1403 else 1404 return nullptr; 1405 1406 // X < Y && Y != 0 --> X < Y 1407 // X < Y || Y != 0 --> Y != 0 1408 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1409 return IsAnd ? UnsignedICmp : ZeroICmp; 1410 1411 // X >= Y || Y != 0 --> true 1412 // X >= Y || Y == 0 --> X >= Y 1413 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1414 if (EqPred == ICmpInst::ICMP_NE) 1415 return getTrue(UnsignedICmp->getType()); 1416 return UnsignedICmp; 1417 } 1418 1419 // X < Y && Y == 0 --> false 1420 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1421 IsAnd) 1422 return getFalse(UnsignedICmp->getType()); 1423 1424 return nullptr; 1425 } 1426 1427 /// Commuted variants are assumed to be handled by calling this function again 1428 /// with the parameters swapped. 1429 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1430 ICmpInst::Predicate Pred0, Pred1; 1431 Value *A ,*B; 1432 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1433 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1434 return nullptr; 1435 1436 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1437 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1438 // can eliminate Op1 from this 'and'. 1439 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1440 return Op0; 1441 1442 // Check for any combination of predicates that are guaranteed to be disjoint. 1443 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1444 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1445 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1446 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1447 return getFalse(Op0->getType()); 1448 1449 return nullptr; 1450 } 1451 1452 /// Commuted variants are assumed to be handled by calling this function again 1453 /// with the parameters swapped. 1454 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1455 ICmpInst::Predicate Pred0, Pred1; 1456 Value *A ,*B; 1457 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1458 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1459 return nullptr; 1460 1461 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1462 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1463 // can eliminate Op0 from this 'or'. 1464 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1465 return Op1; 1466 1467 // Check for any combination of predicates that cover the entire range of 1468 // possibilities. 1469 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1470 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1471 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1472 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1473 return getTrue(Op0->getType()); 1474 1475 return nullptr; 1476 } 1477 1478 /// Test if a pair of compares with a shared operand and 2 constants has an 1479 /// empty set intersection, full set union, or if one compare is a superset of 1480 /// the other. 1481 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1482 bool IsAnd) { 1483 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1484 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1485 return nullptr; 1486 1487 const APInt *C0, *C1; 1488 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1489 !match(Cmp1->getOperand(1), m_APInt(C1))) 1490 return nullptr; 1491 1492 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1493 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1494 1495 // For and-of-compares, check if the intersection is empty: 1496 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1497 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1498 return getFalse(Cmp0->getType()); 1499 1500 // For or-of-compares, check if the union is full: 1501 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1502 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1503 return getTrue(Cmp0->getType()); 1504 1505 // Is one range a superset of the other? 1506 // If this is and-of-compares, take the smaller set: 1507 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1508 // If this is or-of-compares, take the larger set: 1509 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1510 if (Range0.contains(Range1)) 1511 return IsAnd ? Cmp1 : Cmp0; 1512 if (Range1.contains(Range0)) 1513 return IsAnd ? Cmp0 : Cmp1; 1514 1515 return nullptr; 1516 } 1517 1518 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1519 bool IsAnd) { 1520 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1521 if (!match(Cmp0->getOperand(1), m_Zero()) || 1522 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1523 return nullptr; 1524 1525 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1526 return nullptr; 1527 1528 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1529 Value *X = Cmp0->getOperand(0); 1530 Value *Y = Cmp1->getOperand(0); 1531 1532 // If one of the compares is a masked version of a (not) null check, then 1533 // that compare implies the other, so we eliminate the other. Optionally, look 1534 // through a pointer-to-int cast to match a null check of a pointer type. 1535 1536 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1537 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1538 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1539 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1540 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1541 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1542 return Cmp1; 1543 1544 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1545 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1546 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1547 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1548 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1549 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1550 return Cmp0; 1551 1552 return nullptr; 1553 } 1554 1555 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1556 // (icmp (add V, C0), C1) & (icmp V, C0) 1557 ICmpInst::Predicate Pred0, Pred1; 1558 const APInt *C0, *C1; 1559 Value *V; 1560 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1561 return nullptr; 1562 1563 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1564 return nullptr; 1565 1566 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1567 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1568 return nullptr; 1569 1570 Type *ITy = Op0->getType(); 1571 bool isNSW = AddInst->hasNoSignedWrap(); 1572 bool isNUW = AddInst->hasNoUnsignedWrap(); 1573 1574 const APInt Delta = *C1 - *C0; 1575 if (C0->isStrictlyPositive()) { 1576 if (Delta == 2) { 1577 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1578 return getFalse(ITy); 1579 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1580 return getFalse(ITy); 1581 } 1582 if (Delta == 1) { 1583 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1584 return getFalse(ITy); 1585 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1586 return getFalse(ITy); 1587 } 1588 } 1589 if (C0->getBoolValue() && isNUW) { 1590 if (Delta == 2) 1591 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1592 return getFalse(ITy); 1593 if (Delta == 1) 1594 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1595 return getFalse(ITy); 1596 } 1597 1598 return nullptr; 1599 } 1600 1601 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1602 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1603 return X; 1604 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1605 return X; 1606 1607 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1608 return X; 1609 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1610 return X; 1611 1612 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1613 return X; 1614 1615 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1616 return X; 1617 1618 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1619 return X; 1620 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1621 return X; 1622 1623 return nullptr; 1624 } 1625 1626 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1627 // (icmp (add V, C0), C1) | (icmp V, C0) 1628 ICmpInst::Predicate Pred0, Pred1; 1629 const APInt *C0, *C1; 1630 Value *V; 1631 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1632 return nullptr; 1633 1634 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1635 return nullptr; 1636 1637 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1638 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1639 return nullptr; 1640 1641 Type *ITy = Op0->getType(); 1642 bool isNSW = AddInst->hasNoSignedWrap(); 1643 bool isNUW = AddInst->hasNoUnsignedWrap(); 1644 1645 const APInt Delta = *C1 - *C0; 1646 if (C0->isStrictlyPositive()) { 1647 if (Delta == 2) { 1648 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1649 return getTrue(ITy); 1650 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1651 return getTrue(ITy); 1652 } 1653 if (Delta == 1) { 1654 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1655 return getTrue(ITy); 1656 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1657 return getTrue(ITy); 1658 } 1659 } 1660 if (C0->getBoolValue() && isNUW) { 1661 if (Delta == 2) 1662 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1663 return getTrue(ITy); 1664 if (Delta == 1) 1665 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1666 return getTrue(ITy); 1667 } 1668 1669 return nullptr; 1670 } 1671 1672 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1673 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1674 return X; 1675 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1676 return X; 1677 1678 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1679 return X; 1680 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1681 return X; 1682 1683 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1684 return X; 1685 1686 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1687 return X; 1688 1689 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1690 return X; 1691 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1692 return X; 1693 1694 return nullptr; 1695 } 1696 1697 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1698 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1699 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1700 if (LHS0->getType() != RHS0->getType()) 1701 return nullptr; 1702 1703 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1704 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1705 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1706 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1707 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1708 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1709 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1710 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1711 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1712 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1713 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1714 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1715 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1716 return RHS; 1717 1718 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1719 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1720 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1721 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1722 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1723 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1724 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1725 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1726 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1727 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1728 return LHS; 1729 } 1730 1731 return nullptr; 1732 } 1733 1734 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1735 // Look through casts of the 'and' operands to find compares. 1736 auto *Cast0 = dyn_cast<CastInst>(Op0); 1737 auto *Cast1 = dyn_cast<CastInst>(Op1); 1738 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1739 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1740 Op0 = Cast0->getOperand(0); 1741 Op1 = Cast1->getOperand(0); 1742 } 1743 1744 Value *V = nullptr; 1745 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1746 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1747 if (ICmp0 && ICmp1) 1748 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1749 simplifyOrOfICmps(ICmp0, ICmp1); 1750 1751 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1752 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1753 if (FCmp0 && FCmp1) 1754 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1755 1756 if (!V) 1757 return nullptr; 1758 if (!Cast0) 1759 return V; 1760 1761 // If we looked through casts, we can only handle a constant simplification 1762 // because we are not allowed to create a cast instruction here. 1763 if (auto *C = dyn_cast<Constant>(V)) 1764 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1765 1766 return nullptr; 1767 } 1768 1769 /// Given operands for an And, see if we can fold the result. 1770 /// If not, this returns null. 1771 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1772 unsigned MaxRecurse) { 1773 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1774 return C; 1775 1776 // X & undef -> 0 1777 if (match(Op1, m_Undef())) 1778 return Constant::getNullValue(Op0->getType()); 1779 1780 // X & X = X 1781 if (Op0 == Op1) 1782 return Op0; 1783 1784 // X & 0 = 0 1785 if (match(Op1, m_Zero())) 1786 return Constant::getNullValue(Op0->getType()); 1787 1788 // X & -1 = X 1789 if (match(Op1, m_AllOnes())) 1790 return Op0; 1791 1792 // A & ~A = ~A & A = 0 1793 if (match(Op0, m_Not(m_Specific(Op1))) || 1794 match(Op1, m_Not(m_Specific(Op0)))) 1795 return Constant::getNullValue(Op0->getType()); 1796 1797 // (A | ?) & A = A 1798 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1799 return Op1; 1800 1801 // A & (A | ?) = A 1802 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1803 return Op0; 1804 1805 // A mask that only clears known zeros of a shifted value is a no-op. 1806 Value *X; 1807 const APInt *Mask; 1808 const APInt *ShAmt; 1809 if (match(Op1, m_APInt(Mask))) { 1810 // If all bits in the inverted and shifted mask are clear: 1811 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1812 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1813 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1814 return Op0; 1815 1816 // If all bits in the inverted and shifted mask are clear: 1817 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1818 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1819 (~(*Mask)).shl(*ShAmt).isNullValue()) 1820 return Op0; 1821 } 1822 1823 // A & (-A) = A if A is a power of two or zero. 1824 if (match(Op0, m_Neg(m_Specific(Op1))) || 1825 match(Op1, m_Neg(m_Specific(Op0)))) { 1826 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1827 Q.DT)) 1828 return Op0; 1829 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1830 Q.DT)) 1831 return Op1; 1832 } 1833 1834 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1835 return V; 1836 1837 // Try some generic simplifications for associative operations. 1838 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1839 MaxRecurse)) 1840 return V; 1841 1842 // And distributes over Or. Try some generic simplifications based on this. 1843 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1844 Q, MaxRecurse)) 1845 return V; 1846 1847 // And distributes over Xor. Try some generic simplifications based on this. 1848 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1849 Q, MaxRecurse)) 1850 return V; 1851 1852 // If the operation is with the result of a select instruction, check whether 1853 // operating on either branch of the select always yields the same value. 1854 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1855 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1856 MaxRecurse)) 1857 return V; 1858 1859 // If the operation is with the result of a phi instruction, check whether 1860 // operating on all incoming values of the phi always yields the same value. 1861 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1862 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1863 MaxRecurse)) 1864 return V; 1865 1866 // Assuming the effective width of Y is not larger than A, i.e. all bits 1867 // from X and Y are disjoint in (X << A) | Y, 1868 // if the mask of this AND op covers all bits of X or Y, while it covers 1869 // no bits from the other, we can bypass this AND op. E.g., 1870 // ((X << A) | Y) & Mask -> Y, 1871 // if Mask = ((1 << effective_width_of(Y)) - 1) 1872 // ((X << A) | Y) & Mask -> X << A, 1873 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1874 // SimplifyDemandedBits in InstCombine can optimize the general case. 1875 // This pattern aims to help other passes for a common case. 1876 Value *Y, *XShifted; 1877 if (match(Op1, m_APInt(Mask)) && 1878 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1879 m_Value(XShifted)), 1880 m_Value(Y)))) { 1881 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1882 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1883 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1884 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1885 if (EffWidthY <= ShftCnt) { 1886 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1887 Q.DT); 1888 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1889 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1890 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1891 // If the mask is extracting all bits from X or Y as is, we can skip 1892 // this AND op. 1893 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1894 return Y; 1895 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1896 return XShifted; 1897 } 1898 } 1899 1900 return nullptr; 1901 } 1902 1903 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1904 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1905 } 1906 1907 /// Given operands for an Or, see if we can fold the result. 1908 /// If not, this returns null. 1909 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1910 unsigned MaxRecurse) { 1911 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1912 return C; 1913 1914 // X | undef -> -1 1915 // X | -1 = -1 1916 // Do not return Op1 because it may contain undef elements if it's a vector. 1917 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1918 return Constant::getAllOnesValue(Op0->getType()); 1919 1920 // X | X = X 1921 // X | 0 = X 1922 if (Op0 == Op1 || match(Op1, m_Zero())) 1923 return Op0; 1924 1925 // A | ~A = ~A | A = -1 1926 if (match(Op0, m_Not(m_Specific(Op1))) || 1927 match(Op1, m_Not(m_Specific(Op0)))) 1928 return Constant::getAllOnesValue(Op0->getType()); 1929 1930 // (A & ?) | A = A 1931 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1932 return Op1; 1933 1934 // A | (A & ?) = A 1935 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1936 return Op0; 1937 1938 // ~(A & ?) | A = -1 1939 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1940 return Constant::getAllOnesValue(Op1->getType()); 1941 1942 // A | ~(A & ?) = -1 1943 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1944 return Constant::getAllOnesValue(Op0->getType()); 1945 1946 Value *A, *B; 1947 // (A & ~B) | (A ^ B) -> (A ^ B) 1948 // (~B & A) | (A ^ B) -> (A ^ B) 1949 // (A & ~B) | (B ^ A) -> (B ^ A) 1950 // (~B & A) | (B ^ A) -> (B ^ A) 1951 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1952 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1953 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1954 return Op1; 1955 1956 // Commute the 'or' operands. 1957 // (A ^ B) | (A & ~B) -> (A ^ B) 1958 // (A ^ B) | (~B & A) -> (A ^ B) 1959 // (B ^ A) | (A & ~B) -> (B ^ A) 1960 // (B ^ A) | (~B & A) -> (B ^ A) 1961 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1962 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1963 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1964 return Op0; 1965 1966 // (A & B) | (~A ^ B) -> (~A ^ B) 1967 // (B & A) | (~A ^ B) -> (~A ^ B) 1968 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1969 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1970 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1971 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1972 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1973 return Op1; 1974 1975 // (~A ^ B) | (A & B) -> (~A ^ B) 1976 // (~A ^ B) | (B & A) -> (~A ^ B) 1977 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1978 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1979 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1980 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1981 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1982 return Op0; 1983 1984 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1985 return V; 1986 1987 // Try some generic simplifications for associative operations. 1988 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1989 MaxRecurse)) 1990 return V; 1991 1992 // Or distributes over And. Try some generic simplifications based on this. 1993 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1994 MaxRecurse)) 1995 return V; 1996 1997 // If the operation is with the result of a select instruction, check whether 1998 // operating on either branch of the select always yields the same value. 1999 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2000 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2001 MaxRecurse)) 2002 return V; 2003 2004 // (A & C1)|(B & C2) 2005 const APInt *C1, *C2; 2006 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2007 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2008 if (*C1 == ~*C2) { 2009 // (A & C1)|(B & C2) 2010 // If we have: ((V + N) & C1) | (V & C2) 2011 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2012 // replace with V+N. 2013 Value *N; 2014 if (C2->isMask() && // C2 == 0+1+ 2015 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2016 // Add commutes, try both ways. 2017 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2018 return A; 2019 } 2020 // Or commutes, try both ways. 2021 if (C1->isMask() && 2022 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2023 // Add commutes, try both ways. 2024 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2025 return B; 2026 } 2027 } 2028 } 2029 2030 // If the operation is with the result of a phi instruction, check whether 2031 // operating on all incoming values of the phi always yields the same value. 2032 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2033 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2034 return V; 2035 2036 return nullptr; 2037 } 2038 2039 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2040 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2041 } 2042 2043 /// Given operands for a Xor, see if we can fold the result. 2044 /// If not, this returns null. 2045 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2046 unsigned MaxRecurse) { 2047 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2048 return C; 2049 2050 // A ^ undef -> undef 2051 if (match(Op1, m_Undef())) 2052 return Op1; 2053 2054 // A ^ 0 = A 2055 if (match(Op1, m_Zero())) 2056 return Op0; 2057 2058 // A ^ A = 0 2059 if (Op0 == Op1) 2060 return Constant::getNullValue(Op0->getType()); 2061 2062 // A ^ ~A = ~A ^ A = -1 2063 if (match(Op0, m_Not(m_Specific(Op1))) || 2064 match(Op1, m_Not(m_Specific(Op0)))) 2065 return Constant::getAllOnesValue(Op0->getType()); 2066 2067 // Try some generic simplifications for associative operations. 2068 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2069 MaxRecurse)) 2070 return V; 2071 2072 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2073 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2074 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2075 // only if B and C are equal. If B and C are equal then (since we assume 2076 // that operands have already been simplified) "select(cond, B, C)" should 2077 // have been simplified to the common value of B and C already. Analysing 2078 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2079 // for threading over phi nodes. 2080 2081 return nullptr; 2082 } 2083 2084 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2085 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2086 } 2087 2088 2089 static Type *GetCompareTy(Value *Op) { 2090 return CmpInst::makeCmpResultType(Op->getType()); 2091 } 2092 2093 /// Rummage around inside V looking for something equivalent to the comparison 2094 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2095 /// Helper function for analyzing max/min idioms. 2096 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2097 Value *LHS, Value *RHS) { 2098 SelectInst *SI = dyn_cast<SelectInst>(V); 2099 if (!SI) 2100 return nullptr; 2101 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2102 if (!Cmp) 2103 return nullptr; 2104 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2105 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2106 return Cmp; 2107 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2108 LHS == CmpRHS && RHS == CmpLHS) 2109 return Cmp; 2110 return nullptr; 2111 } 2112 2113 // A significant optimization not implemented here is assuming that alloca 2114 // addresses are not equal to incoming argument values. They don't *alias*, 2115 // as we say, but that doesn't mean they aren't equal, so we take a 2116 // conservative approach. 2117 // 2118 // This is inspired in part by C++11 5.10p1: 2119 // "Two pointers of the same type compare equal if and only if they are both 2120 // null, both point to the same function, or both represent the same 2121 // address." 2122 // 2123 // This is pretty permissive. 2124 // 2125 // It's also partly due to C11 6.5.9p6: 2126 // "Two pointers compare equal if and only if both are null pointers, both are 2127 // pointers to the same object (including a pointer to an object and a 2128 // subobject at its beginning) or function, both are pointers to one past the 2129 // last element of the same array object, or one is a pointer to one past the 2130 // end of one array object and the other is a pointer to the start of a 2131 // different array object that happens to immediately follow the first array 2132 // object in the address space.) 2133 // 2134 // C11's version is more restrictive, however there's no reason why an argument 2135 // couldn't be a one-past-the-end value for a stack object in the caller and be 2136 // equal to the beginning of a stack object in the callee. 2137 // 2138 // If the C and C++ standards are ever made sufficiently restrictive in this 2139 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2140 // this optimization. 2141 static Constant * 2142 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2143 const DominatorTree *DT, CmpInst::Predicate Pred, 2144 AssumptionCache *AC, const Instruction *CxtI, 2145 Value *LHS, Value *RHS) { 2146 // First, skip past any trivial no-ops. 2147 LHS = LHS->stripPointerCasts(); 2148 RHS = RHS->stripPointerCasts(); 2149 2150 // A non-null pointer is not equal to a null pointer. 2151 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 2152 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2153 return ConstantInt::get(GetCompareTy(LHS), 2154 !CmpInst::isTrueWhenEqual(Pred)); 2155 2156 // We can only fold certain predicates on pointer comparisons. 2157 switch (Pred) { 2158 default: 2159 return nullptr; 2160 2161 // Equality comaprisons are easy to fold. 2162 case CmpInst::ICMP_EQ: 2163 case CmpInst::ICMP_NE: 2164 break; 2165 2166 // We can only handle unsigned relational comparisons because 'inbounds' on 2167 // a GEP only protects against unsigned wrapping. 2168 case CmpInst::ICMP_UGT: 2169 case CmpInst::ICMP_UGE: 2170 case CmpInst::ICMP_ULT: 2171 case CmpInst::ICMP_ULE: 2172 // However, we have to switch them to their signed variants to handle 2173 // negative indices from the base pointer. 2174 Pred = ICmpInst::getSignedPredicate(Pred); 2175 break; 2176 } 2177 2178 // Strip off any constant offsets so that we can reason about them. 2179 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2180 // here and compare base addresses like AliasAnalysis does, however there are 2181 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2182 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2183 // doesn't need to guarantee pointer inequality when it says NoAlias. 2184 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2185 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2186 2187 // If LHS and RHS are related via constant offsets to the same base 2188 // value, we can replace it with an icmp which just compares the offsets. 2189 if (LHS == RHS) 2190 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2191 2192 // Various optimizations for (in)equality comparisons. 2193 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2194 // Different non-empty allocations that exist at the same time have 2195 // different addresses (if the program can tell). Global variables always 2196 // exist, so they always exist during the lifetime of each other and all 2197 // allocas. Two different allocas usually have different addresses... 2198 // 2199 // However, if there's an @llvm.stackrestore dynamically in between two 2200 // allocas, they may have the same address. It's tempting to reduce the 2201 // scope of the problem by only looking at *static* allocas here. That would 2202 // cover the majority of allocas while significantly reducing the likelihood 2203 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2204 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2205 // an entry block. Also, if we have a block that's not attached to a 2206 // function, we can't tell if it's "static" under the current definition. 2207 // Theoretically, this problem could be fixed by creating a new kind of 2208 // instruction kind specifically for static allocas. Such a new instruction 2209 // could be required to be at the top of the entry block, thus preventing it 2210 // from being subject to a @llvm.stackrestore. Instcombine could even 2211 // convert regular allocas into these special allocas. It'd be nifty. 2212 // However, until then, this problem remains open. 2213 // 2214 // So, we'll assume that two non-empty allocas have different addresses 2215 // for now. 2216 // 2217 // With all that, if the offsets are within the bounds of their allocations 2218 // (and not one-past-the-end! so we can't use inbounds!), and their 2219 // allocations aren't the same, the pointers are not equal. 2220 // 2221 // Note that it's not necessary to check for LHS being a global variable 2222 // address, due to canonicalization and constant folding. 2223 if (isa<AllocaInst>(LHS) && 2224 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2225 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2226 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2227 uint64_t LHSSize, RHSSize; 2228 ObjectSizeOpts Opts; 2229 Opts.NullIsUnknownSize = 2230 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2231 if (LHSOffsetCI && RHSOffsetCI && 2232 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2233 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2234 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2235 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2236 if (!LHSOffsetValue.isNegative() && 2237 !RHSOffsetValue.isNegative() && 2238 LHSOffsetValue.ult(LHSSize) && 2239 RHSOffsetValue.ult(RHSSize)) { 2240 return ConstantInt::get(GetCompareTy(LHS), 2241 !CmpInst::isTrueWhenEqual(Pred)); 2242 } 2243 } 2244 2245 // Repeat the above check but this time without depending on DataLayout 2246 // or being able to compute a precise size. 2247 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2248 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2249 LHSOffset->isNullValue() && 2250 RHSOffset->isNullValue()) 2251 return ConstantInt::get(GetCompareTy(LHS), 2252 !CmpInst::isTrueWhenEqual(Pred)); 2253 } 2254 2255 // Even if an non-inbounds GEP occurs along the path we can still optimize 2256 // equality comparisons concerning the result. We avoid walking the whole 2257 // chain again by starting where the last calls to 2258 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2259 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2260 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2261 if (LHS == RHS) 2262 return ConstantExpr::getICmp(Pred, 2263 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2264 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2265 2266 // If one side of the equality comparison must come from a noalias call 2267 // (meaning a system memory allocation function), and the other side must 2268 // come from a pointer that cannot overlap with dynamically-allocated 2269 // memory within the lifetime of the current function (allocas, byval 2270 // arguments, globals), then determine the comparison result here. 2271 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2272 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2273 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2274 2275 // Is the set of underlying objects all noalias calls? 2276 auto IsNAC = [](ArrayRef<Value *> Objects) { 2277 return all_of(Objects, isNoAliasCall); 2278 }; 2279 2280 // Is the set of underlying objects all things which must be disjoint from 2281 // noalias calls. For allocas, we consider only static ones (dynamic 2282 // allocas might be transformed into calls to malloc not simultaneously 2283 // live with the compared-to allocation). For globals, we exclude symbols 2284 // that might be resolve lazily to symbols in another dynamically-loaded 2285 // library (and, thus, could be malloc'ed by the implementation). 2286 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2287 return all_of(Objects, [](Value *V) { 2288 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2289 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2290 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2291 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2292 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2293 !GV->isThreadLocal(); 2294 if (const Argument *A = dyn_cast<Argument>(V)) 2295 return A->hasByValAttr(); 2296 return false; 2297 }); 2298 }; 2299 2300 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2301 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2302 return ConstantInt::get(GetCompareTy(LHS), 2303 !CmpInst::isTrueWhenEqual(Pred)); 2304 2305 // Fold comparisons for non-escaping pointer even if the allocation call 2306 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2307 // dynamic allocation call could be either of the operands. 2308 Value *MI = nullptr; 2309 if (isAllocLikeFn(LHS, TLI) && 2310 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2311 MI = LHS; 2312 else if (isAllocLikeFn(RHS, TLI) && 2313 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2314 MI = RHS; 2315 // FIXME: We should also fold the compare when the pointer escapes, but the 2316 // compare dominates the pointer escape 2317 if (MI && !PointerMayBeCaptured(MI, true, true)) 2318 return ConstantInt::get(GetCompareTy(LHS), 2319 CmpInst::isFalseWhenEqual(Pred)); 2320 } 2321 2322 // Otherwise, fail. 2323 return nullptr; 2324 } 2325 2326 /// Fold an icmp when its operands have i1 scalar type. 2327 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2328 Value *RHS, const SimplifyQuery &Q) { 2329 Type *ITy = GetCompareTy(LHS); // The return type. 2330 Type *OpTy = LHS->getType(); // The operand type. 2331 if (!OpTy->isIntOrIntVectorTy(1)) 2332 return nullptr; 2333 2334 // A boolean compared to true/false can be simplified in 14 out of the 20 2335 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2336 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2337 if (match(RHS, m_Zero())) { 2338 switch (Pred) { 2339 case CmpInst::ICMP_NE: // X != 0 -> X 2340 case CmpInst::ICMP_UGT: // X >u 0 -> X 2341 case CmpInst::ICMP_SLT: // X <s 0 -> X 2342 return LHS; 2343 2344 case CmpInst::ICMP_ULT: // X <u 0 -> false 2345 case CmpInst::ICMP_SGT: // X >s 0 -> false 2346 return getFalse(ITy); 2347 2348 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2349 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2350 return getTrue(ITy); 2351 2352 default: break; 2353 } 2354 } else if (match(RHS, m_One())) { 2355 switch (Pred) { 2356 case CmpInst::ICMP_EQ: // X == 1 -> X 2357 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2358 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2359 return LHS; 2360 2361 case CmpInst::ICMP_UGT: // X >u 1 -> false 2362 case CmpInst::ICMP_SLT: // X <s -1 -> false 2363 return getFalse(ITy); 2364 2365 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2366 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2367 return getTrue(ITy); 2368 2369 default: break; 2370 } 2371 } 2372 2373 switch (Pred) { 2374 default: 2375 break; 2376 case ICmpInst::ICMP_UGE: 2377 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2378 return getTrue(ITy); 2379 break; 2380 case ICmpInst::ICMP_SGE: 2381 /// For signed comparison, the values for an i1 are 0 and -1 2382 /// respectively. This maps into a truth table of: 2383 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2384 /// 0 | 0 | 1 (0 >= 0) | 1 2385 /// 0 | 1 | 1 (0 >= -1) | 1 2386 /// 1 | 0 | 0 (-1 >= 0) | 0 2387 /// 1 | 1 | 1 (-1 >= -1) | 1 2388 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2389 return getTrue(ITy); 2390 break; 2391 case ICmpInst::ICMP_ULE: 2392 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2393 return getTrue(ITy); 2394 break; 2395 } 2396 2397 return nullptr; 2398 } 2399 2400 /// Try hard to fold icmp with zero RHS because this is a common case. 2401 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2402 Value *RHS, const SimplifyQuery &Q) { 2403 if (!match(RHS, m_Zero())) 2404 return nullptr; 2405 2406 Type *ITy = GetCompareTy(LHS); // The return type. 2407 switch (Pred) { 2408 default: 2409 llvm_unreachable("Unknown ICmp predicate!"); 2410 case ICmpInst::ICMP_ULT: 2411 return getFalse(ITy); 2412 case ICmpInst::ICMP_UGE: 2413 return getTrue(ITy); 2414 case ICmpInst::ICMP_EQ: 2415 case ICmpInst::ICMP_ULE: 2416 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2417 return getFalse(ITy); 2418 break; 2419 case ICmpInst::ICMP_NE: 2420 case ICmpInst::ICMP_UGT: 2421 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2422 return getTrue(ITy); 2423 break; 2424 case ICmpInst::ICMP_SLT: { 2425 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2426 if (LHSKnown.isNegative()) 2427 return getTrue(ITy); 2428 if (LHSKnown.isNonNegative()) 2429 return getFalse(ITy); 2430 break; 2431 } 2432 case ICmpInst::ICMP_SLE: { 2433 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2434 if (LHSKnown.isNegative()) 2435 return getTrue(ITy); 2436 if (LHSKnown.isNonNegative() && 2437 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2438 return getFalse(ITy); 2439 break; 2440 } 2441 case ICmpInst::ICMP_SGE: { 2442 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2443 if (LHSKnown.isNegative()) 2444 return getFalse(ITy); 2445 if (LHSKnown.isNonNegative()) 2446 return getTrue(ITy); 2447 break; 2448 } 2449 case ICmpInst::ICMP_SGT: { 2450 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2451 if (LHSKnown.isNegative()) 2452 return getFalse(ITy); 2453 if (LHSKnown.isNonNegative() && 2454 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2455 return getTrue(ITy); 2456 break; 2457 } 2458 } 2459 2460 return nullptr; 2461 } 2462 2463 /// Many binary operators with a constant operand have an easy-to-compute 2464 /// range of outputs. This can be used to fold a comparison to always true or 2465 /// always false. 2466 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2467 unsigned Width = Lower.getBitWidth(); 2468 const APInt *C; 2469 switch (BO.getOpcode()) { 2470 case Instruction::Add: 2471 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2472 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2473 if (BO.hasNoUnsignedWrap()) { 2474 // 'add nuw x, C' produces [C, UINT_MAX]. 2475 Lower = *C; 2476 } else if (BO.hasNoSignedWrap()) { 2477 if (C->isNegative()) { 2478 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2479 Lower = APInt::getSignedMinValue(Width); 2480 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2481 } else { 2482 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2483 Lower = APInt::getSignedMinValue(Width) + *C; 2484 Upper = APInt::getSignedMaxValue(Width) + 1; 2485 } 2486 } 2487 } 2488 break; 2489 2490 case Instruction::And: 2491 if (match(BO.getOperand(1), m_APInt(C))) 2492 // 'and x, C' produces [0, C]. 2493 Upper = *C + 1; 2494 break; 2495 2496 case Instruction::Or: 2497 if (match(BO.getOperand(1), m_APInt(C))) 2498 // 'or x, C' produces [C, UINT_MAX]. 2499 Lower = *C; 2500 break; 2501 2502 case Instruction::AShr: 2503 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2504 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2505 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2506 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2507 } else if (match(BO.getOperand(0), m_APInt(C))) { 2508 unsigned ShiftAmount = Width - 1; 2509 if (!C->isNullValue() && BO.isExact()) 2510 ShiftAmount = C->countTrailingZeros(); 2511 if (C->isNegative()) { 2512 // 'ashr C, x' produces [C, C >> (Width-1)] 2513 Lower = *C; 2514 Upper = C->ashr(ShiftAmount) + 1; 2515 } else { 2516 // 'ashr C, x' produces [C >> (Width-1), C] 2517 Lower = C->ashr(ShiftAmount); 2518 Upper = *C + 1; 2519 } 2520 } 2521 break; 2522 2523 case Instruction::LShr: 2524 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2525 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2526 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2527 } else if (match(BO.getOperand(0), m_APInt(C))) { 2528 // 'lshr C, x' produces [C >> (Width-1), C]. 2529 unsigned ShiftAmount = Width - 1; 2530 if (!C->isNullValue() && BO.isExact()) 2531 ShiftAmount = C->countTrailingZeros(); 2532 Lower = C->lshr(ShiftAmount); 2533 Upper = *C + 1; 2534 } 2535 break; 2536 2537 case Instruction::Shl: 2538 if (match(BO.getOperand(0), m_APInt(C))) { 2539 if (BO.hasNoUnsignedWrap()) { 2540 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2541 Lower = *C; 2542 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2543 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2544 if (C->isNegative()) { 2545 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2546 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2547 Lower = C->shl(ShiftAmount); 2548 Upper = *C + 1; 2549 } else { 2550 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2551 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2552 Lower = *C; 2553 Upper = C->shl(ShiftAmount) + 1; 2554 } 2555 } 2556 } 2557 break; 2558 2559 case Instruction::SDiv: 2560 if (match(BO.getOperand(1), m_APInt(C))) { 2561 APInt IntMin = APInt::getSignedMinValue(Width); 2562 APInt IntMax = APInt::getSignedMaxValue(Width); 2563 if (C->isAllOnesValue()) { 2564 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2565 // where C != -1 and C != 0 and C != 1 2566 Lower = IntMin + 1; 2567 Upper = IntMax + 1; 2568 } else if (C->countLeadingZeros() < Width - 1) { 2569 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2570 // where C != -1 and C != 0 and C != 1 2571 Lower = IntMin.sdiv(*C); 2572 Upper = IntMax.sdiv(*C); 2573 if (Lower.sgt(Upper)) 2574 std::swap(Lower, Upper); 2575 Upper = Upper + 1; 2576 assert(Upper != Lower && "Upper part of range has wrapped!"); 2577 } 2578 } else if (match(BO.getOperand(0), m_APInt(C))) { 2579 if (C->isMinSignedValue()) { 2580 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2581 Lower = *C; 2582 Upper = Lower.lshr(1) + 1; 2583 } else { 2584 // 'sdiv C, x' produces [-|C|, |C|]. 2585 Upper = C->abs() + 1; 2586 Lower = (-Upper) + 1; 2587 } 2588 } 2589 break; 2590 2591 case Instruction::UDiv: 2592 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2593 // 'udiv x, C' produces [0, UINT_MAX / C]. 2594 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2595 } else if (match(BO.getOperand(0), m_APInt(C))) { 2596 // 'udiv C, x' produces [0, C]. 2597 Upper = *C + 1; 2598 } 2599 break; 2600 2601 case Instruction::SRem: 2602 if (match(BO.getOperand(1), m_APInt(C))) { 2603 // 'srem x, C' produces (-|C|, |C|). 2604 Upper = C->abs(); 2605 Lower = (-Upper) + 1; 2606 } 2607 break; 2608 2609 case Instruction::URem: 2610 if (match(BO.getOperand(1), m_APInt(C))) 2611 // 'urem x, C' produces [0, C). 2612 Upper = *C; 2613 break; 2614 2615 default: 2616 break; 2617 } 2618 } 2619 2620 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2621 Value *RHS) { 2622 Type *ITy = GetCompareTy(RHS); // The return type. 2623 2624 Value *X; 2625 // Sign-bit checks can be optimized to true/false after unsigned 2626 // floating-point casts: 2627 // icmp slt (bitcast (uitofp X)), 0 --> false 2628 // icmp sgt (bitcast (uitofp X)), -1 --> true 2629 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2630 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2631 return ConstantInt::getFalse(ITy); 2632 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2633 return ConstantInt::getTrue(ITy); 2634 } 2635 2636 const APInt *C; 2637 if (!match(RHS, m_APInt(C))) 2638 return nullptr; 2639 2640 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2641 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2642 if (RHS_CR.isEmptySet()) 2643 return ConstantInt::getFalse(ITy); 2644 if (RHS_CR.isFullSet()) 2645 return ConstantInt::getTrue(ITy); 2646 2647 // Find the range of possible values for binary operators. 2648 unsigned Width = C->getBitWidth(); 2649 APInt Lower = APInt(Width, 0); 2650 APInt Upper = APInt(Width, 0); 2651 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2652 setLimitsForBinOp(*BO, Lower, Upper); 2653 2654 ConstantRange LHS_CR = 2655 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2656 2657 if (auto *I = dyn_cast<Instruction>(LHS)) 2658 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2659 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2660 2661 if (!LHS_CR.isFullSet()) { 2662 if (RHS_CR.contains(LHS_CR)) 2663 return ConstantInt::getTrue(ITy); 2664 if (RHS_CR.inverse().contains(LHS_CR)) 2665 return ConstantInt::getFalse(ITy); 2666 } 2667 2668 return nullptr; 2669 } 2670 2671 /// TODO: A large part of this logic is duplicated in InstCombine's 2672 /// foldICmpBinOp(). We should be able to share that and avoid the code 2673 /// duplication. 2674 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2675 Value *RHS, const SimplifyQuery &Q, 2676 unsigned MaxRecurse) { 2677 Type *ITy = GetCompareTy(LHS); // The return type. 2678 2679 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2680 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2681 if (MaxRecurse && (LBO || RBO)) { 2682 // Analyze the case when either LHS or RHS is an add instruction. 2683 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2684 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2685 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2686 if (LBO && LBO->getOpcode() == Instruction::Add) { 2687 A = LBO->getOperand(0); 2688 B = LBO->getOperand(1); 2689 NoLHSWrapProblem = 2690 ICmpInst::isEquality(Pred) || 2691 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2692 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2693 } 2694 if (RBO && RBO->getOpcode() == Instruction::Add) { 2695 C = RBO->getOperand(0); 2696 D = RBO->getOperand(1); 2697 NoRHSWrapProblem = 2698 ICmpInst::isEquality(Pred) || 2699 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2700 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2701 } 2702 2703 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2704 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2705 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2706 Constant::getNullValue(RHS->getType()), Q, 2707 MaxRecurse - 1)) 2708 return V; 2709 2710 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2711 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2712 if (Value *V = 2713 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2714 C == LHS ? D : C, Q, MaxRecurse - 1)) 2715 return V; 2716 2717 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2718 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2719 NoRHSWrapProblem) { 2720 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2721 Value *Y, *Z; 2722 if (A == C) { 2723 // C + B == C + D -> B == D 2724 Y = B; 2725 Z = D; 2726 } else if (A == D) { 2727 // D + B == C + D -> B == C 2728 Y = B; 2729 Z = C; 2730 } else if (B == C) { 2731 // A + C == C + D -> A == D 2732 Y = A; 2733 Z = D; 2734 } else { 2735 assert(B == D); 2736 // A + D == C + D -> A == C 2737 Y = A; 2738 Z = C; 2739 } 2740 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2741 return V; 2742 } 2743 } 2744 2745 { 2746 Value *Y = nullptr; 2747 // icmp pred (or X, Y), X 2748 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2749 if (Pred == ICmpInst::ICMP_ULT) 2750 return getFalse(ITy); 2751 if (Pred == ICmpInst::ICMP_UGE) 2752 return getTrue(ITy); 2753 2754 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2755 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2756 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2757 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2758 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2759 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2760 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2761 } 2762 } 2763 // icmp pred X, (or X, Y) 2764 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2765 if (Pred == ICmpInst::ICMP_ULE) 2766 return getTrue(ITy); 2767 if (Pred == ICmpInst::ICMP_UGT) 2768 return getFalse(ITy); 2769 2770 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2771 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2772 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2773 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2774 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2775 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2776 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2777 } 2778 } 2779 } 2780 2781 // icmp pred (and X, Y), X 2782 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2783 if (Pred == ICmpInst::ICMP_UGT) 2784 return getFalse(ITy); 2785 if (Pred == ICmpInst::ICMP_ULE) 2786 return getTrue(ITy); 2787 } 2788 // icmp pred X, (and X, Y) 2789 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2790 if (Pred == ICmpInst::ICMP_UGE) 2791 return getTrue(ITy); 2792 if (Pred == ICmpInst::ICMP_ULT) 2793 return getFalse(ITy); 2794 } 2795 2796 // 0 - (zext X) pred C 2797 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2798 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2799 if (RHSC->getValue().isStrictlyPositive()) { 2800 if (Pred == ICmpInst::ICMP_SLT) 2801 return ConstantInt::getTrue(RHSC->getContext()); 2802 if (Pred == ICmpInst::ICMP_SGE) 2803 return ConstantInt::getFalse(RHSC->getContext()); 2804 if (Pred == ICmpInst::ICMP_EQ) 2805 return ConstantInt::getFalse(RHSC->getContext()); 2806 if (Pred == ICmpInst::ICMP_NE) 2807 return ConstantInt::getTrue(RHSC->getContext()); 2808 } 2809 if (RHSC->getValue().isNonNegative()) { 2810 if (Pred == ICmpInst::ICMP_SLE) 2811 return ConstantInt::getTrue(RHSC->getContext()); 2812 if (Pred == ICmpInst::ICMP_SGT) 2813 return ConstantInt::getFalse(RHSC->getContext()); 2814 } 2815 } 2816 } 2817 2818 // icmp pred (urem X, Y), Y 2819 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2820 switch (Pred) { 2821 default: 2822 break; 2823 case ICmpInst::ICMP_SGT: 2824 case ICmpInst::ICMP_SGE: { 2825 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2826 if (!Known.isNonNegative()) 2827 break; 2828 LLVM_FALLTHROUGH; 2829 } 2830 case ICmpInst::ICMP_EQ: 2831 case ICmpInst::ICMP_UGT: 2832 case ICmpInst::ICMP_UGE: 2833 return getFalse(ITy); 2834 case ICmpInst::ICMP_SLT: 2835 case ICmpInst::ICMP_SLE: { 2836 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2837 if (!Known.isNonNegative()) 2838 break; 2839 LLVM_FALLTHROUGH; 2840 } 2841 case ICmpInst::ICMP_NE: 2842 case ICmpInst::ICMP_ULT: 2843 case ICmpInst::ICMP_ULE: 2844 return getTrue(ITy); 2845 } 2846 } 2847 2848 // icmp pred X, (urem Y, X) 2849 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2850 switch (Pred) { 2851 default: 2852 break; 2853 case ICmpInst::ICMP_SGT: 2854 case ICmpInst::ICMP_SGE: { 2855 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2856 if (!Known.isNonNegative()) 2857 break; 2858 LLVM_FALLTHROUGH; 2859 } 2860 case ICmpInst::ICMP_NE: 2861 case ICmpInst::ICMP_UGT: 2862 case ICmpInst::ICMP_UGE: 2863 return getTrue(ITy); 2864 case ICmpInst::ICMP_SLT: 2865 case ICmpInst::ICMP_SLE: { 2866 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2867 if (!Known.isNonNegative()) 2868 break; 2869 LLVM_FALLTHROUGH; 2870 } 2871 case ICmpInst::ICMP_EQ: 2872 case ICmpInst::ICMP_ULT: 2873 case ICmpInst::ICMP_ULE: 2874 return getFalse(ITy); 2875 } 2876 } 2877 2878 // x >> y <=u x 2879 // x udiv y <=u x. 2880 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2881 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2882 // icmp pred (X op Y), X 2883 if (Pred == ICmpInst::ICMP_UGT) 2884 return getFalse(ITy); 2885 if (Pred == ICmpInst::ICMP_ULE) 2886 return getTrue(ITy); 2887 } 2888 2889 // x >=u x >> y 2890 // x >=u x udiv y. 2891 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2892 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2893 // icmp pred X, (X op Y) 2894 if (Pred == ICmpInst::ICMP_ULT) 2895 return getFalse(ITy); 2896 if (Pred == ICmpInst::ICMP_UGE) 2897 return getTrue(ITy); 2898 } 2899 2900 // handle: 2901 // CI2 << X == CI 2902 // CI2 << X != CI 2903 // 2904 // where CI2 is a power of 2 and CI isn't 2905 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2906 const APInt *CI2Val, *CIVal = &CI->getValue(); 2907 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2908 CI2Val->isPowerOf2()) { 2909 if (!CIVal->isPowerOf2()) { 2910 // CI2 << X can equal zero in some circumstances, 2911 // this simplification is unsafe if CI is zero. 2912 // 2913 // We know it is safe if: 2914 // - The shift is nsw, we can't shift out the one bit. 2915 // - The shift is nuw, we can't shift out the one bit. 2916 // - CI2 is one 2917 // - CI isn't zero 2918 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2919 CI2Val->isOneValue() || !CI->isZero()) { 2920 if (Pred == ICmpInst::ICMP_EQ) 2921 return ConstantInt::getFalse(RHS->getContext()); 2922 if (Pred == ICmpInst::ICMP_NE) 2923 return ConstantInt::getTrue(RHS->getContext()); 2924 } 2925 } 2926 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2927 if (Pred == ICmpInst::ICMP_UGT) 2928 return ConstantInt::getFalse(RHS->getContext()); 2929 if (Pred == ICmpInst::ICMP_ULE) 2930 return ConstantInt::getTrue(RHS->getContext()); 2931 } 2932 } 2933 } 2934 2935 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2936 LBO->getOperand(1) == RBO->getOperand(1)) { 2937 switch (LBO->getOpcode()) { 2938 default: 2939 break; 2940 case Instruction::UDiv: 2941 case Instruction::LShr: 2942 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2943 break; 2944 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2945 RBO->getOperand(0), Q, MaxRecurse - 1)) 2946 return V; 2947 break; 2948 case Instruction::SDiv: 2949 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2950 break; 2951 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2952 RBO->getOperand(0), Q, MaxRecurse - 1)) 2953 return V; 2954 break; 2955 case Instruction::AShr: 2956 if (!LBO->isExact() || !RBO->isExact()) 2957 break; 2958 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2959 RBO->getOperand(0), Q, MaxRecurse - 1)) 2960 return V; 2961 break; 2962 case Instruction::Shl: { 2963 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2964 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2965 if (!NUW && !NSW) 2966 break; 2967 if (!NSW && ICmpInst::isSigned(Pred)) 2968 break; 2969 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2970 RBO->getOperand(0), Q, MaxRecurse - 1)) 2971 return V; 2972 break; 2973 } 2974 } 2975 } 2976 return nullptr; 2977 } 2978 2979 /// Simplify integer comparisons where at least one operand of the compare 2980 /// matches an integer min/max idiom. 2981 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2982 Value *RHS, const SimplifyQuery &Q, 2983 unsigned MaxRecurse) { 2984 Type *ITy = GetCompareTy(LHS); // The return type. 2985 Value *A, *B; 2986 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2987 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2988 2989 // Signed variants on "max(a,b)>=a -> true". 2990 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2991 if (A != RHS) 2992 std::swap(A, B); // smax(A, B) pred A. 2993 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2994 // We analyze this as smax(A, B) pred A. 2995 P = Pred; 2996 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2997 (A == LHS || B == LHS)) { 2998 if (A != LHS) 2999 std::swap(A, B); // A pred smax(A, B). 3000 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3001 // We analyze this as smax(A, B) swapped-pred A. 3002 P = CmpInst::getSwappedPredicate(Pred); 3003 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3004 (A == RHS || B == RHS)) { 3005 if (A != RHS) 3006 std::swap(A, B); // smin(A, B) pred A. 3007 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3008 // We analyze this as smax(-A, -B) swapped-pred -A. 3009 // Note that we do not need to actually form -A or -B thanks to EqP. 3010 P = CmpInst::getSwappedPredicate(Pred); 3011 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3012 (A == LHS || B == LHS)) { 3013 if (A != LHS) 3014 std::swap(A, B); // A pred smin(A, B). 3015 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3016 // We analyze this as smax(-A, -B) pred -A. 3017 // Note that we do not need to actually form -A or -B thanks to EqP. 3018 P = Pred; 3019 } 3020 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3021 // Cases correspond to "max(A, B) p A". 3022 switch (P) { 3023 default: 3024 break; 3025 case CmpInst::ICMP_EQ: 3026 case CmpInst::ICMP_SLE: 3027 // Equivalent to "A EqP B". This may be the same as the condition tested 3028 // in the max/min; if so, we can just return that. 3029 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3030 return V; 3031 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3032 return V; 3033 // Otherwise, see if "A EqP B" simplifies. 3034 if (MaxRecurse) 3035 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3036 return V; 3037 break; 3038 case CmpInst::ICMP_NE: 3039 case CmpInst::ICMP_SGT: { 3040 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3041 // Equivalent to "A InvEqP B". This may be the same as the condition 3042 // tested in the max/min; if so, we can just return that. 3043 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3044 return V; 3045 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3046 return V; 3047 // Otherwise, see if "A InvEqP B" simplifies. 3048 if (MaxRecurse) 3049 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3050 return V; 3051 break; 3052 } 3053 case CmpInst::ICMP_SGE: 3054 // Always true. 3055 return getTrue(ITy); 3056 case CmpInst::ICMP_SLT: 3057 // Always false. 3058 return getFalse(ITy); 3059 } 3060 } 3061 3062 // Unsigned variants on "max(a,b)>=a -> true". 3063 P = CmpInst::BAD_ICMP_PREDICATE; 3064 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3065 if (A != RHS) 3066 std::swap(A, B); // umax(A, B) pred A. 3067 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3068 // We analyze this as umax(A, B) pred A. 3069 P = Pred; 3070 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3071 (A == LHS || B == LHS)) { 3072 if (A != LHS) 3073 std::swap(A, B); // A pred umax(A, B). 3074 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3075 // We analyze this as umax(A, B) swapped-pred A. 3076 P = CmpInst::getSwappedPredicate(Pred); 3077 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3078 (A == RHS || B == RHS)) { 3079 if (A != RHS) 3080 std::swap(A, B); // umin(A, B) pred A. 3081 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3082 // We analyze this as umax(-A, -B) swapped-pred -A. 3083 // Note that we do not need to actually form -A or -B thanks to EqP. 3084 P = CmpInst::getSwappedPredicate(Pred); 3085 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3086 (A == LHS || B == LHS)) { 3087 if (A != LHS) 3088 std::swap(A, B); // A pred umin(A, B). 3089 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3090 // We analyze this as umax(-A, -B) pred -A. 3091 // Note that we do not need to actually form -A or -B thanks to EqP. 3092 P = Pred; 3093 } 3094 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3095 // Cases correspond to "max(A, B) p A". 3096 switch (P) { 3097 default: 3098 break; 3099 case CmpInst::ICMP_EQ: 3100 case CmpInst::ICMP_ULE: 3101 // Equivalent to "A EqP B". This may be the same as the condition tested 3102 // in the max/min; if so, we can just return that. 3103 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3104 return V; 3105 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3106 return V; 3107 // Otherwise, see if "A EqP B" simplifies. 3108 if (MaxRecurse) 3109 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3110 return V; 3111 break; 3112 case CmpInst::ICMP_NE: 3113 case CmpInst::ICMP_UGT: { 3114 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3115 // Equivalent to "A InvEqP B". This may be the same as the condition 3116 // tested in the max/min; if so, we can just return that. 3117 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3118 return V; 3119 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3120 return V; 3121 // Otherwise, see if "A InvEqP B" simplifies. 3122 if (MaxRecurse) 3123 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3124 return V; 3125 break; 3126 } 3127 case CmpInst::ICMP_UGE: 3128 // Always true. 3129 return getTrue(ITy); 3130 case CmpInst::ICMP_ULT: 3131 // Always false. 3132 return getFalse(ITy); 3133 } 3134 } 3135 3136 // Variants on "max(x,y) >= min(x,z)". 3137 Value *C, *D; 3138 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3139 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3140 (A == C || A == D || B == C || B == D)) { 3141 // max(x, ?) pred min(x, ?). 3142 if (Pred == CmpInst::ICMP_SGE) 3143 // Always true. 3144 return getTrue(ITy); 3145 if (Pred == CmpInst::ICMP_SLT) 3146 // Always false. 3147 return getFalse(ITy); 3148 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3149 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3150 (A == C || A == D || B == C || B == D)) { 3151 // min(x, ?) pred max(x, ?). 3152 if (Pred == CmpInst::ICMP_SLE) 3153 // Always true. 3154 return getTrue(ITy); 3155 if (Pred == CmpInst::ICMP_SGT) 3156 // Always false. 3157 return getFalse(ITy); 3158 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3159 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3160 (A == C || A == D || B == C || B == D)) { 3161 // max(x, ?) pred min(x, ?). 3162 if (Pred == CmpInst::ICMP_UGE) 3163 // Always true. 3164 return getTrue(ITy); 3165 if (Pred == CmpInst::ICMP_ULT) 3166 // Always false. 3167 return getFalse(ITy); 3168 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3169 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3170 (A == C || A == D || B == C || B == D)) { 3171 // min(x, ?) pred max(x, ?). 3172 if (Pred == CmpInst::ICMP_ULE) 3173 // Always true. 3174 return getTrue(ITy); 3175 if (Pred == CmpInst::ICMP_UGT) 3176 // Always false. 3177 return getFalse(ITy); 3178 } 3179 3180 return nullptr; 3181 } 3182 3183 /// Given operands for an ICmpInst, see if we can fold the result. 3184 /// If not, this returns null. 3185 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3186 const SimplifyQuery &Q, unsigned MaxRecurse) { 3187 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3188 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3189 3190 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3191 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3192 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3193 3194 // If we have a constant, make sure it is on the RHS. 3195 std::swap(LHS, RHS); 3196 Pred = CmpInst::getSwappedPredicate(Pred); 3197 } 3198 3199 Type *ITy = GetCompareTy(LHS); // The return type. 3200 3201 // icmp X, X -> true/false 3202 // icmp X, undef -> true/false because undef could be X. 3203 if (LHS == RHS || isa<UndefValue>(RHS)) 3204 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3205 3206 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3207 return V; 3208 3209 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3210 return V; 3211 3212 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3213 return V; 3214 3215 // If both operands have range metadata, use the metadata 3216 // to simplify the comparison. 3217 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3218 auto RHS_Instr = cast<Instruction>(RHS); 3219 auto LHS_Instr = cast<Instruction>(LHS); 3220 3221 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3222 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3223 auto RHS_CR = getConstantRangeFromMetadata( 3224 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3225 auto LHS_CR = getConstantRangeFromMetadata( 3226 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3227 3228 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3229 if (Satisfied_CR.contains(LHS_CR)) 3230 return ConstantInt::getTrue(RHS->getContext()); 3231 3232 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3233 CmpInst::getInversePredicate(Pred), RHS_CR); 3234 if (InversedSatisfied_CR.contains(LHS_CR)) 3235 return ConstantInt::getFalse(RHS->getContext()); 3236 } 3237 } 3238 3239 // Compare of cast, for example (zext X) != 0 -> X != 0 3240 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3241 Instruction *LI = cast<CastInst>(LHS); 3242 Value *SrcOp = LI->getOperand(0); 3243 Type *SrcTy = SrcOp->getType(); 3244 Type *DstTy = LI->getType(); 3245 3246 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3247 // if the integer type is the same size as the pointer type. 3248 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3249 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3250 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3251 // Transfer the cast to the constant. 3252 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3253 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3254 Q, MaxRecurse-1)) 3255 return V; 3256 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3257 if (RI->getOperand(0)->getType() == SrcTy) 3258 // Compare without the cast. 3259 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3260 Q, MaxRecurse-1)) 3261 return V; 3262 } 3263 } 3264 3265 if (isa<ZExtInst>(LHS)) { 3266 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3267 // same type. 3268 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3269 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3270 // Compare X and Y. Note that signed predicates become unsigned. 3271 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3272 SrcOp, RI->getOperand(0), Q, 3273 MaxRecurse-1)) 3274 return V; 3275 } 3276 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3277 // too. If not, then try to deduce the result of the comparison. 3278 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3279 // Compute the constant that would happen if we truncated to SrcTy then 3280 // reextended to DstTy. 3281 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3282 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3283 3284 // If the re-extended constant didn't change then this is effectively 3285 // also a case of comparing two zero-extended values. 3286 if (RExt == CI && MaxRecurse) 3287 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3288 SrcOp, Trunc, Q, MaxRecurse-1)) 3289 return V; 3290 3291 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3292 // there. Use this to work out the result of the comparison. 3293 if (RExt != CI) { 3294 switch (Pred) { 3295 default: llvm_unreachable("Unknown ICmp predicate!"); 3296 // LHS <u RHS. 3297 case ICmpInst::ICMP_EQ: 3298 case ICmpInst::ICMP_UGT: 3299 case ICmpInst::ICMP_UGE: 3300 return ConstantInt::getFalse(CI->getContext()); 3301 3302 case ICmpInst::ICMP_NE: 3303 case ICmpInst::ICMP_ULT: 3304 case ICmpInst::ICMP_ULE: 3305 return ConstantInt::getTrue(CI->getContext()); 3306 3307 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3308 // is non-negative then LHS <s RHS. 3309 case ICmpInst::ICMP_SGT: 3310 case ICmpInst::ICMP_SGE: 3311 return CI->getValue().isNegative() ? 3312 ConstantInt::getTrue(CI->getContext()) : 3313 ConstantInt::getFalse(CI->getContext()); 3314 3315 case ICmpInst::ICMP_SLT: 3316 case ICmpInst::ICMP_SLE: 3317 return CI->getValue().isNegative() ? 3318 ConstantInt::getFalse(CI->getContext()) : 3319 ConstantInt::getTrue(CI->getContext()); 3320 } 3321 } 3322 } 3323 } 3324 3325 if (isa<SExtInst>(LHS)) { 3326 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3327 // same type. 3328 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3329 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3330 // Compare X and Y. Note that the predicate does not change. 3331 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3332 Q, MaxRecurse-1)) 3333 return V; 3334 } 3335 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3336 // too. If not, then try to deduce the result of the comparison. 3337 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3338 // Compute the constant that would happen if we truncated to SrcTy then 3339 // reextended to DstTy. 3340 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3341 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3342 3343 // If the re-extended constant didn't change then this is effectively 3344 // also a case of comparing two sign-extended values. 3345 if (RExt == CI && MaxRecurse) 3346 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3347 return V; 3348 3349 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3350 // bits there. Use this to work out the result of the comparison. 3351 if (RExt != CI) { 3352 switch (Pred) { 3353 default: llvm_unreachable("Unknown ICmp predicate!"); 3354 case ICmpInst::ICMP_EQ: 3355 return ConstantInt::getFalse(CI->getContext()); 3356 case ICmpInst::ICMP_NE: 3357 return ConstantInt::getTrue(CI->getContext()); 3358 3359 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3360 // LHS >s RHS. 3361 case ICmpInst::ICMP_SGT: 3362 case ICmpInst::ICMP_SGE: 3363 return CI->getValue().isNegative() ? 3364 ConstantInt::getTrue(CI->getContext()) : 3365 ConstantInt::getFalse(CI->getContext()); 3366 case ICmpInst::ICMP_SLT: 3367 case ICmpInst::ICMP_SLE: 3368 return CI->getValue().isNegative() ? 3369 ConstantInt::getFalse(CI->getContext()) : 3370 ConstantInt::getTrue(CI->getContext()); 3371 3372 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3373 // LHS >u RHS. 3374 case ICmpInst::ICMP_UGT: 3375 case ICmpInst::ICMP_UGE: 3376 // Comparison is true iff the LHS <s 0. 3377 if (MaxRecurse) 3378 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3379 Constant::getNullValue(SrcTy), 3380 Q, MaxRecurse-1)) 3381 return V; 3382 break; 3383 case ICmpInst::ICMP_ULT: 3384 case ICmpInst::ICMP_ULE: 3385 // Comparison is true iff the LHS >=s 0. 3386 if (MaxRecurse) 3387 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3388 Constant::getNullValue(SrcTy), 3389 Q, MaxRecurse-1)) 3390 return V; 3391 break; 3392 } 3393 } 3394 } 3395 } 3396 } 3397 3398 // icmp eq|ne X, Y -> false|true if X != Y 3399 if (ICmpInst::isEquality(Pred) && 3400 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3401 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3402 } 3403 3404 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3405 return V; 3406 3407 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3408 return V; 3409 3410 // Simplify comparisons of related pointers using a powerful, recursive 3411 // GEP-walk when we have target data available.. 3412 if (LHS->getType()->isPointerTy()) 3413 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3414 RHS)) 3415 return C; 3416 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3417 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3418 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3419 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3420 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3421 Q.DL.getTypeSizeInBits(CRHS->getType())) 3422 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3423 CLHS->getPointerOperand(), 3424 CRHS->getPointerOperand())) 3425 return C; 3426 3427 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3428 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3429 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3430 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3431 (ICmpInst::isEquality(Pred) || 3432 (GLHS->isInBounds() && GRHS->isInBounds() && 3433 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3434 // The bases are equal and the indices are constant. Build a constant 3435 // expression GEP with the same indices and a null base pointer to see 3436 // what constant folding can make out of it. 3437 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3438 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3439 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3440 GLHS->getSourceElementType(), Null, IndicesLHS); 3441 3442 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3443 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3444 GLHS->getSourceElementType(), Null, IndicesRHS); 3445 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3446 } 3447 } 3448 } 3449 3450 // If the comparison is with the result of a select instruction, check whether 3451 // comparing with either branch of the select always yields the same value. 3452 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3453 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3454 return V; 3455 3456 // If the comparison is with the result of a phi instruction, check whether 3457 // doing the compare with each incoming phi value yields a common result. 3458 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3459 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3460 return V; 3461 3462 return nullptr; 3463 } 3464 3465 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3466 const SimplifyQuery &Q) { 3467 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3468 } 3469 3470 /// Given operands for an FCmpInst, see if we can fold the result. 3471 /// If not, this returns null. 3472 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3473 FastMathFlags FMF, const SimplifyQuery &Q, 3474 unsigned MaxRecurse) { 3475 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3476 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3477 3478 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3479 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3480 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3481 3482 // If we have a constant, make sure it is on the RHS. 3483 std::swap(LHS, RHS); 3484 Pred = CmpInst::getSwappedPredicate(Pred); 3485 } 3486 3487 // Fold trivial predicates. 3488 Type *RetTy = GetCompareTy(LHS); 3489 if (Pred == FCmpInst::FCMP_FALSE) 3490 return getFalse(RetTy); 3491 if (Pred == FCmpInst::FCMP_TRUE) 3492 return getTrue(RetTy); 3493 3494 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3495 if (FMF.noNaNs()) { 3496 if (Pred == FCmpInst::FCMP_UNO) 3497 return getFalse(RetTy); 3498 if (Pred == FCmpInst::FCMP_ORD) 3499 return getTrue(RetTy); 3500 } 3501 3502 // NaN is unordered; NaN is not ordered. 3503 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3504 "Comparison must be either ordered or unordered"); 3505 if (match(RHS, m_NaN())) 3506 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3507 3508 // fcmp pred x, undef and fcmp pred undef, x 3509 // fold to true if unordered, false if ordered 3510 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3511 // Choosing NaN for the undef will always make unordered comparison succeed 3512 // and ordered comparison fail. 3513 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3514 } 3515 3516 // fcmp x,x -> true/false. Not all compares are foldable. 3517 if (LHS == RHS) { 3518 if (CmpInst::isTrueWhenEqual(Pred)) 3519 return getTrue(RetTy); 3520 if (CmpInst::isFalseWhenEqual(Pred)) 3521 return getFalse(RetTy); 3522 } 3523 3524 // Handle fcmp with constant RHS. 3525 const APFloat *C; 3526 if (match(RHS, m_APFloat(C))) { 3527 // Check whether the constant is an infinity. 3528 if (C->isInfinity()) { 3529 if (C->isNegative()) { 3530 switch (Pred) { 3531 case FCmpInst::FCMP_OLT: 3532 // No value is ordered and less than negative infinity. 3533 return getFalse(RetTy); 3534 case FCmpInst::FCMP_UGE: 3535 // All values are unordered with or at least negative infinity. 3536 return getTrue(RetTy); 3537 default: 3538 break; 3539 } 3540 } else { 3541 switch (Pred) { 3542 case FCmpInst::FCMP_OGT: 3543 // No value is ordered and greater than infinity. 3544 return getFalse(RetTy); 3545 case FCmpInst::FCMP_ULE: 3546 // All values are unordered with and at most infinity. 3547 return getTrue(RetTy); 3548 default: 3549 break; 3550 } 3551 } 3552 } 3553 if (C->isZero()) { 3554 switch (Pred) { 3555 case FCmpInst::FCMP_UGE: 3556 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3557 return getTrue(RetTy); 3558 break; 3559 case FCmpInst::FCMP_OLT: 3560 // X < 0 3561 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3562 return getFalse(RetTy); 3563 break; 3564 default: 3565 break; 3566 } 3567 } else if (C->isNegative()) { 3568 assert(!C->isNaN() && "Unexpected NaN constant!"); 3569 // TODO: We can catch more cases by using a range check rather than 3570 // relying on CannotBeOrderedLessThanZero. 3571 switch (Pred) { 3572 case FCmpInst::FCMP_UGE: 3573 case FCmpInst::FCMP_UGT: 3574 case FCmpInst::FCMP_UNE: 3575 // (X >= 0) implies (X > C) when (C < 0) 3576 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3577 return getTrue(RetTy); 3578 break; 3579 case FCmpInst::FCMP_OEQ: 3580 case FCmpInst::FCMP_OLE: 3581 case FCmpInst::FCMP_OLT: 3582 // (X >= 0) implies !(X < C) when (C < 0) 3583 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3584 return getFalse(RetTy); 3585 break; 3586 default: 3587 break; 3588 } 3589 } 3590 } 3591 3592 // If the comparison is with the result of a select instruction, check whether 3593 // comparing with either branch of the select always yields the same value. 3594 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3595 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3596 return V; 3597 3598 // If the comparison is with the result of a phi instruction, check whether 3599 // doing the compare with each incoming phi value yields a common result. 3600 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3601 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3602 return V; 3603 3604 return nullptr; 3605 } 3606 3607 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3608 FastMathFlags FMF, const SimplifyQuery &Q) { 3609 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3610 } 3611 3612 /// See if V simplifies when its operand Op is replaced with RepOp. 3613 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3614 const SimplifyQuery &Q, 3615 unsigned MaxRecurse) { 3616 // Trivial replacement. 3617 if (V == Op) 3618 return RepOp; 3619 3620 // We cannot replace a constant, and shouldn't even try. 3621 if (isa<Constant>(Op)) 3622 return nullptr; 3623 3624 auto *I = dyn_cast<Instruction>(V); 3625 if (!I) 3626 return nullptr; 3627 3628 // If this is a binary operator, try to simplify it with the replaced op. 3629 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3630 // Consider: 3631 // %cmp = icmp eq i32 %x, 2147483647 3632 // %add = add nsw i32 %x, 1 3633 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3634 // 3635 // We can't replace %sel with %add unless we strip away the flags. 3636 if (isa<OverflowingBinaryOperator>(B)) 3637 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3638 return nullptr; 3639 if (isa<PossiblyExactOperator>(B)) 3640 if (B->isExact()) 3641 return nullptr; 3642 3643 if (MaxRecurse) { 3644 if (B->getOperand(0) == Op) 3645 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3646 MaxRecurse - 1); 3647 if (B->getOperand(1) == Op) 3648 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3649 MaxRecurse - 1); 3650 } 3651 } 3652 3653 // Same for CmpInsts. 3654 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3655 if (MaxRecurse) { 3656 if (C->getOperand(0) == Op) 3657 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3658 MaxRecurse - 1); 3659 if (C->getOperand(1) == Op) 3660 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3661 MaxRecurse - 1); 3662 } 3663 } 3664 3665 // Same for GEPs. 3666 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3667 if (MaxRecurse) { 3668 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3669 transform(GEP->operands(), NewOps.begin(), 3670 [&](Value *V) { return V == Op ? RepOp : V; }); 3671 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3672 MaxRecurse - 1); 3673 } 3674 } 3675 3676 // TODO: We could hand off more cases to instsimplify here. 3677 3678 // If all operands are constant after substituting Op for RepOp then we can 3679 // constant fold the instruction. 3680 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3681 // Build a list of all constant operands. 3682 SmallVector<Constant *, 8> ConstOps; 3683 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3684 if (I->getOperand(i) == Op) 3685 ConstOps.push_back(CRepOp); 3686 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3687 ConstOps.push_back(COp); 3688 else 3689 break; 3690 } 3691 3692 // All operands were constants, fold it. 3693 if (ConstOps.size() == I->getNumOperands()) { 3694 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3695 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3696 ConstOps[1], Q.DL, Q.TLI); 3697 3698 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3699 if (!LI->isVolatile()) 3700 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3701 3702 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3703 } 3704 } 3705 3706 return nullptr; 3707 } 3708 3709 /// Try to simplify a select instruction when its condition operand is an 3710 /// integer comparison where one operand of the compare is a constant. 3711 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3712 const APInt *Y, bool TrueWhenUnset) { 3713 const APInt *C; 3714 3715 // (X & Y) == 0 ? X & ~Y : X --> X 3716 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3717 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3718 *Y == ~*C) 3719 return TrueWhenUnset ? FalseVal : TrueVal; 3720 3721 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3722 // (X & Y) != 0 ? X : X & ~Y --> X 3723 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3724 *Y == ~*C) 3725 return TrueWhenUnset ? FalseVal : TrueVal; 3726 3727 if (Y->isPowerOf2()) { 3728 // (X & Y) == 0 ? X | Y : X --> X | Y 3729 // (X & Y) != 0 ? X | Y : X --> X 3730 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3731 *Y == *C) 3732 return TrueWhenUnset ? TrueVal : FalseVal; 3733 3734 // (X & Y) == 0 ? X : X | Y --> X 3735 // (X & Y) != 0 ? X : X | Y --> X | Y 3736 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3737 *Y == *C) 3738 return TrueWhenUnset ? TrueVal : FalseVal; 3739 } 3740 3741 return nullptr; 3742 } 3743 3744 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3745 /// eq/ne. 3746 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3747 ICmpInst::Predicate Pred, 3748 Value *TrueVal, Value *FalseVal) { 3749 Value *X; 3750 APInt Mask; 3751 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3752 return nullptr; 3753 3754 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3755 Pred == ICmpInst::ICMP_EQ); 3756 } 3757 3758 /// Try to simplify a select instruction when its condition operand is an 3759 /// integer comparison. 3760 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3761 Value *FalseVal, const SimplifyQuery &Q, 3762 unsigned MaxRecurse) { 3763 ICmpInst::Predicate Pred; 3764 Value *CmpLHS, *CmpRHS; 3765 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3766 return nullptr; 3767 3768 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3769 Value *X; 3770 const APInt *Y; 3771 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3772 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3773 Pred == ICmpInst::ICMP_EQ)) 3774 return V; 3775 } 3776 3777 // Check for other compares that behave like bit test. 3778 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3779 TrueVal, FalseVal)) 3780 return V; 3781 3782 // If we have an equality comparison, then we know the value in one of the 3783 // arms of the select. See if substituting this value into the arm and 3784 // simplifying the result yields the same value as the other arm. 3785 if (Pred == ICmpInst::ICMP_EQ) { 3786 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3787 TrueVal || 3788 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3789 TrueVal) 3790 return FalseVal; 3791 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3792 FalseVal || 3793 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3794 FalseVal) 3795 return FalseVal; 3796 } else if (Pred == ICmpInst::ICMP_NE) { 3797 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3798 FalseVal || 3799 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3800 FalseVal) 3801 return TrueVal; 3802 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3803 TrueVal || 3804 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3805 TrueVal) 3806 return TrueVal; 3807 } 3808 3809 return nullptr; 3810 } 3811 3812 /// Given operands for a SelectInst, see if we can fold the result. 3813 /// If not, this returns null. 3814 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3815 const SimplifyQuery &Q, unsigned MaxRecurse) { 3816 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3817 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3818 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3819 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3820 3821 // select undef, X, Y -> X or Y 3822 if (isa<UndefValue>(CondC)) 3823 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3824 3825 // TODO: Vector constants with undef elements don't simplify. 3826 3827 // select true, X, Y -> X 3828 if (CondC->isAllOnesValue()) 3829 return TrueVal; 3830 // select false, X, Y -> Y 3831 if (CondC->isNullValue()) 3832 return FalseVal; 3833 } 3834 3835 // select ?, X, X -> X 3836 if (TrueVal == FalseVal) 3837 return TrueVal; 3838 3839 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3840 return FalseVal; 3841 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3842 return TrueVal; 3843 3844 if (Value *V = 3845 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3846 return V; 3847 3848 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3849 return V; 3850 3851 return nullptr; 3852 } 3853 3854 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3855 const SimplifyQuery &Q) { 3856 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3857 } 3858 3859 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3860 /// If not, this returns null. 3861 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3862 const SimplifyQuery &Q, unsigned) { 3863 // The type of the GEP pointer operand. 3864 unsigned AS = 3865 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3866 3867 // getelementptr P -> P. 3868 if (Ops.size() == 1) 3869 return Ops[0]; 3870 3871 // Compute the (pointer) type returned by the GEP instruction. 3872 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3873 Type *GEPTy = PointerType::get(LastType, AS); 3874 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3875 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3876 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3877 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3878 3879 if (isa<UndefValue>(Ops[0])) 3880 return UndefValue::get(GEPTy); 3881 3882 if (Ops.size() == 2) { 3883 // getelementptr P, 0 -> P. 3884 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3885 return Ops[0]; 3886 3887 Type *Ty = SrcTy; 3888 if (Ty->isSized()) { 3889 Value *P; 3890 uint64_t C; 3891 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3892 // getelementptr P, N -> P if P points to a type of zero size. 3893 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3894 return Ops[0]; 3895 3896 // The following transforms are only safe if the ptrtoint cast 3897 // doesn't truncate the pointers. 3898 if (Ops[1]->getType()->getScalarSizeInBits() == 3899 Q.DL.getIndexSizeInBits(AS)) { 3900 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3901 if (match(P, m_Zero())) 3902 return Constant::getNullValue(GEPTy); 3903 Value *Temp; 3904 if (match(P, m_PtrToInt(m_Value(Temp)))) 3905 if (Temp->getType() == GEPTy) 3906 return Temp; 3907 return nullptr; 3908 }; 3909 3910 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3911 if (TyAllocSize == 1 && 3912 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3913 if (Value *R = PtrToIntOrZero(P)) 3914 return R; 3915 3916 // getelementptr V, (ashr (sub P, V), C) -> Q 3917 // if P points to a type of size 1 << C. 3918 if (match(Ops[1], 3919 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3920 m_ConstantInt(C))) && 3921 TyAllocSize == 1ULL << C) 3922 if (Value *R = PtrToIntOrZero(P)) 3923 return R; 3924 3925 // getelementptr V, (sdiv (sub P, V), C) -> Q 3926 // if P points to a type of size C. 3927 if (match(Ops[1], 3928 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3929 m_SpecificInt(TyAllocSize)))) 3930 if (Value *R = PtrToIntOrZero(P)) 3931 return R; 3932 } 3933 } 3934 } 3935 3936 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3937 all_of(Ops.slice(1).drop_back(1), 3938 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3939 unsigned IdxWidth = 3940 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3941 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3942 APInt BasePtrOffset(IdxWidth, 0); 3943 Value *StrippedBasePtr = 3944 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3945 BasePtrOffset); 3946 3947 // gep (gep V, C), (sub 0, V) -> C 3948 if (match(Ops.back(), 3949 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3950 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3951 return ConstantExpr::getIntToPtr(CI, GEPTy); 3952 } 3953 // gep (gep V, C), (xor V, -1) -> C-1 3954 if (match(Ops.back(), 3955 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3956 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3957 return ConstantExpr::getIntToPtr(CI, GEPTy); 3958 } 3959 } 3960 } 3961 3962 // Check to see if this is constant foldable. 3963 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3964 return nullptr; 3965 3966 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3967 Ops.slice(1)); 3968 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3969 return CEFolded; 3970 return CE; 3971 } 3972 3973 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3974 const SimplifyQuery &Q) { 3975 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3976 } 3977 3978 /// Given operands for an InsertValueInst, see if we can fold the result. 3979 /// If not, this returns null. 3980 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3981 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3982 unsigned) { 3983 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3984 if (Constant *CVal = dyn_cast<Constant>(Val)) 3985 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3986 3987 // insertvalue x, undef, n -> x 3988 if (match(Val, m_Undef())) 3989 return Agg; 3990 3991 // insertvalue x, (extractvalue y, n), n 3992 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3993 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3994 EV->getIndices() == Idxs) { 3995 // insertvalue undef, (extractvalue y, n), n -> y 3996 if (match(Agg, m_Undef())) 3997 return EV->getAggregateOperand(); 3998 3999 // insertvalue y, (extractvalue y, n), n -> y 4000 if (Agg == EV->getAggregateOperand()) 4001 return Agg; 4002 } 4003 4004 return nullptr; 4005 } 4006 4007 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4008 ArrayRef<unsigned> Idxs, 4009 const SimplifyQuery &Q) { 4010 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4011 } 4012 4013 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4014 const SimplifyQuery &Q) { 4015 // Try to constant fold. 4016 auto *VecC = dyn_cast<Constant>(Vec); 4017 auto *ValC = dyn_cast<Constant>(Val); 4018 auto *IdxC = dyn_cast<Constant>(Idx); 4019 if (VecC && ValC && IdxC) 4020 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4021 4022 // Fold into undef if index is out of bounds. 4023 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4024 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 4025 if (CI->uge(NumElements)) 4026 return UndefValue::get(Vec->getType()); 4027 } 4028 4029 // If index is undef, it might be out of bounds (see above case) 4030 if (isa<UndefValue>(Idx)) 4031 return UndefValue::get(Vec->getType()); 4032 4033 return nullptr; 4034 } 4035 4036 /// Given operands for an ExtractValueInst, see if we can fold the result. 4037 /// If not, this returns null. 4038 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4039 const SimplifyQuery &, unsigned) { 4040 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4041 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4042 4043 // extractvalue x, (insertvalue y, elt, n), n -> elt 4044 unsigned NumIdxs = Idxs.size(); 4045 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4046 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4047 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4048 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4049 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4050 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4051 Idxs.slice(0, NumCommonIdxs)) { 4052 if (NumIdxs == NumInsertValueIdxs) 4053 return IVI->getInsertedValueOperand(); 4054 break; 4055 } 4056 } 4057 4058 return nullptr; 4059 } 4060 4061 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4062 const SimplifyQuery &Q) { 4063 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4064 } 4065 4066 /// Given operands for an ExtractElementInst, see if we can fold the result. 4067 /// If not, this returns null. 4068 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4069 unsigned) { 4070 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4071 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4072 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4073 4074 // The index is not relevant if our vector is a splat. 4075 if (auto *Splat = CVec->getSplatValue()) 4076 return Splat; 4077 4078 if (isa<UndefValue>(Vec)) 4079 return UndefValue::get(Vec->getType()->getVectorElementType()); 4080 } 4081 4082 // If extracting a specified index from the vector, see if we can recursively 4083 // find a previously computed scalar that was inserted into the vector. 4084 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4085 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4086 // definitely out of bounds, thus undefined result 4087 return UndefValue::get(Vec->getType()->getVectorElementType()); 4088 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4089 return Elt; 4090 } 4091 4092 // An undef extract index can be arbitrarily chosen to be an out-of-range 4093 // index value, which would result in the instruction being undef. 4094 if (isa<UndefValue>(Idx)) 4095 return UndefValue::get(Vec->getType()->getVectorElementType()); 4096 4097 return nullptr; 4098 } 4099 4100 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4101 const SimplifyQuery &Q) { 4102 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4103 } 4104 4105 /// See if we can fold the given phi. If not, returns null. 4106 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4107 // If all of the PHI's incoming values are the same then replace the PHI node 4108 // with the common value. 4109 Value *CommonValue = nullptr; 4110 bool HasUndefInput = false; 4111 for (Value *Incoming : PN->incoming_values()) { 4112 // If the incoming value is the phi node itself, it can safely be skipped. 4113 if (Incoming == PN) continue; 4114 if (isa<UndefValue>(Incoming)) { 4115 // Remember that we saw an undef value, but otherwise ignore them. 4116 HasUndefInput = true; 4117 continue; 4118 } 4119 if (CommonValue && Incoming != CommonValue) 4120 return nullptr; // Not the same, bail out. 4121 CommonValue = Incoming; 4122 } 4123 4124 // If CommonValue is null then all of the incoming values were either undef or 4125 // equal to the phi node itself. 4126 if (!CommonValue) 4127 return UndefValue::get(PN->getType()); 4128 4129 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4130 // instruction, we cannot return X as the result of the PHI node unless it 4131 // dominates the PHI block. 4132 if (HasUndefInput) 4133 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4134 4135 return CommonValue; 4136 } 4137 4138 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4139 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4140 if (auto *C = dyn_cast<Constant>(Op)) 4141 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4142 4143 if (auto *CI = dyn_cast<CastInst>(Op)) { 4144 auto *Src = CI->getOperand(0); 4145 Type *SrcTy = Src->getType(); 4146 Type *MidTy = CI->getType(); 4147 Type *DstTy = Ty; 4148 if (Src->getType() == Ty) { 4149 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4150 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4151 Type *SrcIntPtrTy = 4152 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4153 Type *MidIntPtrTy = 4154 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4155 Type *DstIntPtrTy = 4156 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4157 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4158 SrcIntPtrTy, MidIntPtrTy, 4159 DstIntPtrTy) == Instruction::BitCast) 4160 return Src; 4161 } 4162 } 4163 4164 // bitcast x -> x 4165 if (CastOpc == Instruction::BitCast) 4166 if (Op->getType() == Ty) 4167 return Op; 4168 4169 return nullptr; 4170 } 4171 4172 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4173 const SimplifyQuery &Q) { 4174 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4175 } 4176 4177 /// For the given destination element of a shuffle, peek through shuffles to 4178 /// match a root vector source operand that contains that element in the same 4179 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4180 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4181 int MaskVal, Value *RootVec, 4182 unsigned MaxRecurse) { 4183 if (!MaxRecurse--) 4184 return nullptr; 4185 4186 // Bail out if any mask value is undefined. That kind of shuffle may be 4187 // simplified further based on demanded bits or other folds. 4188 if (MaskVal == -1) 4189 return nullptr; 4190 4191 // The mask value chooses which source operand we need to look at next. 4192 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4193 int RootElt = MaskVal; 4194 Value *SourceOp = Op0; 4195 if (MaskVal >= InVecNumElts) { 4196 RootElt = MaskVal - InVecNumElts; 4197 SourceOp = Op1; 4198 } 4199 4200 // If the source operand is a shuffle itself, look through it to find the 4201 // matching root vector. 4202 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4203 return foldIdentityShuffles( 4204 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4205 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4206 } 4207 4208 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4209 // size? 4210 4211 // The source operand is not a shuffle. Initialize the root vector value for 4212 // this shuffle if that has not been done yet. 4213 if (!RootVec) 4214 RootVec = SourceOp; 4215 4216 // Give up as soon as a source operand does not match the existing root value. 4217 if (RootVec != SourceOp) 4218 return nullptr; 4219 4220 // The element must be coming from the same lane in the source vector 4221 // (although it may have crossed lanes in intermediate shuffles). 4222 if (RootElt != DestElt) 4223 return nullptr; 4224 4225 return RootVec; 4226 } 4227 4228 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4229 Type *RetTy, const SimplifyQuery &Q, 4230 unsigned MaxRecurse) { 4231 if (isa<UndefValue>(Mask)) 4232 return UndefValue::get(RetTy); 4233 4234 Type *InVecTy = Op0->getType(); 4235 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4236 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4237 4238 SmallVector<int, 32> Indices; 4239 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4240 assert(MaskNumElts == Indices.size() && 4241 "Size of Indices not same as number of mask elements?"); 4242 4243 // Canonicalization: If mask does not select elements from an input vector, 4244 // replace that input vector with undef. 4245 bool MaskSelects0 = false, MaskSelects1 = false; 4246 for (unsigned i = 0; i != MaskNumElts; ++i) { 4247 if (Indices[i] == -1) 4248 continue; 4249 if ((unsigned)Indices[i] < InVecNumElts) 4250 MaskSelects0 = true; 4251 else 4252 MaskSelects1 = true; 4253 } 4254 if (!MaskSelects0) 4255 Op0 = UndefValue::get(InVecTy); 4256 if (!MaskSelects1) 4257 Op1 = UndefValue::get(InVecTy); 4258 4259 auto *Op0Const = dyn_cast<Constant>(Op0); 4260 auto *Op1Const = dyn_cast<Constant>(Op1); 4261 4262 // If all operands are constant, constant fold the shuffle. 4263 if (Op0Const && Op1Const) 4264 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4265 4266 // Canonicalization: if only one input vector is constant, it shall be the 4267 // second one. 4268 if (Op0Const && !Op1Const) { 4269 std::swap(Op0, Op1); 4270 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4271 } 4272 4273 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4274 // value type is same as the input vectors' type. 4275 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4276 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4277 OpShuf->getMask()->getSplatValue()) 4278 return Op0; 4279 4280 // Don't fold a shuffle with undef mask elements. This may get folded in a 4281 // better way using demanded bits or other analysis. 4282 // TODO: Should we allow this? 4283 if (find(Indices, -1) != Indices.end()) 4284 return nullptr; 4285 4286 // Check if every element of this shuffle can be mapped back to the 4287 // corresponding element of a single root vector. If so, we don't need this 4288 // shuffle. This handles simple identity shuffles as well as chains of 4289 // shuffles that may widen/narrow and/or move elements across lanes and back. 4290 Value *RootVec = nullptr; 4291 for (unsigned i = 0; i != MaskNumElts; ++i) { 4292 // Note that recursion is limited for each vector element, so if any element 4293 // exceeds the limit, this will fail to simplify. 4294 RootVec = 4295 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4296 4297 // We can't replace a widening/narrowing shuffle with one of its operands. 4298 if (!RootVec || RootVec->getType() != RetTy) 4299 return nullptr; 4300 } 4301 return RootVec; 4302 } 4303 4304 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4305 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4306 Type *RetTy, const SimplifyQuery &Q) { 4307 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4308 } 4309 4310 static Constant *propagateNaN(Constant *In) { 4311 // If the input is a vector with undef elements, just return a default NaN. 4312 if (!In->isNaN()) 4313 return ConstantFP::getNaN(In->getType()); 4314 4315 // Propagate the existing NaN constant when possible. 4316 // TODO: Should we quiet a signaling NaN? 4317 return In; 4318 } 4319 4320 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4321 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4322 return ConstantFP::getNaN(Op0->getType()); 4323 4324 if (match(Op0, m_NaN())) 4325 return propagateNaN(cast<Constant>(Op0)); 4326 if (match(Op1, m_NaN())) 4327 return propagateNaN(cast<Constant>(Op1)); 4328 4329 return nullptr; 4330 } 4331 4332 /// Given operands for an FAdd, see if we can fold the result. If not, this 4333 /// returns null. 4334 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4335 const SimplifyQuery &Q, unsigned MaxRecurse) { 4336 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4337 return C; 4338 4339 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4340 return C; 4341 4342 // fadd X, -0 ==> X 4343 if (match(Op1, m_NegZeroFP())) 4344 return Op0; 4345 4346 // fadd X, 0 ==> X, when we know X is not -0 4347 if (match(Op1, m_PosZeroFP()) && 4348 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4349 return Op0; 4350 4351 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) 4352 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4353 // Negative zeros are allowed because we always end up with positive zero: 4354 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4355 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4356 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4357 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4358 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4359 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) 4360 return ConstantFP::getNullValue(Op0->getType()); 4361 4362 return nullptr; 4363 } 4364 4365 /// Given operands for an FSub, see if we can fold the result. If not, this 4366 /// returns null. 4367 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4368 const SimplifyQuery &Q, unsigned MaxRecurse) { 4369 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4370 return C; 4371 4372 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4373 return C; 4374 4375 // fsub X, +0 ==> X 4376 if (match(Op1, m_PosZeroFP())) 4377 return Op0; 4378 4379 // fsub X, -0 ==> X, when we know X is not -0 4380 if (match(Op1, m_NegZeroFP()) && 4381 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4382 return Op0; 4383 4384 // fsub -0.0, (fsub -0.0, X) ==> X 4385 Value *X; 4386 if (match(Op0, m_NegZeroFP()) && 4387 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4388 return X; 4389 4390 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4391 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4392 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4393 return X; 4394 4395 // fsub nnan x, x ==> 0.0 4396 if (FMF.noNaNs() && Op0 == Op1) 4397 return Constant::getNullValue(Op0->getType()); 4398 4399 return nullptr; 4400 } 4401 4402 /// Given the operands for an FMul, see if we can fold the result 4403 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4404 const SimplifyQuery &Q, unsigned MaxRecurse) { 4405 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4406 return C; 4407 4408 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4409 return C; 4410 4411 // fmul X, 1.0 ==> X 4412 if (match(Op1, m_FPOne())) 4413 return Op0; 4414 4415 // fmul nnan nsz X, 0 ==> 0 4416 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4417 return ConstantFP::getNullValue(Op0->getType()); 4418 4419 // sqrt(X) * sqrt(X) --> X, if we can: 4420 // 1. Remove the intermediate rounding (reassociate). 4421 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4422 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4423 Value *X; 4424 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4425 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4426 return X; 4427 4428 return nullptr; 4429 } 4430 4431 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4432 const SimplifyQuery &Q) { 4433 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4434 } 4435 4436 4437 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4438 const SimplifyQuery &Q) { 4439 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4440 } 4441 4442 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4443 const SimplifyQuery &Q) { 4444 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4445 } 4446 4447 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4448 const SimplifyQuery &Q, unsigned) { 4449 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4450 return C; 4451 4452 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4453 return C; 4454 4455 // X / 1.0 -> X 4456 if (match(Op1, m_FPOne())) 4457 return Op0; 4458 4459 // 0 / X -> 0 4460 // Requires that NaNs are off (X could be zero) and signed zeroes are 4461 // ignored (X could be positive or negative, so the output sign is unknown). 4462 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4463 return ConstantFP::getNullValue(Op0->getType()); 4464 4465 if (FMF.noNaNs()) { 4466 // X / X -> 1.0 is legal when NaNs are ignored. 4467 // We can ignore infinities because INF/INF is NaN. 4468 if (Op0 == Op1) 4469 return ConstantFP::get(Op0->getType(), 1.0); 4470 4471 // (X * Y) / Y --> X if we can reassociate to the above form. 4472 Value *X; 4473 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4474 return X; 4475 4476 // -X / X -> -1.0 and 4477 // X / -X -> -1.0 are legal when NaNs are ignored. 4478 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4479 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4480 BinaryOperator::getFNegArgument(Op0) == Op1) || 4481 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4482 BinaryOperator::getFNegArgument(Op1) == Op0)) 4483 return ConstantFP::get(Op0->getType(), -1.0); 4484 } 4485 4486 return nullptr; 4487 } 4488 4489 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4490 const SimplifyQuery &Q) { 4491 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4492 } 4493 4494 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4495 const SimplifyQuery &Q, unsigned) { 4496 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4497 return C; 4498 4499 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4500 return C; 4501 4502 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4503 // The constant match may include undef elements in a vector, so return a full 4504 // zero constant as the result. 4505 if (FMF.noNaNs()) { 4506 // +0 % X -> 0 4507 if (match(Op0, m_PosZeroFP())) 4508 return ConstantFP::getNullValue(Op0->getType()); 4509 // -0 % X -> -0 4510 if (match(Op0, m_NegZeroFP())) 4511 return ConstantFP::getNegativeZero(Op0->getType()); 4512 } 4513 4514 return nullptr; 4515 } 4516 4517 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4518 const SimplifyQuery &Q) { 4519 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4520 } 4521 4522 //=== Helper functions for higher up the class hierarchy. 4523 4524 /// Given operands for a BinaryOperator, see if we can fold the result. 4525 /// If not, this returns null. 4526 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4527 const SimplifyQuery &Q, unsigned MaxRecurse) { 4528 switch (Opcode) { 4529 case Instruction::Add: 4530 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4531 case Instruction::Sub: 4532 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4533 case Instruction::Mul: 4534 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4535 case Instruction::SDiv: 4536 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4537 case Instruction::UDiv: 4538 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4539 case Instruction::SRem: 4540 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4541 case Instruction::URem: 4542 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4543 case Instruction::Shl: 4544 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4545 case Instruction::LShr: 4546 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4547 case Instruction::AShr: 4548 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4549 case Instruction::And: 4550 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4551 case Instruction::Or: 4552 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4553 case Instruction::Xor: 4554 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4555 case Instruction::FAdd: 4556 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4557 case Instruction::FSub: 4558 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4559 case Instruction::FMul: 4560 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4561 case Instruction::FDiv: 4562 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4563 case Instruction::FRem: 4564 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4565 default: 4566 llvm_unreachable("Unexpected opcode"); 4567 } 4568 } 4569 4570 /// Given operands for a BinaryOperator, see if we can fold the result. 4571 /// If not, this returns null. 4572 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4573 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4574 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4575 const FastMathFlags &FMF, const SimplifyQuery &Q, 4576 unsigned MaxRecurse) { 4577 switch (Opcode) { 4578 case Instruction::FAdd: 4579 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4580 case Instruction::FSub: 4581 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4582 case Instruction::FMul: 4583 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4584 case Instruction::FDiv: 4585 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4586 default: 4587 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4588 } 4589 } 4590 4591 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4592 const SimplifyQuery &Q) { 4593 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4594 } 4595 4596 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4597 FastMathFlags FMF, const SimplifyQuery &Q) { 4598 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4599 } 4600 4601 /// Given operands for a CmpInst, see if we can fold the result. 4602 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4603 const SimplifyQuery &Q, unsigned MaxRecurse) { 4604 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4605 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4606 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4607 } 4608 4609 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4610 const SimplifyQuery &Q) { 4611 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4612 } 4613 4614 static bool IsIdempotent(Intrinsic::ID ID) { 4615 switch (ID) { 4616 default: return false; 4617 4618 // Unary idempotent: f(f(x)) = f(x) 4619 case Intrinsic::fabs: 4620 case Intrinsic::floor: 4621 case Intrinsic::ceil: 4622 case Intrinsic::trunc: 4623 case Intrinsic::rint: 4624 case Intrinsic::nearbyint: 4625 case Intrinsic::round: 4626 case Intrinsic::canonicalize: 4627 return true; 4628 } 4629 } 4630 4631 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4632 const DataLayout &DL) { 4633 GlobalValue *PtrSym; 4634 APInt PtrOffset; 4635 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4636 return nullptr; 4637 4638 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4639 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4640 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4641 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4642 4643 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4644 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4645 return nullptr; 4646 4647 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4648 if (OffsetInt % 4 != 0) 4649 return nullptr; 4650 4651 Constant *C = ConstantExpr::getGetElementPtr( 4652 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4653 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4654 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4655 if (!Loaded) 4656 return nullptr; 4657 4658 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4659 if (!LoadedCE) 4660 return nullptr; 4661 4662 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4663 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4664 if (!LoadedCE) 4665 return nullptr; 4666 } 4667 4668 if (LoadedCE->getOpcode() != Instruction::Sub) 4669 return nullptr; 4670 4671 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4672 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4673 return nullptr; 4674 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4675 4676 Constant *LoadedRHS = LoadedCE->getOperand(1); 4677 GlobalValue *LoadedRHSSym; 4678 APInt LoadedRHSOffset; 4679 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4680 DL) || 4681 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4682 return nullptr; 4683 4684 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4685 } 4686 4687 static bool maskIsAllZeroOrUndef(Value *Mask) { 4688 auto *ConstMask = dyn_cast<Constant>(Mask); 4689 if (!ConstMask) 4690 return false; 4691 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4692 return true; 4693 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4694 ++I) { 4695 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4696 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4697 continue; 4698 return false; 4699 } 4700 return true; 4701 } 4702 4703 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4704 const SimplifyQuery &Q) { 4705 // Idempotent functions return the same result when called repeatedly. 4706 Intrinsic::ID IID = F->getIntrinsicID(); 4707 if (IsIdempotent(IID)) 4708 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4709 if (II->getIntrinsicID() == IID) 4710 return II; 4711 4712 Value *X; 4713 switch (IID) { 4714 case Intrinsic::fabs: 4715 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4716 break; 4717 case Intrinsic::bswap: 4718 // bswap(bswap(x)) -> x 4719 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4720 break; 4721 case Intrinsic::bitreverse: 4722 // bitreverse(bitreverse(x)) -> x 4723 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4724 break; 4725 case Intrinsic::exp: 4726 // exp(log(x)) -> x 4727 if (Q.CxtI->hasAllowReassoc() && 4728 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4729 break; 4730 case Intrinsic::exp2: 4731 // exp2(log2(x)) -> x 4732 if (Q.CxtI->hasAllowReassoc() && 4733 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4734 break; 4735 case Intrinsic::log: 4736 // log(exp(x)) -> x 4737 if (Q.CxtI->hasAllowReassoc() && 4738 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4739 break; 4740 case Intrinsic::log2: 4741 // log2(exp2(x)) -> x 4742 if (Q.CxtI->hasAllowReassoc() && 4743 match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X; 4744 break; 4745 default: 4746 break; 4747 } 4748 4749 return nullptr; 4750 } 4751 4752 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4753 const SimplifyQuery &Q) { 4754 Intrinsic::ID IID = F->getIntrinsicID(); 4755 Type *ReturnType = F->getReturnType(); 4756 switch (IID) { 4757 case Intrinsic::usub_with_overflow: 4758 case Intrinsic::ssub_with_overflow: 4759 // X - X -> { 0, false } 4760 if (Op0 == Op1) 4761 return Constant::getNullValue(ReturnType); 4762 // X - undef -> undef 4763 // undef - X -> undef 4764 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4765 return UndefValue::get(ReturnType); 4766 break; 4767 case Intrinsic::uadd_with_overflow: 4768 case Intrinsic::sadd_with_overflow: 4769 // X + undef -> undef 4770 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4771 return UndefValue::get(ReturnType); 4772 break; 4773 case Intrinsic::umul_with_overflow: 4774 case Intrinsic::smul_with_overflow: 4775 // 0 * X -> { 0, false } 4776 // X * 0 -> { 0, false } 4777 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4778 return Constant::getNullValue(ReturnType); 4779 // undef * X -> { 0, false } 4780 // X * undef -> { 0, false } 4781 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4782 return Constant::getNullValue(ReturnType); 4783 break; 4784 case Intrinsic::load_relative: 4785 if (auto *C0 = dyn_cast<Constant>(Op0)) 4786 if (auto *C1 = dyn_cast<Constant>(Op1)) 4787 return SimplifyRelativeLoad(C0, C1, Q.DL); 4788 break; 4789 case Intrinsic::powi: 4790 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 4791 // powi(x, 0) -> 1.0 4792 if (Power->isZero()) 4793 return ConstantFP::get(Op0->getType(), 1.0); 4794 // powi(x, 1) -> x 4795 if (Power->isOne()) 4796 return Op0; 4797 } 4798 break; 4799 case Intrinsic::maxnum: 4800 case Intrinsic::minnum: 4801 // If one argument is NaN, return the other argument. 4802 if (match(Op0, m_NaN())) return Op1; 4803 if (match(Op1, m_NaN())) return Op0; 4804 break; 4805 default: 4806 break; 4807 } 4808 4809 return nullptr; 4810 } 4811 4812 template <typename IterTy> 4813 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4814 const SimplifyQuery &Q) { 4815 // Intrinsics with no operands have some kind of side effect. Don't simplify. 4816 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4817 if (NumOperands == 0) 4818 return nullptr; 4819 4820 Intrinsic::ID IID = F->getIntrinsicID(); 4821 if (NumOperands == 1) 4822 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); 4823 4824 if (NumOperands == 2) 4825 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); 4826 4827 // Handle intrinsics with 3 or more arguments. 4828 switch (IID) { 4829 case Intrinsic::masked_load: { 4830 Value *MaskArg = ArgBegin[2]; 4831 Value *PassthruArg = ArgBegin[3]; 4832 // If the mask is all zeros or undef, the "passthru" argument is the result. 4833 if (maskIsAllZeroOrUndef(MaskArg)) 4834 return PassthruArg; 4835 return nullptr; 4836 } 4837 case Intrinsic::fshl: 4838 case Intrinsic::fshr: { 4839 Value *ShAmtArg = ArgBegin[2]; 4840 const APInt *ShAmtC; 4841 if (match(ShAmtArg, m_APInt(ShAmtC))) { 4842 // If there's effectively no shift, return the 1st arg or 2nd arg. 4843 // TODO: For vectors, we could check each element of a non-splat constant. 4844 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 4845 if (ShAmtC->urem(BitWidth).isNullValue()) 4846 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 4847 } 4848 return nullptr; 4849 } 4850 default: 4851 return nullptr; 4852 } 4853 } 4854 4855 template <typename IterTy> 4856 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4857 IterTy ArgEnd, const SimplifyQuery &Q, 4858 unsigned MaxRecurse) { 4859 Type *Ty = V->getType(); 4860 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4861 Ty = PTy->getElementType(); 4862 FunctionType *FTy = cast<FunctionType>(Ty); 4863 4864 // call undef -> undef 4865 // call null -> undef 4866 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4867 return UndefValue::get(FTy->getReturnType()); 4868 4869 Function *F = dyn_cast<Function>(V); 4870 if (!F) 4871 return nullptr; 4872 4873 if (F->isIntrinsic()) 4874 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) 4875 return Ret; 4876 4877 if (!canConstantFoldCallTo(CS, F)) 4878 return nullptr; 4879 4880 SmallVector<Constant *, 4> ConstantArgs; 4881 ConstantArgs.reserve(ArgEnd - ArgBegin); 4882 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4883 Constant *C = dyn_cast<Constant>(*I); 4884 if (!C) 4885 return nullptr; 4886 ConstantArgs.push_back(C); 4887 } 4888 4889 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4890 } 4891 4892 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4893 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4894 const SimplifyQuery &Q) { 4895 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4896 } 4897 4898 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4899 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4900 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4901 } 4902 4903 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 4904 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 4905 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4906 Q, RecursionLimit); 4907 } 4908 4909 /// See if we can compute a simplified version of this instruction. 4910 /// If not, this returns null. 4911 4912 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4913 OptimizationRemarkEmitter *ORE) { 4914 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4915 Value *Result; 4916 4917 switch (I->getOpcode()) { 4918 default: 4919 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4920 break; 4921 case Instruction::FAdd: 4922 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4923 I->getFastMathFlags(), Q); 4924 break; 4925 case Instruction::Add: 4926 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4927 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4928 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4929 break; 4930 case Instruction::FSub: 4931 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4932 I->getFastMathFlags(), Q); 4933 break; 4934 case Instruction::Sub: 4935 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4936 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4937 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4938 break; 4939 case Instruction::FMul: 4940 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4941 I->getFastMathFlags(), Q); 4942 break; 4943 case Instruction::Mul: 4944 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4945 break; 4946 case Instruction::SDiv: 4947 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4948 break; 4949 case Instruction::UDiv: 4950 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4951 break; 4952 case Instruction::FDiv: 4953 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4954 I->getFastMathFlags(), Q); 4955 break; 4956 case Instruction::SRem: 4957 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4958 break; 4959 case Instruction::URem: 4960 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4961 break; 4962 case Instruction::FRem: 4963 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4964 I->getFastMathFlags(), Q); 4965 break; 4966 case Instruction::Shl: 4967 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4968 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4969 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4970 break; 4971 case Instruction::LShr: 4972 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4973 cast<BinaryOperator>(I)->isExact(), Q); 4974 break; 4975 case Instruction::AShr: 4976 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4977 cast<BinaryOperator>(I)->isExact(), Q); 4978 break; 4979 case Instruction::And: 4980 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4981 break; 4982 case Instruction::Or: 4983 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4984 break; 4985 case Instruction::Xor: 4986 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4987 break; 4988 case Instruction::ICmp: 4989 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4990 I->getOperand(0), I->getOperand(1), Q); 4991 break; 4992 case Instruction::FCmp: 4993 Result = 4994 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4995 I->getOperand(1), I->getFastMathFlags(), Q); 4996 break; 4997 case Instruction::Select: 4998 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4999 I->getOperand(2), Q); 5000 break; 5001 case Instruction::GetElementPtr: { 5002 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5003 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5004 Ops, Q); 5005 break; 5006 } 5007 case Instruction::InsertValue: { 5008 InsertValueInst *IV = cast<InsertValueInst>(I); 5009 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5010 IV->getInsertedValueOperand(), 5011 IV->getIndices(), Q); 5012 break; 5013 } 5014 case Instruction::InsertElement: { 5015 auto *IE = cast<InsertElementInst>(I); 5016 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5017 IE->getOperand(2), Q); 5018 break; 5019 } 5020 case Instruction::ExtractValue: { 5021 auto *EVI = cast<ExtractValueInst>(I); 5022 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5023 EVI->getIndices(), Q); 5024 break; 5025 } 5026 case Instruction::ExtractElement: { 5027 auto *EEI = cast<ExtractElementInst>(I); 5028 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5029 EEI->getIndexOperand(), Q); 5030 break; 5031 } 5032 case Instruction::ShuffleVector: { 5033 auto *SVI = cast<ShuffleVectorInst>(I); 5034 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5035 SVI->getMask(), SVI->getType(), Q); 5036 break; 5037 } 5038 case Instruction::PHI: 5039 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5040 break; 5041 case Instruction::Call: { 5042 CallSite CS(cast<CallInst>(I)); 5043 Result = SimplifyCall(CS, Q); 5044 break; 5045 } 5046 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5047 #include "llvm/IR/Instruction.def" 5048 #undef HANDLE_CAST_INST 5049 Result = 5050 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5051 break; 5052 case Instruction::Alloca: 5053 // No simplifications for Alloca and it can't be constant folded. 5054 Result = nullptr; 5055 break; 5056 } 5057 5058 // In general, it is possible for computeKnownBits to determine all bits in a 5059 // value even when the operands are not all constants. 5060 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5061 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5062 if (Known.isConstant()) 5063 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5064 } 5065 5066 /// If called on unreachable code, the above logic may report that the 5067 /// instruction simplified to itself. Make life easier for users by 5068 /// detecting that case here, returning a safe value instead. 5069 return Result == I ? UndefValue::get(I->getType()) : Result; 5070 } 5071 5072 /// Implementation of recursive simplification through an instruction's 5073 /// uses. 5074 /// 5075 /// This is the common implementation of the recursive simplification routines. 5076 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5077 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5078 /// instructions to process and attempt to simplify it using 5079 /// InstructionSimplify. 5080 /// 5081 /// This routine returns 'true' only when *it* simplifies something. The passed 5082 /// in simplified value does not count toward this. 5083 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 5084 const TargetLibraryInfo *TLI, 5085 const DominatorTree *DT, 5086 AssumptionCache *AC) { 5087 bool Simplified = false; 5088 SmallSetVector<Instruction *, 8> Worklist; 5089 const DataLayout &DL = I->getModule()->getDataLayout(); 5090 5091 // If we have an explicit value to collapse to, do that round of the 5092 // simplification loop by hand initially. 5093 if (SimpleV) { 5094 for (User *U : I->users()) 5095 if (U != I) 5096 Worklist.insert(cast<Instruction>(U)); 5097 5098 // Replace the instruction with its simplified value. 5099 I->replaceAllUsesWith(SimpleV); 5100 5101 // Gracefully handle edge cases where the instruction is not wired into any 5102 // parent block. 5103 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 5104 !I->mayHaveSideEffects()) 5105 I->eraseFromParent(); 5106 } else { 5107 Worklist.insert(I); 5108 } 5109 5110 // Note that we must test the size on each iteration, the worklist can grow. 5111 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5112 I = Worklist[Idx]; 5113 5114 // See if this instruction simplifies. 5115 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5116 if (!SimpleV) 5117 continue; 5118 5119 Simplified = true; 5120 5121 // Stash away all the uses of the old instruction so we can check them for 5122 // recursive simplifications after a RAUW. This is cheaper than checking all 5123 // uses of To on the recursive step in most cases. 5124 for (User *U : I->users()) 5125 Worklist.insert(cast<Instruction>(U)); 5126 5127 // Replace the instruction with its simplified value. 5128 I->replaceAllUsesWith(SimpleV); 5129 5130 // Gracefully handle edge cases where the instruction is not wired into any 5131 // parent block. 5132 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 5133 !I->mayHaveSideEffects()) 5134 I->eraseFromParent(); 5135 } 5136 return Simplified; 5137 } 5138 5139 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5140 const TargetLibraryInfo *TLI, 5141 const DominatorTree *DT, 5142 AssumptionCache *AC) { 5143 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5144 } 5145 5146 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5147 const TargetLibraryInfo *TLI, 5148 const DominatorTree *DT, 5149 AssumptionCache *AC) { 5150 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5151 assert(SimpleV && "Must provide a simplified value."); 5152 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5153 } 5154 5155 namespace llvm { 5156 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5157 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5158 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5159 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5160 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5161 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5162 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5163 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5164 } 5165 5166 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5167 const DataLayout &DL) { 5168 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5169 } 5170 5171 template <class T, class... TArgs> 5172 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5173 Function &F) { 5174 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5175 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5176 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5177 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5178 } 5179 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5180 Function &); 5181 } 5182