Home | History | Annotate | Download | only in Analysis
      1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This pass exposes codegen information to IR-level passes. Every
     11 /// transformation that uses codegen information is broken into three parts:
     12 /// 1. The IR-level analysis pass.
     13 /// 2. The IR-level transformation interface which provides the needed
     14 ///    information.
     15 /// 3. Codegen-level implementation which uses target-specific hooks.
     16 ///
     17 /// This file defines #2, which is the interface that IR-level transformations
     18 /// use for querying the codegen.
     19 ///
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
     23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
     24 
     25 #include "llvm/ADT/Optional.h"
     26 #include "llvm/IR/Operator.h"
     27 #include "llvm/IR/PassManager.h"
     28 #include "llvm/Pass.h"
     29 #include "llvm/Support/AtomicOrdering.h"
     30 #include "llvm/Support/DataTypes.h"
     31 #include <functional>
     32 
     33 namespace llvm {
     34 
     35 namespace Intrinsic {
     36 enum ID : unsigned;
     37 }
     38 
     39 class Function;
     40 class GlobalValue;
     41 class IntrinsicInst;
     42 class LoadInst;
     43 class Loop;
     44 class SCEV;
     45 class ScalarEvolution;
     46 class StoreInst;
     47 class SwitchInst;
     48 class Type;
     49 class User;
     50 class Value;
     51 
     52 /// Information about a load/store intrinsic defined by the target.
     53 struct MemIntrinsicInfo {
     54   /// This is the pointer that the intrinsic is loading from or storing to.
     55   /// If this is non-null, then analysis/optimization passes can assume that
     56   /// this intrinsic is functionally equivalent to a load/store from this
     57   /// pointer.
     58   Value *PtrVal = nullptr;
     59 
     60   // Ordering for atomic operations.
     61   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
     62 
     63   // Same Id is set by the target for corresponding load/store intrinsics.
     64   unsigned short MatchingId = 0;
     65 
     66   bool ReadMem = false;
     67   bool WriteMem = false;
     68   bool IsVolatile = false;
     69 
     70   bool isUnordered() const {
     71     return (Ordering == AtomicOrdering::NotAtomic ||
     72             Ordering == AtomicOrdering::Unordered) && !IsVolatile;
     73   }
     74 };
     75 
     76 /// This pass provides access to the codegen interfaces that are needed
     77 /// for IR-level transformations.
     78 class TargetTransformInfo {
     79 public:
     80   /// Construct a TTI object using a type implementing the \c Concept
     81   /// API below.
     82   ///
     83   /// This is used by targets to construct a TTI wrapping their target-specific
     84   /// implementaion that encodes appropriate costs for their target.
     85   template <typename T> TargetTransformInfo(T Impl);
     86 
     87   /// Construct a baseline TTI object using a minimal implementation of
     88   /// the \c Concept API below.
     89   ///
     90   /// The TTI implementation will reflect the information in the DataLayout
     91   /// provided if non-null.
     92   explicit TargetTransformInfo(const DataLayout &DL);
     93 
     94   // Provide move semantics.
     95   TargetTransformInfo(TargetTransformInfo &&Arg);
     96   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
     97 
     98   // We need to define the destructor out-of-line to define our sub-classes
     99   // out-of-line.
    100   ~TargetTransformInfo();
    101 
    102   /// Handle the invalidation of this information.
    103   ///
    104   /// When used as a result of \c TargetIRAnalysis this method will be called
    105   /// when the function this was computed for changes. When it returns false,
    106   /// the information is preserved across those changes.
    107   bool invalidate(Function &, const PreservedAnalyses &,
    108                   FunctionAnalysisManager::Invalidator &) {
    109     // FIXME: We should probably in some way ensure that the subtarget
    110     // information for a function hasn't changed.
    111     return false;
    112   }
    113 
    114   /// \name Generic Target Information
    115   /// @{
    116 
    117   /// The kind of cost model.
    118   ///
    119   /// There are several different cost models that can be customized by the
    120   /// target. The normalization of each cost model may be target specific.
    121   enum TargetCostKind {
    122     TCK_RecipThroughput, ///< Reciprocal throughput.
    123     TCK_Latency,         ///< The latency of instruction.
    124     TCK_CodeSize         ///< Instruction code size.
    125   };
    126 
    127   /// Query the cost of a specified instruction.
    128   ///
    129   /// Clients should use this interface to query the cost of an existing
    130   /// instruction. The instruction must have a valid parent (basic block).
    131   ///
    132   /// Note, this method does not cache the cost calculation and it
    133   /// can be expensive in some cases.
    134   int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
    135     switch (kind){
    136     case TCK_RecipThroughput:
    137       return getInstructionThroughput(I);
    138 
    139     case TCK_Latency:
    140       return getInstructionLatency(I);
    141 
    142     case TCK_CodeSize:
    143       return getUserCost(I);
    144     }
    145     llvm_unreachable("Unknown instruction cost kind");
    146   }
    147 
    148   /// Underlying constants for 'cost' values in this interface.
    149   ///
    150   /// Many APIs in this interface return a cost. This enum defines the
    151   /// fundamental values that should be used to interpret (and produce) those
    152   /// costs. The costs are returned as an int rather than a member of this
    153   /// enumeration because it is expected that the cost of one IR instruction
    154   /// may have a multiplicative factor to it or otherwise won't fit directly
    155   /// into the enum. Moreover, it is common to sum or average costs which works
    156   /// better as simple integral values. Thus this enum only provides constants.
    157   /// Also note that the returned costs are signed integers to make it natural
    158   /// to add, subtract, and test with zero (a common boundary condition). It is
    159   /// not expected that 2^32 is a realistic cost to be modeling at any point.
    160   ///
    161   /// Note that these costs should usually reflect the intersection of code-size
    162   /// cost and execution cost. A free instruction is typically one that folds
    163   /// into another instruction. For example, reg-to-reg moves can often be
    164   /// skipped by renaming the registers in the CPU, but they still are encoded
    165   /// and thus wouldn't be considered 'free' here.
    166   enum TargetCostConstants {
    167     TCC_Free = 0,     ///< Expected to fold away in lowering.
    168     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
    169     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
    170   };
    171 
    172   /// Estimate the cost of a specific operation when lowered.
    173   ///
    174   /// Note that this is designed to work on an arbitrary synthetic opcode, and
    175   /// thus work for hypothetical queries before an instruction has even been
    176   /// formed. However, this does *not* work for GEPs, and must not be called
    177   /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
    178   /// analyzing a GEP's cost required more information.
    179   ///
    180   /// Typically only the result type is required, and the operand type can be
    181   /// omitted. However, if the opcode is one of the cast instructions, the
    182   /// operand type is required.
    183   ///
    184   /// The returned cost is defined in terms of \c TargetCostConstants, see its
    185   /// comments for a detailed explanation of the cost values.
    186   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
    187 
    188   /// Estimate the cost of a GEP operation when lowered.
    189   ///
    190   /// The contract for this function is the same as \c getOperationCost except
    191   /// that it supports an interface that provides extra information specific to
    192   /// the GEP operation.
    193   int getGEPCost(Type *PointeeType, const Value *Ptr,
    194                  ArrayRef<const Value *> Operands) const;
    195 
    196   /// Estimate the cost of a EXT operation when lowered.
    197   ///
    198   /// The contract for this function is the same as \c getOperationCost except
    199   /// that it supports an interface that provides extra information specific to
    200   /// the EXT operation.
    201   int getExtCost(const Instruction *I, const Value *Src) const;
    202 
    203   /// Estimate the cost of a function call when lowered.
    204   ///
    205   /// The contract for this is the same as \c getOperationCost except that it
    206   /// supports an interface that provides extra information specific to call
    207   /// instructions.
    208   ///
    209   /// This is the most basic query for estimating call cost: it only knows the
    210   /// function type and (potentially) the number of arguments at the call site.
    211   /// The latter is only interesting for varargs function types.
    212   int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
    213 
    214   /// Estimate the cost of calling a specific function when lowered.
    215   ///
    216   /// This overload adds the ability to reason about the particular function
    217   /// being called in the event it is a library call with special lowering.
    218   int getCallCost(const Function *F, int NumArgs = -1) const;
    219 
    220   /// Estimate the cost of calling a specific function when lowered.
    221   ///
    222   /// This overload allows specifying a set of candidate argument values.
    223   int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
    224 
    225   /// \returns A value by which our inlining threshold should be multiplied.
    226   /// This is primarily used to bump up the inlining threshold wholesale on
    227   /// targets where calls are unusually expensive.
    228   ///
    229   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
    230   /// individual classes of instructions would be better.
    231   unsigned getInliningThresholdMultiplier() const;
    232 
    233   /// Estimate the cost of an intrinsic when lowered.
    234   ///
    235   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
    236   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    237                        ArrayRef<Type *> ParamTys) const;
    238 
    239   /// Estimate the cost of an intrinsic when lowered.
    240   ///
    241   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
    242   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    243                        ArrayRef<const Value *> Arguments) const;
    244 
    245   /// \return The estimated number of case clusters when lowering \p 'SI'.
    246   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
    247   /// table.
    248   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
    249                                             unsigned &JTSize) const;
    250 
    251   /// Estimate the cost of a given IR user when lowered.
    252   ///
    253   /// This can estimate the cost of either a ConstantExpr or Instruction when
    254   /// lowered. It has two primary advantages over the \c getOperationCost and
    255   /// \c getGEPCost above, and one significant disadvantage: it can only be
    256   /// used when the IR construct has already been formed.
    257   ///
    258   /// The advantages are that it can inspect the SSA use graph to reason more
    259   /// accurately about the cost. For example, all-constant-GEPs can often be
    260   /// folded into a load or other instruction, but if they are used in some
    261   /// other context they may not be folded. This routine can distinguish such
    262   /// cases.
    263   ///
    264   /// \p Operands is a list of operands which can be a result of transformations
    265   /// of the current operands. The number of the operands on the list must equal
    266   /// to the number of the current operands the IR user has. Their order on the
    267   /// list must be the same as the order of the current operands the IR user
    268   /// has.
    269   ///
    270   /// The returned cost is defined in terms of \c TargetCostConstants, see its
    271   /// comments for a detailed explanation of the cost values.
    272   int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
    273 
    274   /// This is a helper function which calls the two-argument getUserCost
    275   /// with \p Operands which are the current operands U has.
    276   int getUserCost(const User *U) const {
    277     SmallVector<const Value *, 4> Operands(U->value_op_begin(),
    278                                            U->value_op_end());
    279     return getUserCost(U, Operands);
    280   }
    281 
    282   /// Return true if branch divergence exists.
    283   ///
    284   /// Branch divergence has a significantly negative impact on GPU performance
    285   /// when threads in the same wavefront take different paths due to conditional
    286   /// branches.
    287   bool hasBranchDivergence() const;
    288 
    289   /// Returns whether V is a source of divergence.
    290   ///
    291   /// This function provides the target-dependent information for
    292   /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
    293   /// builds the dependency graph, and then runs the reachability algorithm
    294   /// starting with the sources of divergence.
    295   bool isSourceOfDivergence(const Value *V) const;
    296 
    297   // Returns true for the target specific
    298   // set of operations which produce uniform result
    299   // even taking non-unform arguments
    300   bool isAlwaysUniform(const Value *V) const;
    301 
    302   /// Returns the address space ID for a target's 'flat' address space. Note
    303   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
    304   /// refers to as the generic address space. The flat address space is a
    305   /// generic address space that can be used access multiple segments of memory
    306   /// with different address spaces. Access of a memory location through a
    307   /// pointer with this address space is expected to be legal but slower
    308   /// compared to the same memory location accessed through a pointer with a
    309   /// different address space.
    310   //
    311   /// This is for targets with different pointer representations which can
    312   /// be converted with the addrspacecast instruction. If a pointer is converted
    313   /// to this address space, optimizations should attempt to replace the access
    314   /// with the source address space.
    315   ///
    316   /// \returns ~0u if the target does not have such a flat address space to
    317   /// optimize away.
    318   unsigned getFlatAddressSpace() const;
    319 
    320   /// Test whether calls to a function lower to actual program function
    321   /// calls.
    322   ///
    323   /// The idea is to test whether the program is likely to require a 'call'
    324   /// instruction or equivalent in order to call the given function.
    325   ///
    326   /// FIXME: It's not clear that this is a good or useful query API. Client's
    327   /// should probably move to simpler cost metrics using the above.
    328   /// Alternatively, we could split the cost interface into distinct code-size
    329   /// and execution-speed costs. This would allow modelling the core of this
    330   /// query more accurately as a call is a single small instruction, but
    331   /// incurs significant execution cost.
    332   bool isLoweredToCall(const Function *F) const;
    333 
    334   struct LSRCost {
    335     /// TODO: Some of these could be merged. Also, a lexical ordering
    336     /// isn't always optimal.
    337     unsigned Insns;
    338     unsigned NumRegs;
    339     unsigned AddRecCost;
    340     unsigned NumIVMuls;
    341     unsigned NumBaseAdds;
    342     unsigned ImmCost;
    343     unsigned SetupCost;
    344     unsigned ScaleCost;
    345   };
    346 
    347   /// Parameters that control the generic loop unrolling transformation.
    348   struct UnrollingPreferences {
    349     /// The cost threshold for the unrolled loop. Should be relative to the
    350     /// getUserCost values returned by this API, and the expectation is that
    351     /// the unrolled loop's instructions when run through that interface should
    352     /// not exceed this cost. However, this is only an estimate. Also, specific
    353     /// loops may be unrolled even with a cost above this threshold if deemed
    354     /// profitable. Set this to UINT_MAX to disable the loop body cost
    355     /// restriction.
    356     unsigned Threshold;
    357     /// If complete unrolling will reduce the cost of the loop, we will boost
    358     /// the Threshold by a certain percent to allow more aggressive complete
    359     /// unrolling. This value provides the maximum boost percentage that we
    360     /// can apply to Threshold (The value should be no less than 100).
    361     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
    362     ///                                    MaxPercentThresholdBoost / 100)
    363     /// E.g. if complete unrolling reduces the loop execution time by 50%
    364     /// then we boost the threshold by the factor of 2x. If unrolling is not
    365     /// expected to reduce the running time, then we do not increase the
    366     /// threshold.
    367     unsigned MaxPercentThresholdBoost;
    368     /// The cost threshold for the unrolled loop when optimizing for size (set
    369     /// to UINT_MAX to disable).
    370     unsigned OptSizeThreshold;
    371     /// The cost threshold for the unrolled loop, like Threshold, but used
    372     /// for partial/runtime unrolling (set to UINT_MAX to disable).
    373     unsigned PartialThreshold;
    374     /// The cost threshold for the unrolled loop when optimizing for size, like
    375     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
    376     /// UINT_MAX to disable).
    377     unsigned PartialOptSizeThreshold;
    378     /// A forced unrolling factor (the number of concatenated bodies of the
    379     /// original loop in the unrolled loop body). When set to 0, the unrolling
    380     /// transformation will select an unrolling factor based on the current cost
    381     /// threshold and other factors.
    382     unsigned Count;
    383     /// A forced peeling factor (the number of bodied of the original loop
    384     /// that should be peeled off before the loop body). When set to 0, the
    385     /// unrolling transformation will select a peeling factor based on profile
    386     /// information and other factors.
    387     unsigned PeelCount;
    388     /// Default unroll count for loops with run-time trip count.
    389     unsigned DefaultUnrollRuntimeCount;
    390     // Set the maximum unrolling factor. The unrolling factor may be selected
    391     // using the appropriate cost threshold, but may not exceed this number
    392     // (set to UINT_MAX to disable). This does not apply in cases where the
    393     // loop is being fully unrolled.
    394     unsigned MaxCount;
    395     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
    396     /// applies even if full unrolling is selected. This allows a target to fall
    397     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
    398     unsigned FullUnrollMaxCount;
    399     // Represents number of instructions optimized when "back edge"
    400     // becomes "fall through" in unrolled loop.
    401     // For now we count a conditional branch on a backedge and a comparison
    402     // feeding it.
    403     unsigned BEInsns;
    404     /// Allow partial unrolling (unrolling of loops to expand the size of the
    405     /// loop body, not only to eliminate small constant-trip-count loops).
    406     bool Partial;
    407     /// Allow runtime unrolling (unrolling of loops to expand the size of the
    408     /// loop body even when the number of loop iterations is not known at
    409     /// compile time).
    410     bool Runtime;
    411     /// Allow generation of a loop remainder (extra iterations after unroll).
    412     bool AllowRemainder;
    413     /// Allow emitting expensive instructions (such as divisions) when computing
    414     /// the trip count of a loop for runtime unrolling.
    415     bool AllowExpensiveTripCount;
    416     /// Apply loop unroll on any kind of loop
    417     /// (mainly to loops that fail runtime unrolling).
    418     bool Force;
    419     /// Allow using trip count upper bound to unroll loops.
    420     bool UpperBound;
    421     /// Allow peeling off loop iterations for loops with low dynamic tripcount.
    422     bool AllowPeeling;
    423     /// Allow unrolling of all the iterations of the runtime loop remainder.
    424     bool UnrollRemainder;
    425     /// Allow unroll and jam. Used to enable unroll and jam for the target.
    426     bool UnrollAndJam;
    427     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
    428     /// value above is used during unroll and jam for the outer loop size.
    429     /// This value is used in the same manner to limit the size of the inner
    430     /// loop.
    431     unsigned UnrollAndJamInnerLoopThreshold;
    432   };
    433 
    434   /// Get target-customized preferences for the generic loop unrolling
    435   /// transformation. The caller will initialize UP with the current
    436   /// target-independent defaults.
    437   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
    438                                UnrollingPreferences &UP) const;
    439 
    440   /// @}
    441 
    442   /// \name Scalar Target Information
    443   /// @{
    444 
    445   /// Flags indicating the kind of support for population count.
    446   ///
    447   /// Compared to the SW implementation, HW support is supposed to
    448   /// significantly boost the performance when the population is dense, and it
    449   /// may or may not degrade performance if the population is sparse. A HW
    450   /// support is considered as "Fast" if it can outperform, or is on a par
    451   /// with, SW implementation when the population is sparse; otherwise, it is
    452   /// considered as "Slow".
    453   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
    454 
    455   /// Return true if the specified immediate is legal add immediate, that
    456   /// is the target has add instructions which can add a register with the
    457   /// immediate without having to materialize the immediate into a register.
    458   bool isLegalAddImmediate(int64_t Imm) const;
    459 
    460   /// Return true if the specified immediate is legal icmp immediate,
    461   /// that is the target has icmp instructions which can compare a register
    462   /// against the immediate without having to materialize the immediate into a
    463   /// register.
    464   bool isLegalICmpImmediate(int64_t Imm) const;
    465 
    466   /// Return true if the addressing mode represented by AM is legal for
    467   /// this target, for a load/store of the specified type.
    468   /// The type may be VoidTy, in which case only return true if the addressing
    469   /// mode is legal for a load/store of any legal type.
    470   /// If target returns true in LSRWithInstrQueries(), I may be valid.
    471   /// TODO: Handle pre/postinc as well.
    472   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    473                              bool HasBaseReg, int64_t Scale,
    474                              unsigned AddrSpace = 0,
    475                              Instruction *I = nullptr) const;
    476 
    477   /// Return true if LSR cost of C1 is lower than C1.
    478   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
    479                      TargetTransformInfo::LSRCost &C2) const;
    480 
    481   /// Return true if the target can fuse a compare and branch.
    482   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
    483   /// calculation for the instructions in a loop.
    484   bool canMacroFuseCmp() const;
    485 
    486   /// \return True is LSR should make efforts to create/preserve post-inc
    487   /// addressing mode expressions.
    488   bool shouldFavorPostInc() const;
    489 
    490   /// Return true if the target supports masked load/store
    491   /// AVX2 and AVX-512 targets allow masks for consecutive load and store
    492   bool isLegalMaskedStore(Type *DataType) const;
    493   bool isLegalMaskedLoad(Type *DataType) const;
    494 
    495   /// Return true if the target supports masked gather/scatter
    496   /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
    497   /// bits scalar type.
    498   bool isLegalMaskedScatter(Type *DataType) const;
    499   bool isLegalMaskedGather(Type *DataType) const;
    500 
    501   /// Return true if the target has a unified operation to calculate division
    502   /// and remainder. If so, the additional implicit multiplication and
    503   /// subtraction required to calculate a remainder from division are free. This
    504   /// can enable more aggressive transformations for division and remainder than
    505   /// would typically be allowed using throughput or size cost models.
    506   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
    507 
    508   /// Return true if the given instruction (assumed to be a memory access
    509   /// instruction) has a volatile variant. If that's the case then we can avoid
    510   /// addrspacecast to generic AS for volatile loads/stores. Default
    511   /// implementation returns false, which prevents address space inference for
    512   /// volatile loads/stores.
    513   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
    514 
    515   /// Return true if target doesn't mind addresses in vectors.
    516   bool prefersVectorizedAddressing() const;
    517 
    518   /// Return the cost of the scaling factor used in the addressing
    519   /// mode represented by AM for this target, for a load/store
    520   /// of the specified type.
    521   /// If the AM is supported, the return value must be >= 0.
    522   /// If the AM is not supported, it returns a negative value.
    523   /// TODO: Handle pre/postinc as well.
    524   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    525                            bool HasBaseReg, int64_t Scale,
    526                            unsigned AddrSpace = 0) const;
    527 
    528   /// Return true if the loop strength reduce pass should make
    529   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
    530   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
    531   /// immediate offset and no index register.
    532   bool LSRWithInstrQueries() const;
    533 
    534   /// Return true if it's free to truncate a value of type Ty1 to type
    535   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
    536   /// by referencing its sub-register AX.
    537   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
    538 
    539   /// Return true if it is profitable to hoist instruction in the
    540   /// then/else to before if.
    541   bool isProfitableToHoist(Instruction *I) const;
    542 
    543   bool useAA() const;
    544 
    545   /// Return true if this type is legal.
    546   bool isTypeLegal(Type *Ty) const;
    547 
    548   /// Returns the target's jmp_buf alignment in bytes.
    549   unsigned getJumpBufAlignment() const;
    550 
    551   /// Returns the target's jmp_buf size in bytes.
    552   unsigned getJumpBufSize() const;
    553 
    554   /// Return true if switches should be turned into lookup tables for the
    555   /// target.
    556   bool shouldBuildLookupTables() const;
    557 
    558   /// Return true if switches should be turned into lookup tables
    559   /// containing this constant value for the target.
    560   bool shouldBuildLookupTablesForConstant(Constant *C) const;
    561 
    562   /// Return true if the input function which is cold at all call sites,
    563   ///  should use coldcc calling convention.
    564   bool useColdCCForColdCall(Function &F) const;
    565 
    566   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
    567 
    568   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
    569                                             unsigned VF) const;
    570 
    571   /// If target has efficient vector element load/store instructions, it can
    572   /// return true here so that insertion/extraction costs are not added to
    573   /// the scalarization cost of a load/store.
    574   bool supportsEfficientVectorElementLoadStore() const;
    575 
    576   /// Don't restrict interleaved unrolling to small loops.
    577   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
    578 
    579   /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
    580   /// true if this is the expansion of memcmp(p1, p2, s) == 0.
    581   struct MemCmpExpansionOptions {
    582     // The list of available load sizes (in bytes), sorted in decreasing order.
    583     SmallVector<unsigned, 8> LoadSizes;
    584   };
    585   const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;
    586 
    587   /// Enable matching of interleaved access groups.
    588   bool enableInterleavedAccessVectorization() const;
    589 
    590   /// Indicate that it is potentially unsafe to automatically vectorize
    591   /// floating-point operations because the semantics of vector and scalar
    592   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
    593   /// does not support IEEE-754 denormal numbers, while depending on the
    594   /// platform, scalar floating-point math does.
    595   /// This applies to floating-point math operations and calls, not memory
    596   /// operations, shuffles, or casts.
    597   bool isFPVectorizationPotentiallyUnsafe() const;
    598 
    599   /// Determine if the target supports unaligned memory accesses.
    600   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
    601                                       unsigned BitWidth, unsigned AddressSpace = 0,
    602                                       unsigned Alignment = 1,
    603                                       bool *Fast = nullptr) const;
    604 
    605   /// Return hardware support for population count.
    606   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
    607 
    608   /// Return true if the hardware has a fast square-root instruction.
    609   bool haveFastSqrt(Type *Ty) const;
    610 
    611   /// Return true if it is faster to check if a floating-point value is NaN
    612   /// (or not-NaN) versus a comparison against a constant FP zero value.
    613   /// Targets should override this if materializing a 0.0 for comparison is
    614   /// generally as cheap as checking for ordered/unordered.
    615   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
    616 
    617   /// Return the expected cost of supporting the floating point operation
    618   /// of the specified type.
    619   int getFPOpCost(Type *Ty) const;
    620 
    621   /// Return the expected cost of materializing for the given integer
    622   /// immediate of the specified type.
    623   int getIntImmCost(const APInt &Imm, Type *Ty) const;
    624 
    625   /// Return the expected cost of materialization for the given integer
    626   /// immediate of the specified type for a given instruction. The cost can be
    627   /// zero if the immediate can be folded into the specified instruction.
    628   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    629                     Type *Ty) const;
    630   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    631                     Type *Ty) const;
    632 
    633   /// Return the expected cost for the given integer when optimising
    634   /// for size. This is different than the other integer immediate cost
    635   /// functions in that it is subtarget agnostic. This is useful when you e.g.
    636   /// target one ISA such as Aarch32 but smaller encodings could be possible
    637   /// with another such as Thumb. This return value is used as a penalty when
    638   /// the total costs for a constant is calculated (the bigger the cost, the
    639   /// more beneficial constant hoisting is).
    640   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    641                             Type *Ty) const;
    642   /// @}
    643 
    644   /// \name Vector Target Information
    645   /// @{
    646 
    647   /// The various kinds of shuffle patterns for vector queries.
    648   enum ShuffleKind {
    649     SK_Broadcast,       ///< Broadcast element 0 to all other elements.
    650     SK_Reverse,         ///< Reverse the order of the vector.
    651     SK_Select,          ///< Selects elements from the corresponding lane of
    652                         ///< either source operand. This is equivalent to a
    653                         ///< vector select with a constant condition operand.
    654     SK_Transpose,       ///< Transpose two vectors.
    655     SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
    656     SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
    657     SK_PermuteTwoSrc,   ///< Merge elements from two source vectors into one
    658                         ///< with any shuffle mask.
    659     SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
    660                         ///< shuffle mask.
    661   };
    662 
    663   /// Additional information about an operand's possible values.
    664   enum OperandValueKind {
    665     OK_AnyValue,               // Operand can have any value.
    666     OK_UniformValue,           // Operand is uniform (splat of a value).
    667     OK_UniformConstantValue,   // Operand is uniform constant.
    668     OK_NonUniformConstantValue // Operand is a non uniform constant value.
    669   };
    670 
    671   /// Additional properties of an operand's values.
    672   enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
    673 
    674   /// \return The number of scalar or vector registers that the target has.
    675   /// If 'Vectors' is true, it returns the number of vector registers. If it is
    676   /// set to false, it returns the number of scalar registers.
    677   unsigned getNumberOfRegisters(bool Vector) const;
    678 
    679   /// \return The width of the largest scalar or vector register type.
    680   unsigned getRegisterBitWidth(bool Vector) const;
    681 
    682   /// \return The width of the smallest vector register type.
    683   unsigned getMinVectorRegisterBitWidth() const;
    684 
    685   /// \return True if the vectorization factor should be chosen to
    686   /// make the vector of the smallest element type match the size of a
    687   /// vector register. For wider element types, this could result in
    688   /// creating vectors that span multiple vector registers.
    689   /// If false, the vectorization factor will be chosen based on the
    690   /// size of the widest element type.
    691   bool shouldMaximizeVectorBandwidth(bool OptSize) const;
    692 
    693   /// \return The minimum vectorization factor for types of given element
    694   /// bit width, or 0 if there is no mimimum VF. The returned value only
    695   /// applies when shouldMaximizeVectorBandwidth returns true.
    696   unsigned getMinimumVF(unsigned ElemWidth) const;
    697 
    698   /// \return True if it should be considered for address type promotion.
    699   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
    700   /// profitable without finding other extensions fed by the same input.
    701   bool shouldConsiderAddressTypePromotion(
    702       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
    703 
    704   /// \return The size of a cache line in bytes.
    705   unsigned getCacheLineSize() const;
    706 
    707   /// The possible cache levels
    708   enum class CacheLevel {
    709     L1D,   // The L1 data cache
    710     L2D,   // The L2 data cache
    711 
    712     // We currently do not model L3 caches, as their sizes differ widely between
    713     // microarchitectures. Also, we currently do not have a use for L3 cache
    714     // size modeling yet.
    715   };
    716 
    717   /// \return The size of the cache level in bytes, if available.
    718   llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
    719 
    720   /// \return The associativity of the cache level, if available.
    721   llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
    722 
    723   /// \return How much before a load we should place the prefetch instruction.
    724   /// This is currently measured in number of instructions.
    725   unsigned getPrefetchDistance() const;
    726 
    727   /// \return Some HW prefetchers can handle accesses up to a certain constant
    728   /// stride.  This is the minimum stride in bytes where it makes sense to start
    729   /// adding SW prefetches.  The default is 1, i.e. prefetch with any stride.
    730   unsigned getMinPrefetchStride() const;
    731 
    732   /// \return The maximum number of iterations to prefetch ahead.  If the
    733   /// required number of iterations is more than this number, no prefetching is
    734   /// performed.
    735   unsigned getMaxPrefetchIterationsAhead() const;
    736 
    737   /// \return The maximum interleave factor that any transform should try to
    738   /// perform for this target. This number depends on the level of parallelism
    739   /// and the number of execution units in the CPU.
    740   unsigned getMaxInterleaveFactor(unsigned VF) const;
    741 
    742   /// This is an approximation of reciprocal throughput of a math/logic op.
    743   /// A higher cost indicates less expected throughput.
    744   /// From Agner Fog's guides, reciprocal throughput is "the average number of
    745   /// clock cycles per instruction when the instructions are not part of a
    746   /// limiting dependency chain."
    747   /// Therefore, costs should be scaled to account for multiple execution units
    748   /// on the target that can process this type of instruction. For example, if
    749   /// there are 5 scalar integer units and 2 vector integer units that can
    750   /// calculate an 'add' in a single cycle, this model should indicate that the
    751   /// cost of the vector add instruction is 2.5 times the cost of the scalar
    752   /// add instruction.
    753   /// \p Args is an optional argument which holds the instruction operands
    754   /// values so the TTI can analyze those values searching for special
    755   /// cases or optimizations based on those values.
    756   int getArithmeticInstrCost(
    757       unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
    758       OperandValueKind Opd2Info = OK_AnyValue,
    759       OperandValueProperties Opd1PropInfo = OP_None,
    760       OperandValueProperties Opd2PropInfo = OP_None,
    761       ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
    762 
    763   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
    764   /// The index and subtype parameters are used by the subvector insertion and
    765   /// extraction shuffle kinds.
    766   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
    767                      Type *SubTp = nullptr) const;
    768 
    769   /// \return The expected cost of cast instructions, such as bitcast, trunc,
    770   /// zext, etc. If there is an existing instruction that holds Opcode, it
    771   /// may be passed in the 'I' parameter.
    772   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    773                        const Instruction *I = nullptr) const;
    774 
    775   /// \return The expected cost of a sign- or zero-extended vector extract. Use
    776   /// -1 to indicate that there is no information about the index value.
    777   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
    778                                unsigned Index = -1) const;
    779 
    780   /// \return The expected cost of control-flow related instructions such as
    781   /// Phi, Ret, Br.
    782   int getCFInstrCost(unsigned Opcode) const;
    783 
    784   /// \returns The expected cost of compare and select instructions. If there
    785   /// is an existing instruction that holds Opcode, it may be passed in the
    786   /// 'I' parameter.
    787   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    788                  Type *CondTy = nullptr, const Instruction *I = nullptr) const;
    789 
    790   /// \return The expected cost of vector Insert and Extract.
    791   /// Use -1 to indicate that there is no information on the index value.
    792   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
    793 
    794   /// \return The cost of Load and Store instructions.
    795   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    796                       unsigned AddressSpace, const Instruction *I = nullptr) const;
    797 
    798   /// \return The cost of masked Load and Store instructions.
    799   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    800                             unsigned AddressSpace) const;
    801 
    802   /// \return The cost of Gather or Scatter operation
    803   /// \p Opcode - is a type of memory access Load or Store
    804   /// \p DataTy - a vector type of the data to be loaded or stored
    805   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
    806   /// \p VariableMask - true when the memory access is predicated with a mask
    807   ///                   that is not a compile-time constant
    808   /// \p Alignment - alignment of single element
    809   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
    810                              bool VariableMask, unsigned Alignment) const;
    811 
    812   /// \return The cost of the interleaved memory operation.
    813   /// \p Opcode is the memory operation code
    814   /// \p VecTy is the vector type of the interleaved access.
    815   /// \p Factor is the interleave factor
    816   /// \p Indices is the indices for interleaved load members (as interleaved
    817   ///    load allows gaps)
    818   /// \p Alignment is the alignment of the memory operation
    819   /// \p AddressSpace is address space of the pointer.
    820   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
    821                                  ArrayRef<unsigned> Indices, unsigned Alignment,
    822                                  unsigned AddressSpace) const;
    823 
    824   /// Calculate the cost of performing a vector reduction.
    825   ///
    826   /// This is the cost of reducing the vector value of type \p Ty to a scalar
    827   /// value using the operation denoted by \p Opcode. The form of the reduction
    828   /// can either be a pairwise reduction or a reduction that splits the vector
    829   /// at every reduction level.
    830   ///
    831   /// Pairwise:
    832   ///  (v0, v1, v2, v3)
    833   ///  ((v0+v1), (v2+v3), undef, undef)
    834   /// Split:
    835   ///  (v0, v1, v2, v3)
    836   ///  ((v0+v2), (v1+v3), undef, undef)
    837   int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
    838                                  bool IsPairwiseForm) const;
    839   int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
    840                              bool IsUnsigned) const;
    841 
    842   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
    843   /// Three cases are handled: 1. scalar instruction 2. vector instruction
    844   /// 3. scalar instruction which is to be vectorized with VF.
    845   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    846                             ArrayRef<Value *> Args, FastMathFlags FMF,
    847                             unsigned VF = 1) const;
    848 
    849   /// \returns The cost of Intrinsic instructions. Types analysis only.
    850   /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
    851   /// arguments and the return value will be computed based on types.
    852   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    853                             ArrayRef<Type *> Tys, FastMathFlags FMF,
    854                             unsigned ScalarizationCostPassed = UINT_MAX) const;
    855 
    856   /// \returns The cost of Call instructions.
    857   int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
    858 
    859   /// \returns The number of pieces into which the provided type must be
    860   /// split during legalization. Zero is returned when the answer is unknown.
    861   unsigned getNumberOfParts(Type *Tp) const;
    862 
    863   /// \returns The cost of the address computation. For most targets this can be
    864   /// merged into the instruction indexing mode. Some targets might want to
    865   /// distinguish between address computation for memory operations on vector
    866   /// types and scalar types. Such targets should override this function.
    867   /// The 'SE' parameter holds pointer for the scalar evolution object which
    868   /// is used in order to get the Ptr step value in case of constant stride.
    869   /// The 'Ptr' parameter holds SCEV of the access pointer.
    870   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
    871                                 const SCEV *Ptr = nullptr) const;
    872 
    873   /// \returns The cost, if any, of keeping values of the given types alive
    874   /// over a callsite.
    875   ///
    876   /// Some types may require the use of register classes that do not have
    877   /// any callee-saved registers, so would require a spill and fill.
    878   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
    879 
    880   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
    881   /// will contain additional information - whether the intrinsic may write
    882   /// or read to memory, volatility and the pointer.  Info is undefined
    883   /// if false is returned.
    884   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
    885 
    886   /// \returns The maximum element size, in bytes, for an element
    887   /// unordered-atomic memory intrinsic.
    888   unsigned getAtomicMemIntrinsicMaxElementSize() const;
    889 
    890   /// \returns A value which is the result of the given memory intrinsic.  New
    891   /// instructions may be created to extract the result from the given intrinsic
    892   /// memory operation.  Returns nullptr if the target cannot create a result
    893   /// from the given intrinsic.
    894   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    895                                            Type *ExpectedType) const;
    896 
    897   /// \returns The type to use in a loop expansion of a memcpy call.
    898   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
    899                                   unsigned SrcAlign, unsigned DestAlign) const;
    900 
    901   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
    902   /// \param RemainingBytes The number of bytes to copy.
    903   ///
    904   /// Calculates the operand types to use when copying \p RemainingBytes of
    905   /// memory, where source and destination alignments are \p SrcAlign and
    906   /// \p DestAlign respectively.
    907   void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
    908                                          LLVMContext &Context,
    909                                          unsigned RemainingBytes,
    910                                          unsigned SrcAlign,
    911                                          unsigned DestAlign) const;
    912 
    913   /// \returns True if the two functions have compatible attributes for inlining
    914   /// purposes.
    915   bool areInlineCompatible(const Function *Caller,
    916                            const Function *Callee) const;
    917 
    918   /// The type of load/store indexing.
    919   enum MemIndexedMode {
    920     MIM_Unindexed,  ///< No indexing.
    921     MIM_PreInc,     ///< Pre-incrementing.
    922     MIM_PreDec,     ///< Pre-decrementing.
    923     MIM_PostInc,    ///< Post-incrementing.
    924     MIM_PostDec     ///< Post-decrementing.
    925   };
    926 
    927   /// \returns True if the specified indexed load for the given type is legal.
    928   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
    929 
    930   /// \returns True if the specified indexed store for the given type is legal.
    931   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
    932 
    933   /// \returns The bitwidth of the largest vector type that should be used to
    934   /// load/store in the given address space.
    935   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
    936 
    937   /// \returns True if the load instruction is legal to vectorize.
    938   bool isLegalToVectorizeLoad(LoadInst *LI) const;
    939 
    940   /// \returns True if the store instruction is legal to vectorize.
    941   bool isLegalToVectorizeStore(StoreInst *SI) const;
    942 
    943   /// \returns True if it is legal to vectorize the given load chain.
    944   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
    945                                    unsigned Alignment,
    946                                    unsigned AddrSpace) const;
    947 
    948   /// \returns True if it is legal to vectorize the given store chain.
    949   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
    950                                     unsigned Alignment,
    951                                     unsigned AddrSpace) const;
    952 
    953   /// \returns The new vector factor value if the target doesn't support \p
    954   /// SizeInBytes loads or has a better vector factor.
    955   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
    956                                unsigned ChainSizeInBytes,
    957                                VectorType *VecTy) const;
    958 
    959   /// \returns The new vector factor value if the target doesn't support \p
    960   /// SizeInBytes stores or has a better vector factor.
    961   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
    962                                 unsigned ChainSizeInBytes,
    963                                 VectorType *VecTy) const;
    964 
    965   /// Flags describing the kind of vector reduction.
    966   struct ReductionFlags {
    967     ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
    968     bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
    969     bool IsSigned; ///< Whether the operation is a signed int reduction.
    970     bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
    971   };
    972 
    973   /// \returns True if the target wants to handle the given reduction idiom in
    974   /// the intrinsics form instead of the shuffle form.
    975   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
    976                              ReductionFlags Flags) const;
    977 
    978   /// \returns True if the target wants to expand the given reduction intrinsic
    979   /// into a shuffle sequence.
    980   bool shouldExpandReduction(const IntrinsicInst *II) const;
    981   /// @}
    982 
    983 private:
    984   /// Estimate the latency of specified instruction.
    985   /// Returns 1 as the default value.
    986   int getInstructionLatency(const Instruction *I) const;
    987 
    988   /// Returns the expected throughput cost of the instruction.
    989   /// Returns -1 if the cost is unknown.
    990   int getInstructionThroughput(const Instruction *I) const;
    991 
    992   /// The abstract base class used to type erase specific TTI
    993   /// implementations.
    994   class Concept;
    995 
    996   /// The template model for the base class which wraps a concrete
    997   /// implementation in a type erased interface.
    998   template <typename T> class Model;
    999 
   1000   std::unique_ptr<Concept> TTIImpl;
   1001 };
   1002 
   1003 class TargetTransformInfo::Concept {
   1004 public:
   1005   virtual ~Concept() = 0;
   1006   virtual const DataLayout &getDataLayout() const = 0;
   1007   virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
   1008   virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
   1009                          ArrayRef<const Value *> Operands) = 0;
   1010   virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
   1011   virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
   1012   virtual int getCallCost(const Function *F, int NumArgs) = 0;
   1013   virtual int getCallCost(const Function *F,
   1014                           ArrayRef<const Value *> Arguments) = 0;
   1015   virtual unsigned getInliningThresholdMultiplier() = 0;
   1016   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
   1017                                ArrayRef<Type *> ParamTys) = 0;
   1018   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
   1019                                ArrayRef<const Value *> Arguments) = 0;
   1020   virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
   1021                                                     unsigned &JTSize) = 0;
   1022   virtual int
   1023   getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
   1024   virtual bool hasBranchDivergence() = 0;
   1025   virtual bool isSourceOfDivergence(const Value *V) = 0;
   1026   virtual bool isAlwaysUniform(const Value *V) = 0;
   1027   virtual unsigned getFlatAddressSpace() = 0;
   1028   virtual bool isLoweredToCall(const Function *F) = 0;
   1029   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
   1030                                        UnrollingPreferences &UP) = 0;
   1031   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
   1032   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
   1033   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
   1034                                      int64_t BaseOffset, bool HasBaseReg,
   1035                                      int64_t Scale,
   1036                                      unsigned AddrSpace,
   1037                                      Instruction *I) = 0;
   1038   virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
   1039                              TargetTransformInfo::LSRCost &C2) = 0;
   1040   virtual bool canMacroFuseCmp() = 0;
   1041   virtual bool shouldFavorPostInc() const = 0;
   1042   virtual bool isLegalMaskedStore(Type *DataType) = 0;
   1043   virtual bool isLegalMaskedLoad(Type *DataType) = 0;
   1044   virtual bool isLegalMaskedScatter(Type *DataType) = 0;
   1045   virtual bool isLegalMaskedGather(Type *DataType) = 0;
   1046   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
   1047   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
   1048   virtual bool prefersVectorizedAddressing() = 0;
   1049   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
   1050                                    int64_t BaseOffset, bool HasBaseReg,
   1051                                    int64_t Scale, unsigned AddrSpace) = 0;
   1052   virtual bool LSRWithInstrQueries() = 0;
   1053   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
   1054   virtual bool isProfitableToHoist(Instruction *I) = 0;
   1055   virtual bool useAA() = 0;
   1056   virtual bool isTypeLegal(Type *Ty) = 0;
   1057   virtual unsigned getJumpBufAlignment() = 0;
   1058   virtual unsigned getJumpBufSize() = 0;
   1059   virtual bool shouldBuildLookupTables() = 0;
   1060   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
   1061   virtual bool useColdCCForColdCall(Function &F) = 0;
   1062   virtual unsigned
   1063   getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
   1064   virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
   1065                                                     unsigned VF) = 0;
   1066   virtual bool supportsEfficientVectorElementLoadStore() = 0;
   1067   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
   1068   virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
   1069       bool IsZeroCmp) const = 0;
   1070   virtual bool enableInterleavedAccessVectorization() = 0;
   1071   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
   1072   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
   1073                                               unsigned BitWidth,
   1074                                               unsigned AddressSpace,
   1075                                               unsigned Alignment,
   1076                                               bool *Fast) = 0;
   1077   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
   1078   virtual bool haveFastSqrt(Type *Ty) = 0;
   1079   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
   1080   virtual int getFPOpCost(Type *Ty) = 0;
   1081   virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
   1082                                     Type *Ty) = 0;
   1083   virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
   1084   virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
   1085                             Type *Ty) = 0;
   1086   virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
   1087                             Type *Ty) = 0;
   1088   virtual unsigned getNumberOfRegisters(bool Vector) = 0;
   1089   virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
   1090   virtual unsigned getMinVectorRegisterBitWidth() = 0;
   1091   virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
   1092   virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
   1093   virtual bool shouldConsiderAddressTypePromotion(
   1094       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
   1095   virtual unsigned getCacheLineSize() = 0;
   1096   virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
   1097   virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
   1098   virtual unsigned getPrefetchDistance() = 0;
   1099   virtual unsigned getMinPrefetchStride() = 0;
   1100   virtual unsigned getMaxPrefetchIterationsAhead() = 0;
   1101   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
   1102   virtual unsigned
   1103   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
   1104                          OperandValueKind Opd2Info,
   1105                          OperandValueProperties Opd1PropInfo,
   1106                          OperandValueProperties Opd2PropInfo,
   1107                          ArrayRef<const Value *> Args) = 0;
   1108   virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
   1109                              Type *SubTp) = 0;
   1110   virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
   1111                                const Instruction *I) = 0;
   1112   virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
   1113                                        VectorType *VecTy, unsigned Index) = 0;
   1114   virtual int getCFInstrCost(unsigned Opcode) = 0;
   1115   virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
   1116                                 Type *CondTy, const Instruction *I) = 0;
   1117   virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
   1118                                  unsigned Index) = 0;
   1119   virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
   1120                               unsigned AddressSpace, const Instruction *I) = 0;
   1121   virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
   1122                                     unsigned Alignment,
   1123                                     unsigned AddressSpace) = 0;
   1124   virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
   1125                                      Value *Ptr, bool VariableMask,
   1126                                      unsigned Alignment) = 0;
   1127   virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
   1128                                          unsigned Factor,
   1129                                          ArrayRef<unsigned> Indices,
   1130                                          unsigned Alignment,
   1131                                          unsigned AddressSpace) = 0;
   1132   virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
   1133                                          bool IsPairwiseForm) = 0;
   1134   virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
   1135                                      bool IsPairwiseForm, bool IsUnsigned) = 0;
   1136   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
   1137                       ArrayRef<Type *> Tys, FastMathFlags FMF,
   1138                       unsigned ScalarizationCostPassed) = 0;
   1139   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
   1140          ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
   1141   virtual int getCallInstrCost(Function *F, Type *RetTy,
   1142                                ArrayRef<Type *> Tys) = 0;
   1143   virtual unsigned getNumberOfParts(Type *Tp) = 0;
   1144   virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
   1145                                         const SCEV *Ptr) = 0;
   1146   virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
   1147   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
   1148                                   MemIntrinsicInfo &Info) = 0;
   1149   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
   1150   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
   1151                                                    Type *ExpectedType) = 0;
   1152   virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
   1153                                           unsigned SrcAlign,
   1154                                           unsigned DestAlign) const = 0;
   1155   virtual void getMemcpyLoopResidualLoweringType(
   1156       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
   1157       unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
   1158   virtual bool areInlineCompatible(const Function *Caller,
   1159                                    const Function *Callee) const = 0;
   1160   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
   1161   virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
   1162   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
   1163   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
   1164   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
   1165   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
   1166                                            unsigned Alignment,
   1167                                            unsigned AddrSpace) const = 0;
   1168   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
   1169                                             unsigned Alignment,
   1170                                             unsigned AddrSpace) const = 0;
   1171   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
   1172                                        unsigned ChainSizeInBytes,
   1173                                        VectorType *VecTy) const = 0;
   1174   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
   1175                                         unsigned ChainSizeInBytes,
   1176                                         VectorType *VecTy) const = 0;
   1177   virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
   1178                                      ReductionFlags) const = 0;
   1179   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
   1180   virtual int getInstructionLatency(const Instruction *I) = 0;
   1181 };
   1182 
   1183 template <typename T>
   1184 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
   1185   T Impl;
   1186 
   1187 public:
   1188   Model(T Impl) : Impl(std::move(Impl)) {}
   1189   ~Model() override {}
   1190 
   1191   const DataLayout &getDataLayout() const override {
   1192     return Impl.getDataLayout();
   1193   }
   1194 
   1195   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
   1196     return Impl.getOperationCost(Opcode, Ty, OpTy);
   1197   }
   1198   int getGEPCost(Type *PointeeType, const Value *Ptr,
   1199                  ArrayRef<const Value *> Operands) override {
   1200     return Impl.getGEPCost(PointeeType, Ptr, Operands);
   1201   }
   1202   int getExtCost(const Instruction *I, const Value *Src) override {
   1203     return Impl.getExtCost(I, Src);
   1204   }
   1205   int getCallCost(FunctionType *FTy, int NumArgs) override {
   1206     return Impl.getCallCost(FTy, NumArgs);
   1207   }
   1208   int getCallCost(const Function *F, int NumArgs) override {
   1209     return Impl.getCallCost(F, NumArgs);
   1210   }
   1211   int getCallCost(const Function *F,
   1212                   ArrayRef<const Value *> Arguments) override {
   1213     return Impl.getCallCost(F, Arguments);
   1214   }
   1215   unsigned getInliningThresholdMultiplier() override {
   1216     return Impl.getInliningThresholdMultiplier();
   1217   }
   1218   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
   1219                        ArrayRef<Type *> ParamTys) override {
   1220     return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
   1221   }
   1222   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
   1223                        ArrayRef<const Value *> Arguments) override {
   1224     return Impl.getIntrinsicCost(IID, RetTy, Arguments);
   1225   }
   1226   int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
   1227     return Impl.getUserCost(U, Operands);
   1228   }
   1229   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
   1230   bool isSourceOfDivergence(const Value *V) override {
   1231     return Impl.isSourceOfDivergence(V);
   1232   }
   1233 
   1234   bool isAlwaysUniform(const Value *V) override {
   1235     return Impl.isAlwaysUniform(V);
   1236   }
   1237 
   1238   unsigned getFlatAddressSpace() override {
   1239     return Impl.getFlatAddressSpace();
   1240   }
   1241 
   1242   bool isLoweredToCall(const Function *F) override {
   1243     return Impl.isLoweredToCall(F);
   1244   }
   1245   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
   1246                                UnrollingPreferences &UP) override {
   1247     return Impl.getUnrollingPreferences(L, SE, UP);
   1248   }
   1249   bool isLegalAddImmediate(int64_t Imm) override {
   1250     return Impl.isLegalAddImmediate(Imm);
   1251   }
   1252   bool isLegalICmpImmediate(int64_t Imm) override {
   1253     return Impl.isLegalICmpImmediate(Imm);
   1254   }
   1255   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
   1256                              bool HasBaseReg, int64_t Scale,
   1257                              unsigned AddrSpace,
   1258                              Instruction *I) override {
   1259     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
   1260                                       Scale, AddrSpace, I);
   1261   }
   1262   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
   1263                      TargetTransformInfo::LSRCost &C2) override {
   1264     return Impl.isLSRCostLess(C1, C2);
   1265   }
   1266   bool canMacroFuseCmp() override {
   1267     return Impl.canMacroFuseCmp();
   1268   }
   1269   bool shouldFavorPostInc() const override {
   1270     return Impl.shouldFavorPostInc();
   1271   }
   1272   bool isLegalMaskedStore(Type *DataType) override {
   1273     return Impl.isLegalMaskedStore(DataType);
   1274   }
   1275   bool isLegalMaskedLoad(Type *DataType) override {
   1276     return Impl.isLegalMaskedLoad(DataType);
   1277   }
   1278   bool isLegalMaskedScatter(Type *DataType) override {
   1279     return Impl.isLegalMaskedScatter(DataType);
   1280   }
   1281   bool isLegalMaskedGather(Type *DataType) override {
   1282     return Impl.isLegalMaskedGather(DataType);
   1283   }
   1284   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
   1285     return Impl.hasDivRemOp(DataType, IsSigned);
   1286   }
   1287   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
   1288     return Impl.hasVolatileVariant(I, AddrSpace);
   1289   }
   1290   bool prefersVectorizedAddressing() override {
   1291     return Impl.prefersVectorizedAddressing();
   1292   }
   1293   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
   1294                            bool HasBaseReg, int64_t Scale,
   1295                            unsigned AddrSpace) override {
   1296     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
   1297                                      Scale, AddrSpace);
   1298   }
   1299   bool LSRWithInstrQueries() override {
   1300     return Impl.LSRWithInstrQueries();
   1301   }
   1302   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
   1303     return Impl.isTruncateFree(Ty1, Ty2);
   1304   }
   1305   bool isProfitableToHoist(Instruction *I) override {
   1306     return Impl.isProfitableToHoist(I);
   1307   }
   1308   bool useAA() override { return Impl.useAA(); }
   1309   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
   1310   unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
   1311   unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
   1312   bool shouldBuildLookupTables() override {
   1313     return Impl.shouldBuildLookupTables();
   1314   }
   1315   bool shouldBuildLookupTablesForConstant(Constant *C) override {
   1316     return Impl.shouldBuildLookupTablesForConstant(C);
   1317   }
   1318   bool useColdCCForColdCall(Function &F) override {
   1319     return Impl.useColdCCForColdCall(F);
   1320   }
   1321 
   1322   unsigned getScalarizationOverhead(Type *Ty, bool Insert,
   1323                                     bool Extract) override {
   1324     return Impl.getScalarizationOverhead(Ty, Insert, Extract);
   1325   }
   1326   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
   1327                                             unsigned VF) override {
   1328     return Impl.getOperandsScalarizationOverhead(Args, VF);
   1329   }
   1330 
   1331   bool supportsEfficientVectorElementLoadStore() override {
   1332     return Impl.supportsEfficientVectorElementLoadStore();
   1333   }
   1334 
   1335   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
   1336     return Impl.enableAggressiveInterleaving(LoopHasReductions);
   1337   }
   1338   const MemCmpExpansionOptions *enableMemCmpExpansion(
   1339       bool IsZeroCmp) const override {
   1340     return Impl.enableMemCmpExpansion(IsZeroCmp);
   1341   }
   1342   bool enableInterleavedAccessVectorization() override {
   1343     return Impl.enableInterleavedAccessVectorization();
   1344   }
   1345   bool isFPVectorizationPotentiallyUnsafe() override {
   1346     return Impl.isFPVectorizationPotentiallyUnsafe();
   1347   }
   1348   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
   1349                                       unsigned BitWidth, unsigned AddressSpace,
   1350                                       unsigned Alignment, bool *Fast) override {
   1351     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
   1352                                                Alignment, Fast);
   1353   }
   1354   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
   1355     return Impl.getPopcntSupport(IntTyWidthInBit);
   1356   }
   1357   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
   1358 
   1359   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
   1360     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
   1361   }
   1362 
   1363   int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
   1364 
   1365   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
   1366                             Type *Ty) override {
   1367     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
   1368   }
   1369   int getIntImmCost(const APInt &Imm, Type *Ty) override {
   1370     return Impl.getIntImmCost(Imm, Ty);
   1371   }
   1372   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
   1373                     Type *Ty) override {
   1374     return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
   1375   }
   1376   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
   1377                     Type *Ty) override {
   1378     return Impl.getIntImmCost(IID, Idx, Imm, Ty);
   1379   }
   1380   unsigned getNumberOfRegisters(bool Vector) override {
   1381     return Impl.getNumberOfRegisters(Vector);
   1382   }
   1383   unsigned getRegisterBitWidth(bool Vector) const override {
   1384     return Impl.getRegisterBitWidth(Vector);
   1385   }
   1386   unsigned getMinVectorRegisterBitWidth() override {
   1387     return Impl.getMinVectorRegisterBitWidth();
   1388   }
   1389   bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
   1390     return Impl.shouldMaximizeVectorBandwidth(OptSize);
   1391   }
   1392   unsigned getMinimumVF(unsigned ElemWidth) const override {
   1393     return Impl.getMinimumVF(ElemWidth);
   1394   }
   1395   bool shouldConsiderAddressTypePromotion(
   1396       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
   1397     return Impl.shouldConsiderAddressTypePromotion(
   1398         I, AllowPromotionWithoutCommonHeader);
   1399   }
   1400   unsigned getCacheLineSize() override {
   1401     return Impl.getCacheLineSize();
   1402   }
   1403   llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
   1404     return Impl.getCacheSize(Level);
   1405   }
   1406   llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
   1407     return Impl.getCacheAssociativity(Level);
   1408   }
   1409   unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
   1410   unsigned getMinPrefetchStride() override {
   1411     return Impl.getMinPrefetchStride();
   1412   }
   1413   unsigned getMaxPrefetchIterationsAhead() override {
   1414     return Impl.getMaxPrefetchIterationsAhead();
   1415   }
   1416   unsigned getMaxInterleaveFactor(unsigned VF) override {
   1417     return Impl.getMaxInterleaveFactor(VF);
   1418   }
   1419   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
   1420                                             unsigned &JTSize) override {
   1421     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
   1422   }
   1423   unsigned
   1424   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
   1425                          OperandValueKind Opd2Info,
   1426                          OperandValueProperties Opd1PropInfo,
   1427                          OperandValueProperties Opd2PropInfo,
   1428                          ArrayRef<const Value *> Args) override {
   1429     return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
   1430                                        Opd1PropInfo, Opd2PropInfo, Args);
   1431   }
   1432   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
   1433                      Type *SubTp) override {
   1434     return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
   1435   }
   1436   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
   1437                        const Instruction *I) override {
   1438     return Impl.getCastInstrCost(Opcode, Dst, Src, I);
   1439   }
   1440   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
   1441                                unsigned Index) override {
   1442     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
   1443   }
   1444   int getCFInstrCost(unsigned Opcode) override {
   1445     return Impl.getCFInstrCost(Opcode);
   1446   }
   1447   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
   1448                          const Instruction *I) override {
   1449     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
   1450   }
   1451   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
   1452     return Impl.getVectorInstrCost(Opcode, Val, Index);
   1453   }
   1454   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
   1455                       unsigned AddressSpace, const Instruction *I) override {
   1456     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
   1457   }
   1458   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
   1459                             unsigned AddressSpace) override {
   1460     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
   1461   }
   1462   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
   1463                              Value *Ptr, bool VariableMask,
   1464                              unsigned Alignment) override {
   1465     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
   1466                                        Alignment);
   1467   }
   1468   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
   1469                                  ArrayRef<unsigned> Indices, unsigned Alignment,
   1470                                  unsigned AddressSpace) override {
   1471     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
   1472                                            Alignment, AddressSpace);
   1473   }
   1474   int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
   1475                                  bool IsPairwiseForm) override {
   1476     return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
   1477   }
   1478   int getMinMaxReductionCost(Type *Ty, Type *CondTy,
   1479                              bool IsPairwiseForm, bool IsUnsigned) override {
   1480     return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
   1481    }
   1482   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
   1483                FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
   1484     return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
   1485                                       ScalarizationCostPassed);
   1486   }
   1487   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
   1488        ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
   1489     return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
   1490   }
   1491   int getCallInstrCost(Function *F, Type *RetTy,
   1492                        ArrayRef<Type *> Tys) override {
   1493     return Impl.getCallInstrCost(F, RetTy, Tys);
   1494   }
   1495   unsigned getNumberOfParts(Type *Tp) override {
   1496     return Impl.getNumberOfParts(Tp);
   1497   }
   1498   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
   1499                                 const SCEV *Ptr) override {
   1500     return Impl.getAddressComputationCost(Ty, SE, Ptr);
   1501   }
   1502   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
   1503     return Impl.getCostOfKeepingLiveOverCall(Tys);
   1504   }
   1505   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
   1506                           MemIntrinsicInfo &Info) override {
   1507     return Impl.getTgtMemIntrinsic(Inst, Info);
   1508   }
   1509   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
   1510     return Impl.getAtomicMemIntrinsicMaxElementSize();
   1511   }
   1512   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
   1513                                            Type *ExpectedType) override {
   1514     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
   1515   }
   1516   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
   1517                                   unsigned SrcAlign,
   1518                                   unsigned DestAlign) const override {
   1519     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
   1520   }
   1521   void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
   1522                                          LLVMContext &Context,
   1523                                          unsigned RemainingBytes,
   1524                                          unsigned SrcAlign,
   1525                                          unsigned DestAlign) const override {
   1526     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
   1527                                            SrcAlign, DestAlign);
   1528   }
   1529   bool areInlineCompatible(const Function *Caller,
   1530                            const Function *Callee) const override {
   1531     return Impl.areInlineCompatible(Caller, Callee);
   1532   }
   1533   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
   1534     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
   1535   }
   1536   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
   1537     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
   1538   }
   1539   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
   1540     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
   1541   }
   1542   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
   1543     return Impl.isLegalToVectorizeLoad(LI);
   1544   }
   1545   bool isLegalToVectorizeStore(StoreInst *SI) const override {
   1546     return Impl.isLegalToVectorizeStore(SI);
   1547   }
   1548   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
   1549                                    unsigned Alignment,
   1550                                    unsigned AddrSpace) const override {
   1551     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
   1552                                             AddrSpace);
   1553   }
   1554   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
   1555                                     unsigned Alignment,
   1556                                     unsigned AddrSpace) const override {
   1557     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
   1558                                              AddrSpace);
   1559   }
   1560   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
   1561                                unsigned ChainSizeInBytes,
   1562                                VectorType *VecTy) const override {
   1563     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
   1564   }
   1565   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
   1566                                 unsigned ChainSizeInBytes,
   1567                                 VectorType *VecTy) const override {
   1568     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
   1569   }
   1570   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
   1571                              ReductionFlags Flags) const override {
   1572     return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
   1573   }
   1574   bool shouldExpandReduction(const IntrinsicInst *II) const override {
   1575     return Impl.shouldExpandReduction(II);
   1576   }
   1577   int getInstructionLatency(const Instruction *I) override {
   1578     return Impl.getInstructionLatency(I);
   1579   }
   1580 };
   1581 
   1582 template <typename T>
   1583 TargetTransformInfo::TargetTransformInfo(T Impl)
   1584     : TTIImpl(new Model<T>(Impl)) {}
   1585 
   1586 /// Analysis pass providing the \c TargetTransformInfo.
   1587 ///
   1588 /// The core idea of the TargetIRAnalysis is to expose an interface through
   1589 /// which LLVM targets can analyze and provide information about the middle
   1590 /// end's target-independent IR. This supports use cases such as target-aware
   1591 /// cost modeling of IR constructs.
   1592 ///
   1593 /// This is a function analysis because much of the cost modeling for targets
   1594 /// is done in a subtarget specific way and LLVM supports compiling different
   1595 /// functions targeting different subtargets in order to support runtime
   1596 /// dispatch according to the observed subtarget.
   1597 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
   1598 public:
   1599   typedef TargetTransformInfo Result;
   1600 
   1601   /// Default construct a target IR analysis.
   1602   ///
   1603   /// This will use the module's datalayout to construct a baseline
   1604   /// conservative TTI result.
   1605   TargetIRAnalysis();
   1606 
   1607   /// Construct an IR analysis pass around a target-provide callback.
   1608   ///
   1609   /// The callback will be called with a particular function for which the TTI
   1610   /// is needed and must return a TTI object for that function.
   1611   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
   1612 
   1613   // Value semantics. We spell out the constructors for MSVC.
   1614   TargetIRAnalysis(const TargetIRAnalysis &Arg)
   1615       : TTICallback(Arg.TTICallback) {}
   1616   TargetIRAnalysis(TargetIRAnalysis &&Arg)
   1617       : TTICallback(std::move(Arg.TTICallback)) {}
   1618   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
   1619     TTICallback = RHS.TTICallback;
   1620     return *this;
   1621   }
   1622   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
   1623     TTICallback = std::move(RHS.TTICallback);
   1624     return *this;
   1625   }
   1626 
   1627   Result run(const Function &F, FunctionAnalysisManager &);
   1628 
   1629 private:
   1630   friend AnalysisInfoMixin<TargetIRAnalysis>;
   1631   static AnalysisKey Key;
   1632 
   1633   /// The callback used to produce a result.
   1634   ///
   1635   /// We use a completely opaque callback so that targets can provide whatever
   1636   /// mechanism they desire for constructing the TTI for a given function.
   1637   ///
   1638   /// FIXME: Should we really use std::function? It's relatively inefficient.
   1639   /// It might be possible to arrange for even stateful callbacks to outlive
   1640   /// the analysis and thus use a function_ref which would be lighter weight.
   1641   /// This may also be less error prone as the callback is likely to reference
   1642   /// the external TargetMachine, and that reference needs to never dangle.
   1643   std::function<Result(const Function &)> TTICallback;
   1644 
   1645   /// Helper function used as the callback in the default constructor.
   1646   static Result getDefaultTTI(const Function &F);
   1647 };
   1648 
   1649 /// Wrapper pass for TargetTransformInfo.
   1650 ///
   1651 /// This pass can be constructed from a TTI object which it stores internally
   1652 /// and is queried by passes.
   1653 class TargetTransformInfoWrapperPass : public ImmutablePass {
   1654   TargetIRAnalysis TIRA;
   1655   Optional<TargetTransformInfo> TTI;
   1656 
   1657   virtual void anchor();
   1658 
   1659 public:
   1660   static char ID;
   1661 
   1662   /// We must provide a default constructor for the pass but it should
   1663   /// never be used.
   1664   ///
   1665   /// Use the constructor below or call one of the creation routines.
   1666   TargetTransformInfoWrapperPass();
   1667 
   1668   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
   1669 
   1670   TargetTransformInfo &getTTI(const Function &F);
   1671 };
   1672 
   1673 /// Create an analysis pass wrapper around a TTI object.
   1674 ///
   1675 /// This analysis pass just holds the TTI instance and makes it available to
   1676 /// clients.
   1677 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
   1678 
   1679 } // End llvm namespace
   1680 
   1681 #endif
   1682