Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/MC/MCInstrInfo.h"
     18 #include "llvm/CodeGen/MachineFunction.h"
     19 
     20 namespace llvm {
     21 
     22 class InstrItineraryData;
     23 class LiveVariables;
     24 class MCAsmInfo;
     25 class MachineMemOperand;
     26 class MachineRegisterInfo;
     27 class MDNode;
     28 class MCInst;
     29 class SDNode;
     30 class ScheduleHazardRecognizer;
     31 class SelectionDAG;
     32 class ScheduleDAG;
     33 class TargetRegisterClass;
     34 class TargetRegisterInfo;
     35 class BranchProbability;
     36 
     37 template<class T> class SmallVectorImpl;
     38 
     39 
     40 //---------------------------------------------------------------------------
     41 ///
     42 /// TargetInstrInfo - Interface to description of machine instruction set
     43 ///
     44 class TargetInstrInfo : public MCInstrInfo {
     45   TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
     46   void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
     47 public:
     48   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
     49     : CallFrameSetupOpcode(CFSetupOpcode),
     50       CallFrameDestroyOpcode(CFDestroyOpcode) {
     51   }
     52 
     53   virtual ~TargetInstrInfo();
     54 
     55   /// getRegClass - Givem a machine instruction descriptor, returns the register
     56   /// class constraint for OpNum, or NULL.
     57   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     58                                          unsigned OpNum,
     59                                          const TargetRegisterInfo *TRI) const;
     60 
     61   /// isTriviallyReMaterializable - Return true if the instruction is trivially
     62   /// rematerializable, meaning it has no side effects and requires no operands
     63   /// that aren't always available.
     64   bool isTriviallyReMaterializable(const MachineInstr *MI,
     65                                    AliasAnalysis *AA = 0) const {
     66     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     67            (MI->getDesc().isRematerializable() &&
     68             (isReallyTriviallyReMaterializable(MI, AA) ||
     69              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     70   }
     71 
     72 protected:
     73   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
     74   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
     75   /// specify whether the instruction is actually trivially rematerializable,
     76   /// taking into consideration its operands. This predicate must return false
     77   /// if the instruction has any side effects other than producing a value, or
     78   /// if it requres any address registers that are not always available.
     79   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     80                                                  AliasAnalysis *AA) const {
     81     return false;
     82   }
     83 
     84 private:
     85   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
     86   /// for which the M_REMATERIALIZABLE flag is set and the target hook
     87   /// isReallyTriviallyReMaterializable returns false, this function does
     88   /// target-independent tests to determine if the instruction is really
     89   /// trivially rematerializable.
     90   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
     91                                                 AliasAnalysis *AA) const;
     92 
     93 public:
     94   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
     95   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
     96   /// targets use pseudo instructions in order to abstract away the difference
     97   /// between operating with a frame pointer and operating without, through the
     98   /// use of these two instructions.
     99   ///
    100   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    101   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    102 
    103   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    104   /// extension instruction. That is, it's like a copy where it's legal for the
    105   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    106   /// true, then it's expected the pre-extension value is available as a subreg
    107   /// of the result register. This also returns the sub-register index in
    108   /// SubIdx.
    109   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    110                                      unsigned &SrcReg, unsigned &DstReg,
    111                                      unsigned &SubIdx) const {
    112     return false;
    113   }
    114 
    115   /// isLoadFromStackSlot - If the specified machine instruction is a direct
    116   /// load from a stack slot, return the virtual or physical register number of
    117   /// the destination along with the FrameIndex of the loaded stack slot.  If
    118   /// not, return 0.  This predicate must return 0 if the instruction has
    119   /// any side effects other than loading from the stack slot.
    120   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    121                                        int &FrameIndex) const {
    122     return 0;
    123   }
    124 
    125   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    126   /// stack locations as well.  This uses a heuristic so it isn't
    127   /// reliable for correctness.
    128   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    129                                              int &FrameIndex) const {
    130     return 0;
    131   }
    132 
    133   /// hasLoadFromStackSlot - If the specified machine instruction has
    134   /// a load from a stack slot, return true along with the FrameIndex
    135   /// of the loaded stack slot and the machine mem operand containing
    136   /// the reference.  If not, return false.  Unlike
    137   /// isLoadFromStackSlot, this returns true for any instructions that
    138   /// loads from the stack.  This is just a hint, as some cases may be
    139   /// missed.
    140   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    141                                     const MachineMemOperand *&MMO,
    142                                     int &FrameIndex) const {
    143     return 0;
    144   }
    145 
    146   /// isStoreToStackSlot - If the specified machine instruction is a direct
    147   /// store to a stack slot, return the virtual or physical register number of
    148   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    149   /// not, return 0.  This predicate must return 0 if the instruction has
    150   /// any side effects other than storing to the stack slot.
    151   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    152                                       int &FrameIndex) const {
    153     return 0;
    154   }
    155 
    156   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    157   /// stack locations as well.  This uses a heuristic so it isn't
    158   /// reliable for correctness.
    159   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    160                                             int &FrameIndex) const {
    161     return 0;
    162   }
    163 
    164   /// hasStoreToStackSlot - If the specified machine instruction has a
    165   /// store to a stack slot, return true along with the FrameIndex of
    166   /// the loaded stack slot and the machine mem operand containing the
    167   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    168   /// this returns true for any instructions that stores to the
    169   /// stack.  This is just a hint, as some cases may be missed.
    170   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    171                                    const MachineMemOperand *&MMO,
    172                                    int &FrameIndex) const {
    173     return 0;
    174   }
    175 
    176   /// reMaterialize - Re-issue the specified 'original' instruction at the
    177   /// specific location targeting a new destination register.
    178   /// The register in Orig->getOperand(0).getReg() will be substituted by
    179   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    180   /// SubIdx.
    181   virtual void reMaterialize(MachineBasicBlock &MBB,
    182                              MachineBasicBlock::iterator MI,
    183                              unsigned DestReg, unsigned SubIdx,
    184                              const MachineInstr *Orig,
    185                              const TargetRegisterInfo &TRI) const = 0;
    186 
    187   /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
    188   /// two-addrss instruction inserted by two-address pass.
    189   virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
    190                                      MachineInstr *UseMI,
    191                                      const TargetRegisterInfo &TRI) const {
    192     // Do nothing.
    193   }
    194 
    195   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
    196   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    197   /// that are required to be unique.
    198   ///
    199   /// The instruction must be duplicable as indicated by isNotDuplicable().
    200   virtual MachineInstr *duplicate(MachineInstr *Orig,
    201                                   MachineFunction &MF) const = 0;
    202 
    203   /// convertToThreeAddress - This method must be implemented by targets that
    204   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    205   /// may be able to convert a two-address instruction into one or more true
    206   /// three-address instructions on demand.  This allows the X86 target (for
    207   /// example) to convert ADD and SHL instructions into LEA instructions if they
    208   /// would require register copies due to two-addressness.
    209   ///
    210   /// This method returns a null pointer if the transformation cannot be
    211   /// performed, otherwise it returns the last new instruction.
    212   ///
    213   virtual MachineInstr *
    214   convertToThreeAddress(MachineFunction::iterator &MFI,
    215                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    216     return 0;
    217   }
    218 
    219   /// commuteInstruction - If a target has any instructions that are
    220   /// commutable but require converting to different instructions or making
    221   /// non-trivial changes to commute them, this method can overloaded to do
    222   /// that.  The default implementation simply swaps the commutable operands.
    223   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    224   /// new machine instruction is created and returned.  Do not call this
    225   /// method for a non-commutable instruction, but there may be some cases
    226   /// where this method fails and returns null.
    227   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    228                                            bool NewMI = false) const = 0;
    229 
    230   /// findCommutedOpIndices - If specified MI is commutable, return the two
    231   /// operand indices that would swap value. Return false if the instruction
    232   /// is not in a form which this routine understands.
    233   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    234                                      unsigned &SrcOpIdx2) const = 0;
    235 
    236   /// produceSameValue - Return true if two machine instructions would produce
    237   /// identical values. By default, this is only true when the two instructions
    238   /// are deemed identical except for defs. If this function is called when the
    239   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    240   /// aggressive checks.
    241   virtual bool produceSameValue(const MachineInstr *MI0,
    242                                 const MachineInstr *MI1,
    243                                 const MachineRegisterInfo *MRI = 0) const = 0;
    244 
    245   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
    246   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    247   /// implemented for a target).  Upon success, this returns false and returns
    248   /// with the following information in various cases:
    249   ///
    250   /// 1. If this block ends with no branches (it just falls through to its succ)
    251   ///    just return false, leaving TBB/FBB null.
    252   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    253   ///    the destination block.
    254   /// 3. If this block ends with a conditional branch and it falls through to a
    255   ///    successor block, it sets TBB to be the branch destination block and a
    256   ///    list of operands that evaluate the condition. These operands can be
    257   ///    passed to other TargetInstrInfo methods to create new branches.
    258   /// 4. If this block ends with a conditional branch followed by an
    259   ///    unconditional branch, it returns the 'true' destination in TBB, the
    260   ///    'false' destination in FBB, and a list of operands that evaluate the
    261   ///    condition.  These operands can be passed to other TargetInstrInfo
    262   ///    methods to create new branches.
    263   ///
    264   /// Note that RemoveBranch and InsertBranch must be implemented to support
    265   /// cases where this method returns success.
    266   ///
    267   /// If AllowModify is true, then this routine is allowed to modify the basic
    268   /// block (e.g. delete instructions after the unconditional branch).
    269   ///
    270   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    271                              MachineBasicBlock *&FBB,
    272                              SmallVectorImpl<MachineOperand> &Cond,
    273                              bool AllowModify = false) const {
    274     return true;
    275   }
    276 
    277   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
    278   /// This is only invoked in cases where AnalyzeBranch returns success. It
    279   /// returns the number of instructions that were removed.
    280   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    281     assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
    282     return 0;
    283   }
    284 
    285   /// InsertBranch - Insert branch code into the end of the specified
    286   /// MachineBasicBlock.  The operands to this method are the same as those
    287   /// returned by AnalyzeBranch.  This is only invoked in cases where
    288   /// AnalyzeBranch returns success. It returns the number of instructions
    289   /// inserted.
    290   ///
    291   /// It is also invoked by tail merging to add unconditional branches in
    292   /// cases where AnalyzeBranch doesn't apply because there was no original
    293   /// branch to analyze.  At least this much must be implemented, else tail
    294   /// merging needs to be disabled.
    295   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    296                                 MachineBasicBlock *FBB,
    297                                 const SmallVectorImpl<MachineOperand> &Cond,
    298                                 DebugLoc DL) const {
    299     assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
    300     return 0;
    301   }
    302 
    303   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    304   /// after it, replacing it with an unconditional branch to NewDest. This is
    305   /// used by the tail merging pass.
    306   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    307                                        MachineBasicBlock *NewDest) const = 0;
    308 
    309   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
    310   /// block at the specified instruction (i.e. instruction would be the start
    311   /// of a new basic block).
    312   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    313                                    MachineBasicBlock::iterator MBBI) const {
    314     return true;
    315   }
    316 
    317   /// isProfitableToIfCvt - Return true if it's profitable to predicate
    318   /// instructions with accumulated instruction latency of "NumCycles"
    319   /// of the specified basic block, where the probability of the instructions
    320   /// being executed is given by Probability, and Confidence is a measure
    321   /// of our confidence that it will be properly predicted.
    322   virtual
    323   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
    324                            unsigned ExtraPredCycles,
    325                            const BranchProbability &Probability) const {
    326     return false;
    327   }
    328 
    329   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
    330   /// checks for the case where two basic blocks from true and false path
    331   /// of a if-then-else (diamond) are predicated on mutally exclusive
    332   /// predicates, where the probability of the true path being taken is given
    333   /// by Probability, and Confidence is a measure of our confidence that it
    334   /// will be properly predicted.
    335   virtual bool
    336   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    337                       unsigned NumTCycles, unsigned ExtraTCycles,
    338                       MachineBasicBlock &FMBB,
    339                       unsigned NumFCycles, unsigned ExtraFCycles,
    340                       const BranchProbability &Probability) const {
    341     return false;
    342   }
    343 
    344   /// isProfitableToDupForIfCvt - Return true if it's profitable for
    345   /// if-converter to duplicate instructions of specified accumulated
    346   /// instruction latencies in the specified MBB to enable if-conversion.
    347   /// The probability of the instructions being executed is given by
    348   /// Probability, and Confidence is a measure of our confidence that it
    349   /// will be properly predicted.
    350   virtual bool
    351   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
    352                             const BranchProbability &Probability) const {
    353     return false;
    354   }
    355 
    356   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
    357   virtual void copyPhysReg(MachineBasicBlock &MBB,
    358                            MachineBasicBlock::iterator MI, DebugLoc DL,
    359                            unsigned DestReg, unsigned SrcReg,
    360                            bool KillSrc) const {
    361     assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
    362   }
    363 
    364   /// storeRegToStackSlot - Store the specified register of the given register
    365   /// class to the specified stack frame index. The store instruction is to be
    366   /// added to the given machine basic block before the specified machine
    367   /// instruction. If isKill is true, the register operand is the last use and
    368   /// must be marked kill.
    369   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    370                                    MachineBasicBlock::iterator MI,
    371                                    unsigned SrcReg, bool isKill, int FrameIndex,
    372                                    const TargetRegisterClass *RC,
    373                                    const TargetRegisterInfo *TRI) const {
    374   assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
    375   }
    376 
    377   /// loadRegFromStackSlot - Load the specified register of the given register
    378   /// class from the specified stack frame index. The load instruction is to be
    379   /// added to the given machine basic block before the specified machine
    380   /// instruction.
    381   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    382                                     MachineBasicBlock::iterator MI,
    383                                     unsigned DestReg, int FrameIndex,
    384                                     const TargetRegisterClass *RC,
    385                                     const TargetRegisterInfo *TRI) const {
    386   assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
    387   }
    388 
    389   /// expandPostRAPseudo - This function is called for all pseudo instructions
    390   /// that remain after register allocation. Many pseudo instructions are
    391   /// created to help register allocation. This is the place to convert them
    392   /// into real instructions. The target can edit MI in place, or it can insert
    393   /// new instructions and erase MI. The function should return true if
    394   /// anything was changed.
    395   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    396     return false;
    397   }
    398 
    399   /// emitFrameIndexDebugValue - Emit a target-dependent form of
    400   /// DBG_VALUE encoding the address of a frame index.  Addresses would
    401   /// normally be lowered the same way as other addresses on the target,
    402   /// e.g. in load instructions.  For targets that do not support this
    403   /// the debug info is simply lost.
    404   /// If you add this for a target you should handle this DBG_VALUE in the
    405   /// target-specific AsmPrinter code as well; you will probably get invalid
    406   /// assembly output if you don't.
    407   virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
    408                                                  int FrameIx,
    409                                                  uint64_t Offset,
    410                                                  const MDNode *MDPtr,
    411                                                  DebugLoc dl) const {
    412     return 0;
    413   }
    414 
    415   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    416   /// slot into the specified machine instruction for the specified operand(s).
    417   /// If this is possible, a new instruction is returned with the specified
    418   /// operand folded, otherwise NULL is returned.
    419   /// The new instruction is inserted before MI, and the client is responsible
    420   /// for removing the old instruction.
    421   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    422                                   const SmallVectorImpl<unsigned> &Ops,
    423                                   int FrameIndex) const;
    424 
    425   /// foldMemoryOperand - Same as the previous version except it allows folding
    426   /// of any load and store from / to any address, not just from a specific
    427   /// stack slot.
    428   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    429                                   const SmallVectorImpl<unsigned> &Ops,
    430                                   MachineInstr* LoadMI) const;
    431 
    432 protected:
    433   /// foldMemoryOperandImpl - Target-dependent implementation for
    434   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    435   /// take care of adding a MachineMemOperand to the newly created instruction.
    436   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    437                                           MachineInstr* MI,
    438                                           const SmallVectorImpl<unsigned> &Ops,
    439                                           int FrameIndex) const {
    440     return 0;
    441   }
    442 
    443   /// foldMemoryOperandImpl - Target-dependent implementation for
    444   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    445   /// take care of adding a MachineMemOperand to the newly created instruction.
    446   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    447                                               MachineInstr* MI,
    448                                           const SmallVectorImpl<unsigned> &Ops,
    449                                               MachineInstr* LoadMI) const {
    450     return 0;
    451   }
    452 
    453 public:
    454   /// canFoldMemoryOperand - Returns true for the specified load / store if
    455   /// folding is possible.
    456   virtual
    457   bool canFoldMemoryOperand(const MachineInstr *MI,
    458                             const SmallVectorImpl<unsigned> &Ops) const =0;
    459 
    460   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    461   /// a store or a load and a store into two or more instruction. If this is
    462   /// possible, returns true as well as the new instructions by reference.
    463   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    464                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    465                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    466     return false;
    467   }
    468 
    469   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    470                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    471     return false;
    472   }
    473 
    474   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    475   /// instruction after load / store are unfolded from an instruction of the
    476   /// specified opcode. It returns zero if the specified unfolding is not
    477   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    478   /// index of the operand which will hold the register holding the loaded
    479   /// value.
    480   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    481                                       bool UnfoldLoad, bool UnfoldStore,
    482                                       unsigned *LoadRegIndex = 0) const {
    483     return 0;
    484   }
    485 
    486   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    487   /// to determine if two loads are loading from the same base address. It
    488   /// should only return true if the base pointers are the same and the
    489   /// only differences between the two addresses are the offset. It also returns
    490   /// the offsets by reference.
    491   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    492                                     int64_t &Offset1, int64_t &Offset2) const {
    493     return false;
    494   }
    495 
    496   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    497   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    498   /// be scheduled togther. On some targets if two loads are loading from
    499   /// addresses in the same cache line, it's better if they are scheduled
    500   /// together. This function takes two integers that represent the load offsets
    501   /// from the common base address. It returns true if it decides it's desirable
    502   /// to schedule the two loads together. "NumLoads" is the number of loads that
    503   /// have already been scheduled after Load1.
    504   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    505                                        int64_t Offset1, int64_t Offset2,
    506                                        unsigned NumLoads) const {
    507     return false;
    508   }
    509 
    510   /// ReverseBranchCondition - Reverses the branch condition of the specified
    511   /// condition list, returning false on success and true if it cannot be
    512   /// reversed.
    513   virtual
    514   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    515     return true;
    516   }
    517 
    518   /// insertNoop - Insert a noop into the instruction stream at the specified
    519   /// point.
    520   virtual void insertNoop(MachineBasicBlock &MBB,
    521                           MachineBasicBlock::iterator MI) const;
    522 
    523 
    524   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    525   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
    526     // Default to just using 'nop' string.
    527   }
    528 
    529 
    530   /// isPredicated - Returns true if the instruction is already predicated.
    531   ///
    532   virtual bool isPredicated(const MachineInstr *MI) const {
    533     return false;
    534   }
    535 
    536   /// isUnpredicatedTerminator - Returns true if the instruction is a
    537   /// terminator instruction that has not been predicated.
    538   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
    539 
    540   /// PredicateInstruction - Convert the instruction into a predicated
    541   /// instruction. It returns true if the operation was successful.
    542   virtual
    543   bool PredicateInstruction(MachineInstr *MI,
    544                         const SmallVectorImpl<MachineOperand> &Pred) const = 0;
    545 
    546   /// SubsumesPredicate - Returns true if the first specified predicate
    547   /// subsumes the second, e.g. GE subsumes GT.
    548   virtual
    549   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    550                          const SmallVectorImpl<MachineOperand> &Pred2) const {
    551     return false;
    552   }
    553 
    554   /// DefinesPredicate - If the specified instruction defines any predicate
    555   /// or condition code register(s) used for predication, returns true as well
    556   /// as the definition predicate(s) by reference.
    557   virtual bool DefinesPredicate(MachineInstr *MI,
    558                                 std::vector<MachineOperand> &Pred) const {
    559     return false;
    560   }
    561 
    562   /// isPredicable - Return true if the specified instruction can be predicated.
    563   /// By default, this returns true for every instruction with a
    564   /// PredicateOperand.
    565   virtual bool isPredicable(MachineInstr *MI) const {
    566     return MI->getDesc().isPredicable();
    567   }
    568 
    569   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    570   /// instruction that defines the specified register class.
    571   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    572     return true;
    573   }
    574 
    575   /// isSchedulingBoundary - Test if the given instruction should be
    576   /// considered a scheduling boundary. This primarily includes labels and
    577   /// terminators.
    578   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    579                                     const MachineBasicBlock *MBB,
    580                                     const MachineFunction &MF) const = 0;
    581 
    582   /// Measure the specified inline asm to determine an approximation of its
    583   /// length.
    584   virtual unsigned getInlineAsmLength(const char *Str,
    585                                       const MCAsmInfo &MAI) const;
    586 
    587   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
    588   /// use for this target when scheduling the machine instructions before
    589   /// register allocation.
    590   virtual ScheduleHazardRecognizer*
    591   CreateTargetHazardRecognizer(const TargetMachine *TM,
    592                                const ScheduleDAG *DAG) const = 0;
    593 
    594   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
    595   /// recognizer to use for this target when scheduling the machine instructions
    596   /// after register allocation.
    597   virtual ScheduleHazardRecognizer*
    598   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    599                                      const ScheduleDAG *DAG) const = 0;
    600 
    601   /// AnalyzeCompare - For a comparison instruction, return the source register
    602   /// in SrcReg and the value it compares against in CmpValue. Return true if
    603   /// the comparison instruction can be analyzed.
    604   virtual bool AnalyzeCompare(const MachineInstr *MI,
    605                               unsigned &SrcReg, int &Mask, int &Value) const {
    606     return false;
    607   }
    608 
    609   /// OptimizeCompareInstr - See if the comparison instruction can be converted
    610   /// into something more efficient. E.g., on ARM most instructions can set the
    611   /// flags register, obviating the need for a separate CMP.
    612   virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
    613                                     unsigned SrcReg, int Mask, int Value,
    614                                     const MachineRegisterInfo *MRI) const {
    615     return false;
    616   }
    617 
    618   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
    619   /// instruction, try to fold the immediate into the use instruction.
    620   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    621                              unsigned Reg, MachineRegisterInfo *MRI) const {
    622     return false;
    623   }
    624 
    625   /// getNumMicroOps - Return the number of u-operations the given machine
    626   /// instruction will be decoded to on the target cpu.
    627   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
    628                                   const MachineInstr *MI) const;
    629 
    630   /// isZeroCost - Return true for pseudo instructions that don't consume any
    631   /// machine resources in their current form. These are common cases that the
    632   /// scheduler should consider free, rather than conservatively handling them
    633   /// as instructions with no itinerary.
    634   bool isZeroCost(unsigned Opcode) const {
    635     return Opcode <= TargetOpcode::COPY;
    636   }
    637 
    638   /// getOperandLatency - Compute and return the use operand latency of a given
    639   /// pair of def and use.
    640   /// In most cases, the static scheduling itinerary was enough to determine the
    641   /// operand latency. But it may not be possible for instructions with variable
    642   /// number of defs / uses.
    643   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    644                               const MachineInstr *DefMI, unsigned DefIdx,
    645                               const MachineInstr *UseMI, unsigned UseIdx) const;
    646 
    647   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    648                                 SDNode *DefNode, unsigned DefIdx,
    649                                 SDNode *UseNode, unsigned UseIdx) const;
    650 
    651   /// getInstrLatency - Compute the instruction latency of a given instruction.
    652   /// If the instruction has higher cost when predicated, it's returned via
    653   /// PredCost.
    654   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    655                               const MachineInstr *MI,
    656                               unsigned *PredCost = 0) const;
    657 
    658   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    659                               SDNode *Node) const;
    660 
    661   /// isHighLatencyDef - Return true if this opcode has high latency to its
    662   /// result.
    663   virtual bool isHighLatencyDef(int opc) const { return false; }
    664 
    665   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
    666   /// and an use in the current loop, return true if the target considered
    667   /// it 'high'. This is used by optimization passes such as machine LICM to
    668   /// determine whether it makes sense to hoist an instruction out even in
    669   /// high register pressure situation.
    670   virtual
    671   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    672                              const MachineRegisterInfo *MRI,
    673                              const MachineInstr *DefMI, unsigned DefIdx,
    674                              const MachineInstr *UseMI, unsigned UseIdx) const {
    675     return false;
    676   }
    677 
    678   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
    679   /// if the target considered it 'low'.
    680   virtual
    681   bool hasLowDefLatency(const InstrItineraryData *ItinData,
    682                         const MachineInstr *DefMI, unsigned DefIdx) const;
    683 
    684   /// verifyInstruction - Perform target specific instruction verification.
    685   virtual
    686   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    687     return true;
    688   }
    689 
    690   /// getExecutionDomain - Return the current execution domain and bit mask of
    691   /// possible domains for instruction.
    692   ///
    693   /// Some micro-architectures have multiple execution domains, and multiple
    694   /// opcodes that perform the same operation in different domains.  For
    695   /// example, the x86 architecture provides the por, orps, and orpd
    696   /// instructions that all do the same thing.  There is a latency penalty if a
    697   /// register is written in one domain and read in another.
    698   ///
    699   /// This function returns a pair (domain, mask) containing the execution
    700   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
    701   /// function can be used to change the opcode to one of the domains in the
    702   /// bit mask.  Instructions whose execution domain can't be changed should
    703   /// return a 0 mask.
    704   ///
    705   /// The execution domain numbers don't have any special meaning except domain
    706   /// 0 is used for instructions that are not associated with any interesting
    707   /// execution domain.
    708   ///
    709   virtual std::pair<uint16_t, uint16_t>
    710   getExecutionDomain(const MachineInstr *MI) const {
    711     return std::make_pair(0, 0);
    712   }
    713 
    714   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
    715   ///
    716   /// The bit (1 << Domain) must be set in the mask returned from
    717   /// getExecutionDomain(MI).
    718   ///
    719   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
    720 
    721 private:
    722   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
    723 };
    724 
    725 /// TargetInstrInfoImpl - This is the default implementation of
    726 /// TargetInstrInfo, which just provides a couple of default implementations
    727 /// for various methods.  This separated out because it is implemented in
    728 /// libcodegen, not in libtarget.
    729 class TargetInstrInfoImpl : public TargetInstrInfo {
    730 protected:
    731   TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
    732                       int CallFrameDestroyOpcode = -1)
    733     : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
    734 public:
    735   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
    736                                        MachineBasicBlock *NewDest) const;
    737   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    738                                            bool NewMI = false) const;
    739   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    740                                      unsigned &SrcOpIdx2) const;
    741   virtual bool canFoldMemoryOperand(const MachineInstr *MI,
    742                                     const SmallVectorImpl<unsigned> &Ops) const;
    743   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    744                                     const MachineMemOperand *&MMO,
    745                                     int &FrameIndex) const;
    746   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    747                                    const MachineMemOperand *&MMO,
    748                                    int &FrameIndex) const;
    749   virtual bool PredicateInstruction(MachineInstr *MI,
    750                             const SmallVectorImpl<MachineOperand> &Pred) const;
    751   virtual void reMaterialize(MachineBasicBlock &MBB,
    752                              MachineBasicBlock::iterator MI,
    753                              unsigned DestReg, unsigned SubReg,
    754                              const MachineInstr *Orig,
    755                              const TargetRegisterInfo &TRI) const;
    756   virtual MachineInstr *duplicate(MachineInstr *Orig,
    757                                   MachineFunction &MF) const;
    758   virtual bool produceSameValue(const MachineInstr *MI0,
    759                                 const MachineInstr *MI1,
    760                                 const MachineRegisterInfo *MRI) const;
    761   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    762                                     const MachineBasicBlock *MBB,
    763                                     const MachineFunction &MF) const;
    764 
    765   bool usePreRAHazardRecognizer() const;
    766 
    767   virtual ScheduleHazardRecognizer *
    768   CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
    769 
    770   virtual ScheduleHazardRecognizer *
    771   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    772                                      const ScheduleDAG*) const;
    773 };
    774 
    775 } // End llvm namespace
    776 
    777 #endif
    778