Home | History | Annotate | Download | only in mach-tegra
      1 // SPDX-License-Identifier: GPL-2.0
      2 /*
      3  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
      4  */
      5 
      6 /* Tegra SoC common clock control functions */
      7 
      8 #include <common.h>
      9 #include <div64.h>
     10 #include <dm.h>
     11 #include <errno.h>
     12 #include <asm/io.h>
     13 #include <asm/arch/clock.h>
     14 #include <asm/arch/tegra.h>
     15 #include <asm/arch-tegra/ap.h>
     16 #include <asm/arch-tegra/clk_rst.h>
     17 #include <asm/arch-tegra/pmc.h>
     18 #include <asm/arch-tegra/timer.h>
     19 
     20 /*
     21  * This is our record of the current clock rate of each clock. We don't
     22  * fill all of these in since we are only really interested in clocks which
     23  * we use as parents.
     24  */
     25 static unsigned pll_rate[CLOCK_ID_COUNT];
     26 
     27 /*
     28  * The oscillator frequency is fixed to one of four set values. Based on this
     29  * the other clocks are set up appropriately.
     30  */
     31 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
     32 	13000000,
     33 	19200000,
     34 	12000000,
     35 	26000000,
     36 	38400000,
     37 	48000000,
     38 };
     39 
     40 /* return 1 if a peripheral ID is in range */
     41 #define clock_type_id_isvalid(id) ((id) >= 0 && \
     42 		(id) < CLOCK_TYPE_COUNT)
     43 
     44 char pllp_valid = 1;	/* PLLP is set up correctly */
     45 
     46 /* return 1 if a periphc_internal_id is in range */
     47 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
     48 		(id) < PERIPHC_COUNT)
     49 
     50 /* number of clock outputs of a PLL */
     51 static const u8 pll_num_clkouts[] = {
     52 	1,	/* PLLC */
     53 	1,	/* PLLM */
     54 	4,	/* PLLP */
     55 	1,	/* PLLA */
     56 	0,	/* PLLU */
     57 	0,	/* PLLD */
     58 };
     59 
     60 int clock_get_osc_bypass(void)
     61 {
     62 	struct clk_rst_ctlr *clkrst =
     63 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
     64 	u32 reg;
     65 
     66 	reg = readl(&clkrst->crc_osc_ctrl);
     67 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
     68 }
     69 
     70 /* Returns a pointer to the registers of the given pll */
     71 static struct clk_pll *get_pll(enum clock_id clkid)
     72 {
     73 	struct clk_rst_ctlr *clkrst =
     74 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
     75 
     76 	assert(clock_id_is_pll(clkid));
     77 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
     78 		debug("%s: Invalid PLL %d\n", __func__, clkid);
     79 		return NULL;
     80 	}
     81 	return &clkrst->crc_pll[clkid];
     82 }
     83 
     84 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
     85 {
     86 	return NULL;
     87 }
     88 
     89 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
     90 		u32 *divp, u32 *cpcon, u32 *lfcon)
     91 {
     92 	struct clk_pll *pll = get_pll(clkid);
     93 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
     94 	u32 data;
     95 
     96 	assert(clkid != CLOCK_ID_USB);
     97 
     98 	/* Safety check, adds to code size but is small */
     99 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
    100 		return -1;
    101 	data = readl(&pll->pll_base);
    102 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
    103 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
    104 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
    105 	data = readl(&pll->pll_misc);
    106 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
    107 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
    108 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
    109 
    110 	return 0;
    111 }
    112 
    113 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
    114 		u32 divp, u32 cpcon, u32 lfcon)
    115 {
    116 	struct clk_pll *pll = NULL;
    117 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
    118 	struct clk_pll_simple *simple_pll = NULL;
    119 	u32 misc_data, data;
    120 
    121 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
    122 		pll = get_pll(clkid);
    123 	} else {
    124 		simple_pll = clock_get_simple_pll(clkid);
    125 		if (!simple_pll) {
    126 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
    127 			return 0;
    128 		}
    129 	}
    130 
    131 	/*
    132 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
    133 	 * values for all of the PLLs used in U-Boot, with any
    134 	 * SoC differences accounted for.
    135 	 *
    136 	 * Preserve EN_LOCKDET, etc.
    137 	 */
    138 	if (pll)
    139 		misc_data = readl(&pll->pll_misc);
    140 	else
    141 		misc_data = readl(&simple_pll->pll_misc);
    142 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
    143 	misc_data |= cpcon << pllinfo->kcp_shift;
    144 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
    145 	misc_data |= lfcon << pllinfo->kvco_shift;
    146 
    147 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
    148 	data |= divp << pllinfo->p_shift;
    149 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
    150 
    151 	if (pll) {
    152 		writel(misc_data, &pll->pll_misc);
    153 		writel(data, &pll->pll_base);
    154 	} else {
    155 		writel(misc_data, &simple_pll->pll_misc);
    156 		writel(data, &simple_pll->pll_base);
    157 	}
    158 
    159 	/* calculate the stable time */
    160 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
    161 }
    162 
    163 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
    164 			unsigned divisor)
    165 {
    166 	u32 *reg = get_periph_source_reg(periph_id);
    167 	u32 value;
    168 
    169 	value = readl(reg);
    170 
    171 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
    172 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
    173 
    174 	value &= ~OUT_CLK_DIVISOR_MASK;
    175 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
    176 
    177 	writel(value, reg);
    178 }
    179 
    180 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
    181 			     unsigned source)
    182 {
    183 	u32 *reg = get_periph_source_reg(periph_id);
    184 
    185 	switch (mux_bits) {
    186 	case MASK_BITS_31_30:
    187 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
    188 				source << OUT_CLK_SOURCE_31_30_SHIFT);
    189 		break;
    190 
    191 	case MASK_BITS_31_29:
    192 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
    193 				source << OUT_CLK_SOURCE_31_29_SHIFT);
    194 		break;
    195 
    196 	case MASK_BITS_31_28:
    197 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
    198 				source << OUT_CLK_SOURCE_31_28_SHIFT);
    199 		break;
    200 
    201 	default:
    202 		return -1;
    203 	}
    204 
    205 	return 0;
    206 }
    207 
    208 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
    209 {
    210 	u32 *reg = get_periph_source_reg(periph_id);
    211 	u32 val = readl(reg);
    212 
    213 	switch (mux_bits) {
    214 	case MASK_BITS_31_30:
    215 		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
    216 		val &= OUT_CLK_SOURCE_31_30_MASK;
    217 		return val;
    218 	case MASK_BITS_31_29:
    219 		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
    220 		val &= OUT_CLK_SOURCE_31_29_MASK;
    221 		return val;
    222 	case MASK_BITS_31_28:
    223 		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
    224 		val &= OUT_CLK_SOURCE_31_28_MASK;
    225 		return val;
    226 	default:
    227 		return -1;
    228 	}
    229 }
    230 
    231 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
    232 {
    233 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
    234 }
    235 
    236 /**
    237  * Given the parent's rate and the required rate for the children, this works
    238  * out the peripheral clock divider to use, in 7.1 binary format.
    239  *
    240  * @param divider_bits	number of divider bits (8 or 16)
    241  * @param parent_rate	clock rate of parent clock in Hz
    242  * @param rate		required clock rate for this clock
    243  * @return divider which should be used
    244  */
    245 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
    246 			   unsigned long rate)
    247 {
    248 	u64 divider = parent_rate * 2;
    249 	unsigned max_divider = 1 << divider_bits;
    250 
    251 	divider += rate - 1;
    252 	do_div(divider, rate);
    253 
    254 	if ((s64)divider - 2 < 0)
    255 		return 0;
    256 
    257 	if ((s64)divider - 2 >= max_divider)
    258 		return -1;
    259 
    260 	return divider - 2;
    261 }
    262 
    263 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
    264 {
    265 	struct clk_pll *pll = get_pll(clkid);
    266 	int data = 0, div = 0, offset = 0;
    267 
    268 	if (!clock_id_is_pll(clkid))
    269 		return -1;
    270 
    271 	if (pllout + 1 > pll_num_clkouts[clkid])
    272 		return -1;
    273 
    274 	div = clk_get_divider(8, pll_rate[clkid], rate);
    275 
    276 	if (div < 0)
    277 		return -1;
    278 
    279 	/* out2 and out4 are in the high part of the register */
    280 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
    281 		offset = 16;
    282 
    283 	data = (div << PLL_OUT_RATIO_SHIFT) |
    284 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
    285 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
    286 			PLL_OUT_RATIO_MASK << offset, data << offset);
    287 
    288 	return 0;
    289 }
    290 
    291 /**
    292  * Given the parent's rate and the divider in 7.1 format, this works out the
    293  * resulting peripheral clock rate.
    294  *
    295  * @param parent_rate	clock rate of parent clock in Hz
    296  * @param divider which should be used in 7.1 format
    297  * @return effective clock rate of peripheral
    298  */
    299 static unsigned long get_rate_from_divider(unsigned long parent_rate,
    300 					   int divider)
    301 {
    302 	u64 rate;
    303 
    304 	rate = (u64)parent_rate * 2;
    305 	do_div(rate, divider + 2);
    306 	return rate;
    307 }
    308 
    309 unsigned long clock_get_periph_rate(enum periph_id periph_id,
    310 		enum clock_id parent)
    311 {
    312 	u32 *reg = get_periph_source_reg(periph_id);
    313 	unsigned parent_rate = pll_rate[parent];
    314 	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
    315 
    316 	switch (periph_id) {
    317 	case PERIPH_ID_UART1:
    318 	case PERIPH_ID_UART2:
    319 	case PERIPH_ID_UART3:
    320 	case PERIPH_ID_UART4:
    321 	case PERIPH_ID_UART5:
    322 #ifdef CONFIG_TEGRA20
    323 		/* There's no divider for these clocks in this SoC. */
    324 		return parent_rate;
    325 #else
    326 		/*
    327 		 * This undoes the +2 in get_rate_from_divider() which I
    328 		 * believe is incorrect. Ideally we would fix
    329 		 * get_rate_from_divider(), but... Removing the +2 from
    330 		 * get_rate_from_divider() would probably require remove the -2
    331 		 * from the tail of clk_get_divider() since I believe that's
    332 		 * only there to invert get_rate_from_divider()'s +2. Observe
    333 		 * how find_best_divider() uses those two functions together.
    334 		 * However, doing so breaks other stuff, such as Seaboard's
    335 		 * display, likely due to clock_set_pllout()'s call to
    336 		 * clk_get_divider(). Attempting to fix that by making
    337 		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
    338 		 * return value doesn't help. In summary this clock driver is
    339 		 * quite broken but I'm afraid I have no idea how to fix it
    340 		 * without completely replacing it.
    341 		 *
    342 		 * Be careful to avoid a divide by zero error.
    343 		 */
    344 		if (div >= 1)
    345 			div -= 2;
    346 		break;
    347 #endif
    348 	default:
    349 		break;
    350 	}
    351 
    352 	return get_rate_from_divider(parent_rate, div);
    353 }
    354 
    355 /**
    356  * Find the best available 7.1 format divisor given a parent clock rate and
    357  * required child clock rate. This function assumes that a second-stage
    358  * divisor is available which can divide by powers of 2 from 1 to 256.
    359  *
    360  * @param divider_bits	number of divider bits (8 or 16)
    361  * @param parent_rate	clock rate of parent clock in Hz
    362  * @param rate		required clock rate for this clock
    363  * @param extra_div	value for the second-stage divisor (not set if this
    364  *			function returns -1.
    365  * @return divider which should be used, or -1 if nothing is valid
    366  *
    367  */
    368 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
    369 				unsigned long rate, int *extra_div)
    370 {
    371 	int shift;
    372 	int best_divider = -1;
    373 	int best_error = rate;
    374 
    375 	/* try dividers from 1 to 256 and find closest match */
    376 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
    377 		unsigned divided_parent = parent_rate >> shift;
    378 		int divider = clk_get_divider(divider_bits, divided_parent,
    379 						rate);
    380 		unsigned effective_rate = get_rate_from_divider(divided_parent,
    381 						divider);
    382 		int error = rate - effective_rate;
    383 
    384 		/* Given a valid divider, look for the lowest error */
    385 		if (divider != -1 && error < best_error) {
    386 			best_error = error;
    387 			*extra_div = 1 << shift;
    388 			best_divider = divider;
    389 		}
    390 	}
    391 
    392 	/* return what we found - *extra_div will already be set */
    393 	return best_divider;
    394 }
    395 
    396 /**
    397  * Adjust peripheral PLL to use the given divider and source.
    398  *
    399  * @param periph_id	peripheral to adjust
    400  * @param source	Source number (0-3 or 0-7)
    401  * @param mux_bits	Number of mux bits (2 or 4)
    402  * @param divider	Required divider in 7.1 or 15.1 format
    403  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
    404  *		for this peripheral)
    405  */
    406 static int adjust_periph_pll(enum periph_id periph_id, int source,
    407 				int mux_bits, unsigned divider)
    408 {
    409 	u32 *reg = get_periph_source_reg(periph_id);
    410 
    411 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
    412 			divider << OUT_CLK_DIVISOR_SHIFT);
    413 	udelay(1);
    414 
    415 	/* work out the source clock and set it */
    416 	if (source < 0)
    417 		return -1;
    418 
    419 	clock_ll_set_source_bits(periph_id, mux_bits, source);
    420 
    421 	udelay(2);
    422 	return 0;
    423 }
    424 
    425 enum clock_id clock_get_periph_parent(enum periph_id periph_id)
    426 {
    427 	int err, mux_bits, divider_bits, type;
    428 	int source;
    429 
    430 	err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
    431 	if (err)
    432 		return CLOCK_ID_NONE;
    433 
    434 	source = clock_ll_get_source_bits(periph_id, mux_bits);
    435 
    436 	return get_periph_clock_id(periph_id, source);
    437 }
    438 
    439 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
    440 		enum clock_id parent, unsigned rate, int *extra_div)
    441 {
    442 	unsigned effective_rate;
    443 	int mux_bits, divider_bits, source;
    444 	int divider;
    445 	int xdiv = 0;
    446 
    447 	/* work out the source clock and set it */
    448 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
    449 					 &divider_bits);
    450 
    451 	divider = find_best_divider(divider_bits, pll_rate[parent],
    452 				    rate, &xdiv);
    453 	if (extra_div)
    454 		*extra_div = xdiv;
    455 
    456 	assert(divider >= 0);
    457 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
    458 		return -1U;
    459 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
    460 		get_periph_source_reg(periph_id),
    461 		readl(get_periph_source_reg(periph_id)));
    462 
    463 	/* Check what we ended up with. This shouldn't matter though */
    464 	effective_rate = clock_get_periph_rate(periph_id, parent);
    465 	if (extra_div)
    466 		effective_rate /= *extra_div;
    467 	if (rate != effective_rate)
    468 		debug("Requested clock rate %u not honored (got %u)\n",
    469 			rate, effective_rate);
    470 	return effective_rate;
    471 }
    472 
    473 unsigned clock_start_periph_pll(enum periph_id periph_id,
    474 		enum clock_id parent, unsigned rate)
    475 {
    476 	unsigned effective_rate;
    477 
    478 	reset_set_enable(periph_id, 1);
    479 	clock_enable(periph_id);
    480 
    481 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
    482 						 NULL);
    483 
    484 	reset_set_enable(periph_id, 0);
    485 	return effective_rate;
    486 }
    487 
    488 void clock_enable(enum periph_id clkid)
    489 {
    490 	clock_set_enable(clkid, 1);
    491 }
    492 
    493 void clock_disable(enum periph_id clkid)
    494 {
    495 	clock_set_enable(clkid, 0);
    496 }
    497 
    498 void reset_periph(enum periph_id periph_id, int us_delay)
    499 {
    500 	/* Put peripheral into reset */
    501 	reset_set_enable(periph_id, 1);
    502 	udelay(us_delay);
    503 
    504 	/* Remove reset */
    505 	reset_set_enable(periph_id, 0);
    506 
    507 	udelay(us_delay);
    508 }
    509 
    510 void reset_cmplx_set_enable(int cpu, int which, int reset)
    511 {
    512 	struct clk_rst_ctlr *clkrst =
    513 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
    514 	u32 mask;
    515 
    516 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
    517 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
    518 	mask = which << cpu;
    519 
    520 	/* either enable or disable those reset for that CPU */
    521 	if (reset)
    522 		writel(mask, &clkrst->crc_cpu_cmplx_set);
    523 	else
    524 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
    525 }
    526 
    527 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
    528 {
    529 	return parent_rate;
    530 }
    531 
    532 unsigned clock_get_rate(enum clock_id clkid)
    533 {
    534 	struct clk_pll *pll;
    535 	u32 base, divm;
    536 	u64 parent_rate, rate;
    537 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
    538 
    539 	parent_rate = osc_freq[clock_get_osc_freq()];
    540 	if (clkid == CLOCK_ID_OSC)
    541 		return parent_rate;
    542 
    543 	if (clkid == CLOCK_ID_CLK_M)
    544 		return clk_m_get_rate(parent_rate);
    545 
    546 	pll = get_pll(clkid);
    547 	if (!pll)
    548 		return 0;
    549 	base = readl(&pll->pll_base);
    550 
    551 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
    552 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
    553 	/*
    554 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
    555 	 * T210 uses normal DIVP. Handled in pllinfo table.
    556 	 */
    557 #ifdef CONFIG_TEGRA210
    558 	/*
    559 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
    560 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
    561 	 * are divided down from pllP_out0. We only support pllP_out0 in
    562 	 * U-Boot at the time of writing this comment.
    563 	 */
    564 	if (clkid != CLOCK_ID_PERIPH)
    565 #endif
    566 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
    567 	do_div(rate, divm);
    568 	return rate;
    569 }
    570 
    571 /**
    572  * Set the output frequency you want for each PLL clock.
    573  * PLL output frequencies are programmed by setting their N, M and P values.
    574  * The governing equations are:
    575  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
    576  *     where Fo is the output frequency from the PLL.
    577  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
    578  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
    579  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
    580  *
    581  * @param n PLL feedback divider(DIVN)
    582  * @param m PLL input divider(DIVN)
    583  * @param p post divider(DIVP)
    584  * @param cpcon base PLL charge pump(CPCON)
    585  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
    586  *		be overridden), 1 if PLL is already correct
    587  */
    588 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
    589 {
    590 	u32 base_reg, misc_reg;
    591 	struct clk_pll *pll;
    592 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
    593 
    594 	pll = get_pll(clkid);
    595 
    596 	base_reg = readl(&pll->pll_base);
    597 
    598 	/* Set BYPASS, m, n and p to PLL_BASE */
    599 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
    600 	base_reg |= m << pllinfo->m_shift;
    601 
    602 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
    603 	base_reg |= n << pllinfo->n_shift;
    604 
    605 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
    606 	base_reg |= p << pllinfo->p_shift;
    607 
    608 	if (clkid == CLOCK_ID_PERIPH) {
    609 		/*
    610 		 * If the PLL is already set up, check that it is correct
    611 		 * and record this info for clock_verify() to check.
    612 		 */
    613 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
    614 			base_reg |= PLL_ENABLE_MASK;
    615 			if (base_reg != readl(&pll->pll_base))
    616 				pllp_valid = 0;
    617 			return pllp_valid ? 1 : -1;
    618 		}
    619 		base_reg |= PLL_BASE_OVRRIDE_MASK;
    620 	}
    621 
    622 	base_reg |= PLL_BYPASS_MASK;
    623 	writel(base_reg, &pll->pll_base);
    624 
    625 	/* Set cpcon (KCP) to PLL_MISC */
    626 	misc_reg = readl(&pll->pll_misc);
    627 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
    628 	misc_reg |= cpcon << pllinfo->kcp_shift;
    629 	writel(misc_reg, &pll->pll_misc);
    630 
    631 	/* Enable PLL */
    632 	base_reg |= PLL_ENABLE_MASK;
    633 	writel(base_reg, &pll->pll_base);
    634 
    635 	/* Disable BYPASS */
    636 	base_reg &= ~PLL_BYPASS_MASK;
    637 	writel(base_reg, &pll->pll_base);
    638 
    639 	return 0;
    640 }
    641 
    642 void clock_ll_start_uart(enum periph_id periph_id)
    643 {
    644 	/* Assert UART reset and enable clock */
    645 	reset_set_enable(periph_id, 1);
    646 	clock_enable(periph_id);
    647 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
    648 
    649 	/* wait for 2us */
    650 	udelay(2);
    651 
    652 	/* De-assert reset to UART */
    653 	reset_set_enable(periph_id, 0);
    654 }
    655 
    656 #if CONFIG_IS_ENABLED(OF_CONTROL)
    657 int clock_decode_periph_id(struct udevice *dev)
    658 {
    659 	enum periph_id id;
    660 	u32 cell[2];
    661 	int err;
    662 
    663 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
    664 	if (err)
    665 		return -1;
    666 	id = clk_id_to_periph_id(cell[1]);
    667 	assert(clock_periph_id_isvalid(id));
    668 	return id;
    669 }
    670 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
    671 
    672 int clock_verify(void)
    673 {
    674 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
    675 	u32 reg = readl(&pll->pll_base);
    676 
    677 	if (!pllp_valid) {
    678 		printf("Warning: PLLP %x is not correct\n", reg);
    679 		return -1;
    680 	}
    681 	debug("PLLP %x is correct\n", reg);
    682 	return 0;
    683 }
    684 
    685 void clock_init(void)
    686 {
    687 	int i;
    688 
    689 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
    690 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
    691 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
    692 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
    693 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
    694 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
    695 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
    696 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
    697 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
    698 
    699 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
    700 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
    701 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
    702 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
    703 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
    704 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
    705 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
    706 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
    707 
    708 	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
    709 		enum periph_id periph_id;
    710 		enum clock_id parent;
    711 		int source, mux_bits, divider_bits;
    712 
    713 		periph_id = periph_clk_init_table[i].periph_id;
    714 		parent = periph_clk_init_table[i].parent_clock_id;
    715 
    716 		source = get_periph_clock_source(periph_id, parent, &mux_bits,
    717 						 &divider_bits);
    718 		clock_ll_set_source_bits(periph_id, mux_bits, source);
    719 	}
    720 }
    721 
    722 static void set_avp_clock_source(u32 src)
    723 {
    724 	struct clk_rst_ctlr *clkrst =
    725 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
    726 	u32 val;
    727 
    728 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
    729 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
    730 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
    731 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
    732 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
    733 	writel(val, &clkrst->crc_sclk_brst_pol);
    734 	udelay(3);
    735 }
    736 
    737 /*
    738  * This function is useful on Tegra30, and any later SoCs that have compatible
    739  * PLLP configuration registers.
    740  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
    741  */
    742 void tegra30_set_up_pllp(void)
    743 {
    744 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
    745 	u32 reg;
    746 
    747 	/*
    748 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
    749 	 * run up to 275MHz. On power on, the default sytem clock source is set
    750 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
    751 	 * 408MHz which is beyond system clock's upper limit.
    752 	 *
    753 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
    754 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
    755 	 * configured, after PLLP has been configured
    756 	 */
    757 	set_avp_clock_source(SCLK_SOURCE_CLKM);
    758 
    759 	/*
    760 	 * PLLP output frequency set to 408Mhz
    761 	 * PLLC output frequency set to 228Mhz
    762 	 */
    763 	switch (clock_get_osc_freq()) {
    764 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
    765 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
    766 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
    767 		break;
    768 
    769 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
    770 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
    771 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
    772 		break;
    773 
    774 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
    775 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
    776 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
    777 		break;
    778 	case CLOCK_OSC_FREQ_19_2:
    779 	default:
    780 		/*
    781 		 * These are not supported. It is too early to print a
    782 		 * message and the UART likely won't work anyway due to the
    783 		 * oscillator being wrong.
    784 		 */
    785 		break;
    786 	}
    787 
    788 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
    789 
    790 	/* OUT1, 2 */
    791 	/* Assert RSTN before enable */
    792 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
    793 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
    794 	/* Set divisor and reenable */
    795 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
    796 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
    797 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
    798 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
    799 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
    800 
    801 	/* OUT3, 4 */
    802 	/* Assert RSTN before enable */
    803 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
    804 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
    805 	/* Set divisor and reenable */
    806 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
    807 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
    808 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
    809 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
    810 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
    811 
    812 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
    813 }
    814 
    815 int clock_external_output(int clk_id)
    816 {
    817 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
    818 
    819 	if (clk_id >= 1 && clk_id <= 3) {
    820 		setbits_le32(&pmc->pmc_clk_out_cntrl,
    821 			     1 << (2 + (clk_id - 1) * 8));
    822 	} else {
    823 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
    824 		return -EINVAL;
    825 	}
    826 
    827 	return 0;
    828 }
    829 
    830 __weak bool clock_early_init_done(void)
    831 {
    832 	return true;
    833 }
    834