Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SelectionDAG class, and transitively defines the
     11 // SDNode class and subclasses.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
     16 #define LLVM_CODEGEN_SELECTIONDAG_H
     17 
     18 #include "llvm/ADT/DenseSet.h"
     19 #include "llvm/ADT/SetVector.h"
     20 #include "llvm/ADT/StringMap.h"
     21 #include "llvm/ADT/ilist.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/DAGCombine.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/SelectionDAGNodes.h"
     26 #include "llvm/Support/ArrayRecycler.h"
     27 #include "llvm/Support/RecyclingAllocator.h"
     28 #include "llvm/Target/TargetMachine.h"
     29 #include <cassert>
     30 #include <map>
     31 #include <string>
     32 #include <vector>
     33 
     34 namespace llvm {
     35 
     36 class MachineConstantPoolValue;
     37 class MachineFunction;
     38 class MDNode;
     39 class SDDbgValue;
     40 class TargetLowering;
     41 class SelectionDAGTargetInfo;
     42 
     43 class SDVTListNode : public FoldingSetNode {
     44   friend struct FoldingSetTrait<SDVTListNode>;
     45   /// A reference to an Interned FoldingSetNodeID for this node.
     46   /// The Allocator in SelectionDAG holds the data.
     47   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
     48   /// The size of this list is not expected to be big so it won't introduce
     49   /// a memory penalty.
     50   FoldingSetNodeIDRef FastID;
     51   const EVT *VTs;
     52   unsigned int NumVTs;
     53   /// The hash value for SDVTList is fixed, so cache it to avoid
     54   /// hash calculation.
     55   unsigned HashValue;
     56 public:
     57   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
     58       FastID(ID), VTs(VT), NumVTs(Num) {
     59     HashValue = ID.ComputeHash();
     60   }
     61   SDVTList getSDVTList() {
     62     SDVTList result = {VTs, NumVTs};
     63     return result;
     64   }
     65 };
     66 
     67 /// Specialize FoldingSetTrait for SDVTListNode
     68 /// to avoid computing temp FoldingSetNodeID and hash value.
     69 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
     70   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
     71     ID = X.FastID;
     72   }
     73   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
     74                      unsigned IDHash, FoldingSetNodeID &TempID) {
     75     if (X.HashValue != IDHash)
     76       return false;
     77     return ID == X.FastID;
     78   }
     79   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
     80     return X.HashValue;
     81   }
     82 };
     83 
     84 template<> struct ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
     85 private:
     86   mutable ilist_half_node<SDNode> Sentinel;
     87 public:
     88   SDNode *createSentinel() const {
     89     return static_cast<SDNode*>(&Sentinel);
     90   }
     91   static void destroySentinel(SDNode *) {}
     92 
     93   SDNode *provideInitialHead() const { return createSentinel(); }
     94   SDNode *ensureHead(SDNode*) const { return createSentinel(); }
     95   static void noteHead(SDNode*, SDNode*) {}
     96 
     97   static void deleteNode(SDNode *) {
     98     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
     99   }
    100 private:
    101   static void createNode(const SDNode &);
    102 };
    103 
    104 /// Keeps track of dbg_value information through SDISel.  We do
    105 /// not build SDNodes for these so as not to perturb the generated code;
    106 /// instead the info is kept off to the side in this structure. Each SDNode may
    107 /// have one or more associated dbg_value entries. This information is kept in
    108 /// DbgValMap.
    109 /// Byval parameters are handled separately because they don't use alloca's,
    110 /// which busts the normal mechanism.  There is good reason for handling all
    111 /// parameters separately:  they may not have code generated for them, they
    112 /// should always go at the beginning of the function regardless of other code
    113 /// motion, and debug info for them is potentially useful even if the parameter
    114 /// is unused.  Right now only byval parameters are handled separately.
    115 class SDDbgInfo {
    116   BumpPtrAllocator Alloc;
    117   SmallVector<SDDbgValue*, 32> DbgValues;
    118   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
    119   typedef DenseMap<const SDNode*, SmallVector<SDDbgValue*, 2> > DbgValMapType;
    120   DbgValMapType DbgValMap;
    121 
    122   void operator=(const SDDbgInfo&) = delete;
    123   SDDbgInfo(const SDDbgInfo&) = delete;
    124 public:
    125   SDDbgInfo() {}
    126 
    127   void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
    128     if (isParameter) {
    129       ByvalParmDbgValues.push_back(V);
    130     } else     DbgValues.push_back(V);
    131     if (Node)
    132       DbgValMap[Node].push_back(V);
    133   }
    134 
    135   /// \brief Invalidate all DbgValues attached to the node and remove
    136   /// it from the Node-to-DbgValues map.
    137   void erase(const SDNode *Node);
    138 
    139   void clear() {
    140     DbgValMap.clear();
    141     DbgValues.clear();
    142     ByvalParmDbgValues.clear();
    143     Alloc.Reset();
    144   }
    145 
    146   BumpPtrAllocator &getAlloc() { return Alloc; }
    147 
    148   bool empty() const {
    149     return DbgValues.empty() && ByvalParmDbgValues.empty();
    150   }
    151 
    152   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
    153     DbgValMapType::iterator I = DbgValMap.find(Node);
    154     if (I != DbgValMap.end())
    155       return I->second;
    156     return ArrayRef<SDDbgValue*>();
    157   }
    158 
    159   typedef SmallVectorImpl<SDDbgValue*>::iterator DbgIterator;
    160   DbgIterator DbgBegin() { return DbgValues.begin(); }
    161   DbgIterator DbgEnd()   { return DbgValues.end(); }
    162   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
    163   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
    164 };
    165 
    166 class SelectionDAG;
    167 void checkForCycles(const SelectionDAG *DAG, bool force = false);
    168 
    169 /// This is used to represent a portion of an LLVM function in a low-level
    170 /// Data Dependence DAG representation suitable for instruction selection.
    171 /// This DAG is constructed as the first step of instruction selection in order
    172 /// to allow implementation of machine specific optimizations
    173 /// and code simplifications.
    174 ///
    175 /// The representation used by the SelectionDAG is a target-independent
    176 /// representation, which has some similarities to the GCC RTL representation,
    177 /// but is significantly more simple, powerful, and is a graph form instead of a
    178 /// linear form.
    179 ///
    180 class SelectionDAG {
    181   const TargetMachine &TM;
    182   const SelectionDAGTargetInfo *TSI;
    183   const TargetLowering *TLI;
    184   MachineFunction *MF;
    185   LLVMContext *Context;
    186   CodeGenOpt::Level OptLevel;
    187 
    188   /// The starting token.
    189   SDNode EntryNode;
    190 
    191   /// The root of the entire DAG.
    192   SDValue Root;
    193 
    194   /// A linked list of nodes in the current DAG.
    195   ilist<SDNode> AllNodes;
    196 
    197   /// The AllocatorType for allocating SDNodes. We use
    198   /// pool allocation with recycling.
    199   typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
    200                              AlignOf<MostAlignedSDNode>::Alignment>
    201     NodeAllocatorType;
    202 
    203   /// Pool allocation for nodes.
    204   NodeAllocatorType NodeAllocator;
    205 
    206   /// This structure is used to memoize nodes, automatically performing
    207   /// CSE with existing nodes when a duplicate is requested.
    208   FoldingSet<SDNode> CSEMap;
    209 
    210   /// Pool allocation for machine-opcode SDNode operands.
    211   BumpPtrAllocator OperandAllocator;
    212   ArrayRecycler<SDUse> OperandRecycler;
    213 
    214   /// Pool allocation for misc. objects that are created once per SelectionDAG.
    215   BumpPtrAllocator Allocator;
    216 
    217   /// Tracks dbg_value information through SDISel.
    218   SDDbgInfo *DbgInfo;
    219 
    220   uint16_t NextPersistentId = 0;
    221 
    222 public:
    223   /// Clients of various APIs that cause global effects on
    224   /// the DAG can optionally implement this interface.  This allows the clients
    225   /// to handle the various sorts of updates that happen.
    226   ///
    227   /// A DAGUpdateListener automatically registers itself with DAG when it is
    228   /// constructed, and removes itself when destroyed in RAII fashion.
    229   struct DAGUpdateListener {
    230     DAGUpdateListener *const Next;
    231     SelectionDAG &DAG;
    232 
    233     explicit DAGUpdateListener(SelectionDAG &D)
    234       : Next(D.UpdateListeners), DAG(D) {
    235       DAG.UpdateListeners = this;
    236     }
    237 
    238     virtual ~DAGUpdateListener() {
    239       assert(DAG.UpdateListeners == this &&
    240              "DAGUpdateListeners must be destroyed in LIFO order");
    241       DAG.UpdateListeners = Next;
    242     }
    243 
    244     /// The node N that was deleted and, if E is not null, an
    245     /// equivalent node E that replaced it.
    246     virtual void NodeDeleted(SDNode *N, SDNode *E);
    247 
    248     /// The node N that was updated.
    249     virtual void NodeUpdated(SDNode *N);
    250   };
    251 
    252   struct DAGNodeDeletedListener : public DAGUpdateListener {
    253     std::function<void(SDNode *, SDNode *)> Callback;
    254     DAGNodeDeletedListener(SelectionDAG &DAG,
    255                            std::function<void(SDNode *, SDNode *)> Callback)
    256         : DAGUpdateListener(DAG), Callback(Callback) {}
    257     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
    258   };
    259 
    260   /// When true, additional steps are taken to
    261   /// ensure that getConstant() and similar functions return DAG nodes that
    262   /// have legal types. This is important after type legalization since
    263   /// any illegally typed nodes generated after this point will not experience
    264   /// type legalization.
    265   bool NewNodesMustHaveLegalTypes;
    266 
    267 private:
    268   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
    269   friend struct DAGUpdateListener;
    270 
    271   /// Linked list of registered DAGUpdateListener instances.
    272   /// This stack is maintained by DAGUpdateListener RAII.
    273   DAGUpdateListener *UpdateListeners;
    274 
    275   /// Implementation of setSubgraphColor.
    276   /// Return whether we had to truncate the search.
    277   bool setSubgraphColorHelper(SDNode *N, const char *Color,
    278                               DenseSet<SDNode *> &visited,
    279                               int level, bool &printed);
    280 
    281   template <typename SDNodeT, typename... ArgTypes>
    282   SDNodeT *newSDNode(ArgTypes &&... Args) {
    283     return new (NodeAllocator.template Allocate<SDNodeT>())
    284         SDNodeT(std::forward<ArgTypes>(Args)...);
    285   }
    286 
    287   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
    288     assert(!Node->OperandList && "Node already has operands");
    289     SDUse *Ops = OperandRecycler.allocate(
    290         ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
    291 
    292     for (unsigned I = 0; I != Vals.size(); ++I) {
    293       Ops[I].setUser(Node);
    294       Ops[I].setInitial(Vals[I]);
    295     }
    296     Node->NumOperands = Vals.size();
    297     Node->OperandList = Ops;
    298     checkForCycles(Node);
    299   }
    300 
    301   void removeOperands(SDNode *Node) {
    302     if (!Node->OperandList)
    303       return;
    304     OperandRecycler.deallocate(
    305         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
    306         Node->OperandList);
    307     Node->NumOperands = 0;
    308     Node->OperandList = nullptr;
    309   }
    310 
    311   void operator=(const SelectionDAG&) = delete;
    312   SelectionDAG(const SelectionDAG&) = delete;
    313 
    314 public:
    315   explicit SelectionDAG(const TargetMachine &TM, llvm::CodeGenOpt::Level);
    316   ~SelectionDAG();
    317 
    318   /// Prepare this SelectionDAG to process code in the given MachineFunction.
    319   void init(MachineFunction &mf);
    320 
    321   /// Clear state and free memory necessary to make this
    322   /// SelectionDAG ready to process a new block.
    323   void clear();
    324 
    325   MachineFunction &getMachineFunction() const { return *MF; }
    326   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
    327   const TargetMachine &getTarget() const { return TM; }
    328   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
    329   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
    330   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
    331   LLVMContext *getContext() const {return Context; }
    332 
    333   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
    334   void viewGraph(const std::string &Title);
    335   void viewGraph();
    336 
    337 #ifndef NDEBUG
    338   std::map<const SDNode *, std::string> NodeGraphAttrs;
    339 #endif
    340 
    341   /// Clear all previously defined node graph attributes.
    342   /// Intended to be used from a debugging tool (eg. gdb).
    343   void clearGraphAttrs();
    344 
    345   /// Set graph attributes for a node. (eg. "color=red".)
    346   void setGraphAttrs(const SDNode *N, const char *Attrs);
    347 
    348   /// Get graph attributes for a node. (eg. "color=red".)
    349   /// Used from getNodeAttributes.
    350   const std::string getGraphAttrs(const SDNode *N) const;
    351 
    352   /// Convenience for setting node color attribute.
    353   void setGraphColor(const SDNode *N, const char *Color);
    354 
    355   /// Convenience for setting subgraph color attribute.
    356   void setSubgraphColor(SDNode *N, const char *Color);
    357 
    358   typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
    359   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
    360   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
    361   typedef ilist<SDNode>::iterator allnodes_iterator;
    362   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
    363   allnodes_iterator allnodes_end() { return AllNodes.end(); }
    364   ilist<SDNode>::size_type allnodes_size() const {
    365     return AllNodes.size();
    366   }
    367 
    368   iterator_range<allnodes_iterator> allnodes() {
    369     return make_range(allnodes_begin(), allnodes_end());
    370   }
    371   iterator_range<allnodes_const_iterator> allnodes() const {
    372     return make_range(allnodes_begin(), allnodes_end());
    373   }
    374 
    375   /// Return the root tag of the SelectionDAG.
    376   const SDValue &getRoot() const { return Root; }
    377 
    378   /// Return the token chain corresponding to the entry of the function.
    379   SDValue getEntryNode() const {
    380     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
    381   }
    382 
    383   /// Set the current root tag of the SelectionDAG.
    384   ///
    385   const SDValue &setRoot(SDValue N) {
    386     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
    387            "DAG root value is not a chain!");
    388     if (N.getNode())
    389       checkForCycles(N.getNode(), this);
    390     Root = N;
    391     if (N.getNode())
    392       checkForCycles(this);
    393     return Root;
    394   }
    395 
    396   /// This iterates over the nodes in the SelectionDAG, folding
    397   /// certain types of nodes together, or eliminating superfluous nodes.  The
    398   /// Level argument controls whether Combine is allowed to produce nodes and
    399   /// types that are illegal on the target.
    400   void Combine(CombineLevel Level, AliasAnalysis &AA,
    401                CodeGenOpt::Level OptLevel);
    402 
    403   /// This transforms the SelectionDAG into a SelectionDAG that
    404   /// only uses types natively supported by the target.
    405   /// Returns "true" if it made any changes.
    406   ///
    407   /// Note that this is an involved process that may invalidate pointers into
    408   /// the graph.
    409   bool LegalizeTypes();
    410 
    411   /// This transforms the SelectionDAG into a SelectionDAG that is
    412   /// compatible with the target instruction selector, as indicated by the
    413   /// TargetLowering object.
    414   ///
    415   /// Note that this is an involved process that may invalidate pointers into
    416   /// the graph.
    417   void Legalize();
    418 
    419   /// \brief Transforms a SelectionDAG node and any operands to it into a node
    420   /// that is compatible with the target instruction selector, as indicated by
    421   /// the TargetLowering object.
    422   ///
    423   /// \returns true if \c N is a valid, legal node after calling this.
    424   ///
    425   /// This essentially runs a single recursive walk of the \c Legalize process
    426   /// over the given node (and its operands). This can be used to incrementally
    427   /// legalize the DAG. All of the nodes which are directly replaced,
    428   /// potentially including N, are added to the output parameter \c
    429   /// UpdatedNodes so that the delta to the DAG can be understood by the
    430   /// caller.
    431   ///
    432   /// When this returns false, N has been legalized in a way that make the
    433   /// pointer passed in no longer valid. It may have even been deleted from the
    434   /// DAG, and so it shouldn't be used further. When this returns true, the
    435   /// N passed in is a legal node, and can be immediately processed as such.
    436   /// This may still have done some work on the DAG, and will still populate
    437   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
    438   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
    439 
    440   /// This transforms the SelectionDAG into a SelectionDAG
    441   /// that only uses vector math operations supported by the target.  This is
    442   /// necessary as a separate step from Legalize because unrolling a vector
    443   /// operation can introduce illegal types, which requires running
    444   /// LegalizeTypes again.
    445   ///
    446   /// This returns true if it made any changes; in that case, LegalizeTypes
    447   /// is called again before Legalize.
    448   ///
    449   /// Note that this is an involved process that may invalidate pointers into
    450   /// the graph.
    451   bool LegalizeVectors();
    452 
    453   /// This method deletes all unreachable nodes in the SelectionDAG.
    454   void RemoveDeadNodes();
    455 
    456   /// Remove the specified node from the system.  This node must
    457   /// have no referrers.
    458   void DeleteNode(SDNode *N);
    459 
    460   /// Return an SDVTList that represents the list of values specified.
    461   SDVTList getVTList(EVT VT);
    462   SDVTList getVTList(EVT VT1, EVT VT2);
    463   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
    464   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
    465   SDVTList getVTList(ArrayRef<EVT> VTs);
    466 
    467   //===--------------------------------------------------------------------===//
    468   // Node creation methods.
    469   //
    470 
    471   /// \brief Create a ConstantSDNode wrapping a constant value.
    472   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    473   ///
    474   /// If only legal types can be produced, this does the necessary
    475   /// transformations (e.g., if the vector element type is illegal).
    476   /// @{
    477   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    478                       bool isTarget = false, bool isOpaque = false);
    479   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    480                       bool isTarget = false, bool isOpaque = false);
    481   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    482                       bool isTarget = false, bool isOpaque = false);
    483   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
    484                             bool isTarget = false);
    485   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    486                             bool isOpaque = false) {
    487     return getConstant(Val, DL, VT, true, isOpaque);
    488   }
    489   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    490                             bool isOpaque = false) {
    491     return getConstant(Val, DL, VT, true, isOpaque);
    492   }
    493   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    494                             bool isOpaque = false) {
    495     return getConstant(Val, DL, VT, true, isOpaque);
    496   }
    497   /// @}
    498 
    499   /// \brief Create a ConstantFPSDNode wrapping a constant value.
    500   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    501   ///
    502   /// If only legal types can be produced, this does the necessary
    503   /// transformations (e.g., if the vector element type is illegal).
    504   /// The forms that take a double should only be used for simple constants
    505   /// that can be exactly represented in VT.  No checks are made.
    506   /// @{
    507   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
    508                         bool isTarget = false);
    509   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
    510                         bool isTarget = false);
    511   SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
    512                         bool isTarget = false);
    513   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
    514     return getConstantFP(Val, DL, VT, true);
    515   }
    516   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
    517     return getConstantFP(Val, DL, VT, true);
    518   }
    519   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
    520     return getConstantFP(Val, DL, VT, true);
    521   }
    522   /// @}
    523 
    524   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    525                            int64_t offset = 0, bool isTargetGA = false,
    526                            unsigned char TargetFlags = 0);
    527   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    528                                  int64_t offset = 0,
    529                                  unsigned char TargetFlags = 0) {
    530     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
    531   }
    532   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
    533   SDValue getTargetFrameIndex(int FI, EVT VT) {
    534     return getFrameIndex(FI, VT, true);
    535   }
    536   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
    537                        unsigned char TargetFlags = 0);
    538   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
    539     return getJumpTable(JTI, VT, true, TargetFlags);
    540   }
    541   SDValue getConstantPool(const Constant *C, EVT VT,
    542                           unsigned Align = 0, int Offs = 0, bool isT=false,
    543                           unsigned char TargetFlags = 0);
    544   SDValue getTargetConstantPool(const Constant *C, EVT VT,
    545                                 unsigned Align = 0, int Offset = 0,
    546                                 unsigned char TargetFlags = 0) {
    547     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    548   }
    549   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
    550                           unsigned Align = 0, int Offs = 0, bool isT=false,
    551                           unsigned char TargetFlags = 0);
    552   SDValue getTargetConstantPool(MachineConstantPoolValue *C,
    553                                   EVT VT, unsigned Align = 0,
    554                                   int Offset = 0, unsigned char TargetFlags=0) {
    555     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    556   }
    557   SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
    558                          unsigned char TargetFlags = 0);
    559   // When generating a branch to a BB, we don't in general know enough
    560   // to provide debug info for the BB at that time, so keep this one around.
    561   SDValue getBasicBlock(MachineBasicBlock *MBB);
    562   SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
    563   SDValue getExternalSymbol(const char *Sym, EVT VT);
    564   SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
    565   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
    566                                   unsigned char TargetFlags = 0);
    567   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
    568 
    569   SDValue getValueType(EVT);
    570   SDValue getRegister(unsigned Reg, EVT VT);
    571   SDValue getRegisterMask(const uint32_t *RegMask);
    572   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
    573   SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
    574                           int64_t Offset = 0, bool isTarget = false,
    575                           unsigned char TargetFlags = 0);
    576   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
    577                                 int64_t Offset = 0,
    578                                 unsigned char TargetFlags = 0) {
    579     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
    580   }
    581 
    582   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
    583                        SDValue N) {
    584     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
    585                    getRegister(Reg, N.getValueType()), N);
    586   }
    587 
    588   // This version of the getCopyToReg method takes an extra operand, which
    589   // indicates that there is potentially an incoming glue value (if Glue is not
    590   // null) and that there should be a glue result.
    591   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
    592                        SDValue Glue) {
    593     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    594     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
    595     return getNode(ISD::CopyToReg, dl, VTs,
    596                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    597   }
    598 
    599   // Similar to last getCopyToReg() except parameter Reg is a SDValue
    600   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
    601                        SDValue Glue) {
    602     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    603     SDValue Ops[] = { Chain, Reg, N, Glue };
    604     return getNode(ISD::CopyToReg, dl, VTs,
    605                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    606   }
    607 
    608   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
    609     SDVTList VTs = getVTList(VT, MVT::Other);
    610     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
    611     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
    612   }
    613 
    614   // This version of the getCopyFromReg method takes an extra operand, which
    615   // indicates that there is potentially an incoming glue value (if Glue is not
    616   // null) and that there should be a glue result.
    617   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
    618                          SDValue Glue) {
    619     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
    620     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
    621     return getNode(ISD::CopyFromReg, dl, VTs,
    622                    makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
    623   }
    624 
    625   SDValue getCondCode(ISD::CondCode Cond);
    626 
    627   /// Returns the ConvertRndSat Note: Avoid using this node because it may
    628   /// disappear in the future and most targets don't support it.
    629   SDValue getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, SDValue DTy,
    630                            SDValue STy, SDValue Rnd, SDValue Sat,
    631                            ISD::CvtCode Code);
    632 
    633   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
    634   /// which must be a vector type, must match the number of mask elements
    635   /// NumElts. An integer mask element equal to -1 is treated as undefined.
    636   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
    637                            ArrayRef<int> Mask);
    638 
    639   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
    640   /// which must be a vector type, must match the number of operands in Ops.
    641   /// The operands must have the same type as (or, for integers, a type wider
    642   /// than) VT's element type.
    643   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
    644     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    645     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    646   }
    647 
    648   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
    649   /// elements. VT must be a vector type. Op's type must be the same as (or,
    650   /// for integers, a type wider than) VT's element type.
    651   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
    652     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    653     if (Op.getOpcode() == ISD::UNDEF) {
    654       assert((VT.getVectorElementType() == Op.getValueType() ||
    655               (VT.isInteger() &&
    656                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
    657              "A splatted value must have a width equal or (for integers) "
    658              "greater than the vector element type!");
    659       return getNode(ISD::UNDEF, SDLoc(), VT);
    660     }
    661 
    662     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
    663     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    664   }
    665 
    666   /// Return a splat ISD::BUILD_VECTOR node, but with Op's SDLoc.
    667   SDValue getSplatBuildVector(EVT VT, SDValue Op) {
    668     return getSplatBuildVector(VT, SDLoc(Op), Op);
    669   }
    670 
    671   /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
    672   /// the shuffle node in input but with swapped operands.
    673   ///
    674   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
    675   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
    676 
    677   /// Convert Op, which must be of integer type, to the
    678   /// integer type VT, by either any-extending or truncating it.
    679   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    680 
    681   /// Convert Op, which must be of integer type, to the
    682   /// integer type VT, by either sign-extending or truncating it.
    683   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    684 
    685   /// Convert Op, which must be of integer type, to the
    686   /// integer type VT, by either zero-extending or truncating it.
    687   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    688 
    689   /// Return the expression required to zero extend the Op
    690   /// value assuming it was the smaller SrcTy value.
    691   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
    692 
    693   /// Return an operation which will any-extend the low lanes of the operand
    694   /// into the specified vector type. For example,
    695   /// this can convert a v16i8 into a v4i32 by any-extending the low four
    696   /// lanes of the operand from i8 to i32.
    697   SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    698 
    699   /// Return an operation which will sign extend the low lanes of the operand
    700   /// into the specified vector type. For example,
    701   /// this can convert a v16i8 into a v4i32 by sign extending the low four
    702   /// lanes of the operand from i8 to i32.
    703   SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    704 
    705   /// Return an operation which will zero extend the low lanes of the operand
    706   /// into the specified vector type. For example,
    707   /// this can convert a v16i8 into a v4i32 by zero extending the low four
    708   /// lanes of the operand from i8 to i32.
    709   SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    710 
    711   /// Convert Op, which must be of integer type, to the integer type VT,
    712   /// by using an extension appropriate for the target's
    713   /// BooleanContent for type OpVT or truncating it.
    714   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
    715 
    716   /// Create a bitwise NOT operation as (XOR Val, -1).
    717   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
    718 
    719   /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
    720   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
    721 
    722   /// Return a new CALLSEQ_START node, which always must have a glue result
    723   /// (to ensure it's not CSE'd).  CALLSEQ_START does not have a useful SDLoc.
    724   SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, const SDLoc &DL) {
    725     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    726     SDValue Ops[] = { Chain,  Op };
    727     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
    728   }
    729 
    730   /// Return a new CALLSEQ_END node, which always must have a
    731   /// glue result (to ensure it's not CSE'd).
    732   /// CALLSEQ_END does not have a useful SDLoc.
    733   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
    734                          SDValue InGlue, const SDLoc &DL) {
    735     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
    736     SmallVector<SDValue, 4> Ops;
    737     Ops.push_back(Chain);
    738     Ops.push_back(Op1);
    739     Ops.push_back(Op2);
    740     if (InGlue.getNode())
    741       Ops.push_back(InGlue);
    742     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
    743   }
    744 
    745   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
    746   SDValue getUNDEF(EVT VT) {
    747     return getNode(ISD::UNDEF, SDLoc(), VT);
    748   }
    749 
    750   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
    751   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
    752     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
    753   }
    754 
    755   /// Gets or creates the specified node.
    756   ///
    757   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    758                   ArrayRef<SDUse> Ops);
    759   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    760                   ArrayRef<SDValue> Ops, const SDNodeFlags *Flags = nullptr);
    761   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
    762                   ArrayRef<SDValue> Ops);
    763   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
    764                   ArrayRef<SDValue> Ops);
    765 
    766   // Specialize based on number of operands.
    767   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
    768   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N);
    769   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    770                   SDValue N2, const SDNodeFlags *Flags = nullptr);
    771   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    772                   SDValue N2, SDValue N3);
    773   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    774                   SDValue N2, SDValue N3, SDValue N4);
    775   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    776                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    777 
    778   // Specialize again based on number of operands for nodes with a VTList
    779   // rather than a single VT.
    780   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
    781   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
    782   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    783                   SDValue N2);
    784   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    785                   SDValue N2, SDValue N3);
    786   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    787                   SDValue N2, SDValue N3, SDValue N4);
    788   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    789                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    790 
    791   /// Compute a TokenFactor to force all the incoming stack arguments to be
    792   /// loaded from the stack. This is used in tail call lowering to protect
    793   /// stack arguments from being clobbered.
    794   SDValue getStackArgumentTokenFactor(SDValue Chain);
    795 
    796   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    797                     SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
    798                     bool isTailCall, MachinePointerInfo DstPtrInfo,
    799                     MachinePointerInfo SrcPtrInfo);
    800 
    801   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    802                      SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    803                      MachinePointerInfo DstPtrInfo,
    804                      MachinePointerInfo SrcPtrInfo);
    805 
    806   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    807                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    808                     MachinePointerInfo DstPtrInfo);
    809 
    810   /// Helper function to make it easier to build SetCC's if you just
    811   /// have an ISD::CondCode instead of an SDValue.
    812   ///
    813   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
    814                    ISD::CondCode Cond) {
    815     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
    816       "Cannot compare scalars to vectors");
    817     assert(LHS.getValueType().isVector() == VT.isVector() &&
    818       "Cannot compare scalars to vectors");
    819     assert(Cond != ISD::SETCC_INVALID &&
    820         "Cannot create a setCC of an invalid node.");
    821     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
    822   }
    823 
    824   /// Helper function to make it easier to build Select's if you just
    825   /// have operands and don't want to check for vector.
    826   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
    827                     SDValue RHS) {
    828     assert(LHS.getValueType() == RHS.getValueType() &&
    829            "Cannot use select on differing types");
    830     assert(VT.isVector() == LHS.getValueType().isVector() &&
    831            "Cannot mix vectors and scalars");
    832     return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
    833                    Cond, LHS, RHS);
    834   }
    835 
    836   /// Helper function to make it easier to build SelectCC's if you
    837   /// just have an ISD::CondCode instead of an SDValue.
    838   ///
    839   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
    840                       SDValue False, ISD::CondCode Cond) {
    841     return getNode(ISD::SELECT_CC, DL, True.getValueType(),
    842                    LHS, RHS, True, False, getCondCode(Cond));
    843   }
    844 
    845   /// VAArg produces a result and token chain, and takes a pointer
    846   /// and a source value as input.
    847   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    848                    SDValue SV, unsigned Align);
    849 
    850   /// Gets a node for an atomic cmpxchg op. There are two
    851   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
    852   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
    853   /// a success flag (initially i1), and a chain.
    854   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    855                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    856                            SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
    857                            unsigned Alignment, AtomicOrdering SuccessOrdering,
    858                            AtomicOrdering FailureOrdering,
    859                            SynchronizationScope SynchScope);
    860   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    861                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    862                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO,
    863                            AtomicOrdering SuccessOrdering,
    864                            AtomicOrdering FailureOrdering,
    865                            SynchronizationScope SynchScope);
    866 
    867   /// Gets a node for an atomic op, produces result (if relevant)
    868   /// and chain and takes 2 operands.
    869   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
    870                     SDValue Ptr, SDValue Val, const Value *PtrVal,
    871                     unsigned Alignment, AtomicOrdering Ordering,
    872                     SynchronizationScope SynchScope);
    873   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
    874                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO,
    875                     AtomicOrdering Ordering, SynchronizationScope SynchScope);
    876 
    877   /// Gets a node for an atomic op, produces result and chain and
    878   /// takes 1 operand.
    879   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
    880                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO,
    881                     AtomicOrdering Ordering, SynchronizationScope SynchScope);
    882 
    883   /// Gets a node for an atomic op, produces result and chain and takes N
    884   /// operands.
    885   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    886                     SDVTList VTList, ArrayRef<SDValue> Ops,
    887                     MachineMemOperand *MMO, AtomicOrdering SuccessOrdering,
    888                     AtomicOrdering FailureOrdering,
    889                     SynchronizationScope SynchScope);
    890   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    891                     SDVTList VTList, ArrayRef<SDValue> Ops,
    892                     MachineMemOperand *MMO, AtomicOrdering Ordering,
    893                     SynchronizationScope SynchScope);
    894 
    895   /// Creates a MemIntrinsicNode that may produce a
    896   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
    897   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
    898   /// less than FIRST_TARGET_MEMORY_OPCODE.
    899   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
    900                               ArrayRef<SDValue> Ops, EVT MemVT,
    901                               MachinePointerInfo PtrInfo, unsigned Align = 0,
    902                               bool Vol = false, bool ReadMem = true,
    903                               bool WriteMem = true, unsigned Size = 0);
    904 
    905   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
    906                               ArrayRef<SDValue> Ops, EVT MemVT,
    907                               MachineMemOperand *MMO);
    908 
    909   /// Create a MERGE_VALUES node from the given operands.
    910   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
    911 
    912   /// Loads are not normal binary operators: their result type is not
    913   /// determined by their operands, and they produce a value AND a token chain.
    914   ///
    915   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    916                   MachinePointerInfo PtrInfo, bool isVolatile,
    917                   bool isNonTemporal, bool isInvariant, unsigned Alignment,
    918                   const AAMDNodes &AAInfo = AAMDNodes(),
    919                   const MDNode *Ranges = nullptr);
    920   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    921                   MachineMemOperand *MMO);
    922   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
    923                      SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo,
    924                      EVT MemVT, bool isVolatile, bool isNonTemporal,
    925                      bool isInvariant, unsigned Alignment,
    926                      const AAMDNodes &AAInfo = AAMDNodes());
    927   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
    928                      SDValue Chain, SDValue Ptr, EVT MemVT,
    929                      MachineMemOperand *MMO);
    930   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
    931                          SDValue Offset, ISD::MemIndexedMode AM);
    932   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
    933                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
    934                   MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile,
    935                   bool isNonTemporal, bool isInvariant, unsigned Alignment,
    936                   const AAMDNodes &AAInfo = AAMDNodes(),
    937                   const MDNode *Ranges = nullptr);
    938   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
    939                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
    940                   EVT MemVT, MachineMemOperand *MMO);
    941 
    942   /// Helper function to build ISD::STORE nodes.
    943   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
    944                    MachinePointerInfo PtrInfo, bool isVolatile,
    945                    bool isNonTemporal, unsigned Alignment,
    946                    const AAMDNodes &AAInfo = AAMDNodes());
    947   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
    948                    MachineMemOperand *MMO);
    949   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
    950                         SDValue Ptr, MachinePointerInfo PtrInfo, EVT TVT,
    951                         bool isNonTemporal, bool isVolatile, unsigned Alignment,
    952                         const AAMDNodes &AAInfo = AAMDNodes());
    953   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
    954                         SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
    955   SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
    956                           SDValue Offset, ISD::MemIndexedMode AM);
    957 
    958   /// Returns sum of the base pointer and offset.
    959   SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
    960 
    961   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    962                         SDValue Mask, SDValue Src0, EVT MemVT,
    963                         MachineMemOperand *MMO, ISD::LoadExtType);
    964   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
    965                          SDValue Ptr, SDValue Mask, EVT MemVT,
    966                          MachineMemOperand *MMO, bool IsTrunc);
    967   SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
    968                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
    969   SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
    970                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
    971   /// Construct a node to track a Value* through the backend.
    972   SDValue getSrcValue(const Value *v);
    973 
    974   /// Return an MDNodeSDNode which holds an MDNode.
    975   SDValue getMDNode(const MDNode *MD);
    976 
    977   /// Return a bitcast using the SDLoc of the value operand, and casting to the
    978   /// provided type. Use getNode to set a custom SDLoc.
    979   SDValue getBitcast(EVT VT, SDValue V);
    980 
    981   /// Return an AddrSpaceCastSDNode.
    982   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
    983                            unsigned DestAS);
    984 
    985   /// Return the specified value casted to
    986   /// the target's desired shift amount type.
    987   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
    988 
    989   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
    990   SDValue expandVAArg(SDNode *Node);
    991 
    992   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
    993   SDValue expandVACopy(SDNode *Node);
    994 
    995   /// *Mutate* the specified node in-place to have the
    996   /// specified operands.  If the resultant node already exists in the DAG,
    997   /// this does not modify the specified node, instead it returns the node that
    998   /// already exists.  If the resultant node does not exist in the DAG, the
    999   /// input node is returned.  As a degenerate case, if you specify the same
   1000   /// input operands as the node already has, the input node is returned.
   1001   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
   1002   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
   1003   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1004                                SDValue Op3);
   1005   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1006                                SDValue Op3, SDValue Op4);
   1007   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1008                                SDValue Op3, SDValue Op4, SDValue Op5);
   1009   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
   1010 
   1011   /// These are used for target selectors to *mutate* the
   1012   /// specified node to have the specified return type, Target opcode, and
   1013   /// operands.  Note that target opcodes are stored as
   1014   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
   1015   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
   1016   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
   1017   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1018                        SDValue Op1, SDValue Op2);
   1019   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1020                        SDValue Op1, SDValue Op2, SDValue Op3);
   1021   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1022                        ArrayRef<SDValue> Ops);
   1023   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
   1024   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1025                        EVT VT2, ArrayRef<SDValue> Ops);
   1026   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1027                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1028   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
   1029                        EVT VT2, EVT VT3, EVT VT4, ArrayRef<SDValue> Ops);
   1030   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1031                        EVT VT2, SDValue Op1);
   1032   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1033                        EVT VT2, SDValue Op1, SDValue Op2);
   1034   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1035                        EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
   1036   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1037                        EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3);
   1038   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
   1039                        ArrayRef<SDValue> Ops);
   1040 
   1041   /// This *mutates* the specified node to have the specified
   1042   /// return type, opcode, and operands.
   1043   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
   1044                       ArrayRef<SDValue> Ops);
   1045 
   1046   /// These are used for target selectors to create a new node
   1047   /// with specified return type(s), MachineInstr opcode, and operands.
   1048   ///
   1049   /// Note that getMachineNode returns the resultant node.  If there is already
   1050   /// a node of the specified opcode and operands, it returns that node instead
   1051   /// of the current one.
   1052   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
   1053   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1054                                 SDValue Op1);
   1055   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1056                                 SDValue Op1, SDValue Op2);
   1057   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1058                                 SDValue Op1, SDValue Op2, SDValue Op3);
   1059   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1060                                 ArrayRef<SDValue> Ops);
   1061   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1062                                 EVT VT2);
   1063   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1064                                 EVT VT2, SDValue Op1);
   1065   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1066                                 EVT VT2, SDValue Op1, SDValue Op2);
   1067   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1068                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
   1069   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1070                                 EVT VT2, ArrayRef<SDValue> Ops);
   1071   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1072                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
   1073   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1074                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
   1075                                 SDValue Op3);
   1076   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1077                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1078   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1079                                 EVT VT2, EVT VT3, EVT VT4,
   1080                                 ArrayRef<SDValue> Ops);
   1081   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
   1082                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
   1083   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
   1084                                 ArrayRef<SDValue> Ops);
   1085 
   1086   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
   1087   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1088                                  SDValue Operand);
   1089 
   1090   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
   1091   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1092                                 SDValue Operand, SDValue Subreg);
   1093 
   1094   /// Get the specified node if it's already available, or else return NULL.
   1095   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
   1096                           const SDNodeFlags *Flags = nullptr);
   1097 
   1098   /// Creates a SDDbgValue node.
   1099   SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
   1100                           bool IsIndirect, uint64_t Off, const DebugLoc &DL,
   1101                           unsigned O);
   1102 
   1103   /// Constant
   1104   SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
   1105                                   uint64_t Off, const DebugLoc &DL, unsigned O);
   1106 
   1107   /// FrameIndex
   1108   SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
   1109                                     uint64_t Off, const DebugLoc &DL,
   1110                                     unsigned O);
   1111 
   1112   /// Remove the specified node from the system. If any of its
   1113   /// operands then becomes dead, remove them as well. Inform UpdateListener
   1114   /// for each node deleted.
   1115   void RemoveDeadNode(SDNode *N);
   1116 
   1117   /// This method deletes the unreachable nodes in the
   1118   /// given list, and any nodes that become unreachable as a result.
   1119   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
   1120 
   1121   /// Modify anything using 'From' to use 'To' instead.
   1122   /// This can cause recursive merging of nodes in the DAG.  Use the first
   1123   /// version if 'From' is known to have a single result, use the second
   1124   /// if you have two nodes with identical results (or if 'To' has a superset
   1125   /// of the results of 'From'), use the third otherwise.
   1126   ///
   1127   /// These methods all take an optional UpdateListener, which (if not null) is
   1128   /// informed about nodes that are deleted and modified due to recursive
   1129   /// changes in the dag.
   1130   ///
   1131   /// These functions only replace all existing uses. It's possible that as
   1132   /// these replacements are being performed, CSE may cause the From node
   1133   /// to be given new uses. These new uses of From are left in place, and
   1134   /// not automatically transferred to To.
   1135   ///
   1136   void ReplaceAllUsesWith(SDValue From, SDValue Op);
   1137   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
   1138   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
   1139 
   1140   /// Replace any uses of From with To, leaving
   1141   /// uses of other values produced by From.Val alone.
   1142   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
   1143 
   1144   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
   1145   /// This correctly handles the case where
   1146   /// there is an overlap between the From values and the To values.
   1147   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
   1148                                   unsigned Num);
   1149 
   1150   /// Topological-sort the AllNodes list and a
   1151   /// assign a unique node id for each node in the DAG based on their
   1152   /// topological order. Returns the number of nodes.
   1153   unsigned AssignTopologicalOrder();
   1154 
   1155   /// Move node N in the AllNodes list to be immediately
   1156   /// before the given iterator Position. This may be used to update the
   1157   /// topological ordering when the list of nodes is modified.
   1158   void RepositionNode(allnodes_iterator Position, SDNode *N) {
   1159     AllNodes.insert(Position, AllNodes.remove(N));
   1160   }
   1161 
   1162   /// Returns true if the opcode is a commutative binary operation.
   1163   static bool isCommutativeBinOp(unsigned Opcode) {
   1164     // FIXME: This should get its info from the td file, so that we can include
   1165     // target info.
   1166     switch (Opcode) {
   1167     case ISD::ADD:
   1168     case ISD::SMIN:
   1169     case ISD::SMAX:
   1170     case ISD::UMIN:
   1171     case ISD::UMAX:
   1172     case ISD::MUL:
   1173     case ISD::MULHU:
   1174     case ISD::MULHS:
   1175     case ISD::SMUL_LOHI:
   1176     case ISD::UMUL_LOHI:
   1177     case ISD::FADD:
   1178     case ISD::FMUL:
   1179     case ISD::AND:
   1180     case ISD::OR:
   1181     case ISD::XOR:
   1182     case ISD::SADDO:
   1183     case ISD::UADDO:
   1184     case ISD::ADDC:
   1185     case ISD::ADDE:
   1186     case ISD::FMINNUM:
   1187     case ISD::FMAXNUM:
   1188     case ISD::FMINNAN:
   1189     case ISD::FMAXNAN:
   1190       return true;
   1191     default: return false;
   1192     }
   1193   }
   1194 
   1195   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
   1196   /// a vector type, the element semantics are returned.
   1197   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
   1198     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
   1199     default: llvm_unreachable("Unknown FP format");
   1200     case MVT::f16:     return APFloat::IEEEhalf;
   1201     case MVT::f32:     return APFloat::IEEEsingle;
   1202     case MVT::f64:     return APFloat::IEEEdouble;
   1203     case MVT::f80:     return APFloat::x87DoubleExtended;
   1204     case MVT::f128:    return APFloat::IEEEquad;
   1205     case MVT::ppcf128: return APFloat::PPCDoubleDouble;
   1206     }
   1207   }
   1208 
   1209   /// Add a dbg_value SDNode. If SD is non-null that means the
   1210   /// value is produced by SD.
   1211   void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
   1212 
   1213   /// Get the debug values which reference the given SDNode.
   1214   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
   1215     return DbgInfo->getSDDbgValues(SD);
   1216   }
   1217 
   1218 private:
   1219   /// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
   1220   void TransferDbgValues(SDValue From, SDValue To);
   1221 
   1222 public:
   1223   /// Return true if there are any SDDbgValue nodes associated
   1224   /// with this SelectionDAG.
   1225   bool hasDebugValues() const { return !DbgInfo->empty(); }
   1226 
   1227   SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
   1228   SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
   1229   SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
   1230     return DbgInfo->ByvalParmDbgBegin();
   1231   }
   1232   SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
   1233     return DbgInfo->ByvalParmDbgEnd();
   1234   }
   1235 
   1236   void dump() const;
   1237 
   1238   /// Create a stack temporary, suitable for holding the specified value type.
   1239   /// If minAlign is specified, the slot size will have at least that alignment.
   1240   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
   1241 
   1242   /// Create a stack temporary suitable for holding either of the specified
   1243   /// value types.
   1244   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
   1245 
   1246   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
   1247                            const GlobalAddressSDNode *GA,
   1248                            const SDNode *N2);
   1249 
   1250   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1251                                  SDNode *Cst1, SDNode *Cst2);
   1252 
   1253   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1254                                  const ConstantSDNode *Cst1,
   1255                                  const ConstantSDNode *Cst2);
   1256 
   1257   SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1258                                        ArrayRef<SDValue> Ops,
   1259                                        const SDNodeFlags *Flags = nullptr);
   1260 
   1261   /// Constant fold a setcc to true or false.
   1262   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
   1263                     const SDLoc &dl);
   1264 
   1265   /// Return true if the sign bit of Op is known to be zero.
   1266   /// We use this predicate to simplify operations downstream.
   1267   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
   1268 
   1269   /// Return true if 'Op & Mask' is known to be zero.  We
   1270   /// use this predicate to simplify operations downstream.  Op and Mask are
   1271   /// known to be the same type.
   1272   bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
   1273     const;
   1274 
   1275   /// Determine which bits of Op are known to be either zero or one and return
   1276   /// them in the KnownZero/KnownOne bitsets.  Targets can implement the
   1277   /// computeKnownBitsForTargetNode method in the TargetLowering class to allow
   1278   /// target nodes to be understood.
   1279   void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
   1280                         unsigned Depth = 0) const;
   1281 
   1282   /// Test if the given value is known to have exactly one bit set. This differs
   1283   /// from computeKnownBits in that it doesn't necessarily determine which bit
   1284   /// is set.
   1285   bool isKnownToBeAPowerOfTwo(SDValue Val) const;
   1286 
   1287   /// Return the number of times the sign bit of the register is replicated into
   1288   /// the other bits. We know that at least 1 bit is always equal to the sign
   1289   /// bit (itself), but other cases can give us information. For example,
   1290   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1291   /// to each other, so we return 3. Targets can implement the
   1292   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
   1293   /// target nodes to be understood.
   1294   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
   1295 
   1296   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
   1297   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
   1298   /// is guaranteed to have the same semantics as an ADD. This handles the
   1299   /// equivalence:
   1300   ///     X|Cst == X+Cst iff X&Cst = 0.
   1301   bool isBaseWithConstantOffset(SDValue Op) const;
   1302 
   1303   /// Test whether the given SDValue is known to never be NaN.
   1304   bool isKnownNeverNaN(SDValue Op) const;
   1305 
   1306   /// Test whether the given SDValue is known to never be positive or negative
   1307   /// zero.
   1308   bool isKnownNeverZero(SDValue Op) const;
   1309 
   1310   /// Test whether two SDValues are known to compare equal. This
   1311   /// is true if they are the same value, or if one is negative zero and the
   1312   /// other positive zero.
   1313   bool isEqualTo(SDValue A, SDValue B) const;
   1314 
   1315   /// Return true if A and B have no common bits set. As an example, this can
   1316   /// allow an 'add' to be transformed into an 'or'.
   1317   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
   1318 
   1319   /// Utility function used by legalize and lowering to
   1320   /// "unroll" a vector operation by splitting out the scalars and operating
   1321   /// on each element individually.  If the ResNE is 0, fully unroll the vector
   1322   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
   1323   /// If the  ResNE is greater than the width of the vector op, unroll the
   1324   /// vector op and fill the end of the resulting vector with UNDEFS.
   1325   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
   1326 
   1327   /// Return true if loads are next to each other and can be
   1328   /// merged. Check that both are nonvolatile and if LD is loading
   1329   /// 'Bytes' bytes from a location that is 'Dist' units away from the
   1330   /// location that the 'Base' load is loading from.
   1331   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
   1332                                       unsigned Bytes, int Dist) const;
   1333 
   1334   /// Infer alignment of a load / store address. Return 0 if
   1335   /// it cannot be inferred.
   1336   unsigned InferPtrAlignment(SDValue Ptr) const;
   1337 
   1338   /// Compute the VTs needed for the low/hi parts of a type
   1339   /// which is split (or expanded) into two not necessarily identical pieces.
   1340   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
   1341 
   1342   /// Split the vector with EXTRACT_SUBVECTOR using the provides
   1343   /// VTs and return the low/high part.
   1344   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
   1345                                           const EVT &LoVT, const EVT &HiVT);
   1346 
   1347   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
   1348   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
   1349     EVT LoVT, HiVT;
   1350     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
   1351     return SplitVector(N, DL, LoVT, HiVT);
   1352   }
   1353 
   1354   /// Split the node's operand with EXTRACT_SUBVECTOR and
   1355   /// return the low/high part.
   1356   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
   1357   {
   1358     return SplitVector(N->getOperand(OpNo), SDLoc(N));
   1359   }
   1360 
   1361   /// Append the extracted elements from Start to Count out of the vector Op
   1362   /// in Args. If Count is 0, all of the elements will be extracted.
   1363   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
   1364                              unsigned Start = 0, unsigned Count = 0);
   1365 
   1366   /// Compute the default alignment value for the given type.
   1367   unsigned getEVTAlignment(EVT MemoryVT) const;
   1368 
   1369   /// Test whether the given value is a constant int or similar node.
   1370   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
   1371 
   1372 private:
   1373   void InsertNode(SDNode *N);
   1374   bool RemoveNodeFromCSEMaps(SDNode *N);
   1375   void AddModifiedNodeToCSEMaps(SDNode *N);
   1376   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
   1377   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
   1378                                void *&InsertPos);
   1379   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
   1380                                void *&InsertPos);
   1381   SDNode *UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &loc);
   1382 
   1383   void DeleteNodeNotInCSEMaps(SDNode *N);
   1384   void DeallocateNode(SDNode *N);
   1385 
   1386   void allnodes_clear();
   1387 
   1388   SDNode *GetBinarySDNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
   1389                           SDValue N1, SDValue N2,
   1390                           const SDNodeFlags *Flags = nullptr);
   1391 
   1392   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1393   /// not, return the insertion token that will make insertion faster.  This
   1394   /// overload is for nodes other than Constant or ConstantFP, use the other one
   1395   /// for those.
   1396   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
   1397 
   1398   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1399   /// not, return the insertion token that will make insertion faster.  Performs
   1400   /// additional processing for constant nodes.
   1401   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
   1402                               void *&InsertPos);
   1403 
   1404   /// List of non-single value types.
   1405   FoldingSet<SDVTListNode> VTListMap;
   1406 
   1407   /// Maps to auto-CSE operations.
   1408   std::vector<CondCodeSDNode*> CondCodeNodes;
   1409 
   1410   std::vector<SDNode*> ValueTypeNodes;
   1411   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
   1412   StringMap<SDNode*> ExternalSymbols;
   1413 
   1414   std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
   1415   DenseMap<MCSymbol *, SDNode *> MCSymbols;
   1416 };
   1417 
   1418 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
   1419   typedef SelectionDAG::allnodes_iterator nodes_iterator;
   1420   static nodes_iterator nodes_begin(SelectionDAG *G) {
   1421     return G->allnodes_begin();
   1422   }
   1423   static nodes_iterator nodes_end(SelectionDAG *G) {
   1424     return G->allnodes_end();
   1425   }
   1426 };
   1427 
   1428 }  // end namespace llvm
   1429 
   1430 #endif
   1431