Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread_list.h"
     18 
     19 #include <dirent.h>
     20 #include <sys/types.h>
     21 #include <unistd.h>
     22 
     23 #include <sstream>
     24 #include <vector>
     25 
     26 #include "android-base/stringprintf.h"
     27 #include "backtrace/BacktraceMap.h"
     28 #include "nativehelper/scoped_local_ref.h"
     29 #include "nativehelper/scoped_utf_chars.h"
     30 
     31 #include "base/aborting.h"
     32 #include "base/histogram-inl.h"
     33 #include "base/mutex-inl.h"
     34 #include "base/systrace.h"
     35 #include "base/time_utils.h"
     36 #include "base/timing_logger.h"
     37 #include "debugger.h"
     38 #include "gc/collector/concurrent_copying.h"
     39 #include "gc/gc_pause_listener.h"
     40 #include "gc/heap.h"
     41 #include "gc/reference_processor.h"
     42 #include "gc_root.h"
     43 #include "jni/jni_internal.h"
     44 #include "lock_word.h"
     45 #include "monitor.h"
     46 #include "native_stack_dump.h"
     47 #include "scoped_thread_state_change-inl.h"
     48 #include "thread.h"
     49 #include "trace.h"
     50 #include "well_known_classes.h"
     51 
     52 #if ART_USE_FUTEXES
     53 #include "linux/futex.h"
     54 #include "sys/syscall.h"
     55 #ifndef SYS_futex
     56 #define SYS_futex __NR_futex
     57 #endif
     58 #endif  // ART_USE_FUTEXES
     59 
     60 namespace art {
     61 
     62 using android::base::StringPrintf;
     63 
     64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
     65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
     66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
     67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
     68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
     69 
     70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
     71 // some history.
     72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
     73 
     74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
     75     : suspend_all_count_(0),
     76       debug_suspend_all_count_(0),
     77       unregistering_count_(0),
     78       suspend_all_historam_("suspend all histogram", 16, 64),
     79       long_suspend_(false),
     80       shut_down_(false),
     81       thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
     82       empty_checkpoint_barrier_(new Barrier(0)) {
     83   CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
     84 }
     85 
     86 ThreadList::~ThreadList() {
     87   CHECK(shut_down_);
     88 }
     89 
     90 void ThreadList::ShutDown() {
     91   ScopedTrace trace(__PRETTY_FUNCTION__);
     92   // Detach the current thread if necessary. If we failed to start, there might not be any threads.
     93   // We need to detach the current thread here in case there's another thread waiting to join with
     94   // us.
     95   bool contains = false;
     96   Thread* self = Thread::Current();
     97   {
     98     MutexLock mu(self, *Locks::thread_list_lock_);
     99     contains = Contains(self);
    100   }
    101   if (contains) {
    102     Runtime::Current()->DetachCurrentThread();
    103   }
    104   WaitForOtherNonDaemonThreadsToExit();
    105   // Disable GC and wait for GC to complete in case there are still daemon threads doing
    106   // allocations.
    107   gc::Heap* const heap = Runtime::Current()->GetHeap();
    108   heap->DisableGCForShutdown();
    109   // In case a GC is in progress, wait for it to finish.
    110   heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
    111   // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
    112   //       Thread::Init.
    113   SuspendAllDaemonThreadsForShutdown();
    114 
    115   shut_down_ = true;
    116 }
    117 
    118 bool ThreadList::Contains(Thread* thread) {
    119   return find(list_.begin(), list_.end(), thread) != list_.end();
    120 }
    121 
    122 bool ThreadList::Contains(pid_t tid) {
    123   for (const auto& thread : list_) {
    124     if (thread->GetTid() == tid) {
    125       return true;
    126     }
    127   }
    128   return false;
    129 }
    130 
    131 pid_t ThreadList::GetLockOwner() {
    132   return Locks::thread_list_lock_->GetExclusiveOwnerTid();
    133 }
    134 
    135 void ThreadList::DumpNativeStacks(std::ostream& os) {
    136   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
    137   std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
    138   for (const auto& thread : list_) {
    139     os << "DUMPING THREAD " << thread->GetTid() << "\n";
    140     DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
    141     os << "\n";
    142   }
    143 }
    144 
    145 void ThreadList::DumpForSigQuit(std::ostream& os) {
    146   {
    147     ScopedObjectAccess soa(Thread::Current());
    148     // Only print if we have samples.
    149     if (suspend_all_historam_.SampleSize() > 0) {
    150       Histogram<uint64_t>::CumulativeData data;
    151       suspend_all_historam_.CreateHistogram(&data);
    152       suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data);  // Dump time to suspend.
    153     }
    154   }
    155   bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
    156   Dump(os, dump_native_stack);
    157   DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
    158 }
    159 
    160 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
    161     NO_THREAD_SAFETY_ANALYSIS {
    162   // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
    163   // refactor DumpState to avoid skipping analysis.
    164   Thread::DumpState(os, nullptr, tid);
    165   DumpKernelStack(os, tid, "  kernel: ", false);
    166   if (dump_native_stack) {
    167     DumpNativeStack(os, tid, nullptr, "  native: ");
    168   }
    169   os << std::endl;
    170 }
    171 
    172 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
    173   DIR* d = opendir("/proc/self/task");
    174   if (!d) {
    175     return;
    176   }
    177 
    178   Thread* self = Thread::Current();
    179   dirent* e;
    180   while ((e = readdir(d)) != nullptr) {
    181     char* end;
    182     pid_t tid = strtol(e->d_name, &end, 10);
    183     if (!*end) {
    184       bool contains;
    185       {
    186         MutexLock mu(self, *Locks::thread_list_lock_);
    187         contains = Contains(tid);
    188       }
    189       if (!contains) {
    190         DumpUnattachedThread(os, tid, dump_native_stack);
    191       }
    192     }
    193   }
    194   closedir(d);
    195 }
    196 
    197 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
    198 // overloaded with ANR dumps.
    199 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
    200 
    201 // A closure used by Thread::Dump.
    202 class DumpCheckpoint final : public Closure {
    203  public:
    204   DumpCheckpoint(std::ostream* os, bool dump_native_stack)
    205       : os_(os),
    206         // Avoid verifying count in case a thread doesn't end up passing through the barrier.
    207         // This avoids a SIGABRT that would otherwise happen in the destructor.
    208         barrier_(0, /*verify_count_on_shutdown=*/false),
    209         backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
    210         dump_native_stack_(dump_native_stack) {
    211     if (backtrace_map_ != nullptr) {
    212       backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
    213     }
    214   }
    215 
    216   void Run(Thread* thread) override {
    217     // Note thread and self may not be equal if thread was already suspended at the point of the
    218     // request.
    219     Thread* self = Thread::Current();
    220     CHECK(self != nullptr);
    221     std::ostringstream local_os;
    222     {
    223       ScopedObjectAccess soa(self);
    224       thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
    225     }
    226     {
    227       // Use the logging lock to ensure serialization when writing to the common ostream.
    228       MutexLock mu(self, *Locks::logging_lock_);
    229       *os_ << local_os.str() << std::endl;
    230     }
    231     barrier_.Pass(self);
    232   }
    233 
    234   void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
    235     Thread* self = Thread::Current();
    236     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    237     bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
    238     if (timed_out) {
    239       // Avoid a recursive abort.
    240       LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
    241           << "Unexpected time out during dump checkpoint.";
    242     }
    243   }
    244 
    245  private:
    246   // The common stream that will accumulate all the dumps.
    247   std::ostream* const os_;
    248   // The barrier to be passed through and for the requestor to wait upon.
    249   Barrier barrier_;
    250   // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
    251   std::unique_ptr<BacktraceMap> backtrace_map_;
    252   // Whether we should dump the native stack.
    253   const bool dump_native_stack_;
    254 };
    255 
    256 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
    257   Thread* self = Thread::Current();
    258   {
    259     MutexLock mu(self, *Locks::thread_list_lock_);
    260     os << "DALVIK THREADS (" << list_.size() << "):\n";
    261   }
    262   if (self != nullptr) {
    263     DumpCheckpoint checkpoint(&os, dump_native_stack);
    264     size_t threads_running_checkpoint;
    265     {
    266       // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
    267       ScopedObjectAccess soa(self);
    268       threads_running_checkpoint = RunCheckpoint(&checkpoint);
    269     }
    270     if (threads_running_checkpoint != 0) {
    271       checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
    272     }
    273   } else {
    274     DumpUnattachedThreads(os, dump_native_stack);
    275   }
    276 }
    277 
    278 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
    279   MutexLock mu(self, *Locks::thread_list_lock_);
    280   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    281   for (const auto& thread : list_) {
    282     if (thread != ignore1 && thread != ignore2) {
    283       CHECK(thread->IsSuspended())
    284             << "\nUnsuspended thread: <<" << *thread << "\n"
    285             << "self: <<" << *Thread::Current();
    286     }
    287   }
    288 }
    289 
    290 #if HAVE_TIMED_RWLOCK
    291 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
    292 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
    293   // Increment gAborting before doing the thread list dump since we don't want any failures from
    294   // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
    295   // See b/69044468.
    296   ++gAborting;
    297   Runtime* runtime = Runtime::Current();
    298   std::ostringstream ss;
    299   ss << "Thread suspend timeout\n";
    300   Locks::mutator_lock_->Dump(ss);
    301   ss << "\n";
    302   runtime->GetThreadList()->Dump(ss);
    303   --gAborting;
    304   LOG(FATAL) << ss.str();
    305   exit(0);
    306 }
    307 #endif
    308 
    309 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
    310 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
    311 // we use sched_yield instead of calling usleep.
    312 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
    313 // errno = EINTR, there should be no problem if interrupted, so we do not check.
    314 static void ThreadSuspendSleep(useconds_t delay_us) {
    315   if (delay_us == 0) {
    316     sched_yield();
    317   } else {
    318     usleep(delay_us);
    319   }
    320 }
    321 
    322 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
    323   Thread* self = Thread::Current();
    324   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    325   Locks::thread_list_lock_->AssertNotHeld(self);
    326   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    327 
    328   std::vector<Thread*> suspended_count_modified_threads;
    329   size_t count = 0;
    330   {
    331     // Call a checkpoint function for each thread, threads which are suspend get their checkpoint
    332     // manually called.
    333     MutexLock mu(self, *Locks::thread_list_lock_);
    334     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    335     count = list_.size();
    336     for (const auto& thread : list_) {
    337       if (thread != self) {
    338         while (true) {
    339           if (thread->RequestCheckpoint(checkpoint_function)) {
    340             // This thread will run its checkpoint some time in the near future.
    341             break;
    342           } else {
    343             // We are probably suspended, try to make sure that we stay suspended.
    344             // The thread switched back to runnable.
    345             if (thread->GetState() == kRunnable) {
    346               // Spurious fail, try again.
    347               continue;
    348             }
    349             bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
    350             DCHECK(updated);
    351             suspended_count_modified_threads.push_back(thread);
    352             break;
    353           }
    354         }
    355       }
    356     }
    357     // Run the callback to be called inside this critical section.
    358     if (callback != nullptr) {
    359       callback->Run(self);
    360     }
    361   }
    362 
    363   // Run the checkpoint on ourself while we wait for threads to suspend.
    364   checkpoint_function->Run(self);
    365 
    366   // Run the checkpoint on the suspended threads.
    367   for (const auto& thread : suspended_count_modified_threads) {
    368     if (!thread->IsSuspended()) {
    369       ScopedTrace trace([&]() {
    370         std::ostringstream oss;
    371         thread->ShortDump(oss);
    372         return std::string("Waiting for suspension of thread ") + oss.str();
    373       });
    374       // Busy wait until the thread is suspended.
    375       const uint64_t start_time = NanoTime();
    376       do {
    377         ThreadSuspendSleep(kThreadSuspendInitialSleepUs);
    378       } while (!thread->IsSuspended());
    379       const uint64_t total_delay = NanoTime() - start_time;
    380       // Shouldn't need to wait for longer than 1000 microseconds.
    381       constexpr uint64_t kLongWaitThreshold = MsToNs(1);
    382       if (UNLIKELY(total_delay > kLongWaitThreshold)) {
    383         LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for "
    384             << *thread << " suspension!";
    385       }
    386     }
    387     // We know for sure that the thread is suspended at this point.
    388     checkpoint_function->Run(thread);
    389     {
    390       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    391       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
    392       DCHECK(updated);
    393     }
    394   }
    395 
    396   {
    397     // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
    398     // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
    399     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    400     Thread::resume_cond_->Broadcast(self);
    401   }
    402 
    403   return count;
    404 }
    405 
    406 void ThreadList::RunEmptyCheckpoint() {
    407   Thread* self = Thread::Current();
    408   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    409   Locks::thread_list_lock_->AssertNotHeld(self);
    410   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    411   std::vector<uint32_t> runnable_thread_ids;
    412   size_t count = 0;
    413   Barrier* barrier = empty_checkpoint_barrier_.get();
    414   barrier->Init(self, 0);
    415   {
    416     MutexLock mu(self, *Locks::thread_list_lock_);
    417     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    418     for (Thread* thread : list_) {
    419       if (thread != self) {
    420         while (true) {
    421           if (thread->RequestEmptyCheckpoint()) {
    422             // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
    423             // some time in the near future.
    424             ++count;
    425             if (kIsDebugBuild) {
    426               runnable_thread_ids.push_back(thread->GetThreadId());
    427             }
    428             break;
    429           }
    430           if (thread->GetState() != kRunnable) {
    431             // It's seen suspended, we are done because it must not be in the middle of a mutator
    432             // heap access.
    433             break;
    434           }
    435         }
    436       }
    437     }
    438   }
    439 
    440   // Wake up the threads blocking for weak ref access so that they will respond to the empty
    441   // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
    442   Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
    443   Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
    444   {
    445     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    446     uint64_t total_wait_time = 0;
    447     bool first_iter = true;
    448     while (true) {
    449       // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
    450       // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
    451       // and a mutex.) This needs to be done periodically because the thread may be preempted
    452       // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
    453       // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
    454       // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
    455       // handled in the first iteration.
    456       for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
    457         mutex->WakeupToRespondToEmptyCheckpoint();
    458       }
    459       static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100;  // 100ms
    460       static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000;  // 10 minutes.
    461       size_t barrier_count = first_iter ? count : 0;
    462       first_iter = false;  // Don't add to the barrier count from the second iteration on.
    463       bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
    464       if (!timed_out) {
    465         break;  // Success
    466       }
    467       // This is a very rare case.
    468       total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
    469       if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
    470         std::ostringstream ss;
    471         ss << "Empty checkpoint timeout\n";
    472         ss << "Barrier count " << barrier->GetCount(self) << "\n";
    473         ss << "Runnable thread IDs";
    474         for (uint32_t tid : runnable_thread_ids) {
    475           ss << " " << tid;
    476         }
    477         ss << "\n";
    478         Locks::mutator_lock_->Dump(ss);
    479         ss << "\n";
    480         LOG(FATAL_WITHOUT_ABORT) << ss.str();
    481         // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
    482         // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
    483         {
    484           ScopedObjectAccess soa(self);
    485           MutexLock mu1(self, *Locks::thread_list_lock_);
    486           for (Thread* thread : GetList()) {
    487             uint32_t tid = thread->GetThreadId();
    488             bool is_in_runnable_thread_ids =
    489                 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
    490                 runnable_thread_ids.end();
    491             if (is_in_runnable_thread_ids &&
    492                 thread->ReadFlag(kEmptyCheckpointRequest)) {
    493               // Found a runnable thread that hasn't responded to the empty checkpoint request.
    494               // Assume it's stuck and safe to dump its stack.
    495               thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
    496                            /*dump_native_stack=*/ true,
    497                            /*backtrace_map=*/ nullptr,
    498                            /*force_dump_stack=*/ true);
    499             }
    500           }
    501         }
    502         LOG(FATAL_WITHOUT_ABORT)
    503             << "Dumped runnable threads that haven't responded to empty checkpoint.";
    504         // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
    505         Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
    506         LOG(FATAL) << "Dumped all threads.";
    507       }
    508     }
    509   }
    510 }
    511 
    512 // A checkpoint/suspend-all hybrid to switch thread roots from
    513 // from-space to to-space refs. Used to synchronize threads at a point
    514 // to mark the initiation of marking while maintaining the to-space
    515 // invariant.
    516 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
    517                                    Closure* flip_callback,
    518                                    gc::collector::GarbageCollector* collector,
    519                                    gc::GcPauseListener* pause_listener) {
    520   TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
    521   Thread* self = Thread::Current();
    522   Locks::mutator_lock_->AssertNotHeld(self);
    523   Locks::thread_list_lock_->AssertNotHeld(self);
    524   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    525   CHECK_NE(self->GetState(), kRunnable);
    526 
    527   collector->GetHeap()->ThreadFlipBegin(self);  // Sync with JNI critical calls.
    528 
    529   // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
    530   // pause.
    531   const uint64_t suspend_start_time = NanoTime();
    532   SuspendAllInternal(self, self, nullptr);
    533   if (pause_listener != nullptr) {
    534     pause_listener->StartPause();
    535   }
    536 
    537   // Run the flip callback for the collector.
    538   Locks::mutator_lock_->ExclusiveLock(self);
    539   suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
    540   flip_callback->Run(self);
    541   Locks::mutator_lock_->ExclusiveUnlock(self);
    542   collector->RegisterPause(NanoTime() - suspend_start_time);
    543   if (pause_listener != nullptr) {
    544     pause_listener->EndPause();
    545   }
    546 
    547   // Resume runnable threads.
    548   size_t runnable_thread_count = 0;
    549   std::vector<Thread*> other_threads;
    550   {
    551     TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
    552     MutexLock mu(self, *Locks::thread_list_lock_);
    553     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    554     --suspend_all_count_;
    555     for (const auto& thread : list_) {
    556       // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
    557       // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
    558       // a runnable thread runs it for itself or we run it for a suspended thread below.
    559       thread->SetFlipFunction(thread_flip_visitor);
    560       if (thread == self) {
    561         continue;
    562       }
    563       // Resume early the threads that were runnable but are suspended just for this thread flip or
    564       // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
    565       // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
    566       // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
    567       ThreadState state = thread->GetState();
    568       if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
    569           thread->GetSuspendCount() == 1) {
    570         // The thread will resume right after the broadcast.
    571         bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
    572         DCHECK(updated);
    573         ++runnable_thread_count;
    574       } else {
    575         other_threads.push_back(thread);
    576       }
    577     }
    578     Thread::resume_cond_->Broadcast(self);
    579   }
    580 
    581   collector->GetHeap()->ThreadFlipEnd(self);
    582 
    583   // Run the closure on the other threads and let them resume.
    584   {
    585     TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
    586     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    587     for (const auto& thread : other_threads) {
    588       Closure* flip_func = thread->GetFlipFunction();
    589       if (flip_func != nullptr) {
    590         flip_func->Run(thread);
    591       }
    592     }
    593     // Run it for self.
    594     Closure* flip_func = self->GetFlipFunction();
    595     if (flip_func != nullptr) {
    596       flip_func->Run(self);
    597     }
    598   }
    599 
    600   // Resume other threads.
    601   {
    602     TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
    603     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    604     for (const auto& thread : other_threads) {
    605       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
    606       DCHECK(updated);
    607     }
    608     Thread::resume_cond_->Broadcast(self);
    609   }
    610 
    611   return runnable_thread_count + other_threads.size() + 1;  // +1 for self.
    612 }
    613 
    614 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
    615   Thread* self = Thread::Current();
    616 
    617   if (self != nullptr) {
    618     VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
    619   } else {
    620     VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
    621   }
    622   {
    623     ScopedTrace trace("Suspending mutator threads");
    624     const uint64_t start_time = NanoTime();
    625 
    626     SuspendAllInternal(self, self);
    627     // All threads are known to have suspended (but a thread may still own the mutator lock)
    628     // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
    629 #if HAVE_TIMED_RWLOCK
    630     while (true) {
    631       if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
    632                                                          NsToMs(thread_suspend_timeout_ns_),
    633                                                          0)) {
    634         break;
    635       } else if (!long_suspend_) {
    636         // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
    637         // could result in a thread suspend timeout.
    638         // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
    639         UnsafeLogFatalForThreadSuspendAllTimeout();
    640       }
    641     }
    642 #else
    643     Locks::mutator_lock_->ExclusiveLock(self);
    644 #endif
    645 
    646     long_suspend_ = long_suspend;
    647 
    648     const uint64_t end_time = NanoTime();
    649     const uint64_t suspend_time = end_time - start_time;
    650     suspend_all_historam_.AdjustAndAddValue(suspend_time);
    651     if (suspend_time > kLongThreadSuspendThreshold) {
    652       LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
    653     }
    654 
    655     if (kDebugLocking) {
    656       // Debug check that all threads are suspended.
    657       AssertThreadsAreSuspended(self, self);
    658     }
    659   }
    660   ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
    661 
    662   if (self != nullptr) {
    663     VLOG(threads) << *self << " SuspendAll complete";
    664   } else {
    665     VLOG(threads) << "Thread[null] SuspendAll complete";
    666   }
    667 }
    668 
    669 // Ensures all threads running Java suspend and that those not running Java don't start.
    670 // Debugger thread might be set to kRunnable for a short period of time after the
    671 // SuspendAllInternal. This is safe because it will be set back to suspended state before
    672 // the SuspendAll returns.
    673 void ThreadList::SuspendAllInternal(Thread* self,
    674                                     Thread* ignore1,
    675                                     Thread* ignore2,
    676                                     SuspendReason reason) {
    677   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    678   Locks::thread_list_lock_->AssertNotHeld(self);
    679   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    680   if (kDebugLocking && self != nullptr) {
    681     CHECK_NE(self->GetState(), kRunnable);
    682   }
    683 
    684   // First request that all threads suspend, then wait for them to suspend before
    685   // returning. This suspension scheme also relies on other behaviour:
    686   // 1. Threads cannot be deleted while they are suspended or have a suspend-
    687   //    request flag set - (see Unregister() below).
    688   // 2. When threads are created, they are created in a suspended state (actually
    689   //    kNative) and will never begin executing Java code without first checking
    690   //    the suspend-request flag.
    691 
    692   // The atomic counter for number of threads that need to pass the barrier.
    693   AtomicInteger pending_threads;
    694   uint32_t num_ignored = 0;
    695   if (ignore1 != nullptr) {
    696     ++num_ignored;
    697   }
    698   if (ignore2 != nullptr && ignore1 != ignore2) {
    699     ++num_ignored;
    700   }
    701   {
    702     MutexLock mu(self, *Locks::thread_list_lock_);
    703     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    704     // Update global suspend all state for attaching threads.
    705     ++suspend_all_count_;
    706     if (reason == SuspendReason::kForDebugger) {
    707       ++debug_suspend_all_count_;
    708     }
    709     pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
    710     // Increment everybody's suspend count (except those that should be ignored).
    711     for (const auto& thread : list_) {
    712       if (thread == ignore1 || thread == ignore2) {
    713         continue;
    714       }
    715       VLOG(threads) << "requesting thread suspend: " << *thread;
    716       bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
    717       DCHECK(updated);
    718 
    719       // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
    720       // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
    721       // that can lead a thread to miss a call to PassActiveSuspendBarriers().
    722       if (thread->IsSuspended()) {
    723         // Only clear the counter for the current thread.
    724         thread->ClearSuspendBarrier(&pending_threads);
    725         pending_threads.fetch_sub(1, std::memory_order_seq_cst);
    726       }
    727     }
    728   }
    729 
    730   // Wait for the barrier to be passed by all runnable threads. This wait
    731   // is done with a timeout so that we can detect problems.
    732 #if ART_USE_FUTEXES
    733   timespec wait_timeout;
    734   InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
    735 #endif
    736   const uint64_t start_time = NanoTime();
    737   while (true) {
    738     int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
    739     if (LIKELY(cur_val > 0)) {
    740 #if ART_USE_FUTEXES
    741       if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
    742           != 0) {
    743         if ((errno == EAGAIN) || (errno == EINTR)) {
    744           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    745           continue;
    746         }
    747         if (errno == ETIMEDOUT) {
    748           const uint64_t wait_time = NanoTime() - start_time;
    749           MutexLock mu(self, *Locks::thread_list_lock_);
    750           MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    751           std::ostringstream oss;
    752           for (const auto& thread : list_) {
    753             if (thread == ignore1 || thread == ignore2) {
    754               continue;
    755             }
    756             if (!thread->IsSuspended()) {
    757               oss << std::endl << "Thread not suspended: " << *thread;
    758             }
    759           }
    760           LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
    761               << "Timed out waiting for threads to suspend, waited for "
    762               << PrettyDuration(wait_time)
    763               << oss.str();
    764         } else {
    765           PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
    766         }
    767       }  // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
    768 #else
    769       // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
    770       UNUSED(start_time);
    771 #endif
    772     } else {
    773       CHECK_EQ(cur_val, 0);
    774       break;
    775     }
    776   }
    777 }
    778 
    779 void ThreadList::ResumeAll() {
    780   Thread* self = Thread::Current();
    781 
    782   if (self != nullptr) {
    783     VLOG(threads) << *self << " ResumeAll starting";
    784   } else {
    785     VLOG(threads) << "Thread[null] ResumeAll starting";
    786   }
    787 
    788   ATraceEnd();
    789 
    790   ScopedTrace trace("Resuming mutator threads");
    791 
    792   if (kDebugLocking) {
    793     // Debug check that all threads are suspended.
    794     AssertThreadsAreSuspended(self, self);
    795   }
    796 
    797   long_suspend_ = false;
    798 
    799   Locks::mutator_lock_->ExclusiveUnlock(self);
    800   {
    801     MutexLock mu(self, *Locks::thread_list_lock_);
    802     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    803     // Update global suspend all state for attaching threads.
    804     --suspend_all_count_;
    805     // Decrement the suspend counts for all threads.
    806     for (const auto& thread : list_) {
    807       if (thread == self) {
    808         continue;
    809       }
    810       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
    811       DCHECK(updated);
    812     }
    813 
    814     // Broadcast a notification to all suspended threads, some or all of
    815     // which may choose to wake up.  No need to wait for them.
    816     if (self != nullptr) {
    817       VLOG(threads) << *self << " ResumeAll waking others";
    818     } else {
    819       VLOG(threads) << "Thread[null] ResumeAll waking others";
    820     }
    821     Thread::resume_cond_->Broadcast(self);
    822   }
    823 
    824   if (self != nullptr) {
    825     VLOG(threads) << *self << " ResumeAll complete";
    826   } else {
    827     VLOG(threads) << "Thread[null] ResumeAll complete";
    828   }
    829 }
    830 
    831 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
    832   // This assumes there was an ATraceBegin when we suspended the thread.
    833   ATraceEnd();
    834 
    835   Thread* self = Thread::Current();
    836   DCHECK_NE(thread, self);
    837   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
    838 
    839   {
    840     // To check Contains.
    841     MutexLock mu(self, *Locks::thread_list_lock_);
    842     // To check IsSuspended.
    843     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    844     if (UNLIKELY(!thread->IsSuspended())) {
    845       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
    846           << ") thread not suspended";
    847       return false;
    848     }
    849     if (!Contains(thread)) {
    850       // We only expect threads within the thread-list to have been suspended otherwise we can't
    851       // stop such threads from delete-ing themselves.
    852       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
    853           << ") thread not within thread list";
    854       return false;
    855     }
    856     if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
    857       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
    858                  << ") could not modify suspend count.";
    859       return false;
    860     }
    861   }
    862 
    863   {
    864     VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
    865     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
    866     Thread::resume_cond_->Broadcast(self);
    867   }
    868 
    869   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
    870   return true;
    871 }
    872 
    873 static void ThreadSuspendByPeerWarning(Thread* self,
    874                                        LogSeverity severity,
    875                                        const char* message,
    876                                        jobject peer) {
    877   JNIEnvExt* env = self->GetJniEnv();
    878   ScopedLocalRef<jstring>
    879       scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
    880           peer, WellKnownClasses::java_lang_Thread_name)));
    881   ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
    882   if (scoped_name_chars.c_str() == nullptr) {
    883       LOG(severity) << message << ": " << peer;
    884       env->ExceptionClear();
    885   } else {
    886       LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
    887   }
    888 }
    889 
    890 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
    891                                         bool request_suspension,
    892                                         SuspendReason reason,
    893                                         bool* timed_out) {
    894   const uint64_t start_time = NanoTime();
    895   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
    896   *timed_out = false;
    897   Thread* const self = Thread::Current();
    898   Thread* suspended_thread = nullptr;
    899   VLOG(threads) << "SuspendThreadByPeer starting";
    900   while (true) {
    901     Thread* thread;
    902     {
    903       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
    904       // is requesting another suspend, to avoid deadlock, by requiring this function be called
    905       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
    906       // than request thread suspension, to avoid potential cycles in threads requesting each other
    907       // suspend.
    908       ScopedObjectAccess soa(self);
    909       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
    910       thread = Thread::FromManagedThread(soa, peer);
    911       if (thread == nullptr) {
    912         if (suspended_thread != nullptr) {
    913           MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
    914           // If we incremented the suspend count but the thread reset its peer, we need to
    915           // re-decrement it since it is shutting down and may deadlock the runtime in
    916           // ThreadList::WaitForOtherNonDaemonThreadsToExit.
    917           bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
    918                                                               -1,
    919                                                               nullptr,
    920                                                               reason);
    921           DCHECK(updated);
    922         }
    923         ThreadSuspendByPeerWarning(self,
    924                                    ::android::base::WARNING,
    925                                     "No such thread for suspend",
    926                                     peer);
    927         return nullptr;
    928       }
    929       if (!Contains(thread)) {
    930         CHECK(suspended_thread == nullptr);
    931         VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
    932             << reinterpret_cast<void*>(thread);
    933         return nullptr;
    934       }
    935       VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
    936       {
    937         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
    938         if (request_suspension) {
    939           if (self->GetSuspendCount() > 0) {
    940             // We hold the suspend count lock but another thread is trying to suspend us. Its not
    941             // safe to try to suspend another thread in case we get a cycle. Start the loop again
    942             // which will allow this thread to be suspended.
    943             continue;
    944           }
    945           CHECK(suspended_thread == nullptr);
    946           suspended_thread = thread;
    947           bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
    948           DCHECK(updated);
    949           request_suspension = false;
    950         } else {
    951           // If the caller isn't requesting suspension, a suspension should have already occurred.
    952           CHECK_GT(thread->GetSuspendCount(), 0);
    953         }
    954         // IsSuspended on the current thread will fail as the current thread is changed into
    955         // Runnable above. As the suspend count is now raised if this is the current thread
    956         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
    957         // to just explicitly handle the current thread in the callers to this code.
    958         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
    959         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
    960         // count, or else we've waited and it has self suspended) or is the current thread, we're
    961         // done.
    962         if (thread->IsSuspended()) {
    963           VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
    964           if (ATraceEnabled()) {
    965             std::string name;
    966             thread->GetThreadName(name);
    967             ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
    968                                       peer).c_str());
    969           }
    970           return thread;
    971         }
    972         const uint64_t total_delay = NanoTime() - start_time;
    973         if (total_delay >= thread_suspend_timeout_ns_) {
    974           ThreadSuspendByPeerWarning(self,
    975                                      ::android::base::FATAL,
    976                                      "Thread suspension timed out",
    977                                      peer);
    978           if (suspended_thread != nullptr) {
    979             CHECK_EQ(suspended_thread, thread);
    980             bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
    981                                                                 -1,
    982                                                                 nullptr,
    983                                                                 reason);
    984             DCHECK(updated);
    985           }
    986           *timed_out = true;
    987           return nullptr;
    988         } else if (sleep_us == 0 &&
    989             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
    990           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
    991           // excessive CPU usage.
    992           sleep_us = kThreadSuspendMaxYieldUs / 2;
    993         }
    994       }
    995       // Release locks and come out of runnable state.
    996     }
    997     VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
    998     ThreadSuspendSleep(sleep_us);
    999     // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
   1000     // all if possible. This shouldn't be an issue since time to suspend should always be small.
   1001     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
   1002   }
   1003 }
   1004 
   1005 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
   1006                                            const char* message,
   1007                                            uint32_t thread_id) {
   1008   LOG(severity) << StringPrintf("%s: %d", message, thread_id);
   1009 }
   1010 
   1011 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
   1012                                             SuspendReason reason,
   1013                                             bool* timed_out) {
   1014   const uint64_t start_time = NanoTime();
   1015   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
   1016   *timed_out = false;
   1017   Thread* suspended_thread = nullptr;
   1018   Thread* const self = Thread::Current();
   1019   CHECK_NE(thread_id, kInvalidThreadId);
   1020   VLOG(threads) << "SuspendThreadByThreadId starting";
   1021   while (true) {
   1022     {
   1023       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
   1024       // is requesting another suspend, to avoid deadlock, by requiring this function be called
   1025       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
   1026       // than request thread suspension, to avoid potential cycles in threads requesting each other
   1027       // suspend.
   1028       ScopedObjectAccess soa(self);
   1029       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
   1030       Thread* thread = nullptr;
   1031       for (const auto& it : list_) {
   1032         if (it->GetThreadId() == thread_id) {
   1033           thread = it;
   1034           break;
   1035         }
   1036       }
   1037       if (thread == nullptr) {
   1038         CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
   1039             << " no longer in thread list";
   1040         // There's a race in inflating a lock and the owner giving up ownership and then dying.
   1041         ThreadSuspendByThreadIdWarning(::android::base::WARNING,
   1042                                        "No such thread id for suspend",
   1043                                        thread_id);
   1044         return nullptr;
   1045       }
   1046       VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
   1047       DCHECK(Contains(thread));
   1048       {
   1049         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
   1050         if (suspended_thread == nullptr) {
   1051           if (self->GetSuspendCount() > 0) {
   1052             // We hold the suspend count lock but another thread is trying to suspend us. Its not
   1053             // safe to try to suspend another thread in case we get a cycle. Start the loop again
   1054             // which will allow this thread to be suspended.
   1055             continue;
   1056           }
   1057           bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
   1058           DCHECK(updated);
   1059           suspended_thread = thread;
   1060         } else {
   1061           CHECK_EQ(suspended_thread, thread);
   1062           // If the caller isn't requesting suspension, a suspension should have already occurred.
   1063           CHECK_GT(thread->GetSuspendCount(), 0);
   1064         }
   1065         // IsSuspended on the current thread will fail as the current thread is changed into
   1066         // Runnable above. As the suspend count is now raised if this is the current thread
   1067         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
   1068         // to just explicitly handle the current thread in the callers to this code.
   1069         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
   1070         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
   1071         // count, or else we've waited and it has self suspended) or is the current thread, we're
   1072         // done.
   1073         if (thread->IsSuspended()) {
   1074           if (ATraceEnabled()) {
   1075             std::string name;
   1076             thread->GetThreadName(name);
   1077             ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
   1078                                       name.c_str(), thread_id).c_str());
   1079           }
   1080           VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
   1081           return thread;
   1082         }
   1083         const uint64_t total_delay = NanoTime() - start_time;
   1084         if (total_delay >= thread_suspend_timeout_ns_) {
   1085           ThreadSuspendByThreadIdWarning(::android::base::WARNING,
   1086                                          "Thread suspension timed out",
   1087                                          thread_id);
   1088           if (suspended_thread != nullptr) {
   1089             bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
   1090             DCHECK(updated);
   1091           }
   1092           *timed_out = true;
   1093           return nullptr;
   1094         } else if (sleep_us == 0 &&
   1095             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
   1096           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
   1097           // excessive CPU usage.
   1098           sleep_us = kThreadSuspendMaxYieldUs / 2;
   1099         }
   1100       }
   1101       // Release locks and come out of runnable state.
   1102     }
   1103     VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
   1104     ThreadSuspendSleep(sleep_us);
   1105     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
   1106   }
   1107 }
   1108 
   1109 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
   1110   for (const auto& thread : list_) {
   1111     if (thread->GetThreadId() == thread_id) {
   1112       return thread;
   1113     }
   1114   }
   1115   return nullptr;
   1116 }
   1117 
   1118 void ThreadList::SuspendAllForDebugger() {
   1119   Thread* self = Thread::Current();
   1120   Thread* debug_thread = Dbg::GetDebugThread();
   1121 
   1122   VLOG(threads) << *self << " SuspendAllForDebugger starting...";
   1123 
   1124   SuspendAllInternal(self, self, debug_thread, SuspendReason::kForDebugger);
   1125   // Block on the mutator lock until all Runnable threads release their share of access then
   1126   // immediately unlock again.
   1127 #if HAVE_TIMED_RWLOCK
   1128   // Timeout if we wait more than 30 seconds.
   1129   if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) {
   1130     UnsafeLogFatalForThreadSuspendAllTimeout();
   1131   } else {
   1132     Locks::mutator_lock_->ExclusiveUnlock(self);
   1133   }
   1134 #else
   1135   Locks::mutator_lock_->ExclusiveLock(self);
   1136   Locks::mutator_lock_->ExclusiveUnlock(self);
   1137 #endif
   1138   // Disabled for the following race condition:
   1139   // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock.
   1140   // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected).
   1141   // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable
   1142   // state (from SetStateUnsafe).
   1143   // AssertThreadsAreSuspended(self, self, debug_thread);
   1144 
   1145   VLOG(threads) << *self << " SuspendAllForDebugger complete";
   1146 }
   1147 
   1148 void ThreadList::SuspendSelfForDebugger() {
   1149   Thread* const self = Thread::Current();
   1150   self->SetReadyForDebugInvoke(true);
   1151 
   1152   // The debugger thread must not suspend itself due to debugger activity!
   1153   Thread* debug_thread = Dbg::GetDebugThread();
   1154   CHECK(self != debug_thread);
   1155   CHECK_NE(self->GetState(), kRunnable);
   1156   Locks::mutator_lock_->AssertNotHeld(self);
   1157 
   1158   // The debugger may have detached while we were executing an invoke request. In that case, we
   1159   // must not suspend ourself.
   1160   DebugInvokeReq* pReq = self->GetInvokeReq();
   1161   const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive());
   1162   if (!skip_thread_suspension) {
   1163     // Collisions with other suspends aren't really interesting. We want
   1164     // to ensure that we're the only one fiddling with the suspend count
   1165     // though.
   1166     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1167     bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kForDebugger);
   1168     DCHECK(updated);
   1169     CHECK_GT(self->GetSuspendCount(), 0);
   1170 
   1171     VLOG(threads) << *self << " self-suspending (debugger)";
   1172   } else {
   1173     // We must no longer be subject to debugger suspension.
   1174     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1175     CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us";
   1176 
   1177     VLOG(threads) << *self << " not self-suspending because debugger detached during invoke";
   1178   }
   1179 
   1180   // If the debugger requested an invoke, we need to send the reply and clear the request.
   1181   if (pReq != nullptr) {
   1182     Dbg::FinishInvokeMethod(pReq);
   1183     self->ClearDebugInvokeReq();
   1184     pReq = nullptr;  // object has been deleted, clear it for safety.
   1185   }
   1186 
   1187   // Tell JDWP that we've completed suspension. The JDWP thread can't
   1188   // tell us to resume before we're fully asleep because we hold the
   1189   // suspend count lock.
   1190   Dbg::ClearWaitForEventThread();
   1191 
   1192   {
   1193     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1194     while (self->GetSuspendCount() != 0) {
   1195       Thread::resume_cond_->Wait(self);
   1196       if (self->GetSuspendCount() != 0) {
   1197         // The condition was signaled but we're still suspended. This
   1198         // can happen when we suspend then resume all threads to
   1199         // update instrumentation or compute monitor info. This can
   1200         // also happen if the debugger lets go while a SIGQUIT thread
   1201         // dump event is pending (assuming SignalCatcher was resumed for
   1202         // just long enough to try to grab the thread-suspend lock).
   1203         VLOG(jdwp) << *self << " still suspended after undo "
   1204                    << "(suspend count=" << self->GetSuspendCount() << ", "
   1205                    << "debug suspend count=" << self->GetDebugSuspendCount() << ")";
   1206       }
   1207     }
   1208     CHECK_EQ(self->GetSuspendCount(), 0);
   1209   }
   1210 
   1211   self->SetReadyForDebugInvoke(false);
   1212   VLOG(threads) << *self << " self-reviving (debugger)";
   1213 }
   1214 
   1215 void ThreadList::ResumeAllForDebugger() {
   1216   Thread* self = Thread::Current();
   1217   Thread* debug_thread = Dbg::GetDebugThread();
   1218 
   1219   VLOG(threads) << *self << " ResumeAllForDebugger starting...";
   1220 
   1221   // Threads can't resume if we exclusively hold the mutator lock.
   1222   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
   1223 
   1224   {
   1225     MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
   1226     {
   1227       MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
   1228       // Update global suspend all state for attaching threads.
   1229       DCHECK_GE(suspend_all_count_, debug_suspend_all_count_);
   1230       if (debug_suspend_all_count_ > 0) {
   1231         --suspend_all_count_;
   1232         --debug_suspend_all_count_;
   1233       } else {
   1234         // We've been asked to resume all threads without being asked to
   1235         // suspend them all before. That may happen if a debugger tries
   1236         // to resume some suspended threads (with suspend count == 1)
   1237         // at once with a VirtualMachine.Resume command. Let's print a
   1238         // warning.
   1239         LOG(WARNING) << "Debugger attempted to resume all threads without "
   1240                      << "having suspended them all before.";
   1241       }
   1242       // Decrement everybody's suspend count (except our own).
   1243       for (const auto& thread : list_) {
   1244         if (thread == self || thread == debug_thread) {
   1245           continue;
   1246         }
   1247         if (thread->GetDebugSuspendCount() == 0) {
   1248           // This thread may have been individually resumed with ThreadReference.Resume.
   1249           continue;
   1250         }
   1251         VLOG(threads) << "requesting thread resume: " << *thread;
   1252         bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kForDebugger);
   1253         DCHECK(updated);
   1254       }
   1255     }
   1256   }
   1257 
   1258   {
   1259     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1260     Thread::resume_cond_->Broadcast(self);
   1261   }
   1262 
   1263   VLOG(threads) << *self << " ResumeAllForDebugger complete";
   1264 }
   1265 
   1266 void ThreadList::UndoDebuggerSuspensions() {
   1267   Thread* self = Thread::Current();
   1268 
   1269   VLOG(threads) << *self << " UndoDebuggerSuspensions starting";
   1270 
   1271   {
   1272     MutexLock mu(self, *Locks::thread_list_lock_);
   1273     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1274     // Update global suspend all state for attaching threads.
   1275     suspend_all_count_ -= debug_suspend_all_count_;
   1276     debug_suspend_all_count_ = 0;
   1277     // Update running threads.
   1278     for (const auto& thread : list_) {
   1279       if (thread == self || thread->GetDebugSuspendCount() == 0) {
   1280         continue;
   1281       }
   1282       bool suspended = thread->ModifySuspendCount(self,
   1283                                                   -thread->GetDebugSuspendCount(),
   1284                                                   nullptr,
   1285                                                   SuspendReason::kForDebugger);
   1286       DCHECK(suspended);
   1287     }
   1288   }
   1289 
   1290   {
   1291     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1292     Thread::resume_cond_->Broadcast(self);
   1293   }
   1294 
   1295   VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete";
   1296 }
   1297 
   1298 void ThreadList::WaitForOtherNonDaemonThreadsToExit() {
   1299   ScopedTrace trace(__PRETTY_FUNCTION__);
   1300   Thread* self = Thread::Current();
   1301   Locks::mutator_lock_->AssertNotHeld(self);
   1302   while (true) {
   1303     {
   1304       // No more threads can be born after we start to shutdown.
   1305       MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   1306       CHECK(Runtime::Current()->IsShuttingDownLocked());
   1307       CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
   1308     }
   1309     MutexLock mu(self, *Locks::thread_list_lock_);
   1310     // Also wait for any threads that are unregistering to finish. This is required so that no
   1311     // threads access the thread list after it is deleted. TODO: This may not work for user daemon
   1312     // threads since they could unregister at the wrong time.
   1313     bool done = unregistering_count_ == 0;
   1314     if (done) {
   1315       for (const auto& thread : list_) {
   1316         if (thread != self && !thread->IsDaemon()) {
   1317           done = false;
   1318           break;
   1319         }
   1320       }
   1321     }
   1322     if (done) {
   1323       break;
   1324     }
   1325     // Wait for another thread to exit before re-checking.
   1326     Locks::thread_exit_cond_->Wait(self);
   1327   }
   1328 }
   1329 
   1330 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
   1331   ScopedTrace trace(__PRETTY_FUNCTION__);
   1332   Thread* self = Thread::Current();
   1333   size_t daemons_left = 0;
   1334   {
   1335     // Tell all the daemons it's time to suspend.
   1336     MutexLock mu(self, *Locks::thread_list_lock_);
   1337     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1338     for (const auto& thread : list_) {
   1339       // This is only run after all non-daemon threads have exited, so the remainder should all be
   1340       // daemons.
   1341       CHECK(thread->IsDaemon()) << *thread;
   1342       if (thread != self) {
   1343         bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
   1344         DCHECK(updated);
   1345         ++daemons_left;
   1346       }
   1347       // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
   1348       // the sleep forever one.
   1349       thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
   1350     }
   1351   }
   1352   // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they
   1353   // are about to access runtime state and are not in a runnable state. Examples: Monitor code
   1354   // or waking up from a condition variable. TODO: Try and see if there is a better way to wait
   1355   // for daemon threads to be in a blocked state.
   1356   if (daemons_left > 0) {
   1357     static constexpr size_t kDaemonSleepTime = 200 * 1000;
   1358     usleep(kDaemonSleepTime);
   1359   }
   1360   // Give the threads a chance to suspend, complaining if they're slow.
   1361   bool have_complained = false;
   1362   static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
   1363   static constexpr size_t kSleepMicroseconds = 1000;
   1364   for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
   1365     bool all_suspended = true;
   1366     {
   1367       MutexLock mu(self, *Locks::thread_list_lock_);
   1368       for (const auto& thread : list_) {
   1369         if (thread != self && thread->GetState() == kRunnable) {
   1370           if (!have_complained) {
   1371             LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
   1372             have_complained = true;
   1373           }
   1374           all_suspended = false;
   1375         }
   1376       }
   1377     }
   1378     if (all_suspended) {
   1379       return;
   1380     }
   1381     usleep(kSleepMicroseconds);
   1382   }
   1383   LOG(WARNING) << "timed out suspending all daemon threads";
   1384 }
   1385 
   1386 void ThreadList::Register(Thread* self) {
   1387   DCHECK_EQ(self, Thread::Current());
   1388   CHECK(!shut_down_);
   1389 
   1390   if (VLOG_IS_ON(threads)) {
   1391     std::ostringstream oss;
   1392     self->ShortDump(oss);  // We don't hold the mutator_lock_ yet and so cannot call Dump.
   1393     LOG(INFO) << "ThreadList::Register() " << *self  << "\n" << oss.str();
   1394   }
   1395 
   1396   // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
   1397   // SuspendAll requests.
   1398   MutexLock mu(self, *Locks::thread_list_lock_);
   1399   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1400   CHECK_GE(suspend_all_count_, debug_suspend_all_count_);
   1401   // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
   1402   // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
   1403   for (int delta = debug_suspend_all_count_; delta > 0; delta--) {
   1404     bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kForDebugger);
   1405     DCHECK(updated);
   1406   }
   1407   for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) {
   1408     bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
   1409     DCHECK(updated);
   1410   }
   1411   CHECK(!Contains(self));
   1412   list_.push_back(self);
   1413   if (kUseReadBarrier) {
   1414     gc::collector::ConcurrentCopying* const cc =
   1415         Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
   1416     // Initialize according to the state of the CC collector.
   1417     self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
   1418     if (cc->IsUsingReadBarrierEntrypoints()) {
   1419       self->SetReadBarrierEntrypoints();
   1420     }
   1421     self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
   1422   }
   1423   self->NotifyInTheadList();
   1424 }
   1425 
   1426 void ThreadList::Unregister(Thread* self) {
   1427   DCHECK_EQ(self, Thread::Current());
   1428   CHECK_NE(self->GetState(), kRunnable);
   1429   Locks::mutator_lock_->AssertNotHeld(self);
   1430 
   1431   VLOG(threads) << "ThreadList::Unregister() " << *self;
   1432 
   1433   {
   1434     MutexLock mu(self, *Locks::thread_list_lock_);
   1435     ++unregistering_count_;
   1436   }
   1437 
   1438   // Any time-consuming destruction, plus anything that can call back into managed code or
   1439   // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
   1440   // causes the threads to join. It is important to do this after incrementing unregistering_count_
   1441   // since we want the runtime to wait for the daemon threads to exit before deleting the thread
   1442   // list.
   1443   self->Destroy();
   1444 
   1445   // If tracing, remember thread id and name before thread exits.
   1446   Trace::StoreExitingThreadInfo(self);
   1447 
   1448   uint32_t thin_lock_id = self->GetThreadId();
   1449   while (true) {
   1450     // Remove and delete the Thread* while holding the thread_list_lock_ and
   1451     // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
   1452     // Note: deliberately not using MutexLock that could hold a stale self pointer.
   1453     {
   1454       MutexLock mu(self, *Locks::thread_list_lock_);
   1455       if (!Contains(self)) {
   1456         std::string thread_name;
   1457         self->GetThreadName(thread_name);
   1458         std::ostringstream os;
   1459         DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
   1460         LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
   1461         break;
   1462       } else {
   1463         MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1464         if (!self->IsSuspended()) {
   1465           list_.remove(self);
   1466           break;
   1467         }
   1468       }
   1469     }
   1470     // In the case where we are not suspended yet, sleep to leave other threads time to execute.
   1471     // This is important if there are realtime threads. b/111277984
   1472     usleep(1);
   1473     // We failed to remove the thread due to a suspend request, loop and try again.
   1474   }
   1475   delete self;
   1476 
   1477   // Release the thread ID after the thread is finished and deleted to avoid cases where we can
   1478   // temporarily have multiple threads with the same thread id. When this occurs, it causes
   1479   // problems in FindThreadByThreadId / SuspendThreadByThreadId.
   1480   ReleaseThreadId(nullptr, thin_lock_id);
   1481 
   1482   // Clear the TLS data, so that the underlying native thread is recognizably detached.
   1483   // (It may wish to reattach later.)
   1484 #ifdef ART_TARGET_ANDROID
   1485   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
   1486 #else
   1487   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
   1488 #endif
   1489 
   1490   // Signal that a thread just detached.
   1491   MutexLock mu(nullptr, *Locks::thread_list_lock_);
   1492   --unregistering_count_;
   1493   Locks::thread_exit_cond_->Broadcast(nullptr);
   1494 }
   1495 
   1496 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
   1497   for (const auto& thread : list_) {
   1498     callback(thread, context);
   1499   }
   1500 }
   1501 
   1502 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
   1503   Thread* const self = Thread::Current();
   1504   std::vector<Thread*> threads_to_visit;
   1505 
   1506   // Tell threads to suspend and copy them into list.
   1507   {
   1508     MutexLock mu(self, *Locks::thread_list_lock_);
   1509     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1510     for (Thread* thread : list_) {
   1511       bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
   1512       DCHECK(suspended);
   1513       if (thread == self || thread->IsSuspended()) {
   1514         threads_to_visit.push_back(thread);
   1515       } else {
   1516         bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
   1517         DCHECK(resumed);
   1518       }
   1519     }
   1520   }
   1521 
   1522   // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
   1523   // order violations.
   1524   for (Thread* thread : threads_to_visit) {
   1525     thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
   1526   }
   1527 
   1528   // Restore suspend counts.
   1529   {
   1530     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1531     for (Thread* thread : threads_to_visit) {
   1532       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
   1533       DCHECK(updated);
   1534     }
   1535   }
   1536 }
   1537 
   1538 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
   1539   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
   1540   for (const auto& thread : list_) {
   1541     thread->VisitRoots(visitor, flags);
   1542   }
   1543 }
   1544 
   1545 uint32_t ThreadList::AllocThreadId(Thread* self) {
   1546   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
   1547   for (size_t i = 0; i < allocated_ids_.size(); ++i) {
   1548     if (!allocated_ids_[i]) {
   1549       allocated_ids_.set(i);
   1550       return i + 1;  // Zero is reserved to mean "invalid".
   1551     }
   1552   }
   1553   LOG(FATAL) << "Out of internal thread ids";
   1554   UNREACHABLE();
   1555 }
   1556 
   1557 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
   1558   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
   1559   --id;  // Zero is reserved to mean "invalid".
   1560   DCHECK(allocated_ids_[id]) << id;
   1561   allocated_ids_.reset(id);
   1562 }
   1563 
   1564 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
   1565   Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
   1566 }
   1567 
   1568 ScopedSuspendAll::~ScopedSuspendAll() {
   1569   Runtime::Current()->GetThreadList()->ResumeAll();
   1570 }
   1571 
   1572 }  // namespace art
   1573