Home | History | Annotate | Download | only in mx6
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
      4  */
      5 
      6 #include <common.h>
      7 #include <div64.h>
      8 #include <asm/io.h>
      9 #include <linux/errno.h>
     10 #include <asm/arch/imx-regs.h>
     11 #include <asm/arch/crm_regs.h>
     12 #include <asm/arch/clock.h>
     13 #include <asm/arch/sys_proto.h>
     14 
     15 enum pll_clocks {
     16 	PLL_SYS,	/* System PLL */
     17 	PLL_BUS,	/* System Bus PLL*/
     18 	PLL_USBOTG,	/* OTG USB PLL */
     19 	PLL_ENET,	/* ENET PLL */
     20 	PLL_AUDIO,	/* AUDIO PLL */
     21 	PLL_VIDEO,	/* VIDEO PLL */
     22 };
     23 
     24 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
     25 
     26 #ifdef CONFIG_MXC_OCOTP
     27 void enable_ocotp_clk(unsigned char enable)
     28 {
     29 	u32 reg;
     30 
     31 	reg = __raw_readl(&imx_ccm->CCGR2);
     32 	if (enable)
     33 		reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
     34 	else
     35 		reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
     36 	__raw_writel(reg, &imx_ccm->CCGR2);
     37 }
     38 #endif
     39 
     40 #ifdef CONFIG_NAND_MXS
     41 void setup_gpmi_io_clk(u32 cfg)
     42 {
     43 	/* Disable clocks per ERR007177 from MX6 errata */
     44 	clrbits_le32(&imx_ccm->CCGR4,
     45 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
     46 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
     47 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
     48 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
     49 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
     50 
     51 #if defined(CONFIG_MX6SX)
     52 	clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
     53 
     54 	clrsetbits_le32(&imx_ccm->cs2cdr,
     55 			MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
     56 			MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
     57 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
     58 			cfg);
     59 
     60 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
     61 #else
     62 	clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
     63 
     64 	clrsetbits_le32(&imx_ccm->cs2cdr,
     65 			MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
     66 			MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
     67 			MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
     68 			cfg);
     69 
     70 	setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
     71 #endif
     72 	setbits_le32(&imx_ccm->CCGR4,
     73 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
     74 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
     75 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
     76 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
     77 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
     78 }
     79 #endif
     80 
     81 void enable_usboh3_clk(unsigned char enable)
     82 {
     83 	u32 reg;
     84 
     85 	reg = __raw_readl(&imx_ccm->CCGR6);
     86 	if (enable)
     87 		reg |= MXC_CCM_CCGR6_USBOH3_MASK;
     88 	else
     89 		reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
     90 	__raw_writel(reg, &imx_ccm->CCGR6);
     91 
     92 }
     93 
     94 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
     95 void enable_enet_clk(unsigned char enable)
     96 {
     97 	u32 mask, *addr;
     98 
     99 	if (is_mx6ull()) {
    100 		mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
    101 		addr = &imx_ccm->CCGR0;
    102 	} else if (is_mx6ul()) {
    103 		mask = MXC_CCM_CCGR3_ENET_MASK;
    104 		addr = &imx_ccm->CCGR3;
    105 	} else {
    106 		mask = MXC_CCM_CCGR1_ENET_MASK;
    107 		addr = &imx_ccm->CCGR1;
    108 	}
    109 
    110 	if (enable)
    111 		setbits_le32(addr, mask);
    112 	else
    113 		clrbits_le32(addr, mask);
    114 }
    115 #endif
    116 
    117 #ifdef CONFIG_MXC_UART
    118 void enable_uart_clk(unsigned char enable)
    119 {
    120 	u32 mask;
    121 
    122 	if (is_mx6ul() || is_mx6ull())
    123 		mask = MXC_CCM_CCGR5_UART_MASK;
    124 	else
    125 		mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
    126 
    127 	if (enable)
    128 		setbits_le32(&imx_ccm->CCGR5, mask);
    129 	else
    130 		clrbits_le32(&imx_ccm->CCGR5, mask);
    131 }
    132 #endif
    133 
    134 #ifdef CONFIG_MMC
    135 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
    136 {
    137 	u32 mask;
    138 
    139 	if (bus_num > 3)
    140 		return -EINVAL;
    141 
    142 	mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
    143 	if (enable)
    144 		setbits_le32(&imx_ccm->CCGR6, mask);
    145 	else
    146 		clrbits_le32(&imx_ccm->CCGR6, mask);
    147 
    148 	return 0;
    149 }
    150 #endif
    151 
    152 #ifdef CONFIG_SYS_I2C_MXC
    153 /* i2c_num can be from 0 - 3 */
    154 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
    155 {
    156 	u32 reg;
    157 	u32 mask;
    158 	u32 *addr;
    159 
    160 	if (i2c_num > 3)
    161 		return -EINVAL;
    162 	if (i2c_num < 3) {
    163 		mask = MXC_CCM_CCGR_CG_MASK
    164 			<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
    165 			+ (i2c_num << 1));
    166 		reg = __raw_readl(&imx_ccm->CCGR2);
    167 		if (enable)
    168 			reg |= mask;
    169 		else
    170 			reg &= ~mask;
    171 		__raw_writel(reg, &imx_ccm->CCGR2);
    172 	} else {
    173 		if (is_mx6sll())
    174 			return -EINVAL;
    175 		if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
    176 			mask = MXC_CCM_CCGR6_I2C4_MASK;
    177 			addr = &imx_ccm->CCGR6;
    178 		} else {
    179 			mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
    180 			addr = &imx_ccm->CCGR1;
    181 		}
    182 		reg = __raw_readl(addr);
    183 		if (enable)
    184 			reg |= mask;
    185 		else
    186 			reg &= ~mask;
    187 		__raw_writel(reg, addr);
    188 	}
    189 	return 0;
    190 }
    191 #endif
    192 
    193 /* spi_num can be from 0 - SPI_MAX_NUM */
    194 int enable_spi_clk(unsigned char enable, unsigned spi_num)
    195 {
    196 	u32 reg;
    197 	u32 mask;
    198 
    199 	if (spi_num > SPI_MAX_NUM)
    200 		return -EINVAL;
    201 
    202 	mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
    203 	reg = __raw_readl(&imx_ccm->CCGR1);
    204 	if (enable)
    205 		reg |= mask;
    206 	else
    207 		reg &= ~mask;
    208 	__raw_writel(reg, &imx_ccm->CCGR1);
    209 	return 0;
    210 }
    211 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
    212 {
    213 	u32 div, test_div, pll_num, pll_denom;
    214 
    215 	switch (pll) {
    216 	case PLL_SYS:
    217 		div = __raw_readl(&imx_ccm->analog_pll_sys);
    218 		div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
    219 
    220 		return (infreq * div) >> 1;
    221 	case PLL_BUS:
    222 		div = __raw_readl(&imx_ccm->analog_pll_528);
    223 		div &= BM_ANADIG_PLL_528_DIV_SELECT;
    224 
    225 		return infreq * (20 + (div << 1));
    226 	case PLL_USBOTG:
    227 		div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
    228 		div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
    229 
    230 		return infreq * (20 + (div << 1));
    231 	case PLL_ENET:
    232 		div = __raw_readl(&imx_ccm->analog_pll_enet);
    233 		div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
    234 
    235 		return 25000000 * (div + (div >> 1) + 1);
    236 	case PLL_AUDIO:
    237 		div = __raw_readl(&imx_ccm->analog_pll_audio);
    238 		if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
    239 			return 0;
    240 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
    241 		if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
    242 			return MXC_HCLK;
    243 		pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
    244 		pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
    245 		test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
    246 			BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
    247 		div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
    248 		if (test_div == 3) {
    249 			debug("Error test_div\n");
    250 			return 0;
    251 		}
    252 		test_div = 1 << (2 - test_div);
    253 
    254 		return infreq * (div + pll_num / pll_denom) / test_div;
    255 	case PLL_VIDEO:
    256 		div = __raw_readl(&imx_ccm->analog_pll_video);
    257 		if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
    258 			return 0;
    259 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
    260 		if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
    261 			return MXC_HCLK;
    262 		pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
    263 		pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
    264 		test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
    265 			BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
    266 		div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
    267 		if (test_div == 3) {
    268 			debug("Error test_div\n");
    269 			return 0;
    270 		}
    271 		test_div = 1 << (2 - test_div);
    272 
    273 		return infreq * (div + pll_num / pll_denom) / test_div;
    274 	default:
    275 		return 0;
    276 	}
    277 	/* NOTREACHED */
    278 }
    279 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
    280 {
    281 	u32 div;
    282 	u64 freq;
    283 
    284 	switch (pll) {
    285 	case PLL_BUS:
    286 		if (!is_mx6ul() && !is_mx6ull()) {
    287 			if (pfd_num == 3) {
    288 				/* No PFD3 on PLL2 */
    289 				return 0;
    290 			}
    291 		}
    292 		div = __raw_readl(&imx_ccm->analog_pfd_528);
    293 		freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
    294 		break;
    295 	case PLL_USBOTG:
    296 		div = __raw_readl(&imx_ccm->analog_pfd_480);
    297 		freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
    298 		break;
    299 	default:
    300 		/* No PFD on other PLL					     */
    301 		return 0;
    302 	}
    303 
    304 	return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
    305 			      ANATOP_PFD_FRAC_SHIFT(pfd_num));
    306 }
    307 
    308 static u32 get_mcu_main_clk(void)
    309 {
    310 	u32 reg, freq;
    311 
    312 	reg = __raw_readl(&imx_ccm->cacrr);
    313 	reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
    314 	reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
    315 	freq = decode_pll(PLL_SYS, MXC_HCLK);
    316 
    317 	return freq / (reg + 1);
    318 }
    319 
    320 u32 get_periph_clk(void)
    321 {
    322 	u32 reg, div = 0, freq = 0;
    323 
    324 	reg = __raw_readl(&imx_ccm->cbcdr);
    325 	if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
    326 		div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
    327 		       MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
    328 		reg = __raw_readl(&imx_ccm->cbcmr);
    329 		reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
    330 		reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
    331 
    332 		switch (reg) {
    333 		case 0:
    334 			freq = decode_pll(PLL_USBOTG, MXC_HCLK);
    335 			break;
    336 		case 1:
    337 		case 2:
    338 			freq = MXC_HCLK;
    339 			break;
    340 		default:
    341 			break;
    342 		}
    343 	} else {
    344 		reg = __raw_readl(&imx_ccm->cbcmr);
    345 		reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
    346 		reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
    347 
    348 		switch (reg) {
    349 		case 0:
    350 			freq = decode_pll(PLL_BUS, MXC_HCLK);
    351 			break;
    352 		case 1:
    353 			freq = mxc_get_pll_pfd(PLL_BUS, 2);
    354 			break;
    355 		case 2:
    356 			freq = mxc_get_pll_pfd(PLL_BUS, 0);
    357 			break;
    358 		case 3:
    359 			/* static / 2 divider */
    360 			freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
    361 			break;
    362 		default:
    363 			break;
    364 		}
    365 	}
    366 
    367 	return freq / (div + 1);
    368 }
    369 
    370 static u32 get_ipg_clk(void)
    371 {
    372 	u32 reg, ipg_podf;
    373 
    374 	reg = __raw_readl(&imx_ccm->cbcdr);
    375 	reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
    376 	ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
    377 
    378 	return get_ahb_clk() / (ipg_podf + 1);
    379 }
    380 
    381 static u32 get_ipg_per_clk(void)
    382 {
    383 	u32 reg, perclk_podf;
    384 
    385 	reg = __raw_readl(&imx_ccm->cscmr1);
    386 	if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
    387 	    is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
    388 		if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
    389 			return MXC_HCLK; /* OSC 24Mhz */
    390 	}
    391 
    392 	perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
    393 
    394 	return get_ipg_clk() / (perclk_podf + 1);
    395 }
    396 
    397 static u32 get_uart_clk(void)
    398 {
    399 	u32 reg, uart_podf;
    400 	u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
    401 	reg = __raw_readl(&imx_ccm->cscdr1);
    402 
    403 	if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
    404 	    is_mx6sll() || is_mx6ull()) {
    405 		if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
    406 			freq = MXC_HCLK;
    407 	}
    408 
    409 	reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
    410 	uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
    411 
    412 	return freq / (uart_podf + 1);
    413 }
    414 
    415 static u32 get_cspi_clk(void)
    416 {
    417 	u32 reg, cspi_podf;
    418 
    419 	reg = __raw_readl(&imx_ccm->cscdr2);
    420 	cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
    421 		     MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
    422 
    423 	if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
    424 	    is_mx6sll() || is_mx6ull()) {
    425 		if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
    426 			return MXC_HCLK / (cspi_podf + 1);
    427 	}
    428 
    429 	return	decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
    430 }
    431 
    432 static u32 get_axi_clk(void)
    433 {
    434 	u32 root_freq, axi_podf;
    435 	u32 cbcdr =  __raw_readl(&imx_ccm->cbcdr);
    436 
    437 	axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
    438 	axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
    439 
    440 	if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
    441 		if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
    442 			root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
    443 		else
    444 			root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
    445 	} else
    446 		root_freq = get_periph_clk();
    447 
    448 	return  root_freq / (axi_podf + 1);
    449 }
    450 
    451 static u32 get_emi_slow_clk(void)
    452 {
    453 	u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
    454 
    455 	cscmr1 =  __raw_readl(&imx_ccm->cscmr1);
    456 	emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
    457 	emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
    458 	emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
    459 	emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
    460 
    461 	switch (emi_clk_sel) {
    462 	case 0:
    463 		root_freq = get_axi_clk();
    464 		break;
    465 	case 1:
    466 		root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
    467 		break;
    468 	case 2:
    469 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 2);
    470 		break;
    471 	case 3:
    472 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 0);
    473 		break;
    474 	}
    475 
    476 	return root_freq / (emi_slow_podf + 1);
    477 }
    478 
    479 static u32 get_mmdc_ch0_clk(void)
    480 {
    481 	u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
    482 	u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
    483 
    484 	u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
    485 
    486 	if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
    487 	    is_mx6sll()) {
    488 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
    489 			MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
    490 		if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
    491 			per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
    492 				MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
    493 			if (is_mx6sl()) {
    494 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
    495 					freq = MXC_HCLK;
    496 				else
    497 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
    498 			} else {
    499 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
    500 					freq = decode_pll(PLL_BUS, MXC_HCLK);
    501 				else
    502 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
    503 			}
    504 		} else {
    505 			per2_clk2_podf = 0;
    506 			switch ((cbcmr &
    507 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
    508 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
    509 			case 0:
    510 				freq = decode_pll(PLL_BUS, MXC_HCLK);
    511 				break;
    512 			case 1:
    513 				freq = mxc_get_pll_pfd(PLL_BUS, 2);
    514 				break;
    515 			case 2:
    516 				freq = mxc_get_pll_pfd(PLL_BUS, 0);
    517 				break;
    518 			case 3:
    519 				if (is_mx6sl()) {
    520 					freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
    521 					break;
    522 				}
    523 
    524 				pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
    525 				switch (pmu_misc2_audio_div) {
    526 				case 0:
    527 				case 2:
    528 					pmu_misc2_audio_div = 1;
    529 					break;
    530 				case 1:
    531 					pmu_misc2_audio_div = 2;
    532 					break;
    533 				case 3:
    534 					pmu_misc2_audio_div = 4;
    535 					break;
    536 				}
    537 				freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
    538 					pmu_misc2_audio_div;
    539 				break;
    540 			}
    541 		}
    542 		return freq / (podf + 1) / (per2_clk2_podf + 1);
    543 	} else {
    544 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
    545 			MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
    546 		return get_periph_clk() / (podf + 1);
    547 	}
    548 }
    549 
    550 #if defined(CONFIG_VIDEO_MXS)
    551 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
    552 			    u32 post_div)
    553 {
    554 	u32 reg = 0;
    555 	ulong start;
    556 
    557 	debug("pll5 div = %d, num = %d, denom = %d\n",
    558 	      pll_div, pll_num, pll_denom);
    559 
    560 	/* Power up PLL5 video */
    561 	writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
    562 	       BM_ANADIG_PLL_VIDEO_BYPASS |
    563 	       BM_ANADIG_PLL_VIDEO_DIV_SELECT |
    564 	       BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
    565 	       &imx_ccm->analog_pll_video_clr);
    566 
    567 	/* Set div, num and denom */
    568 	switch (post_div) {
    569 	case 1:
    570 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
    571 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
    572 		       &imx_ccm->analog_pll_video_set);
    573 		break;
    574 	case 2:
    575 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
    576 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
    577 		       &imx_ccm->analog_pll_video_set);
    578 		break;
    579 	case 4:
    580 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
    581 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
    582 		       &imx_ccm->analog_pll_video_set);
    583 		break;
    584 	default:
    585 		puts("Wrong test_div!\n");
    586 		return -EINVAL;
    587 	}
    588 
    589 	writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
    590 	       &imx_ccm->analog_pll_video_num);
    591 	writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
    592 	       &imx_ccm->analog_pll_video_denom);
    593 
    594 	/* Wait PLL5 lock */
    595 	start = get_timer(0);	/* Get current timestamp */
    596 
    597 	do {
    598 		reg = readl(&imx_ccm->analog_pll_video);
    599 		if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
    600 			/* Enable PLL out */
    601 			writel(BM_ANADIG_PLL_VIDEO_ENABLE,
    602 			       &imx_ccm->analog_pll_video_set);
    603 			return 0;
    604 		}
    605 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
    606 
    607 	puts("Lock PLL5 timeout\n");
    608 
    609 	return -ETIME;
    610 }
    611 
    612 /*
    613  * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
    614  *
    615  * 'freq' using KHz as unit, see driver/video/mxsfb.c.
    616  */
    617 void mxs_set_lcdclk(u32 base_addr, u32 freq)
    618 {
    619 	u32 reg = 0;
    620 	u32 hck = MXC_HCLK / 1000;
    621 	/* DIV_SELECT ranges from 27 to 54 */
    622 	u32 min = hck * 27;
    623 	u32 max = hck * 54;
    624 	u32 temp, best = 0;
    625 	u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
    626 	u32 pll_div, pll_num, pll_denom, post_div = 1;
    627 
    628 	debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
    629 
    630 	if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
    631 	    !is_mx6sll()) {
    632 		debug("This chip not support lcd!\n");
    633 		return;
    634 	}
    635 
    636 	if (!is_mx6sl()) {
    637 		if (base_addr == LCDIF1_BASE_ADDR) {
    638 			reg = readl(&imx_ccm->cscdr2);
    639 			/* Can't change clocks when clock not from pre-mux */
    640 			if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
    641 				return;
    642 		}
    643 	}
    644 
    645 	if (is_mx6sx()) {
    646 		reg = readl(&imx_ccm->cscdr2);
    647 		/* Can't change clocks when clock not from pre-mux */
    648 		if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
    649 			return;
    650 	}
    651 
    652 	temp = freq * max_pred * max_postd;
    653 	if (temp < min) {
    654 		/*
    655 		 * Register: PLL_VIDEO
    656 		 * Bit Field: POST_DIV_SELECT
    657 		 * 00  Divide by 4.
    658 		 * 01  Divide by 2.
    659 		 * 10  Divide by 1.
    660 		 * 11  Reserved
    661 		 * No need to check post_div(1)
    662 		 */
    663 		for (post_div = 2; post_div <= 4; post_div <<= 1) {
    664 			if ((temp * post_div) > min) {
    665 				freq *= post_div;
    666 				break;
    667 			}
    668 		}
    669 
    670 		if (post_div > 4) {
    671 			printf("Fail to set rate to %dkhz", freq);
    672 			return;
    673 		}
    674 	}
    675 
    676 	/* Choose the best pred and postd to match freq for lcd */
    677 	for (i = 1; i <= max_pred; i++) {
    678 		for (j = 1; j <= max_postd; j++) {
    679 			temp = freq * i * j;
    680 			if (temp > max || temp < min)
    681 				continue;
    682 			if (best == 0 || temp < best) {
    683 				best = temp;
    684 				pred = i;
    685 				postd = j;
    686 			}
    687 		}
    688 	}
    689 
    690 	if (best == 0) {
    691 		printf("Fail to set rate to %dKHz", freq);
    692 		return;
    693 	}
    694 
    695 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
    696 
    697 	pll_div = best / hck;
    698 	pll_denom = 1000000;
    699 	pll_num = (best - hck * pll_div) * pll_denom / hck;
    700 
    701 	/*
    702 	 *                                  pll_num
    703 	 *             (24MHz * (pll_div + --------- ))
    704 	 *                                 pll_denom
    705 	 *freq KHz =  --------------------------------
    706 	 *             post_div * pred * postd * 1000
    707 	 */
    708 
    709 	if (base_addr == LCDIF1_BASE_ADDR) {
    710 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
    711 			return;
    712 
    713 		enable_lcdif_clock(base_addr, 0);
    714 		if (!is_mx6sl()) {
    715 			/* Select pre-lcd clock to PLL5 and set pre divider */
    716 			clrsetbits_le32(&imx_ccm->cscdr2,
    717 					MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
    718 					MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
    719 					(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
    720 					((pred - 1) <<
    721 					 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
    722 
    723 			/* Set the post divider */
    724 			clrsetbits_le32(&imx_ccm->cbcmr,
    725 					MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
    726 					((postd - 1) <<
    727 					MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
    728 		} else {
    729 			/* Select pre-lcd clock to PLL5 and set pre divider */
    730 			clrsetbits_le32(&imx_ccm->cscdr2,
    731 					MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
    732 					MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
    733 					(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
    734 					((pred - 1) <<
    735 					 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
    736 
    737 			/* Set the post divider */
    738 			clrsetbits_le32(&imx_ccm->cscmr1,
    739 					MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
    740 					(((postd - 1)^0x6) <<
    741 					 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
    742 		}
    743 
    744 		enable_lcdif_clock(base_addr, 1);
    745 	} else if (is_mx6sx()) {
    746 		/* Setting LCDIF2 for i.MX6SX */
    747 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
    748 			return;
    749 
    750 		enable_lcdif_clock(base_addr, 0);
    751 		/* Select pre-lcd clock to PLL5 and set pre divider */
    752 		clrsetbits_le32(&imx_ccm->cscdr2,
    753 				MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
    754 				MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
    755 				(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
    756 				((pred - 1) <<
    757 				 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
    758 
    759 		/* Set the post divider */
    760 		clrsetbits_le32(&imx_ccm->cscmr1,
    761 				MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
    762 				((postd - 1) <<
    763 				 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
    764 
    765 		enable_lcdif_clock(base_addr, 1);
    766 	}
    767 }
    768 
    769 int enable_lcdif_clock(u32 base_addr, bool enable)
    770 {
    771 	u32 reg = 0;
    772 	u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
    773 
    774 	if (is_mx6sx()) {
    775 		if ((base_addr != LCDIF1_BASE_ADDR) &&
    776 		    (base_addr != LCDIF2_BASE_ADDR)) {
    777 			puts("Wrong LCD interface!\n");
    778 			return -EINVAL;
    779 		}
    780 		/* Set to pre-mux clock at default */
    781 		lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
    782 			MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
    783 			MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
    784 		lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
    785 			(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
    786 			 MXC_CCM_CCGR3_DISP_AXI_MASK) :
    787 			(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
    788 			 MXC_CCM_CCGR3_DISP_AXI_MASK);
    789 	} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
    790 		if (base_addr != LCDIF1_BASE_ADDR) {
    791 			puts("Wrong LCD interface!\n");
    792 			return -EINVAL;
    793 		}
    794 		/* Set to pre-mux clock at default */
    795 		lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
    796 		lcdif_ccgr3_mask =  MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
    797 	} else if (is_mx6sl()) {
    798 		if (base_addr != LCDIF1_BASE_ADDR) {
    799 			puts("Wrong LCD interface!\n");
    800 			return -EINVAL;
    801 		}
    802 
    803 		reg = readl(&imx_ccm->CCGR3);
    804 		reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
    805 			 MXC_CCM_CCGR3_LCDIF_PIX_MASK);
    806 		writel(reg, &imx_ccm->CCGR3);
    807 
    808 		if (enable) {
    809 			reg = readl(&imx_ccm->cscdr3);
    810 			reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
    811 			reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
    812 			writel(reg, &imx_ccm->cscdr3);
    813 
    814 			reg = readl(&imx_ccm->CCGR3);
    815 			reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
    816 				MXC_CCM_CCGR3_LCDIF_PIX_MASK;
    817 			writel(reg, &imx_ccm->CCGR3);
    818 		}
    819 
    820 		return 0;
    821 	} else {
    822 		return 0;
    823 	}
    824 
    825 	/* Gate LCDIF clock first */
    826 	reg = readl(&imx_ccm->CCGR3);
    827 	reg &= ~lcdif_ccgr3_mask;
    828 	writel(reg, &imx_ccm->CCGR3);
    829 
    830 	reg = readl(&imx_ccm->CCGR2);
    831 	reg &= ~MXC_CCM_CCGR2_LCD_MASK;
    832 	writel(reg, &imx_ccm->CCGR2);
    833 
    834 	if (enable) {
    835 		/* Select pre-mux */
    836 		reg = readl(&imx_ccm->cscdr2);
    837 		reg &= ~lcdif_clk_sel_mask;
    838 		writel(reg, &imx_ccm->cscdr2);
    839 
    840 		/* Enable the LCDIF pix clock */
    841 		reg = readl(&imx_ccm->CCGR3);
    842 		reg |= lcdif_ccgr3_mask;
    843 		writel(reg, &imx_ccm->CCGR3);
    844 
    845 		reg = readl(&imx_ccm->CCGR2);
    846 		reg |= MXC_CCM_CCGR2_LCD_MASK;
    847 		writel(reg, &imx_ccm->CCGR2);
    848 	}
    849 
    850 	return 0;
    851 }
    852 #endif
    853 
    854 #ifdef CONFIG_FSL_QSPI
    855 /* qspi_num can be from 0 - 1 */
    856 void enable_qspi_clk(int qspi_num)
    857 {
    858 	u32 reg = 0;
    859 	/* Enable QuadSPI clock */
    860 	switch (qspi_num) {
    861 	case 0:
    862 		/* disable the clock gate */
    863 		clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
    864 
    865 		/* set 50M  : (50 = 396 / 2 / 4) */
    866 		reg = readl(&imx_ccm->cscmr1);
    867 		reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
    868 			 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
    869 		reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
    870 			(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
    871 		writel(reg, &imx_ccm->cscmr1);
    872 
    873 		/* enable the clock gate */
    874 		setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
    875 		break;
    876 	case 1:
    877 		/*
    878 		 * disable the clock gate
    879 		 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
    880 		 * disable both of them.
    881 		 */
    882 		clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
    883 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
    884 
    885 		/* set 50M  : (50 = 396 / 2 / 4) */
    886 		reg = readl(&imx_ccm->cs2cdr);
    887 		reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
    888 			 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
    889 			 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
    890 		reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
    891 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
    892 		writel(reg, &imx_ccm->cs2cdr);
    893 
    894 		/*enable the clock gate*/
    895 		setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
    896 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
    897 		break;
    898 	default:
    899 		break;
    900 	}
    901 }
    902 #endif
    903 
    904 #ifdef CONFIG_FEC_MXC
    905 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
    906 {
    907 	u32 reg = 0;
    908 	s32 timeout = 100000;
    909 
    910 	struct anatop_regs __iomem *anatop =
    911 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
    912 
    913 	if (freq < ENET_25MHZ || freq > ENET_125MHZ)
    914 		return -EINVAL;
    915 
    916 	reg = readl(&anatop->pll_enet);
    917 
    918 	if (fec_id == 0) {
    919 		reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
    920 		reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
    921 	} else if (fec_id == 1) {
    922 		/* Only i.MX6SX/UL support ENET2 */
    923 		if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
    924 			return -EINVAL;
    925 		reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
    926 		reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
    927 	} else {
    928 		return -EINVAL;
    929 	}
    930 
    931 	if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
    932 	    (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
    933 		reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
    934 		writel(reg, &anatop->pll_enet);
    935 		while (timeout--) {
    936 			if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
    937 				break;
    938 		}
    939 		if (timeout < 0)
    940 			return -ETIMEDOUT;
    941 	}
    942 
    943 	/* Enable FEC clock */
    944 	if (fec_id == 0)
    945 		reg |= BM_ANADIG_PLL_ENET_ENABLE;
    946 	else
    947 		reg |= BM_ANADIG_PLL_ENET2_ENABLE;
    948 	reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
    949 	writel(reg, &anatop->pll_enet);
    950 
    951 #ifdef CONFIG_MX6SX
    952 	/* Disable enet system clcok before switching clock parent */
    953 	reg = readl(&imx_ccm->CCGR3);
    954 	reg &= ~MXC_CCM_CCGR3_ENET_MASK;
    955 	writel(reg, &imx_ccm->CCGR3);
    956 
    957 	/*
    958 	 * Set enet ahb clock to 200MHz
    959 	 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
    960 	 */
    961 	reg = readl(&imx_ccm->chsccdr);
    962 	reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
    963 		 | MXC_CCM_CHSCCDR_ENET_PODF_MASK
    964 		 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
    965 	/* PLL2 PFD2 */
    966 	reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
    967 	/* Div = 2*/
    968 	reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
    969 	reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
    970 	writel(reg, &imx_ccm->chsccdr);
    971 
    972 	/* Enable enet system clock */
    973 	reg = readl(&imx_ccm->CCGR3);
    974 	reg |= MXC_CCM_CCGR3_ENET_MASK;
    975 	writel(reg, &imx_ccm->CCGR3);
    976 #endif
    977 	return 0;
    978 }
    979 #endif
    980 
    981 static u32 get_usdhc_clk(u32 port)
    982 {
    983 	u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
    984 	u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
    985 	u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
    986 
    987 	if (is_mx6ul() || is_mx6ull()) {
    988 		if (port > 1)
    989 			return 0;
    990 	}
    991 
    992 	if (is_mx6sll()) {
    993 		if (port > 2)
    994 			return 0;
    995 	}
    996 
    997 	switch (port) {
    998 	case 0:
    999 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
   1000 					MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
   1001 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
   1002 
   1003 		break;
   1004 	case 1:
   1005 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
   1006 					MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
   1007 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
   1008 
   1009 		break;
   1010 	case 2:
   1011 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
   1012 					MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
   1013 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
   1014 
   1015 		break;
   1016 	case 3:
   1017 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
   1018 					MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
   1019 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
   1020 
   1021 		break;
   1022 	default:
   1023 		break;
   1024 	}
   1025 
   1026 	if (clk_sel)
   1027 		root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
   1028 	else
   1029 		root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
   1030 
   1031 	return root_freq / (usdhc_podf + 1);
   1032 }
   1033 
   1034 u32 imx_get_uartclk(void)
   1035 {
   1036 	return get_uart_clk();
   1037 }
   1038 
   1039 u32 imx_get_fecclk(void)
   1040 {
   1041 	return mxc_get_clock(MXC_IPG_CLK);
   1042 }
   1043 
   1044 #if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
   1045 static int enable_enet_pll(uint32_t en)
   1046 {
   1047 	struct mxc_ccm_reg *const imx_ccm
   1048 		= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
   1049 	s32 timeout = 100000;
   1050 	u32 reg = 0;
   1051 
   1052 	/* Enable PLLs */
   1053 	reg = readl(&imx_ccm->analog_pll_enet);
   1054 	reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
   1055 	writel(reg, &imx_ccm->analog_pll_enet);
   1056 	reg |= BM_ANADIG_PLL_SYS_ENABLE;
   1057 	while (timeout--) {
   1058 		if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
   1059 			break;
   1060 	}
   1061 	if (timeout <= 0)
   1062 		return -EIO;
   1063 	reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
   1064 	writel(reg, &imx_ccm->analog_pll_enet);
   1065 	reg |= en;
   1066 	writel(reg, &imx_ccm->analog_pll_enet);
   1067 	return 0;
   1068 }
   1069 #endif
   1070 
   1071 #ifdef CONFIG_SATA
   1072 static void ungate_sata_clock(void)
   1073 {
   1074 	struct mxc_ccm_reg *const imx_ccm =
   1075 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1076 
   1077 	/* Enable SATA clock. */
   1078 	setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
   1079 }
   1080 
   1081 int enable_sata_clock(void)
   1082 {
   1083 	ungate_sata_clock();
   1084 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
   1085 }
   1086 
   1087 void disable_sata_clock(void)
   1088 {
   1089 	struct mxc_ccm_reg *const imx_ccm =
   1090 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1091 
   1092 	clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
   1093 }
   1094 #endif
   1095 
   1096 #ifdef CONFIG_PCIE_IMX
   1097 static void ungate_pcie_clock(void)
   1098 {
   1099 	struct mxc_ccm_reg *const imx_ccm =
   1100 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1101 
   1102 	/* Enable PCIe clock. */
   1103 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
   1104 }
   1105 
   1106 int enable_pcie_clock(void)
   1107 {
   1108 	struct anatop_regs *anatop_regs =
   1109 		(struct anatop_regs *)ANATOP_BASE_ADDR;
   1110 	struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1111 	u32 lvds1_clk_sel;
   1112 
   1113 	/*
   1114 	 * Here be dragons!
   1115 	 *
   1116 	 * The register ANATOP_MISC1 is not documented in the Freescale
   1117 	 * MX6RM. The register that is mapped in the ANATOP space and
   1118 	 * marked as ANATOP_MISC1 is actually documented in the PMU section
   1119 	 * of the datasheet as PMU_MISC1.
   1120 	 *
   1121 	 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
   1122 	 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
   1123 	 * for PCI express link that is clocked from the i.MX6.
   1124 	 */
   1125 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN		(1 << 12)
   1126 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN		(1 << 10)
   1127 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK	0x0000001F
   1128 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF	0xa
   1129 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF	0xb
   1130 
   1131 	if (is_mx6sx())
   1132 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
   1133 	else
   1134 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
   1135 
   1136 	clrsetbits_le32(&anatop_regs->ana_misc1,
   1137 			ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
   1138 			ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
   1139 			ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
   1140 
   1141 	/* PCIe reference clock sourced from AXI. */
   1142 	clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
   1143 
   1144 	/* Party time! Ungate the clock to the PCIe. */
   1145 #ifdef CONFIG_SATA
   1146 	ungate_sata_clock();
   1147 #endif
   1148 	ungate_pcie_clock();
   1149 
   1150 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
   1151 			       BM_ANADIG_PLL_ENET_ENABLE_PCIE);
   1152 }
   1153 #endif
   1154 
   1155 #ifdef CONFIG_SECURE_BOOT
   1156 void hab_caam_clock_enable(unsigned char enable)
   1157 {
   1158 	u32 reg;
   1159 
   1160 	if (is_mx6ull() || is_mx6sll()) {
   1161 		/* CG5, DCP clock */
   1162 		reg = __raw_readl(&imx_ccm->CCGR0);
   1163 		if (enable)
   1164 			reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
   1165 		else
   1166 			reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
   1167 		__raw_writel(reg, &imx_ccm->CCGR0);
   1168 	} else {
   1169 		/* CG4 ~ CG6, CAAM clocks */
   1170 		reg = __raw_readl(&imx_ccm->CCGR0);
   1171 		if (enable)
   1172 			reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
   1173 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
   1174 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
   1175 		else
   1176 			reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
   1177 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
   1178 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
   1179 		__raw_writel(reg, &imx_ccm->CCGR0);
   1180 	}
   1181 
   1182 	/* EMI slow clk */
   1183 	reg = __raw_readl(&imx_ccm->CCGR6);
   1184 	if (enable)
   1185 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
   1186 	else
   1187 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
   1188 	__raw_writel(reg, &imx_ccm->CCGR6);
   1189 }
   1190 #endif
   1191 
   1192 static void enable_pll3(void)
   1193 {
   1194 	struct anatop_regs __iomem *anatop =
   1195 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
   1196 
   1197 	/* make sure pll3 is enabled */
   1198 	if ((readl(&anatop->usb1_pll_480_ctrl) &
   1199 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
   1200 		/* enable pll's power */
   1201 		writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
   1202 		       &anatop->usb1_pll_480_ctrl_set);
   1203 		writel(0x80, &anatop->ana_misc2_clr);
   1204 		/* wait for pll lock */
   1205 		while ((readl(&anatop->usb1_pll_480_ctrl) &
   1206 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
   1207 			;
   1208 		/* disable bypass */
   1209 		writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
   1210 		       &anatop->usb1_pll_480_ctrl_clr);
   1211 		/* enable pll output */
   1212 		writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
   1213 		       &anatop->usb1_pll_480_ctrl_set);
   1214 	}
   1215 }
   1216 
   1217 void enable_thermal_clk(void)
   1218 {
   1219 	enable_pll3();
   1220 }
   1221 
   1222 #ifdef CONFIG_MTD_NOR_FLASH
   1223 void enable_eim_clk(unsigned char enable)
   1224 {
   1225 	u32 reg;
   1226 
   1227 	reg = __raw_readl(&imx_ccm->CCGR6);
   1228 	if (enable)
   1229 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
   1230 	else
   1231 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
   1232 	__raw_writel(reg, &imx_ccm->CCGR6);
   1233 }
   1234 #endif
   1235 
   1236 unsigned int mxc_get_clock(enum mxc_clock clk)
   1237 {
   1238 	switch (clk) {
   1239 	case MXC_ARM_CLK:
   1240 		return get_mcu_main_clk();
   1241 	case MXC_PER_CLK:
   1242 		return get_periph_clk();
   1243 	case MXC_AHB_CLK:
   1244 		return get_ahb_clk();
   1245 	case MXC_IPG_CLK:
   1246 		return get_ipg_clk();
   1247 	case MXC_IPG_PERCLK:
   1248 	case MXC_I2C_CLK:
   1249 		return get_ipg_per_clk();
   1250 	case MXC_UART_CLK:
   1251 		return get_uart_clk();
   1252 	case MXC_CSPI_CLK:
   1253 		return get_cspi_clk();
   1254 	case MXC_AXI_CLK:
   1255 		return get_axi_clk();
   1256 	case MXC_EMI_SLOW_CLK:
   1257 		return get_emi_slow_clk();
   1258 	case MXC_DDR_CLK:
   1259 		return get_mmdc_ch0_clk();
   1260 	case MXC_ESDHC_CLK:
   1261 		return get_usdhc_clk(0);
   1262 	case MXC_ESDHC2_CLK:
   1263 		return get_usdhc_clk(1);
   1264 	case MXC_ESDHC3_CLK:
   1265 		return get_usdhc_clk(2);
   1266 	case MXC_ESDHC4_CLK:
   1267 		return get_usdhc_clk(3);
   1268 	case MXC_SATA_CLK:
   1269 		return get_ahb_clk();
   1270 	default:
   1271 		printf("Unsupported MXC CLK: %d\n", clk);
   1272 		break;
   1273 	}
   1274 
   1275 	return 0;
   1276 }
   1277 
   1278 #ifndef CONFIG_SPL_BUILD
   1279 /*
   1280  * Dump some core clockes.
   1281  */
   1282 int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
   1283 {
   1284 	u32 freq;
   1285 	freq = decode_pll(PLL_SYS, MXC_HCLK);
   1286 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
   1287 	freq = decode_pll(PLL_BUS, MXC_HCLK);
   1288 	printf("PLL_BUS    %8d MHz\n", freq / 1000000);
   1289 	freq = decode_pll(PLL_USBOTG, MXC_HCLK);
   1290 	printf("PLL_OTG    %8d MHz\n", freq / 1000000);
   1291 	freq = decode_pll(PLL_ENET, MXC_HCLK);
   1292 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
   1293 
   1294 	printf("\n");
   1295 	printf("ARM        %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
   1296 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
   1297 	printf("UART       %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
   1298 #ifdef CONFIG_MXC_SPI
   1299 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
   1300 #endif
   1301 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
   1302 	printf("AXI        %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
   1303 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
   1304 	printf("USDHC1     %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
   1305 	printf("USDHC2     %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
   1306 	printf("USDHC3     %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
   1307 	printf("USDHC4     %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
   1308 	printf("EMI SLOW   %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
   1309 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
   1310 
   1311 	return 0;
   1312 }
   1313 
   1314 #ifndef CONFIG_MX6SX
   1315 void enable_ipu_clock(void)
   1316 {
   1317 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1318 	int reg;
   1319 	reg = readl(&mxc_ccm->CCGR3);
   1320 	reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
   1321 	writel(reg, &mxc_ccm->CCGR3);
   1322 
   1323 	if (is_mx6dqp()) {
   1324 		setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
   1325 		setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
   1326 	}
   1327 }
   1328 #endif
   1329 
   1330 #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
   1331 	defined(CONFIG_MX6S)
   1332 static void disable_ldb_di_clock_sources(void)
   1333 {
   1334 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1335 	int reg;
   1336 
   1337 	/* Make sure PFDs are disabled at boot. */
   1338 	reg = readl(&mxc_ccm->analog_pfd_528);
   1339 	/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
   1340 	if (is_mx6sdl())
   1341 		reg |= 0x80008080;
   1342 	else
   1343 		reg |= 0x80808080;
   1344 	writel(reg, &mxc_ccm->analog_pfd_528);
   1345 
   1346 	/* Disable PLL3 PFDs */
   1347 	reg = readl(&mxc_ccm->analog_pfd_480);
   1348 	reg |= 0x80808080;
   1349 	writel(reg, &mxc_ccm->analog_pfd_480);
   1350 
   1351 	/* Disable PLL5 */
   1352 	reg = readl(&mxc_ccm->analog_pll_video);
   1353 	reg &= ~(1 << 13);
   1354 	writel(reg, &mxc_ccm->analog_pll_video);
   1355 }
   1356 
   1357 static void enable_ldb_di_clock_sources(void)
   1358 {
   1359 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1360 	int reg;
   1361 
   1362 	reg = readl(&mxc_ccm->analog_pfd_528);
   1363 	if (is_mx6sdl())
   1364 		reg &= ~(0x80008080);
   1365 	else
   1366 		reg &= ~(0x80808080);
   1367 	writel(reg, &mxc_ccm->analog_pfd_528);
   1368 
   1369 	reg = readl(&mxc_ccm->analog_pfd_480);
   1370 	reg &= ~(0x80808080);
   1371 	writel(reg, &mxc_ccm->analog_pfd_480);
   1372 }
   1373 
   1374 /*
   1375  * Try call this function as early in the boot process as possible since the
   1376  * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
   1377  */
   1378 void select_ldb_di_clock_source(enum ldb_di_clock clk)
   1379 {
   1380 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
   1381 	int reg;
   1382 
   1383 	/*
   1384 	 * Need to follow a strict procedure when changing the LDB
   1385 	 * clock, else we can introduce a glitch. Things to keep in
   1386 	 * mind:
   1387 	 * 1. The current and new parent clocks must be disabled.
   1388 	 * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
   1389 	 * no CG bit.
   1390 	 * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
   1391 	 * the top four options are in one mux and the PLL3 option along
   1392 	 * with another option is in the second mux. There is third mux
   1393 	 * used to decide between the first and second mux.
   1394 	 * The code below switches the parent to the bottom mux first
   1395 	 * and then manipulates the top mux. This ensures that no glitch
   1396 	 * will enter the divider.
   1397 	 *
   1398 	 * Need to disable MMDC_CH1 clock manually as there is no CG bit
   1399 	 * for this clock. The only way to disable this clock is to move
   1400 	 * it to pll3_sw_clk and then to disable pll3_sw_clk
   1401 	 * Make sure periph2_clk2_sel is set to pll3_sw_clk
   1402 	 */
   1403 
   1404 	/* Disable all ldb_di clock parents */
   1405 	disable_ldb_di_clock_sources();
   1406 
   1407 	/* Set MMDC_CH1 mask bit */
   1408 	reg = readl(&mxc_ccm->ccdr);
   1409 	reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
   1410 	writel(reg, &mxc_ccm->ccdr);
   1411 
   1412 	/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
   1413 	reg = readl(&mxc_ccm->cbcmr);
   1414 	reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
   1415 	writel(reg, &mxc_ccm->cbcmr);
   1416 
   1417 	/*
   1418 	 * Set the periph2_clk_sel to the top mux so that
   1419 	 * mmdc_ch1 is from pll3_sw_clk.
   1420 	 */
   1421 	reg = readl(&mxc_ccm->cbcdr);
   1422 	reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
   1423 	writel(reg, &mxc_ccm->cbcdr);
   1424 
   1425 	/* Wait for the clock switch */
   1426 	while (readl(&mxc_ccm->cdhipr))
   1427 		;
   1428 	/* Disable pll3_sw_clk by selecting bypass clock source */
   1429 	reg = readl(&mxc_ccm->ccsr);
   1430 	reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
   1431 	writel(reg, &mxc_ccm->ccsr);
   1432 
   1433 	/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
   1434 	reg = readl(&mxc_ccm->cs2cdr);
   1435 	reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
   1436 	      | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
   1437 	writel(reg, &mxc_ccm->cs2cdr);
   1438 
   1439 	/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
   1440 	reg = readl(&mxc_ccm->cs2cdr);
   1441 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
   1442 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
   1443 	reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
   1444 	      | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
   1445 	writel(reg, &mxc_ccm->cs2cdr);
   1446 
   1447 	/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
   1448 	reg = readl(&mxc_ccm->cs2cdr);
   1449 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
   1450 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
   1451 	reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
   1452 	      | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
   1453 	writel(reg, &mxc_ccm->cs2cdr);
   1454 
   1455 	/* Unbypass pll3_sw_clk */
   1456 	reg = readl(&mxc_ccm->ccsr);
   1457 	reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
   1458 	writel(reg, &mxc_ccm->ccsr);
   1459 
   1460 	/*
   1461 	 * Set the periph2_clk_sel back to the bottom mux so that
   1462 	 * mmdc_ch1 is from its original parent.
   1463 	 */
   1464 	reg = readl(&mxc_ccm->cbcdr);
   1465 	reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
   1466 	writel(reg, &mxc_ccm->cbcdr);
   1467 
   1468 	/* Wait for the clock switch */
   1469 	while (readl(&mxc_ccm->cdhipr))
   1470 		;
   1471 	/* Clear MMDC_CH1 mask bit */
   1472 	reg = readl(&mxc_ccm->ccdr);
   1473 	reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
   1474 	writel(reg, &mxc_ccm->ccdr);
   1475 
   1476 	enable_ldb_di_clock_sources();
   1477 }
   1478 #endif
   1479 
   1480 /***************************************************/
   1481 
   1482 U_BOOT_CMD(
   1483 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
   1484 	"display clocks",
   1485 	""
   1486 );
   1487 #endif
   1488