Home | History | Annotate | Download | only in Hexagon
      1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Hexagon specific subclass of TargetSubtarget.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "Hexagon.h"
     15 #include "HexagonInstrInfo.h"
     16 #include "HexagonRegisterInfo.h"
     17 #include "HexagonSubtarget.h"
     18 #include "MCTargetDesc/HexagonMCTargetDesc.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/CodeGen/MachineInstr.h"
     24 #include "llvm/CodeGen/MachineOperand.h"
     25 #include "llvm/CodeGen/MachineScheduler.h"
     26 #include "llvm/CodeGen/ScheduleDAG.h"
     27 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include <algorithm>
     31 #include <cassert>
     32 #include <map>
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "hexagon-subtarget"
     37 
     38 #define GET_SUBTARGETINFO_CTOR
     39 #define GET_SUBTARGETINFO_TARGET_DESC
     40 #include "HexagonGenSubtargetInfo.inc"
     41 
     42 
     43 static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
     44   cl::Hidden, cl::ZeroOrMore, cl::init(true));
     45 
     46 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
     47   cl::Hidden, cl::ZeroOrMore, cl::init(false));
     48 
     49 static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
     50   cl::Hidden, cl::ZeroOrMore, cl::init(true),
     51   cl::desc("Enable the scheduler to generate .cur"));
     52 
     53 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
     54   cl::Hidden, cl::ZeroOrMore, cl::init(false),
     55   cl::desc("Disable Hexagon MI Scheduling"));
     56 
     57 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
     58   cl::Hidden, cl::ZeroOrMore, cl::init(true),
     59   cl::desc("Enable subregister liveness tracking for Hexagon"));
     60 
     61 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
     62   cl::Hidden, cl::ZeroOrMore, cl::init(false),
     63   cl::desc("If present, forces/disables the use of long calls"));
     64 
     65 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
     66   cl::Hidden, cl::ZeroOrMore, cl::init(false),
     67   cl::desc("Consider calls to be predicable"));
     68 
     69 static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
     70   cl::Hidden, cl::ZeroOrMore, cl::init(true));
     71 
     72 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
     73   cl::Hidden, cl::ZeroOrMore, cl::init(true));
     74 
     75 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
     76   cl::Hidden, cl::ZeroOrMore, cl::init(true),
     77   cl::desc("Enable checking for cache bank conflicts"));
     78 
     79 
     80 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
     81                                    StringRef FS, const TargetMachine &TM)
     82     : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
     83       CPUString(Hexagon_MC::selectHexagonCPU(CPU)),
     84       InstrInfo(initializeSubtargetDependencies(CPU, FS)),
     85       RegInfo(getHwMode()), TLInfo(TM, *this),
     86       InstrItins(getInstrItineraryForCPU(CPUString)) {
     87   // Beware of the default constructor of InstrItineraryData: it will
     88   // reset all members to 0.
     89   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
     90 }
     91 
     92 HexagonSubtarget &
     93 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
     94   static std::map<StringRef, Hexagon::ArchEnum> CpuTable{
     95       {"generic", Hexagon::ArchEnum::V60},
     96       {"hexagonv4", Hexagon::ArchEnum::V4},
     97       {"hexagonv5", Hexagon::ArchEnum::V5},
     98       {"hexagonv55", Hexagon::ArchEnum::V55},
     99       {"hexagonv60", Hexagon::ArchEnum::V60},
    100       {"hexagonv62", Hexagon::ArchEnum::V62},
    101       {"hexagonv65", Hexagon::ArchEnum::V65},
    102   };
    103 
    104   auto FoundIt = CpuTable.find(CPUString);
    105   if (FoundIt != CpuTable.end())
    106     HexagonArchVersion = FoundIt->second;
    107   else
    108     llvm_unreachable("Unrecognized Hexagon processor version");
    109 
    110   UseHVX128BOps = false;
    111   UseHVX64BOps = false;
    112   UseLongCalls = false;
    113 
    114   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
    115 
    116   ParseSubtargetFeatures(CPUString, FS);
    117 
    118   if (OverrideLongCalls.getPosition())
    119     UseLongCalls = OverrideLongCalls;
    120 
    121   FeatureBitset Features = getFeatureBits();
    122   if (HexagonDisableDuplex)
    123     setFeatureBits(Features.set(Hexagon::FeatureDuplex, false));
    124   setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
    125 
    126   return *this;
    127 }
    128 
    129 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
    130   for (SUnit &SU : DAG->SUnits) {
    131     if (!SU.isInstr())
    132       continue;
    133     SmallVector<SDep, 4> Erase;
    134     for (auto &D : SU.Preds)
    135       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
    136         Erase.push_back(D);
    137     for (auto &E : Erase)
    138       SU.removePred(E);
    139   }
    140 }
    141 
    142 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
    143   for (SUnit &SU : DAG->SUnits) {
    144     // Update the latency of chain edges between v60 vector load or store
    145     // instructions to be 1. These instruction cannot be scheduled in the
    146     // same packet.
    147     MachineInstr &MI1 = *SU.getInstr();
    148     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
    149     bool IsStoreMI1 = MI1.mayStore();
    150     bool IsLoadMI1 = MI1.mayLoad();
    151     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
    152       continue;
    153     for (SDep &SI : SU.Succs) {
    154       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
    155         continue;
    156       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
    157       if (!QII->isHVXVec(MI2))
    158         continue;
    159       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
    160         SI.setLatency(1);
    161         SU.setHeightDirty();
    162         // Change the dependence in the opposite direction too.
    163         for (SDep &PI : SI.getSUnit()->Preds) {
    164           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
    165             continue;
    166           PI.setLatency(1);
    167           SI.getSUnit()->setDepthDirty();
    168         }
    169       }
    170     }
    171   }
    172 }
    173 
    174 // Check if a call and subsequent A2_tfrpi instructions should maintain
    175 // scheduling affinity. We are looking for the TFRI to be consumed in
    176 // the next instruction. This should help reduce the instances of
    177 // double register pairs being allocated and scheduled before a call
    178 // when not used until after the call. This situation is exacerbated
    179 // by the fact that we allocate the pair from the callee saves list,
    180 // leading to excess spills and restores.
    181 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
    182       const HexagonInstrInfo &HII, const SUnit &Inst1,
    183       const SUnit &Inst2) const {
    184   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
    185     return false;
    186 
    187   // TypeXTYPE are 64 bit operations.
    188   unsigned Type = HII.getType(*Inst2.getInstr());
    189   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
    190          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
    191 }
    192 
    193 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
    194   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
    195   SUnit* LastSequentialCall = nullptr;
    196   // Map from virtual register to physical register from the copy.
    197   DenseMap<unsigned, unsigned> VRegHoldingReg;
    198   // Map from the physical register to the instruction that uses virtual
    199   // register. This is used to create the barrier edge.
    200   DenseMap<unsigned, SUnit *> LastVRegUse;
    201   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
    202   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
    203 
    204   // Currently we only catch the situation when compare gets scheduled
    205   // before preceding call.
    206   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
    207     // Remember the call.
    208     if (DAG->SUnits[su].getInstr()->isCall())
    209       LastSequentialCall = &DAG->SUnits[su];
    210     // Look for a compare that defines a predicate.
    211     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
    212       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
    213     // Look for call and tfri* instructions.
    214     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
    215              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
    216       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
    217     // Prevent redundant register copies due to reads and writes of physical
    218     // registers. The original motivation for this was the code generated
    219     // between two calls, which are caused both the return value and the
    220     // argument for the next call being in %r0.
    221     // Example:
    222     //   1: <call1>
    223     //   2: %vreg = COPY %r0
    224     //   3: <use of %vreg>
    225     //   4: %r0 = ...
    226     //   5: <call2>
    227     // The scheduler would often swap 3 and 4, so an additional register is
    228     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
    229     // this.
    230     // The code below checks for all the physical registers, not just R0/D0/V0.
    231     else if (SchedRetvalOptimization) {
    232       const MachineInstr *MI = DAG->SUnits[su].getInstr();
    233       if (MI->isCopy() &&
    234           TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) {
    235         // %vregX = COPY %r0
    236         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
    237         LastVRegUse.erase(MI->getOperand(1).getReg());
    238       } else {
    239         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    240           const MachineOperand &MO = MI->getOperand(i);
    241           if (!MO.isReg())
    242             continue;
    243           if (MO.isUse() && !MI->isCopy() &&
    244               VRegHoldingReg.count(MO.getReg())) {
    245             // <use of %vregX>
    246             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
    247           } else if (MO.isDef() &&
    248                      TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    249             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
    250                  ++AI) {
    251               if (LastVRegUse.count(*AI) &&
    252                   LastVRegUse[*AI] != &DAG->SUnits[su])
    253                 // %r0 = ...
    254                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
    255               LastVRegUse.erase(*AI);
    256             }
    257           }
    258         }
    259       }
    260     }
    261   }
    262 }
    263 
    264 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
    265   if (!EnableCheckBankConflict)
    266     return;
    267 
    268   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
    269 
    270   // Create artificial edges between loads that could likely cause a bank
    271   // conflict. Since such loads would normally not have any dependency
    272   // between them, we cannot rely on existing edges.
    273   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
    274     SUnit &S0 = DAG->SUnits[i];
    275     MachineInstr &L0 = *S0.getInstr();
    276     if (!L0.mayLoad() || L0.mayStore() ||
    277         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
    278       continue;
    279     int Offset0;
    280     unsigned Size0;
    281     unsigned Base0 = HII.getBaseAndOffset(L0, Offset0, Size0);
    282     // Is the access size is longer than the L1 cache line, skip the check.
    283     if (Base0 == 0 || Size0 >= 32)
    284       continue;
    285     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
    286     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
    287       SUnit &S1 = DAG->SUnits[j];
    288       MachineInstr &L1 = *S1.getInstr();
    289       if (!L1.mayLoad() || L1.mayStore() ||
    290           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
    291         continue;
    292       int Offset1;
    293       unsigned Size1;
    294       unsigned Base1 = HII.getBaseAndOffset(L1, Offset1, Size1);
    295       if (Base1 == 0 || Size1 >= 32 || Base0 != Base1)
    296         continue;
    297       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
    298       // is unlikely.
    299       if (((Offset0 ^ Offset1) & 0x18) != 0)
    300         continue;
    301       // Bits 3 and 4 are the same, add an artificial edge and set extra
    302       // latency.
    303       SDep A(&S0, SDep::Artificial);
    304       A.setLatency(1);
    305       S1.addPred(A, true);
    306     }
    307   }
    308 }
    309 
    310 /// Enable use of alias analysis during code generation (during MI
    311 /// scheduling, DAGCombine, etc.).
    312 bool HexagonSubtarget::useAA() const {
    313   if (OptLevel != CodeGenOpt::None)
    314     return true;
    315   return false;
    316 }
    317 
    318 /// Perform target specific adjustments to the latency of a schedule
    319 /// dependency.
    320 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
    321                                              SDep &Dep) const {
    322   MachineInstr *SrcInst = Src->getInstr();
    323   MachineInstr *DstInst = Dst->getInstr();
    324   if (!Src->isInstr() || !Dst->isInstr())
    325     return;
    326 
    327   const HexagonInstrInfo *QII = getInstrInfo();
    328 
    329   // Instructions with .new operands have zero latency.
    330   SmallSet<SUnit *, 4> ExclSrc;
    331   SmallSet<SUnit *, 4> ExclDst;
    332   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
    333       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
    334     Dep.setLatency(0);
    335     return;
    336   }
    337 
    338   if (!hasV60Ops())
    339     return;
    340 
    341   // Set the latency for a copy to zero since we hope that is will get removed.
    342   if (DstInst->isCopy())
    343     Dep.setLatency(0);
    344 
    345   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
    346   // the correct latency.
    347   if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
    348     unsigned DReg = DstInst->getOperand(0).getReg();
    349     MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
    350     unsigned UseIdx = -1;
    351     for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
    352       const MachineOperand &MO = DDst->getOperand(OpNum);
    353       if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
    354         UseIdx = OpNum;
    355         break;
    356       }
    357     }
    358     int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
    359                                                 0, *DDst, UseIdx));
    360     DLatency = std::max(DLatency, 0);
    361     Dep.setLatency((unsigned)DLatency);
    362   }
    363 
    364   // Try to schedule uses near definitions to generate .cur.
    365   ExclSrc.clear();
    366   ExclDst.clear();
    367   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
    368       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
    369     Dep.setLatency(0);
    370     return;
    371   }
    372 
    373   updateLatency(*SrcInst, *DstInst, Dep);
    374 }
    375 
    376 void HexagonSubtarget::getPostRAMutations(
    377     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
    378   Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
    379   Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
    380   Mutations.push_back(llvm::make_unique<BankConflictMutation>());
    381 }
    382 
    383 void HexagonSubtarget::getSMSMutations(
    384     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
    385   Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
    386   Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
    387 }
    388 
    389 // Pin the vtable to this file.
    390 void HexagonSubtarget::anchor() {}
    391 
    392 bool HexagonSubtarget::enableMachineScheduler() const {
    393   if (DisableHexagonMISched.getNumOccurrences())
    394     return !DisableHexagonMISched;
    395   return true;
    396 }
    397 
    398 bool HexagonSubtarget::usePredicatedCalls() const {
    399   return EnablePredicatedCalls;
    400 }
    401 
    402 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
    403       MachineInstr &DstInst, SDep &Dep) const {
    404   if (Dep.isArtificial()) {
    405     Dep.setLatency(1);
    406     return;
    407   }
    408 
    409   if (!hasV60Ops())
    410     return;
    411 
    412   auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
    413 
    414   // BSB scheduling.
    415   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
    416     Dep.setLatency((Dep.getLatency() + 1) >> 1);
    417 }
    418 
    419 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
    420   MachineInstr *SrcI = Src->getInstr();
    421   for (auto &I : Src->Succs) {
    422     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
    423       continue;
    424     unsigned DepR = I.getReg();
    425     int DefIdx = -1;
    426     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
    427       const MachineOperand &MO = SrcI->getOperand(OpNum);
    428       if (MO.isReg() && MO.isDef() && MO.getReg() == DepR)
    429         DefIdx = OpNum;
    430     }
    431     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
    432     MachineInstr *DstI = Dst->getInstr();
    433     SDep T = I;
    434     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
    435       const MachineOperand &MO = DstI->getOperand(OpNum);
    436       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
    437         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
    438                                                    DefIdx, *DstI, OpNum));
    439 
    440         // For some instructions (ex: COPY), we might end up with < 0 latency
    441         // as they don't have any Itinerary class associated with them.
    442         Latency = std::max(Latency, 0);
    443 
    444         I.setLatency(Latency);
    445         updateLatency(*SrcI, *DstI, I);
    446       }
    447     }
    448 
    449     // Update the latency of opposite edge too.
    450     T.setSUnit(Src);
    451     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
    452     assert(F != Dst->Preds.end());
    453     F->setLatency(I.getLatency());
    454   }
    455 }
    456 
    457 /// Change the latency between the two SUnits.
    458 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
    459       const {
    460   for (auto &I : Src->Succs) {
    461     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
    462       continue;
    463     SDep T = I;
    464     I.setLatency(Lat);
    465 
    466     // Update the latency of opposite edge too.
    467     T.setSUnit(Src);
    468     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
    469     assert(F != Dst->Preds.end());
    470     F->setLatency(Lat);
    471   }
    472 }
    473 
    474 /// If the SUnit has a zero latency edge, return the other SUnit.
    475 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
    476   for (auto &I : Deps)
    477     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
    478         !I.getSUnit()->getInstr()->isPseudo())
    479       return I.getSUnit();
    480   return nullptr;
    481 }
    482 
    483 // Return true if these are the best two instructions to schedule
    484 // together with a zero latency. Only one dependence should have a zero
    485 // latency. If there are multiple choices, choose the best, and change
    486 // the others, if needed.
    487 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
    488       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
    489       SmallSet<SUnit*, 4> &ExclDst) const {
    490   MachineInstr &SrcInst = *Src->getInstr();
    491   MachineInstr &DstInst = *Dst->getInstr();
    492 
    493   // Ignore Boundary SU nodes as these have null instructions.
    494   if (Dst->isBoundaryNode())
    495     return false;
    496 
    497   if (SrcInst.isPHI() || DstInst.isPHI())
    498     return false;
    499 
    500   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
    501       !TII->canExecuteInBundle(SrcInst, DstInst))
    502     return false;
    503 
    504   // The architecture doesn't allow three dependent instructions in the same
    505   // packet. So, if the destination has a zero latency successor, then it's
    506   // not a candidate for a zero latency predecessor.
    507   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
    508     return false;
    509 
    510   // Check if the Dst instruction is the best candidate first.
    511   SUnit *Best = nullptr;
    512   SUnit *DstBest = nullptr;
    513   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
    514   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
    515     // Check that Src doesn't have a better candidate.
    516     DstBest = getZeroLatency(Src, Src->Succs);
    517     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
    518       Best = Dst;
    519   }
    520   if (Best != Dst)
    521     return false;
    522 
    523   // The caller frequently adds the same dependence twice. If so, then
    524   // return true for this case too.
    525   if ((Src == SrcBest && Dst == DstBest ) ||
    526       (SrcBest == nullptr && Dst == DstBest) ||
    527       (Src == SrcBest && Dst == nullptr))
    528     return true;
    529 
    530   // Reassign the latency for the previous bests, which requires setting
    531   // the dependence edge in both directions.
    532   if (SrcBest != nullptr) {
    533     if (!hasV60Ops())
    534       changeLatency(SrcBest, Dst, 1);
    535     else
    536       restoreLatency(SrcBest, Dst);
    537   }
    538   if (DstBest != nullptr) {
    539     if (!hasV60Ops())
    540       changeLatency(Src, DstBest, 1);
    541     else
    542       restoreLatency(Src, DstBest);
    543   }
    544 
    545   // Attempt to find another opprotunity for zero latency in a different
    546   // dependence.
    547   if (SrcBest && DstBest)
    548     // If there is an edge from SrcBest to DstBst, then try to change that
    549     // to 0 now.
    550     changeLatency(SrcBest, DstBest, 0);
    551   else if (DstBest) {
    552     // Check if the previous best destination instruction has a new zero
    553     // latency dependence opportunity.
    554     ExclSrc.insert(Src);
    555     for (auto &I : DstBest->Preds)
    556       if (ExclSrc.count(I.getSUnit()) == 0 &&
    557           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
    558         changeLatency(I.getSUnit(), DstBest, 0);
    559   } else if (SrcBest) {
    560     // Check if previous best source instruction has a new zero latency
    561     // dependence opportunity.
    562     ExclDst.insert(Dst);
    563     for (auto &I : SrcBest->Succs)
    564       if (ExclDst.count(I.getSUnit()) == 0 &&
    565           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
    566         changeLatency(SrcBest, I.getSUnit(), 0);
    567   }
    568 
    569   return true;
    570 }
    571 
    572 unsigned HexagonSubtarget::getL1CacheLineSize() const {
    573   return 32;
    574 }
    575 
    576 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
    577   return 32;
    578 }
    579 
    580 bool HexagonSubtarget::enableSubRegLiveness() const {
    581   return EnableSubregLiveness;
    582 }
    583