Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements basic block placement transformations using the CFG
     11 // structure and branch probability estimates.
     12 //
     13 // The pass strives to preserve the structure of the CFG (that is, retain
     14 // a topological ordering of basic blocks) in the absence of a *strong* signal
     15 // to the contrary from probabilities. However, within the CFG structure, it
     16 // attempts to choose an ordering which favors placing more likely sequences of
     17 // blocks adjacent to each other.
     18 //
     19 // The algorithm works from the inner-most loop within a function outward, and
     20 // at each stage walks through the basic blocks, trying to coalesce them into
     21 // sequential chains where allowed by the CFG (or demanded by heavy
     22 // probabilities). Finally, it walks the blocks in topological order, and the
     23 // first time it reaches a chain of basic blocks, it schedules them in the
     24 // function in-order.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "BranchFolding.h"
     29 #include "llvm/ADT/ArrayRef.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SetVector.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/ADT/SmallVector.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
     37 #include "llvm/CodeGen/MachineBasicBlock.h"
     38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     40 #include "llvm/CodeGen/MachineFunction.h"
     41 #include "llvm/CodeGen/MachineFunctionPass.h"
     42 #include "llvm/CodeGen/MachineLoopInfo.h"
     43 #include "llvm/CodeGen/MachineModuleInfo.h"
     44 #include "llvm/CodeGen/MachinePostDominators.h"
     45 #include "llvm/CodeGen/TailDuplicator.h"
     46 #include "llvm/CodeGen/TargetInstrInfo.h"
     47 #include "llvm/CodeGen/TargetLowering.h"
     48 #include "llvm/CodeGen/TargetPassConfig.h"
     49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     50 #include "llvm/IR/DebugLoc.h"
     51 #include "llvm/IR/Function.h"
     52 #include "llvm/Pass.h"
     53 #include "llvm/Support/Allocator.h"
     54 #include "llvm/Support/BlockFrequency.h"
     55 #include "llvm/Support/BranchProbability.h"
     56 #include "llvm/Support/CodeGen.h"
     57 #include "llvm/Support/CommandLine.h"
     58 #include "llvm/Support/Compiler.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Support/raw_ostream.h"
     61 #include "llvm/Target/TargetMachine.h"
     62 #include <algorithm>
     63 #include <cassert>
     64 #include <cstdint>
     65 #include <iterator>
     66 #include <memory>
     67 #include <string>
     68 #include <tuple>
     69 #include <utility>
     70 #include <vector>
     71 
     72 using namespace llvm;
     73 
     74 #define DEBUG_TYPE "block-placement"
     75 
     76 STATISTIC(NumCondBranches, "Number of conditional branches");
     77 STATISTIC(NumUncondBranches, "Number of unconditional branches");
     78 STATISTIC(CondBranchTakenFreq,
     79           "Potential frequency of taking conditional branches");
     80 STATISTIC(UncondBranchTakenFreq,
     81           "Potential frequency of taking unconditional branches");
     82 
     83 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
     84                                        cl::desc("Force the alignment of all "
     85                                                 "blocks in the function."),
     86                                        cl::init(0), cl::Hidden);
     87 
     88 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
     89     "align-all-nofallthru-blocks",
     90     cl::desc("Force the alignment of all "
     91              "blocks that have no fall-through predecessors (i.e. don't add "
     92              "nops that are executed)."),
     93     cl::init(0), cl::Hidden);
     94 
     95 // FIXME: Find a good default for this flag and remove the flag.
     96 static cl::opt<unsigned> ExitBlockBias(
     97     "block-placement-exit-block-bias",
     98     cl::desc("Block frequency percentage a loop exit block needs "
     99              "over the original exit to be considered the new exit."),
    100     cl::init(0), cl::Hidden);
    101 
    102 // Definition:
    103 // - Outlining: placement of a basic block outside the chain or hot path.
    104 
    105 static cl::opt<unsigned> LoopToColdBlockRatio(
    106     "loop-to-cold-block-ratio",
    107     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
    108              "(frequency of block) is greater than this ratio"),
    109     cl::init(5), cl::Hidden);
    110 
    111 static cl::opt<bool> ForceLoopColdBlock(
    112     "force-loop-cold-block",
    113     cl::desc("Force outlining cold blocks from loops."),
    114     cl::init(false), cl::Hidden);
    115 
    116 static cl::opt<bool>
    117     PreciseRotationCost("precise-rotation-cost",
    118                         cl::desc("Model the cost of loop rotation more "
    119                                  "precisely by using profile data."),
    120                         cl::init(false), cl::Hidden);
    121 
    122 static cl::opt<bool>
    123     ForcePreciseRotationCost("force-precise-rotation-cost",
    124                              cl::desc("Force the use of precise cost "
    125                                       "loop rotation strategy."),
    126                              cl::init(false), cl::Hidden);
    127 
    128 static cl::opt<unsigned> MisfetchCost(
    129     "misfetch-cost",
    130     cl::desc("Cost that models the probabilistic risk of an instruction "
    131              "misfetch due to a jump comparing to falling through, whose cost "
    132              "is zero."),
    133     cl::init(1), cl::Hidden);
    134 
    135 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
    136                                       cl::desc("Cost of jump instructions."),
    137                                       cl::init(1), cl::Hidden);
    138 static cl::opt<bool>
    139 TailDupPlacement("tail-dup-placement",
    140               cl::desc("Perform tail duplication during placement. "
    141                        "Creates more fallthrough opportunites in "
    142                        "outline branches."),
    143               cl::init(true), cl::Hidden);
    144 
    145 static cl::opt<bool>
    146 BranchFoldPlacement("branch-fold-placement",
    147               cl::desc("Perform branch folding during placement. "
    148                        "Reduces code size."),
    149               cl::init(true), cl::Hidden);
    150 
    151 // Heuristic for tail duplication.
    152 static cl::opt<unsigned> TailDupPlacementThreshold(
    153     "tail-dup-placement-threshold",
    154     cl::desc("Instruction cutoff for tail duplication during layout. "
    155              "Tail merging during layout is forced to have a threshold "
    156              "that won't conflict."), cl::init(2),
    157     cl::Hidden);
    158 
    159 // Heuristic for aggressive tail duplication.
    160 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
    161     "tail-dup-placement-aggressive-threshold",
    162     cl::desc("Instruction cutoff for aggressive tail duplication during "
    163              "layout. Used at -O3. Tail merging during layout is forced to "
    164              "have a threshold that won't conflict."), cl::init(4),
    165     cl::Hidden);
    166 
    167 // Heuristic for tail duplication.
    168 static cl::opt<unsigned> TailDupPlacementPenalty(
    169     "tail-dup-placement-penalty",
    170     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
    171              "Copying can increase fallthrough, but it also increases icache "
    172              "pressure. This parameter controls the penalty to account for that. "
    173              "Percent as integer."),
    174     cl::init(2),
    175     cl::Hidden);
    176 
    177 // Heuristic for triangle chains.
    178 static cl::opt<unsigned> TriangleChainCount(
    179     "triangle-chain-count",
    180     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
    181              "triangle tail duplication heuristic to kick in. 0 to disable."),
    182     cl::init(2),
    183     cl::Hidden);
    184 
    185 extern cl::opt<unsigned> StaticLikelyProb;
    186 extern cl::opt<unsigned> ProfileLikelyProb;
    187 
    188 // Internal option used to control BFI display only after MBP pass.
    189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
    190 // -view-block-layout-with-bfi=
    191 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
    192 
    193 // Command line option to specify the name of the function for CFG dump
    194 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
    195 extern cl::opt<std::string> ViewBlockFreqFuncName;
    196 
    197 namespace {
    198 
    199 class BlockChain;
    200 
    201 /// Type for our function-wide basic block -> block chain mapping.
    202 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
    203 
    204 /// A chain of blocks which will be laid out contiguously.
    205 ///
    206 /// This is the datastructure representing a chain of consecutive blocks that
    207 /// are profitable to layout together in order to maximize fallthrough
    208 /// probabilities and code locality. We also can use a block chain to represent
    209 /// a sequence of basic blocks which have some external (correctness)
    210 /// requirement for sequential layout.
    211 ///
    212 /// Chains can be built around a single basic block and can be merged to grow
    213 /// them. They participate in a block-to-chain mapping, which is updated
    214 /// automatically as chains are merged together.
    215 class BlockChain {
    216   /// The sequence of blocks belonging to this chain.
    217   ///
    218   /// This is the sequence of blocks for a particular chain. These will be laid
    219   /// out in-order within the function.
    220   SmallVector<MachineBasicBlock *, 4> Blocks;
    221 
    222   /// A handle to the function-wide basic block to block chain mapping.
    223   ///
    224   /// This is retained in each block chain to simplify the computation of child
    225   /// block chains for SCC-formation and iteration. We store the edges to child
    226   /// basic blocks, and map them back to their associated chains using this
    227   /// structure.
    228   BlockToChainMapType &BlockToChain;
    229 
    230 public:
    231   /// Construct a new BlockChain.
    232   ///
    233   /// This builds a new block chain representing a single basic block in the
    234   /// function. It also registers itself as the chain that block participates
    235   /// in with the BlockToChain mapping.
    236   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
    237       : Blocks(1, BB), BlockToChain(BlockToChain) {
    238     assert(BB && "Cannot create a chain with a null basic block");
    239     BlockToChain[BB] = this;
    240   }
    241 
    242   /// Iterator over blocks within the chain.
    243   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
    244   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
    245 
    246   /// Beginning of blocks within the chain.
    247   iterator begin() { return Blocks.begin(); }
    248   const_iterator begin() const { return Blocks.begin(); }
    249 
    250   /// End of blocks within the chain.
    251   iterator end() { return Blocks.end(); }
    252   const_iterator end() const { return Blocks.end(); }
    253 
    254   bool remove(MachineBasicBlock* BB) {
    255     for(iterator i = begin(); i != end(); ++i) {
    256       if (*i == BB) {
    257         Blocks.erase(i);
    258         return true;
    259       }
    260     }
    261     return false;
    262   }
    263 
    264   /// Merge a block chain into this one.
    265   ///
    266   /// This routine merges a block chain into this one. It takes care of forming
    267   /// a contiguous sequence of basic blocks, updating the edge list, and
    268   /// updating the block -> chain mapping. It does not free or tear down the
    269   /// old chain, but the old chain's block list is no longer valid.
    270   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    271     assert(BB && "Can't merge a null block.");
    272     assert(!Blocks.empty() && "Can't merge into an empty chain.");
    273 
    274     // Fast path in case we don't have a chain already.
    275     if (!Chain) {
    276       assert(!BlockToChain[BB] &&
    277              "Passed chain is null, but BB has entry in BlockToChain.");
    278       Blocks.push_back(BB);
    279       BlockToChain[BB] = this;
    280       return;
    281     }
    282 
    283     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
    284     assert(Chain->begin() != Chain->end());
    285 
    286     // Update the incoming blocks to point to this chain, and add them to the
    287     // chain structure.
    288     for (MachineBasicBlock *ChainBB : *Chain) {
    289       Blocks.push_back(ChainBB);
    290       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
    291       BlockToChain[ChainBB] = this;
    292     }
    293   }
    294 
    295 #ifndef NDEBUG
    296   /// Dump the blocks in this chain.
    297   LLVM_DUMP_METHOD void dump() {
    298     for (MachineBasicBlock *MBB : *this)
    299       MBB->dump();
    300   }
    301 #endif // NDEBUG
    302 
    303   /// Count of predecessors of any block within the chain which have not
    304   /// yet been scheduled.  In general, we will delay scheduling this chain
    305   /// until those predecessors are scheduled (or we find a sufficiently good
    306   /// reason to override this heuristic.)  Note that when forming loop chains,
    307   /// blocks outside the loop are ignored and treated as if they were already
    308   /// scheduled.
    309   ///
    310   /// Note: This field is reinitialized multiple times - once for each loop,
    311   /// and then once for the function as a whole.
    312   unsigned UnscheduledPredecessors = 0;
    313 };
    314 
    315 class MachineBlockPlacement : public MachineFunctionPass {
    316   /// A type for a block filter set.
    317   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
    318 
    319   /// Pair struct containing basic block and taildup profitiability
    320   struct BlockAndTailDupResult {
    321     MachineBasicBlock *BB;
    322     bool ShouldTailDup;
    323   };
    324 
    325   /// Triple struct containing edge weight and the edge.
    326   struct WeightedEdge {
    327     BlockFrequency Weight;
    328     MachineBasicBlock *Src;
    329     MachineBasicBlock *Dest;
    330   };
    331 
    332   /// work lists of blocks that are ready to be laid out
    333   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
    334   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
    335 
    336   /// Edges that have already been computed as optimal.
    337   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
    338 
    339   /// Machine Function
    340   MachineFunction *F;
    341 
    342   /// A handle to the branch probability pass.
    343   const MachineBranchProbabilityInfo *MBPI;
    344 
    345   /// A handle to the function-wide block frequency pass.
    346   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
    347 
    348   /// A handle to the loop info.
    349   MachineLoopInfo *MLI;
    350 
    351   /// Preferred loop exit.
    352   /// Member variable for convenience. It may be removed by duplication deep
    353   /// in the call stack.
    354   MachineBasicBlock *PreferredLoopExit;
    355 
    356   /// A handle to the target's instruction info.
    357   const TargetInstrInfo *TII;
    358 
    359   /// A handle to the target's lowering info.
    360   const TargetLoweringBase *TLI;
    361 
    362   /// A handle to the post dominator tree.
    363   MachinePostDominatorTree *MPDT;
    364 
    365   /// Duplicator used to duplicate tails during placement.
    366   ///
    367   /// Placement decisions can open up new tail duplication opportunities, but
    368   /// since tail duplication affects placement decisions of later blocks, it
    369   /// must be done inline.
    370   TailDuplicator TailDup;
    371 
    372   /// Allocator and owner of BlockChain structures.
    373   ///
    374   /// We build BlockChains lazily while processing the loop structure of
    375   /// a function. To reduce malloc traffic, we allocate them using this
    376   /// slab-like allocator, and destroy them after the pass completes. An
    377   /// important guarantee is that this allocator produces stable pointers to
    378   /// the chains.
    379   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
    380 
    381   /// Function wide BasicBlock to BlockChain mapping.
    382   ///
    383   /// This mapping allows efficiently moving from any given basic block to the
    384   /// BlockChain it participates in, if any. We use it to, among other things,
    385   /// allow implicitly defining edges between chains as the existing edges
    386   /// between basic blocks.
    387   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
    388 
    389 #ifndef NDEBUG
    390   /// The set of basic blocks that have terminators that cannot be fully
    391   /// analyzed.  These basic blocks cannot be re-ordered safely by
    392   /// MachineBlockPlacement, and we must preserve physical layout of these
    393   /// blocks and their successors through the pass.
    394   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
    395 #endif
    396 
    397   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
    398   /// if the count goes to 0, add them to the appropriate work list.
    399   void markChainSuccessors(
    400       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
    401       const BlockFilterSet *BlockFilter = nullptr);
    402 
    403   /// Decrease the UnscheduledPredecessors count for a single block, and
    404   /// if the count goes to 0, add them to the appropriate work list.
    405   void markBlockSuccessors(
    406       const BlockChain &Chain, const MachineBasicBlock *BB,
    407       const MachineBasicBlock *LoopHeaderBB,
    408       const BlockFilterSet *BlockFilter = nullptr);
    409 
    410   BranchProbability
    411   collectViableSuccessors(
    412       const MachineBasicBlock *BB, const BlockChain &Chain,
    413       const BlockFilterSet *BlockFilter,
    414       SmallVector<MachineBasicBlock *, 4> &Successors);
    415   bool shouldPredBlockBeOutlined(
    416       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    417       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
    418       BranchProbability SuccProb, BranchProbability HotProb);
    419   bool repeatedlyTailDuplicateBlock(
    420       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
    421       const MachineBasicBlock *LoopHeaderBB,
    422       BlockChain &Chain, BlockFilterSet *BlockFilter,
    423       MachineFunction::iterator &PrevUnplacedBlockIt);
    424   bool maybeTailDuplicateBlock(
    425       MachineBasicBlock *BB, MachineBasicBlock *LPred,
    426       BlockChain &Chain, BlockFilterSet *BlockFilter,
    427       MachineFunction::iterator &PrevUnplacedBlockIt,
    428       bool &DuplicatedToLPred);
    429   bool hasBetterLayoutPredecessor(
    430       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    431       const BlockChain &SuccChain, BranchProbability SuccProb,
    432       BranchProbability RealSuccProb, const BlockChain &Chain,
    433       const BlockFilterSet *BlockFilter);
    434   BlockAndTailDupResult selectBestSuccessor(
    435       const MachineBasicBlock *BB, const BlockChain &Chain,
    436       const BlockFilterSet *BlockFilter);
    437   MachineBasicBlock *selectBestCandidateBlock(
    438       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
    439   MachineBasicBlock *getFirstUnplacedBlock(
    440       const BlockChain &PlacedChain,
    441       MachineFunction::iterator &PrevUnplacedBlockIt,
    442       const BlockFilterSet *BlockFilter);
    443 
    444   /// Add a basic block to the work list if it is appropriate.
    445   ///
    446   /// If the optional parameter BlockFilter is provided, only MBB
    447   /// present in the set will be added to the worklist. If nullptr
    448   /// is provided, no filtering occurs.
    449   void fillWorkLists(const MachineBasicBlock *MBB,
    450                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
    451                      const BlockFilterSet *BlockFilter);
    452 
    453   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
    454                   BlockFilterSet *BlockFilter = nullptr);
    455   MachineBasicBlock *findBestLoopTop(
    456       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
    457   MachineBasicBlock *findBestLoopExit(
    458       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
    459   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
    460   void buildLoopChains(const MachineLoop &L);
    461   void rotateLoop(
    462       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
    463       const BlockFilterSet &LoopBlockSet);
    464   void rotateLoopWithProfile(
    465       BlockChain &LoopChain, const MachineLoop &L,
    466       const BlockFilterSet &LoopBlockSet);
    467   void buildCFGChains();
    468   void optimizeBranches();
    469   void alignBlocks();
    470   /// Returns true if a block should be tail-duplicated to increase fallthrough
    471   /// opportunities.
    472   bool shouldTailDuplicate(MachineBasicBlock *BB);
    473   /// Check the edge frequencies to see if tail duplication will increase
    474   /// fallthroughs.
    475   bool isProfitableToTailDup(
    476     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    477     BranchProbability QProb,
    478     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
    479 
    480   /// Check for a trellis layout.
    481   bool isTrellis(const MachineBasicBlock *BB,
    482                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    483                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
    484 
    485   /// Get the best successor given a trellis layout.
    486   BlockAndTailDupResult getBestTrellisSuccessor(
    487       const MachineBasicBlock *BB,
    488       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    489       BranchProbability AdjustedSumProb, const BlockChain &Chain,
    490       const BlockFilterSet *BlockFilter);
    491 
    492   /// Get the best pair of non-conflicting edges.
    493   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
    494       const MachineBasicBlock *BB,
    495       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
    496 
    497   /// Returns true if a block can tail duplicate into all unplaced
    498   /// predecessors. Filters based on loop.
    499   bool canTailDuplicateUnplacedPreds(
    500       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
    501       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
    502 
    503   /// Find chains of triangles to tail-duplicate where a global analysis works,
    504   /// but a local analysis would not find them.
    505   void precomputeTriangleChains();
    506 
    507 public:
    508   static char ID; // Pass identification, replacement for typeid
    509 
    510   MachineBlockPlacement() : MachineFunctionPass(ID) {
    511     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
    512   }
    513 
    514   bool runOnMachineFunction(MachineFunction &F) override;
    515 
    516   bool allowTailDupPlacement() const {
    517     assert(F);
    518     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
    519   }
    520 
    521   void getAnalysisUsage(AnalysisUsage &AU) const override {
    522     AU.addRequired<MachineBranchProbabilityInfo>();
    523     AU.addRequired<MachineBlockFrequencyInfo>();
    524     if (TailDupPlacement)
    525       AU.addRequired<MachinePostDominatorTree>();
    526     AU.addRequired<MachineLoopInfo>();
    527     AU.addRequired<TargetPassConfig>();
    528     MachineFunctionPass::getAnalysisUsage(AU);
    529   }
    530 };
    531 
    532 } // end anonymous namespace
    533 
    534 char MachineBlockPlacement::ID = 0;
    535 
    536 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
    537 
    538 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
    539                       "Branch Probability Basic Block Placement", false, false)
    540 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    541 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    542 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
    543 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    544 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
    545                     "Branch Probability Basic Block Placement", false, false)
    546 
    547 #ifndef NDEBUG
    548 /// Helper to print the name of a MBB.
    549 ///
    550 /// Only used by debug logging.
    551 static std::string getBlockName(const MachineBasicBlock *BB) {
    552   std::string Result;
    553   raw_string_ostream OS(Result);
    554   OS << printMBBReference(*BB);
    555   OS << " ('" << BB->getName() << "')";
    556   OS.flush();
    557   return Result;
    558 }
    559 #endif
    560 
    561 /// Mark a chain's successors as having one fewer preds.
    562 ///
    563 /// When a chain is being merged into the "placed" chain, this routine will
    564 /// quickly walk the successors of each block in the chain and mark them as
    565 /// having one fewer active predecessor. It also adds any successors of this
    566 /// chain which reach the zero-predecessor state to the appropriate worklist.
    567 void MachineBlockPlacement::markChainSuccessors(
    568     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
    569     const BlockFilterSet *BlockFilter) {
    570   // Walk all the blocks in this chain, marking their successors as having
    571   // a predecessor placed.
    572   for (MachineBasicBlock *MBB : Chain) {
    573     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
    574   }
    575 }
    576 
    577 /// Mark a single block's successors as having one fewer preds.
    578 ///
    579 /// Under normal circumstances, this is only called by markChainSuccessors,
    580 /// but if a block that was to be placed is completely tail-duplicated away,
    581 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
    582 /// for just that block.
    583 void MachineBlockPlacement::markBlockSuccessors(
    584     const BlockChain &Chain, const MachineBasicBlock *MBB,
    585     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
    586   // Add any successors for which this is the only un-placed in-loop
    587   // predecessor to the worklist as a viable candidate for CFG-neutral
    588   // placement. No subsequent placement of this block will violate the CFG
    589   // shape, so we get to use heuristics to choose a favorable placement.
    590   for (MachineBasicBlock *Succ : MBB->successors()) {
    591     if (BlockFilter && !BlockFilter->count(Succ))
    592       continue;
    593     BlockChain &SuccChain = *BlockToChain[Succ];
    594     // Disregard edges within a fixed chain, or edges to the loop header.
    595     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
    596       continue;
    597 
    598     // This is a cross-chain edge that is within the loop, so decrement the
    599     // loop predecessor count of the destination chain.
    600     if (SuccChain.UnscheduledPredecessors == 0 ||
    601         --SuccChain.UnscheduledPredecessors > 0)
    602       continue;
    603 
    604     auto *NewBB = *SuccChain.begin();
    605     if (NewBB->isEHPad())
    606       EHPadWorkList.push_back(NewBB);
    607     else
    608       BlockWorkList.push_back(NewBB);
    609   }
    610 }
    611 
    612 /// This helper function collects the set of successors of block
    613 /// \p BB that are allowed to be its layout successors, and return
    614 /// the total branch probability of edges from \p BB to those
    615 /// blocks.
    616 BranchProbability MachineBlockPlacement::collectViableSuccessors(
    617     const MachineBasicBlock *BB, const BlockChain &Chain,
    618     const BlockFilterSet *BlockFilter,
    619     SmallVector<MachineBasicBlock *, 4> &Successors) {
    620   // Adjust edge probabilities by excluding edges pointing to blocks that is
    621   // either not in BlockFilter or is already in the current chain. Consider the
    622   // following CFG:
    623   //
    624   //     --->A
    625   //     |  / \
    626   //     | B   C
    627   //     |  \ / \
    628   //     ----D   E
    629   //
    630   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
    631   // A->C is chosen as a fall-through, D won't be selected as a successor of C
    632   // due to CFG constraint (the probability of C->D is not greater than
    633   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
    634   // when calculating the probability of C->D, D will be selected and we
    635   // will get A C D B as the layout of this loop.
    636   auto AdjustedSumProb = BranchProbability::getOne();
    637   for (MachineBasicBlock *Succ : BB->successors()) {
    638     bool SkipSucc = false;
    639     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
    640       SkipSucc = true;
    641     } else {
    642       BlockChain *SuccChain = BlockToChain[Succ];
    643       if (SuccChain == &Chain) {
    644         SkipSucc = true;
    645       } else if (Succ != *SuccChain->begin()) {
    646         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
    647                           << " -> Mid chain!\n");
    648         continue;
    649       }
    650     }
    651     if (SkipSucc)
    652       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
    653     else
    654       Successors.push_back(Succ);
    655   }
    656 
    657   return AdjustedSumProb;
    658 }
    659 
    660 /// The helper function returns the branch probability that is adjusted
    661 /// or normalized over the new total \p AdjustedSumProb.
    662 static BranchProbability
    663 getAdjustedProbability(BranchProbability OrigProb,
    664                        BranchProbability AdjustedSumProb) {
    665   BranchProbability SuccProb;
    666   uint32_t SuccProbN = OrigProb.getNumerator();
    667   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
    668   if (SuccProbN >= SuccProbD)
    669     SuccProb = BranchProbability::getOne();
    670   else
    671     SuccProb = BranchProbability(SuccProbN, SuccProbD);
    672 
    673   return SuccProb;
    674 }
    675 
    676 /// Check if \p BB has exactly the successors in \p Successors.
    677 static bool
    678 hasSameSuccessors(MachineBasicBlock &BB,
    679                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
    680   if (BB.succ_size() != Successors.size())
    681     return false;
    682   // We don't want to count self-loops
    683   if (Successors.count(&BB))
    684     return false;
    685   for (MachineBasicBlock *Succ : BB.successors())
    686     if (!Successors.count(Succ))
    687       return false;
    688   return true;
    689 }
    690 
    691 /// Check if a block should be tail duplicated to increase fallthrough
    692 /// opportunities.
    693 /// \p BB Block to check.
    694 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
    695   // Blocks with single successors don't create additional fallthrough
    696   // opportunities. Don't duplicate them. TODO: When conditional exits are
    697   // analyzable, allow them to be duplicated.
    698   bool IsSimple = TailDup.isSimpleBB(BB);
    699 
    700   if (BB->succ_size() == 1)
    701     return false;
    702   return TailDup.shouldTailDuplicate(IsSimple, *BB);
    703 }
    704 
    705 /// Compare 2 BlockFrequency's with a small penalty for \p A.
    706 /// In order to be conservative, we apply a X% penalty to account for
    707 /// increased icache pressure and static heuristics. For small frequencies
    708 /// we use only the numerators to improve accuracy. For simplicity, we assume the
    709 /// penalty is less than 100%
    710 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
    711 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
    712                             uint64_t EntryFreq) {
    713   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
    714   BlockFrequency Gain = A - B;
    715   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
    716 }
    717 
    718 /// Check the edge frequencies to see if tail duplication will increase
    719 /// fallthroughs. It only makes sense to call this function when
    720 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
    721 /// always locally profitable if we would have picked \p Succ without
    722 /// considering duplication.
    723 bool MachineBlockPlacement::isProfitableToTailDup(
    724     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    725     BranchProbability QProb,
    726     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
    727   // We need to do a probability calculation to make sure this is profitable.
    728   // First: does succ have a successor that post-dominates? This affects the
    729   // calculation. The 2 relevant cases are:
    730   //    BB         BB
    731   //    | \Qout    | \Qout
    732   //   P|  C       |P C
    733   //    =   C'     =   C'
    734   //    |  /Qin    |  /Qin
    735   //    | /        | /
    736   //    Succ       Succ
    737   //    / \        | \  V
    738   //  U/   =V      |U \
    739   //  /     \      =   D
    740   //  D      E     |  /
    741   //               | /
    742   //               |/
    743   //               PDom
    744   //  '=' : Branch taken for that CFG edge
    745   // In the second case, Placing Succ while duplicating it into C prevents the
    746   // fallthrough of Succ into either D or PDom, because they now have C as an
    747   // unplaced predecessor
    748 
    749   // Start by figuring out which case we fall into
    750   MachineBasicBlock *PDom = nullptr;
    751   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
    752   // Only scan the relevant successors
    753   auto AdjustedSuccSumProb =
    754       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
    755   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
    756   auto BBFreq = MBFI->getBlockFreq(BB);
    757   auto SuccFreq = MBFI->getBlockFreq(Succ);
    758   BlockFrequency P = BBFreq * PProb;
    759   BlockFrequency Qout = BBFreq * QProb;
    760   uint64_t EntryFreq = MBFI->getEntryFreq();
    761   // If there are no more successors, it is profitable to copy, as it strictly
    762   // increases fallthrough.
    763   if (SuccSuccs.size() == 0)
    764     return greaterWithBias(P, Qout, EntryFreq);
    765 
    766   auto BestSuccSucc = BranchProbability::getZero();
    767   // Find the PDom or the best Succ if no PDom exists.
    768   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
    769     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
    770     if (Prob > BestSuccSucc)
    771       BestSuccSucc = Prob;
    772     if (PDom == nullptr)
    773       if (MPDT->dominates(SuccSucc, Succ)) {
    774         PDom = SuccSucc;
    775         break;
    776       }
    777   }
    778   // For the comparisons, we need to know Succ's best incoming edge that isn't
    779   // from BB.
    780   auto SuccBestPred = BlockFrequency(0);
    781   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
    782     if (SuccPred == Succ || SuccPred == BB
    783         || BlockToChain[SuccPred] == &Chain
    784         || (BlockFilter && !BlockFilter->count(SuccPred)))
    785       continue;
    786     auto Freq = MBFI->getBlockFreq(SuccPred)
    787         * MBPI->getEdgeProbability(SuccPred, Succ);
    788     if (Freq > SuccBestPred)
    789       SuccBestPred = Freq;
    790   }
    791   // Qin is Succ's best unplaced incoming edge that isn't BB
    792   BlockFrequency Qin = SuccBestPred;
    793   // If it doesn't have a post-dominating successor, here is the calculation:
    794   //    BB        BB
    795   //    | \Qout   |  \
    796   //   P|  C      |   =
    797   //    =   C'    |    C
    798   //    |  /Qin   |     |
    799   //    | /       |     C' (+Succ)
    800   //    Succ      Succ /|
    801   //    / \       |  \/ |
    802   //  U/   =V     |  == |
    803   //  /     \     | /  \|
    804   //  D      E    D     E
    805   //  '=' : Branch taken for that CFG edge
    806   //  Cost in the first case is: P + V
    807   //  For this calculation, we always assume P > Qout. If Qout > P
    808   //  The result of this function will be ignored at the caller.
    809   //  Let F = SuccFreq - Qin
    810   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
    811 
    812   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
    813     BranchProbability UProb = BestSuccSucc;
    814     BranchProbability VProb = AdjustedSuccSumProb - UProb;
    815     BlockFrequency F = SuccFreq - Qin;
    816     BlockFrequency V = SuccFreq * VProb;
    817     BlockFrequency QinU = std::min(Qin, F) * UProb;
    818     BlockFrequency BaseCost = P + V;
    819     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
    820     return greaterWithBias(BaseCost, DupCost, EntryFreq);
    821   }
    822   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
    823   BranchProbability VProb = AdjustedSuccSumProb - UProb;
    824   BlockFrequency U = SuccFreq * UProb;
    825   BlockFrequency V = SuccFreq * VProb;
    826   BlockFrequency F = SuccFreq - Qin;
    827   // If there is a post-dominating successor, here is the calculation:
    828   // BB         BB                 BB          BB
    829   // | \Qout    |   \               | \Qout     |  \
    830   // |P C       |    =              |P C        |   =
    831   // =   C'     |P    C             =   C'      |P   C
    832   // |  /Qin    |      |            |  /Qin     |     |
    833   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
    834   // Succ       Succ  /|            Succ        Succ /|
    835   // | \  V     |   \/ |            | \  V      |  \/ |
    836   // |U \       |U  /\ =?           |U =        |U /\ |
    837   // =   D      = =  =?|            |   D       | =  =|
    838   // |  /       |/     D            |  /        |/    D
    839   // | /        |     /             | =         |    /
    840   // |/         |    /              |/          |   =
    841   // Dom         Dom                Dom         Dom
    842   //  '=' : Branch taken for that CFG edge
    843   // The cost for taken branches in the first case is P + U
    844   // Let F = SuccFreq - Qin
    845   // The cost in the second case (assuming independence), given the layout:
    846   // BB, Succ, (C+Succ), D, Dom or the layout:
    847   // BB, Succ, D, Dom, (C+Succ)
    848   // is Qout + max(F, Qin) * U + min(F, Qin)
    849   // compare P + U vs Qout + P * U + Qin.
    850   //
    851   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
    852   //
    853   // For the 3rd case, the cost is P + 2 * V
    854   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
    855   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
    856   if (UProb > AdjustedSuccSumProb / 2 &&
    857       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
    858                                   Chain, BlockFilter))
    859     // Cases 3 & 4
    860     return greaterWithBias(
    861         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
    862         EntryFreq);
    863   // Cases 1 & 2
    864   return greaterWithBias((P + U),
    865                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
    866                           std::max(Qin, F) * UProb),
    867                          EntryFreq);
    868 }
    869 
    870 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
    871 /// successors form the lower part of a trellis. A successor set S forms the
    872 /// lower part of a trellis if all of the predecessors of S are either in S or
    873 /// have all of S as successors. We ignore trellises where BB doesn't have 2
    874 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
    875 /// are very uncommon and complex to compute optimally. Allowing edges within S
    876 /// is not strictly a trellis, but the same algorithm works, so we allow it.
    877 bool MachineBlockPlacement::isTrellis(
    878     const MachineBasicBlock *BB,
    879     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    880     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
    881   // Technically BB could form a trellis with branching factor higher than 2.
    882   // But that's extremely uncommon.
    883   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
    884     return false;
    885 
    886   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
    887                                                        BB->succ_end());
    888   // To avoid reviewing the same predecessors twice.
    889   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
    890 
    891   for (MachineBasicBlock *Succ : ViableSuccs) {
    892     int PredCount = 0;
    893     for (auto SuccPred : Succ->predecessors()) {
    894       // Allow triangle successors, but don't count them.
    895       if (Successors.count(SuccPred)) {
    896         // Make sure that it is actually a triangle.
    897         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
    898           if (!Successors.count(CheckSucc))
    899             return false;
    900         continue;
    901       }
    902       const BlockChain *PredChain = BlockToChain[SuccPred];
    903       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
    904           PredChain == &Chain || PredChain == BlockToChain[Succ])
    905         continue;
    906       ++PredCount;
    907       // Perform the successor check only once.
    908       if (!SeenPreds.insert(SuccPred).second)
    909         continue;
    910       if (!hasSameSuccessors(*SuccPred, Successors))
    911         return false;
    912     }
    913     // If one of the successors has only BB as a predecessor, it is not a
    914     // trellis.
    915     if (PredCount < 1)
    916       return false;
    917   }
    918   return true;
    919 }
    920 
    921 /// Pick the highest total weight pair of edges that can both be laid out.
    922 /// The edges in \p Edges[0] are assumed to have a different destination than
    923 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
    924 /// the individual highest weight edges to the 2 different destinations, or in
    925 /// case of a conflict, one of them should be replaced with a 2nd best edge.
    926 std::pair<MachineBlockPlacement::WeightedEdge,
    927           MachineBlockPlacement::WeightedEdge>
    928 MachineBlockPlacement::getBestNonConflictingEdges(
    929     const MachineBasicBlock *BB,
    930     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
    931         Edges) {
    932   // Sort the edges, and then for each successor, find the best incoming
    933   // predecessor. If the best incoming predecessors aren't the same,
    934   // then that is clearly the best layout. If there is a conflict, one of the
    935   // successors will have to fallthrough from the second best predecessor. We
    936   // compare which combination is better overall.
    937 
    938   // Sort for highest frequency.
    939   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
    940 
    941   std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
    942   std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
    943   auto BestA = Edges[0].begin();
    944   auto BestB = Edges[1].begin();
    945   // Arrange for the correct answer to be in BestA and BestB
    946   // If the 2 best edges don't conflict, the answer is already there.
    947   if (BestA->Src == BestB->Src) {
    948     // Compare the total fallthrough of (Best + Second Best) for both pairs
    949     auto SecondBestA = std::next(BestA);
    950     auto SecondBestB = std::next(BestB);
    951     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
    952     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
    953     if (BestAScore < BestBScore)
    954       BestA = SecondBestA;
    955     else
    956       BestB = SecondBestB;
    957   }
    958   // Arrange for the BB edge to be in BestA if it exists.
    959   if (BestB->Src == BB)
    960     std::swap(BestA, BestB);
    961   return std::make_pair(*BestA, *BestB);
    962 }
    963 
    964 /// Get the best successor from \p BB based on \p BB being part of a trellis.
    965 /// We only handle trellises with 2 successors, so the algorithm is
    966 /// straightforward: Find the best pair of edges that don't conflict. We find
    967 /// the best incoming edge for each successor in the trellis. If those conflict,
    968 /// we consider which of them should be replaced with the second best.
    969 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
    970 /// comes from \p BB, it will be in \p BestEdges[0]
    971 MachineBlockPlacement::BlockAndTailDupResult
    972 MachineBlockPlacement::getBestTrellisSuccessor(
    973     const MachineBasicBlock *BB,
    974     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    975     BranchProbability AdjustedSumProb, const BlockChain &Chain,
    976     const BlockFilterSet *BlockFilter) {
    977 
    978   BlockAndTailDupResult Result = {nullptr, false};
    979   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
    980                                                        BB->succ_end());
    981 
    982   // We assume size 2 because it's common. For general n, we would have to do
    983   // the Hungarian algorithm, but it's not worth the complexity because more
    984   // than 2 successors is fairly uncommon, and a trellis even more so.
    985   if (Successors.size() != 2 || ViableSuccs.size() != 2)
    986     return Result;
    987 
    988   // Collect the edge frequencies of all edges that form the trellis.
    989   SmallVector<WeightedEdge, 8> Edges[2];
    990   int SuccIndex = 0;
    991   for (auto Succ : ViableSuccs) {
    992     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
    993       // Skip any placed predecessors that are not BB
    994       if (SuccPred != BB)
    995         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
    996             BlockToChain[SuccPred] == &Chain ||
    997             BlockToChain[SuccPred] == BlockToChain[Succ])
    998           continue;
    999       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
   1000                                 MBPI->getEdgeProbability(SuccPred, Succ);
   1001       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
   1002     }
   1003     ++SuccIndex;
   1004   }
   1005 
   1006   // Pick the best combination of 2 edges from all the edges in the trellis.
   1007   WeightedEdge BestA, BestB;
   1008   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
   1009 
   1010   if (BestA.Src != BB) {
   1011     // If we have a trellis, and BB doesn't have the best fallthrough edges,
   1012     // we shouldn't choose any successor. We've already looked and there's a
   1013     // better fallthrough edge for all the successors.
   1014     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
   1015     return Result;
   1016   }
   1017 
   1018   // Did we pick the triangle edge? If tail-duplication is profitable, do
   1019   // that instead. Otherwise merge the triangle edge now while we know it is
   1020   // optimal.
   1021   if (BestA.Dest == BestB.Src) {
   1022     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
   1023     // would be better.
   1024     MachineBasicBlock *Succ1 = BestA.Dest;
   1025     MachineBasicBlock *Succ2 = BestB.Dest;
   1026     // Check to see if tail-duplication would be profitable.
   1027     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
   1028         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
   1029         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
   1030                               Chain, BlockFilter)) {
   1031       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
   1032                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
   1033                  dbgs() << "    Selected: " << getBlockName(Succ2)
   1034                         << ", probability: " << Succ2Prob
   1035                         << " (Tail Duplicate)\n");
   1036       Result.BB = Succ2;
   1037       Result.ShouldTailDup = true;
   1038       return Result;
   1039     }
   1040   }
   1041   // We have already computed the optimal edge for the other side of the
   1042   // trellis.
   1043   ComputedEdges[BestB.Src] = { BestB.Dest, false };
   1044 
   1045   auto TrellisSucc = BestA.Dest;
   1046   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
   1047                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
   1048              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
   1049                     << ", probability: " << SuccProb << " (Trellis)\n");
   1050   Result.BB = TrellisSucc;
   1051   return Result;
   1052 }
   1053 
   1054 /// When the option allowTailDupPlacement() is on, this method checks if the
   1055 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
   1056 /// into all of its unplaced, unfiltered predecessors, that are not BB.
   1057 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
   1058     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
   1059     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
   1060   if (!shouldTailDuplicate(Succ))
   1061     return false;
   1062 
   1063   // For CFG checking.
   1064   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
   1065                                                        BB->succ_end());
   1066   for (MachineBasicBlock *Pred : Succ->predecessors()) {
   1067     // Make sure all unplaced and unfiltered predecessors can be
   1068     // tail-duplicated into.
   1069     // Skip any blocks that are already placed or not in this loop.
   1070     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
   1071         || BlockToChain[Pred] == &Chain)
   1072       continue;
   1073     if (!TailDup.canTailDuplicate(Succ, Pred)) {
   1074       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
   1075         // This will result in a trellis after tail duplication, so we don't
   1076         // need to copy Succ into this predecessor. In the presence
   1077         // of a trellis tail duplication can continue to be profitable.
   1078         // For example:
   1079         // A            A
   1080         // |\           |\
   1081         // | \          | \
   1082         // |  C         |  C+BB
   1083         // | /          |  |
   1084         // |/           |  |
   1085         // BB    =>     BB |
   1086         // |\           |\/|
   1087         // | \          |/\|
   1088         // |  D         |  D
   1089         // | /          | /
   1090         // |/           |/
   1091         // Succ         Succ
   1092         //
   1093         // After BB was duplicated into C, the layout looks like the one on the
   1094         // right. BB and C now have the same successors. When considering
   1095         // whether Succ can be duplicated into all its unplaced predecessors, we
   1096         // ignore C.
   1097         // We can do this because C already has a profitable fallthrough, namely
   1098         // D. TODO(iteratee): ignore sufficiently cold predecessors for
   1099         // duplication and for this test.
   1100         //
   1101         // This allows trellises to be laid out in 2 separate chains
   1102         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
   1103         // because it allows the creation of 2 fallthrough paths with links
   1104         // between them, and we correctly identify the best layout for these
   1105         // CFGs. We want to extend trellises that the user created in addition
   1106         // to trellises created by tail-duplication, so we just look for the
   1107         // CFG.
   1108         continue;
   1109       return false;
   1110     }
   1111   }
   1112   return true;
   1113 }
   1114 
   1115 /// Find chains of triangles where we believe it would be profitable to
   1116 /// tail-duplicate them all, but a local analysis would not find them.
   1117 /// There are 3 ways this can be profitable:
   1118 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
   1119 ///    longer chains)
   1120 /// 2) The chains are statically correlated. Branch probabilities have a very
   1121 ///    U-shaped distribution.
   1122 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
   1123 ///    If the branches in a chain are likely to be from the same side of the
   1124 ///    distribution as their predecessor, but are independent at runtime, this
   1125 ///    transformation is profitable. (Because the cost of being wrong is a small
   1126 ///    fixed cost, unlike the standard triangle layout where the cost of being
   1127 ///    wrong scales with the # of triangles.)
   1128 /// 3) The chains are dynamically correlated. If the probability that a previous
   1129 ///    branch was taken positively influences whether the next branch will be
   1130 ///    taken
   1131 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
   1132 void MachineBlockPlacement::precomputeTriangleChains() {
   1133   struct TriangleChain {
   1134     std::vector<MachineBasicBlock *> Edges;
   1135 
   1136     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
   1137         : Edges({src, dst}) {}
   1138 
   1139     void append(MachineBasicBlock *dst) {
   1140       assert(getKey()->isSuccessor(dst) &&
   1141              "Attempting to append a block that is not a successor.");
   1142       Edges.push_back(dst);
   1143     }
   1144 
   1145     unsigned count() const { return Edges.size() - 1; }
   1146 
   1147     MachineBasicBlock *getKey() const {
   1148       return Edges.back();
   1149     }
   1150   };
   1151 
   1152   if (TriangleChainCount == 0)
   1153     return;
   1154 
   1155   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
   1156   // Map from last block to the chain that contains it. This allows us to extend
   1157   // chains as we find new triangles.
   1158   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
   1159   for (MachineBasicBlock &BB : *F) {
   1160     // If BB doesn't have 2 successors, it doesn't start a triangle.
   1161     if (BB.succ_size() != 2)
   1162       continue;
   1163     MachineBasicBlock *PDom = nullptr;
   1164     for (MachineBasicBlock *Succ : BB.successors()) {
   1165       if (!MPDT->dominates(Succ, &BB))
   1166         continue;
   1167       PDom = Succ;
   1168       break;
   1169     }
   1170     // If BB doesn't have a post-dominating successor, it doesn't form a
   1171     // triangle.
   1172     if (PDom == nullptr)
   1173       continue;
   1174     // If PDom has a hint that it is low probability, skip this triangle.
   1175     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
   1176       continue;
   1177     // If PDom isn't eligible for duplication, this isn't the kind of triangle
   1178     // we're looking for.
   1179     if (!shouldTailDuplicate(PDom))
   1180       continue;
   1181     bool CanTailDuplicate = true;
   1182     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
   1183     // isn't the kind of triangle we're looking for.
   1184     for (MachineBasicBlock* Pred : PDom->predecessors()) {
   1185       if (Pred == &BB)
   1186         continue;
   1187       if (!TailDup.canTailDuplicate(PDom, Pred)) {
   1188         CanTailDuplicate = false;
   1189         break;
   1190       }
   1191     }
   1192     // If we can't tail-duplicate PDom to its predecessors, then skip this
   1193     // triangle.
   1194     if (!CanTailDuplicate)
   1195       continue;
   1196 
   1197     // Now we have an interesting triangle. Insert it if it's not part of an
   1198     // existing chain.
   1199     // Note: This cannot be replaced with a call insert() or emplace() because
   1200     // the find key is BB, but the insert/emplace key is PDom.
   1201     auto Found = TriangleChainMap.find(&BB);
   1202     // If it is, remove the chain from the map, grow it, and put it back in the
   1203     // map with the end as the new key.
   1204     if (Found != TriangleChainMap.end()) {
   1205       TriangleChain Chain = std::move(Found->second);
   1206       TriangleChainMap.erase(Found);
   1207       Chain.append(PDom);
   1208       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
   1209     } else {
   1210       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
   1211       assert(InsertResult.second && "Block seen twice.");
   1212       (void)InsertResult;
   1213     }
   1214   }
   1215 
   1216   // Iterating over a DenseMap is safe here, because the only thing in the body
   1217   // of the loop is inserting into another DenseMap (ComputedEdges).
   1218   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
   1219   for (auto &ChainPair : TriangleChainMap) {
   1220     TriangleChain &Chain = ChainPair.second;
   1221     // Benchmarking has shown that due to branch correlation duplicating 2 or
   1222     // more triangles is profitable, despite the calculations assuming
   1223     // independence.
   1224     if (Chain.count() < TriangleChainCount)
   1225       continue;
   1226     MachineBasicBlock *dst = Chain.Edges.back();
   1227     Chain.Edges.pop_back();
   1228     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
   1229       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
   1230                         << getBlockName(dst)
   1231                         << " as pre-computed based on triangles.\n");
   1232 
   1233       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
   1234       assert(InsertResult.second && "Block seen twice.");
   1235       (void)InsertResult;
   1236 
   1237       dst = src;
   1238     }
   1239   }
   1240 }
   1241 
   1242 // When profile is not present, return the StaticLikelyProb.
   1243 // When profile is available, we need to handle the triangle-shape CFG.
   1244 static BranchProbability getLayoutSuccessorProbThreshold(
   1245       const MachineBasicBlock *BB) {
   1246   if (!BB->getParent()->getFunction().hasProfileData())
   1247     return BranchProbability(StaticLikelyProb, 100);
   1248   if (BB->succ_size() == 2) {
   1249     const MachineBasicBlock *Succ1 = *BB->succ_begin();
   1250     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
   1251     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
   1252       /* See case 1 below for the cost analysis. For BB->Succ to
   1253        * be taken with smaller cost, the following needs to hold:
   1254        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
   1255        *   So the threshold T in the calculation below
   1256        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
   1257        *   So T / (1 - T) = 2, Yielding T = 2/3
   1258        * Also adding user specified branch bias, we have
   1259        *   T = (2/3)*(ProfileLikelyProb/50)
   1260        *     = (2*ProfileLikelyProb)/150)
   1261        */
   1262       return BranchProbability(2 * ProfileLikelyProb, 150);
   1263     }
   1264   }
   1265   return BranchProbability(ProfileLikelyProb, 100);
   1266 }
   1267 
   1268 /// Checks to see if the layout candidate block \p Succ has a better layout
   1269 /// predecessor than \c BB. If yes, returns true.
   1270 /// \p SuccProb: The probability adjusted for only remaining blocks.
   1271 ///   Only used for logging
   1272 /// \p RealSuccProb: The un-adjusted probability.
   1273 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
   1274 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
   1275 ///    considered
   1276 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
   1277     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
   1278     const BlockChain &SuccChain, BranchProbability SuccProb,
   1279     BranchProbability RealSuccProb, const BlockChain &Chain,
   1280     const BlockFilterSet *BlockFilter) {
   1281 
   1282   // There isn't a better layout when there are no unscheduled predecessors.
   1283   if (SuccChain.UnscheduledPredecessors == 0)
   1284     return false;
   1285 
   1286   // There are two basic scenarios here:
   1287   // -------------------------------------
   1288   // Case 1: triangular shape CFG (if-then):
   1289   //     BB
   1290   //     | \
   1291   //     |  \
   1292   //     |   Pred
   1293   //     |   /
   1294   //     Succ
   1295   // In this case, we are evaluating whether to select edge -> Succ, e.g.
   1296   // set Succ as the layout successor of BB. Picking Succ as BB's
   1297   // successor breaks the CFG constraints (FIXME: define these constraints).
   1298   // With this layout, Pred BB
   1299   // is forced to be outlined, so the overall cost will be cost of the
   1300   // branch taken from BB to Pred, plus the cost of back taken branch
   1301   // from Pred to Succ, as well as the additional cost associated
   1302   // with the needed unconditional jump instruction from Pred To Succ.
   1303 
   1304   // The cost of the topological order layout is the taken branch cost
   1305   // from BB to Succ, so to make BB->Succ a viable candidate, the following
   1306   // must hold:
   1307   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
   1308   //      < freq(BB->Succ) *  taken_branch_cost.
   1309   // Ignoring unconditional jump cost, we get
   1310   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
   1311   //    prob(BB->Succ) > 2 * prob(BB->Pred)
   1312   //
   1313   // When real profile data is available, we can precisely compute the
   1314   // probability threshold that is needed for edge BB->Succ to be considered.
   1315   // Without profile data, the heuristic requires the branch bias to be
   1316   // a lot larger to make sure the signal is very strong (e.g. 80% default).
   1317   // -----------------------------------------------------------------
   1318   // Case 2: diamond like CFG (if-then-else):
   1319   //     S
   1320   //    / \
   1321   //   |   \
   1322   //  BB    Pred
   1323   //   \    /
   1324   //    Succ
   1325   //    ..
   1326   //
   1327   // The current block is BB and edge BB->Succ is now being evaluated.
   1328   // Note that edge S->BB was previously already selected because
   1329   // prob(S->BB) > prob(S->Pred).
   1330   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
   1331   // choose Pred, we will have a topological ordering as shown on the left
   1332   // in the picture below. If we choose Succ, we have the solution as shown
   1333   // on the right:
   1334   //
   1335   //   topo-order:
   1336   //
   1337   //       S-----                             ---S
   1338   //       |    |                             |  |
   1339   //    ---BB   |                             |  BB
   1340   //    |       |                             |  |
   1341   //    |  Pred--                             |  Succ--
   1342   //    |  |                                  |       |
   1343   //    ---Succ                               ---Pred--
   1344   //
   1345   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
   1346   //      = freq(S->Pred) + freq(S->BB)
   1347   //
   1348   // If we have profile data (i.e, branch probabilities can be trusted), the
   1349   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
   1350   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
   1351   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
   1352   // means the cost of topological order is greater.
   1353   // When profile data is not available, however, we need to be more
   1354   // conservative. If the branch prediction is wrong, breaking the topo-order
   1355   // will actually yield a layout with large cost. For this reason, we need
   1356   // strong biased branch at block S with Prob(S->BB) in order to select
   1357   // BB->Succ. This is equivalent to looking the CFG backward with backward
   1358   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
   1359   // profile data).
   1360   // --------------------------------------------------------------------------
   1361   // Case 3: forked diamond
   1362   //       S
   1363   //      / \
   1364   //     /   \
   1365   //   BB    Pred
   1366   //   | \   / |
   1367   //   |  \ /  |
   1368   //   |   X   |
   1369   //   |  / \  |
   1370   //   | /   \ |
   1371   //   S1     S2
   1372   //
   1373   // The current block is BB and edge BB->S1 is now being evaluated.
   1374   // As above S->BB was already selected because
   1375   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
   1376   //
   1377   // topo-order:
   1378   //
   1379   //     S-------|                     ---S
   1380   //     |       |                     |  |
   1381   //  ---BB      |                     |  BB
   1382   //  |          |                     |  |
   1383   //  |  Pred----|                     |  S1----
   1384   //  |  |                             |       |
   1385   //  --(S1 or S2)                     ---Pred--
   1386   //                                        |
   1387   //                                       S2
   1388   //
   1389   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
   1390   //    + min(freq(Pred->S1), freq(Pred->S2))
   1391   // Non-topo-order cost:
   1392   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
   1393   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
   1394   // is 0. Then the non topo layout is better when
   1395   // freq(S->Pred) < freq(BB->S1).
   1396   // This is exactly what is checked below.
   1397   // Note there are other shapes that apply (Pred may not be a single block,
   1398   // but they all fit this general pattern.)
   1399   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
   1400 
   1401   // Make sure that a hot successor doesn't have a globally more
   1402   // important predecessor.
   1403   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
   1404   bool BadCFGConflict = false;
   1405 
   1406   for (MachineBasicBlock *Pred : Succ->predecessors()) {
   1407     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
   1408         (BlockFilter && !BlockFilter->count(Pred)) ||
   1409         BlockToChain[Pred] == &Chain ||
   1410         // This check is redundant except for look ahead. This function is
   1411         // called for lookahead by isProfitableToTailDup when BB hasn't been
   1412         // placed yet.
   1413         (Pred == BB))
   1414       continue;
   1415     // Do backward checking.
   1416     // For all cases above, we need a backward checking to filter out edges that
   1417     // are not 'strongly' biased.
   1418     // BB  Pred
   1419     //  \ /
   1420     //  Succ
   1421     // We select edge BB->Succ if
   1422     //      freq(BB->Succ) > freq(Succ) * HotProb
   1423     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
   1424     //      HotProb
   1425     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
   1426     // Case 1 is covered too, because the first equation reduces to:
   1427     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
   1428     BlockFrequency PredEdgeFreq =
   1429         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
   1430     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
   1431       BadCFGConflict = true;
   1432       break;
   1433     }
   1434   }
   1435 
   1436   if (BadCFGConflict) {
   1437     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
   1438                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
   1439     return true;
   1440   }
   1441 
   1442   return false;
   1443 }
   1444 
   1445 /// Select the best successor for a block.
   1446 ///
   1447 /// This looks across all successors of a particular block and attempts to
   1448 /// select the "best" one to be the layout successor. It only considers direct
   1449 /// successors which also pass the block filter. It will attempt to avoid
   1450 /// breaking CFG structure, but cave and break such structures in the case of
   1451 /// very hot successor edges.
   1452 ///
   1453 /// \returns The best successor block found, or null if none are viable, along
   1454 /// with a boolean indicating if tail duplication is necessary.
   1455 MachineBlockPlacement::BlockAndTailDupResult
   1456 MachineBlockPlacement::selectBestSuccessor(
   1457     const MachineBasicBlock *BB, const BlockChain &Chain,
   1458     const BlockFilterSet *BlockFilter) {
   1459   const BranchProbability HotProb(StaticLikelyProb, 100);
   1460 
   1461   BlockAndTailDupResult BestSucc = { nullptr, false };
   1462   auto BestProb = BranchProbability::getZero();
   1463 
   1464   SmallVector<MachineBasicBlock *, 4> Successors;
   1465   auto AdjustedSumProb =
   1466       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
   1467 
   1468   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
   1469                     << "\n");
   1470 
   1471   // if we already precomputed the best successor for BB, return that if still
   1472   // applicable.
   1473   auto FoundEdge = ComputedEdges.find(BB);
   1474   if (FoundEdge != ComputedEdges.end()) {
   1475     MachineBasicBlock *Succ = FoundEdge->second.BB;
   1476     ComputedEdges.erase(FoundEdge);
   1477     BlockChain *SuccChain = BlockToChain[Succ];
   1478     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
   1479         SuccChain != &Chain && Succ == *SuccChain->begin())
   1480       return FoundEdge->second;
   1481   }
   1482 
   1483   // if BB is part of a trellis, Use the trellis to determine the optimal
   1484   // fallthrough edges
   1485   if (isTrellis(BB, Successors, Chain, BlockFilter))
   1486     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
   1487                                    BlockFilter);
   1488 
   1489   // For blocks with CFG violations, we may be able to lay them out anyway with
   1490   // tail-duplication. We keep this vector so we can perform the probability
   1491   // calculations the minimum number of times.
   1492   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
   1493       DupCandidates;
   1494   for (MachineBasicBlock *Succ : Successors) {
   1495     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
   1496     BranchProbability SuccProb =
   1497         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
   1498 
   1499     BlockChain &SuccChain = *BlockToChain[Succ];
   1500     // Skip the edge \c BB->Succ if block \c Succ has a better layout
   1501     // predecessor that yields lower global cost.
   1502     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
   1503                                    Chain, BlockFilter)) {
   1504       // If tail duplication would make Succ profitable, place it.
   1505       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
   1506         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
   1507       continue;
   1508     }
   1509 
   1510     LLVM_DEBUG(
   1511         dbgs() << "    Candidate: " << getBlockName(Succ)
   1512                << ", probability: " << SuccProb
   1513                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
   1514                << "\n");
   1515 
   1516     if (BestSucc.BB && BestProb >= SuccProb) {
   1517       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
   1518       continue;
   1519     }
   1520 
   1521     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
   1522     BestSucc.BB = Succ;
   1523     BestProb = SuccProb;
   1524   }
   1525   // Handle the tail duplication candidates in order of decreasing probability.
   1526   // Stop at the first one that is profitable. Also stop if they are less
   1527   // profitable than BestSucc. Position is important because we preserve it and
   1528   // prefer first best match. Here we aren't comparing in order, so we capture
   1529   // the position instead.
   1530   if (DupCandidates.size() != 0) {
   1531     auto cmp =
   1532         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
   1533            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
   1534           return std::get<0>(a) > std::get<0>(b);
   1535         };
   1536     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
   1537   }
   1538   for(auto &Tup : DupCandidates) {
   1539     BranchProbability DupProb;
   1540     MachineBasicBlock *Succ;
   1541     std::tie(DupProb, Succ) = Tup;
   1542     if (DupProb < BestProb)
   1543       break;
   1544     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
   1545         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
   1546       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
   1547                         << ", probability: " << DupProb
   1548                         << " (Tail Duplicate)\n");
   1549       BestSucc.BB = Succ;
   1550       BestSucc.ShouldTailDup = true;
   1551       break;
   1552     }
   1553   }
   1554 
   1555   if (BestSucc.BB)
   1556     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
   1557 
   1558   return BestSucc;
   1559 }
   1560 
   1561 /// Select the best block from a worklist.
   1562 ///
   1563 /// This looks through the provided worklist as a list of candidate basic
   1564 /// blocks and select the most profitable one to place. The definition of
   1565 /// profitable only really makes sense in the context of a loop. This returns
   1566 /// the most frequently visited block in the worklist, which in the case of
   1567 /// a loop, is the one most desirable to be physically close to the rest of the
   1568 /// loop body in order to improve i-cache behavior.
   1569 ///
   1570 /// \returns The best block found, or null if none are viable.
   1571 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
   1572     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
   1573   // Once we need to walk the worklist looking for a candidate, cleanup the
   1574   // worklist of already placed entries.
   1575   // FIXME: If this shows up on profiles, it could be folded (at the cost of
   1576   // some code complexity) into the loop below.
   1577   WorkList.erase(llvm::remove_if(WorkList,
   1578                                  [&](MachineBasicBlock *BB) {
   1579                                    return BlockToChain.lookup(BB) == &Chain;
   1580                                  }),
   1581                  WorkList.end());
   1582 
   1583   if (WorkList.empty())
   1584     return nullptr;
   1585 
   1586   bool IsEHPad = WorkList[0]->isEHPad();
   1587 
   1588   MachineBasicBlock *BestBlock = nullptr;
   1589   BlockFrequency BestFreq;
   1590   for (MachineBasicBlock *MBB : WorkList) {
   1591     assert(MBB->isEHPad() == IsEHPad &&
   1592            "EHPad mismatch between block and work list.");
   1593 
   1594     BlockChain &SuccChain = *BlockToChain[MBB];
   1595     if (&SuccChain == &Chain)
   1596       continue;
   1597 
   1598     assert(SuccChain.UnscheduledPredecessors == 0 &&
   1599            "Found CFG-violating block");
   1600 
   1601     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
   1602     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
   1603                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
   1604 
   1605     // For ehpad, we layout the least probable first as to avoid jumping back
   1606     // from least probable landingpads to more probable ones.
   1607     //
   1608     // FIXME: Using probability is probably (!) not the best way to achieve
   1609     // this. We should probably have a more principled approach to layout
   1610     // cleanup code.
   1611     //
   1612     // The goal is to get:
   1613     //
   1614     //                 +--------------------------+
   1615     //                 |                          V
   1616     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
   1617     //
   1618     // Rather than:
   1619     //
   1620     //                 +-------------------------------------+
   1621     //                 V                                     |
   1622     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
   1623     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
   1624       continue;
   1625 
   1626     BestBlock = MBB;
   1627     BestFreq = CandidateFreq;
   1628   }
   1629 
   1630   return BestBlock;
   1631 }
   1632 
   1633 /// Retrieve the first unplaced basic block.
   1634 ///
   1635 /// This routine is called when we are unable to use the CFG to walk through
   1636 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
   1637 /// We walk through the function's blocks in order, starting from the
   1638 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
   1639 /// re-scanning the entire sequence on repeated calls to this routine.
   1640 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
   1641     const BlockChain &PlacedChain,
   1642     MachineFunction::iterator &PrevUnplacedBlockIt,
   1643     const BlockFilterSet *BlockFilter) {
   1644   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
   1645        ++I) {
   1646     if (BlockFilter && !BlockFilter->count(&*I))
   1647       continue;
   1648     if (BlockToChain[&*I] != &PlacedChain) {
   1649       PrevUnplacedBlockIt = I;
   1650       // Now select the head of the chain to which the unplaced block belongs
   1651       // as the block to place. This will force the entire chain to be placed,
   1652       // and satisfies the requirements of merging chains.
   1653       return *BlockToChain[&*I]->begin();
   1654     }
   1655   }
   1656   return nullptr;
   1657 }
   1658 
   1659 void MachineBlockPlacement::fillWorkLists(
   1660     const MachineBasicBlock *MBB,
   1661     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
   1662     const BlockFilterSet *BlockFilter = nullptr) {
   1663   BlockChain &Chain = *BlockToChain[MBB];
   1664   if (!UpdatedPreds.insert(&Chain).second)
   1665     return;
   1666 
   1667   assert(
   1668       Chain.UnscheduledPredecessors == 0 &&
   1669       "Attempting to place block with unscheduled predecessors in worklist.");
   1670   for (MachineBasicBlock *ChainBB : Chain) {
   1671     assert(BlockToChain[ChainBB] == &Chain &&
   1672            "Block in chain doesn't match BlockToChain map.");
   1673     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
   1674       if (BlockFilter && !BlockFilter->count(Pred))
   1675         continue;
   1676       if (BlockToChain[Pred] == &Chain)
   1677         continue;
   1678       ++Chain.UnscheduledPredecessors;
   1679     }
   1680   }
   1681 
   1682   if (Chain.UnscheduledPredecessors != 0)
   1683     return;
   1684 
   1685   MachineBasicBlock *BB = *Chain.begin();
   1686   if (BB->isEHPad())
   1687     EHPadWorkList.push_back(BB);
   1688   else
   1689     BlockWorkList.push_back(BB);
   1690 }
   1691 
   1692 void MachineBlockPlacement::buildChain(
   1693     const MachineBasicBlock *HeadBB, BlockChain &Chain,
   1694     BlockFilterSet *BlockFilter) {
   1695   assert(HeadBB && "BB must not be null.\n");
   1696   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
   1697   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
   1698 
   1699   const MachineBasicBlock *LoopHeaderBB = HeadBB;
   1700   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
   1701   MachineBasicBlock *BB = *std::prev(Chain.end());
   1702   while (true) {
   1703     assert(BB && "null block found at end of chain in loop.");
   1704     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
   1705     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
   1706 
   1707 
   1708     // Look for the best viable successor if there is one to place immediately
   1709     // after this block.
   1710     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
   1711     MachineBasicBlock* BestSucc = Result.BB;
   1712     bool ShouldTailDup = Result.ShouldTailDup;
   1713     if (allowTailDupPlacement())
   1714       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
   1715 
   1716     // If an immediate successor isn't available, look for the best viable
   1717     // block among those we've identified as not violating the loop's CFG at
   1718     // this point. This won't be a fallthrough, but it will increase locality.
   1719     if (!BestSucc)
   1720       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
   1721     if (!BestSucc)
   1722       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
   1723 
   1724     if (!BestSucc) {
   1725       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
   1726       if (!BestSucc)
   1727         break;
   1728 
   1729       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
   1730                            "layout successor until the CFG reduces\n");
   1731     }
   1732 
   1733     // Placement may have changed tail duplication opportunities.
   1734     // Check for that now.
   1735     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
   1736       // If the chosen successor was duplicated into all its predecessors,
   1737       // don't bother laying it out, just go round the loop again with BB as
   1738       // the chain end.
   1739       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
   1740                                        BlockFilter, PrevUnplacedBlockIt))
   1741         continue;
   1742     }
   1743 
   1744     // Place this block, updating the datastructures to reflect its placement.
   1745     BlockChain &SuccChain = *BlockToChain[BestSucc];
   1746     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
   1747     // we selected a successor that didn't fit naturally into the CFG.
   1748     SuccChain.UnscheduledPredecessors = 0;
   1749     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
   1750                       << getBlockName(BestSucc) << "\n");
   1751     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
   1752     Chain.merge(BestSucc, &SuccChain);
   1753     BB = *std::prev(Chain.end());
   1754   }
   1755 
   1756   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
   1757                     << getBlockName(*Chain.begin()) << "\n");
   1758 }
   1759 
   1760 /// Find the best loop top block for layout.
   1761 ///
   1762 /// Look for a block which is strictly better than the loop header for laying
   1763 /// out at the top of the loop. This looks for one and only one pattern:
   1764 /// a latch block with no conditional exit. This block will cause a conditional
   1765 /// jump around it or will be the bottom of the loop if we lay it out in place,
   1766 /// but if it it doesn't end up at the bottom of the loop for any reason,
   1767 /// rotation alone won't fix it. Because such a block will always result in an
   1768 /// unconditional jump (for the backedge) rotating it in front of the loop
   1769 /// header is always profitable.
   1770 MachineBasicBlock *
   1771 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
   1772                                        const BlockFilterSet &LoopBlockSet) {
   1773   // Placing the latch block before the header may introduce an extra branch
   1774   // that skips this block the first time the loop is executed, which we want
   1775   // to avoid when optimising for size.
   1776   // FIXME: in theory there is a case that does not introduce a new branch,
   1777   // i.e. when the layout predecessor does not fallthrough to the loop header.
   1778   // In practice this never happens though: there always seems to be a preheader
   1779   // that can fallthrough and that is also placed before the header.
   1780   if (F->getFunction().optForSize())
   1781     return L.getHeader();
   1782 
   1783   // Check that the header hasn't been fused with a preheader block due to
   1784   // crazy branches. If it has, we need to start with the header at the top to
   1785   // prevent pulling the preheader into the loop body.
   1786   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
   1787   if (!LoopBlockSet.count(*HeaderChain.begin()))
   1788     return L.getHeader();
   1789 
   1790   LLVM_DEBUG(dbgs() << "Finding best loop top for: "
   1791                     << getBlockName(L.getHeader()) << "\n");
   1792 
   1793   BlockFrequency BestPredFreq;
   1794   MachineBasicBlock *BestPred = nullptr;
   1795   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
   1796     if (!LoopBlockSet.count(Pred))
   1797       continue;
   1798     LLVM_DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
   1799                       << Pred->succ_size() << " successors, ";
   1800                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
   1801     if (Pred->succ_size() > 1)
   1802       continue;
   1803 
   1804     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
   1805     if (!BestPred || PredFreq > BestPredFreq ||
   1806         (!(PredFreq < BestPredFreq) &&
   1807          Pred->isLayoutSuccessor(L.getHeader()))) {
   1808       BestPred = Pred;
   1809       BestPredFreq = PredFreq;
   1810     }
   1811   }
   1812 
   1813   // If no direct predecessor is fine, just use the loop header.
   1814   if (!BestPred) {
   1815     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
   1816     return L.getHeader();
   1817   }
   1818 
   1819   // Walk backwards through any straight line of predecessors.
   1820   while (BestPred->pred_size() == 1 &&
   1821          (*BestPred->pred_begin())->succ_size() == 1 &&
   1822          *BestPred->pred_begin() != L.getHeader())
   1823     BestPred = *BestPred->pred_begin();
   1824 
   1825   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
   1826   return BestPred;
   1827 }
   1828 
   1829 /// Find the best loop exiting block for layout.
   1830 ///
   1831 /// This routine implements the logic to analyze the loop looking for the best
   1832 /// block to layout at the top of the loop. Typically this is done to maximize
   1833 /// fallthrough opportunities.
   1834 MachineBasicBlock *
   1835 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
   1836                                         const BlockFilterSet &LoopBlockSet) {
   1837   // We don't want to layout the loop linearly in all cases. If the loop header
   1838   // is just a normal basic block in the loop, we want to look for what block
   1839   // within the loop is the best one to layout at the top. However, if the loop
   1840   // header has be pre-merged into a chain due to predecessors not having
   1841   // analyzable branches, *and* the predecessor it is merged with is *not* part
   1842   // of the loop, rotating the header into the middle of the loop will create
   1843   // a non-contiguous range of blocks which is Very Bad. So start with the
   1844   // header and only rotate if safe.
   1845   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
   1846   if (!LoopBlockSet.count(*HeaderChain.begin()))
   1847     return nullptr;
   1848 
   1849   BlockFrequency BestExitEdgeFreq;
   1850   unsigned BestExitLoopDepth = 0;
   1851   MachineBasicBlock *ExitingBB = nullptr;
   1852   // If there are exits to outer loops, loop rotation can severely limit
   1853   // fallthrough opportunities unless it selects such an exit. Keep a set of
   1854   // blocks where rotating to exit with that block will reach an outer loop.
   1855   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
   1856 
   1857   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
   1858                     << getBlockName(L.getHeader()) << "\n");
   1859   for (MachineBasicBlock *MBB : L.getBlocks()) {
   1860     BlockChain &Chain = *BlockToChain[MBB];
   1861     // Ensure that this block is at the end of a chain; otherwise it could be
   1862     // mid-way through an inner loop or a successor of an unanalyzable branch.
   1863     if (MBB != *std::prev(Chain.end()))
   1864       continue;
   1865 
   1866     // Now walk the successors. We need to establish whether this has a viable
   1867     // exiting successor and whether it has a viable non-exiting successor.
   1868     // We store the old exiting state and restore it if a viable looping
   1869     // successor isn't found.
   1870     MachineBasicBlock *OldExitingBB = ExitingBB;
   1871     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
   1872     bool HasLoopingSucc = false;
   1873     for (MachineBasicBlock *Succ : MBB->successors()) {
   1874       if (Succ->isEHPad())
   1875         continue;
   1876       if (Succ == MBB)
   1877         continue;
   1878       BlockChain &SuccChain = *BlockToChain[Succ];
   1879       // Don't split chains, either this chain or the successor's chain.
   1880       if (&Chain == &SuccChain) {
   1881         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
   1882                           << getBlockName(Succ) << " (chain conflict)\n");
   1883         continue;
   1884       }
   1885 
   1886       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
   1887       if (LoopBlockSet.count(Succ)) {
   1888         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
   1889                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
   1890         HasLoopingSucc = true;
   1891         continue;
   1892       }
   1893 
   1894       unsigned SuccLoopDepth = 0;
   1895       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
   1896         SuccLoopDepth = ExitLoop->getLoopDepth();
   1897         if (ExitLoop->contains(&L))
   1898           BlocksExitingToOuterLoop.insert(MBB);
   1899       }
   1900 
   1901       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
   1902       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
   1903                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
   1904                         << "] (";
   1905                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
   1906       // Note that we bias this toward an existing layout successor to retain
   1907       // incoming order in the absence of better information. The exit must have
   1908       // a frequency higher than the current exit before we consider breaking
   1909       // the layout.
   1910       BranchProbability Bias(100 - ExitBlockBias, 100);
   1911       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
   1912           ExitEdgeFreq > BestExitEdgeFreq ||
   1913           (MBB->isLayoutSuccessor(Succ) &&
   1914            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
   1915         BestExitEdgeFreq = ExitEdgeFreq;
   1916         ExitingBB = MBB;
   1917       }
   1918     }
   1919 
   1920     if (!HasLoopingSucc) {
   1921       // Restore the old exiting state, no viable looping successor was found.
   1922       ExitingBB = OldExitingBB;
   1923       BestExitEdgeFreq = OldBestExitEdgeFreq;
   1924     }
   1925   }
   1926   // Without a candidate exiting block or with only a single block in the
   1927   // loop, just use the loop header to layout the loop.
   1928   if (!ExitingBB) {
   1929     LLVM_DEBUG(
   1930         dbgs() << "    No other candidate exit blocks, using loop header\n");
   1931     return nullptr;
   1932   }
   1933   if (L.getNumBlocks() == 1) {
   1934     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
   1935     return nullptr;
   1936   }
   1937 
   1938   // Also, if we have exit blocks which lead to outer loops but didn't select
   1939   // one of them as the exiting block we are rotating toward, disable loop
   1940   // rotation altogether.
   1941   if (!BlocksExitingToOuterLoop.empty() &&
   1942       !BlocksExitingToOuterLoop.count(ExitingBB))
   1943     return nullptr;
   1944 
   1945   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
   1946                     << "\n");
   1947   return ExitingBB;
   1948 }
   1949 
   1950 /// Attempt to rotate an exiting block to the bottom of the loop.
   1951 ///
   1952 /// Once we have built a chain, try to rotate it to line up the hot exit block
   1953 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
   1954 /// branches. For example, if the loop has fallthrough into its header and out
   1955 /// of its bottom already, don't rotate it.
   1956 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
   1957                                        const MachineBasicBlock *ExitingBB,
   1958                                        const BlockFilterSet &LoopBlockSet) {
   1959   if (!ExitingBB)
   1960     return;
   1961 
   1962   MachineBasicBlock *Top = *LoopChain.begin();
   1963   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
   1964 
   1965   // If ExitingBB is already the last one in a chain then nothing to do.
   1966   if (Bottom == ExitingBB)
   1967     return;
   1968 
   1969   bool ViableTopFallthrough = false;
   1970   for (MachineBasicBlock *Pred : Top->predecessors()) {
   1971     BlockChain *PredChain = BlockToChain[Pred];
   1972     if (!LoopBlockSet.count(Pred) &&
   1973         (!PredChain || Pred == *std::prev(PredChain->end()))) {
   1974       ViableTopFallthrough = true;
   1975       break;
   1976     }
   1977   }
   1978 
   1979   // If the header has viable fallthrough, check whether the current loop
   1980   // bottom is a viable exiting block. If so, bail out as rotating will
   1981   // introduce an unnecessary branch.
   1982   if (ViableTopFallthrough) {
   1983     for (MachineBasicBlock *Succ : Bottom->successors()) {
   1984       BlockChain *SuccChain = BlockToChain[Succ];
   1985       if (!LoopBlockSet.count(Succ) &&
   1986           (!SuccChain || Succ == *SuccChain->begin()))
   1987         return;
   1988     }
   1989   }
   1990 
   1991   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
   1992   if (ExitIt == LoopChain.end())
   1993     return;
   1994 
   1995   // Rotating a loop exit to the bottom when there is a fallthrough to top
   1996   // trades the entry fallthrough for an exit fallthrough.
   1997   // If there is no bottom->top edge, but the chosen exit block does have
   1998   // a fallthrough, we break that fallthrough for nothing in return.
   1999 
   2000   // Let's consider an example. We have a built chain of basic blocks
   2001   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
   2002   // By doing a rotation we get
   2003   // Bk+1, ..., Bn, B1, ..., Bk
   2004   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
   2005   // If we had a fallthrough Bk -> Bk+1 it is broken now.
   2006   // It might be compensated by fallthrough Bn -> B1.
   2007   // So we have a condition to avoid creation of extra branch by loop rotation.
   2008   // All below must be true to avoid loop rotation:
   2009   //   If there is a fallthrough to top (B1)
   2010   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
   2011   //   There is no fallthrough from bottom (Bn) to top (B1).
   2012   // Please note that there is no exit fallthrough from Bn because we checked it
   2013   // above.
   2014   if (ViableTopFallthrough) {
   2015     assert(std::next(ExitIt) != LoopChain.end() &&
   2016            "Exit should not be last BB");
   2017     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
   2018     if (ExitingBB->isSuccessor(NextBlockInChain))
   2019       if (!Bottom->isSuccessor(Top))
   2020         return;
   2021   }
   2022 
   2023   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
   2024                     << " at bottom\n");
   2025   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
   2026 }
   2027 
   2028 /// Attempt to rotate a loop based on profile data to reduce branch cost.
   2029 ///
   2030 /// With profile data, we can determine the cost in terms of missed fall through
   2031 /// opportunities when rotating a loop chain and select the best rotation.
   2032 /// Basically, there are three kinds of cost to consider for each rotation:
   2033 ///    1. The possibly missed fall through edge (if it exists) from BB out of
   2034 ///    the loop to the loop header.
   2035 ///    2. The possibly missed fall through edges (if they exist) from the loop
   2036 ///    exits to BB out of the loop.
   2037 ///    3. The missed fall through edge (if it exists) from the last BB to the
   2038 ///    first BB in the loop chain.
   2039 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
   2040 ///  We select the best rotation with the smallest cost.
   2041 void MachineBlockPlacement::rotateLoopWithProfile(
   2042     BlockChain &LoopChain, const MachineLoop &L,
   2043     const BlockFilterSet &LoopBlockSet) {
   2044   auto HeaderBB = L.getHeader();
   2045   auto HeaderIter = llvm::find(LoopChain, HeaderBB);
   2046   auto RotationPos = LoopChain.end();
   2047 
   2048   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
   2049 
   2050   // A utility lambda that scales up a block frequency by dividing it by a
   2051   // branch probability which is the reciprocal of the scale.
   2052   auto ScaleBlockFrequency = [](BlockFrequency Freq,
   2053                                 unsigned Scale) -> BlockFrequency {
   2054     if (Scale == 0)
   2055       return 0;
   2056     // Use operator / between BlockFrequency and BranchProbability to implement
   2057     // saturating multiplication.
   2058     return Freq / BranchProbability(1, Scale);
   2059   };
   2060 
   2061   // Compute the cost of the missed fall-through edge to the loop header if the
   2062   // chain head is not the loop header. As we only consider natural loops with
   2063   // single header, this computation can be done only once.
   2064   BlockFrequency HeaderFallThroughCost(0);
   2065   for (auto *Pred : HeaderBB->predecessors()) {
   2066     BlockChain *PredChain = BlockToChain[Pred];
   2067     if (!LoopBlockSet.count(Pred) &&
   2068         (!PredChain || Pred == *std::prev(PredChain->end()))) {
   2069       auto EdgeFreq =
   2070           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
   2071       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
   2072       // If the predecessor has only an unconditional jump to the header, we
   2073       // need to consider the cost of this jump.
   2074       if (Pred->succ_size() == 1)
   2075         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
   2076       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
   2077     }
   2078   }
   2079 
   2080   // Here we collect all exit blocks in the loop, and for each exit we find out
   2081   // its hottest exit edge. For each loop rotation, we define the loop exit cost
   2082   // as the sum of frequencies of exit edges we collect here, excluding the exit
   2083   // edge from the tail of the loop chain.
   2084   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
   2085   for (auto BB : LoopChain) {
   2086     auto LargestExitEdgeProb = BranchProbability::getZero();
   2087     for (auto *Succ : BB->successors()) {
   2088       BlockChain *SuccChain = BlockToChain[Succ];
   2089       if (!LoopBlockSet.count(Succ) &&
   2090           (!SuccChain || Succ == *SuccChain->begin())) {
   2091         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
   2092         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
   2093       }
   2094     }
   2095     if (LargestExitEdgeProb > BranchProbability::getZero()) {
   2096       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
   2097       ExitsWithFreq.emplace_back(BB, ExitFreq);
   2098     }
   2099   }
   2100 
   2101   // In this loop we iterate every block in the loop chain and calculate the
   2102   // cost assuming the block is the head of the loop chain. When the loop ends,
   2103   // we should have found the best candidate as the loop chain's head.
   2104   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
   2105             EndIter = LoopChain.end();
   2106        Iter != EndIter; Iter++, TailIter++) {
   2107     // TailIter is used to track the tail of the loop chain if the block we are
   2108     // checking (pointed by Iter) is the head of the chain.
   2109     if (TailIter == LoopChain.end())
   2110       TailIter = LoopChain.begin();
   2111 
   2112     auto TailBB = *TailIter;
   2113 
   2114     // Calculate the cost by putting this BB to the top.
   2115     BlockFrequency Cost = 0;
   2116 
   2117     // If the current BB is the loop header, we need to take into account the
   2118     // cost of the missed fall through edge from outside of the loop to the
   2119     // header.
   2120     if (Iter != HeaderIter)
   2121       Cost += HeaderFallThroughCost;
   2122 
   2123     // Collect the loop exit cost by summing up frequencies of all exit edges
   2124     // except the one from the chain tail.
   2125     for (auto &ExitWithFreq : ExitsWithFreq)
   2126       if (TailBB != ExitWithFreq.first)
   2127         Cost += ExitWithFreq.second;
   2128 
   2129     // The cost of breaking the once fall-through edge from the tail to the top
   2130     // of the loop chain. Here we need to consider three cases:
   2131     // 1. If the tail node has only one successor, then we will get an
   2132     //    additional jmp instruction. So the cost here is (MisfetchCost +
   2133     //    JumpInstCost) * tail node frequency.
   2134     // 2. If the tail node has two successors, then we may still get an
   2135     //    additional jmp instruction if the layout successor after the loop
   2136     //    chain is not its CFG successor. Note that the more frequently executed
   2137     //    jmp instruction will be put ahead of the other one. Assume the
   2138     //    frequency of those two branches are x and y, where x is the frequency
   2139     //    of the edge to the chain head, then the cost will be
   2140     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
   2141     // 3. If the tail node has more than two successors (this rarely happens),
   2142     //    we won't consider any additional cost.
   2143     if (TailBB->isSuccessor(*Iter)) {
   2144       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
   2145       if (TailBB->succ_size() == 1)
   2146         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
   2147                                     MisfetchCost + JumpInstCost);
   2148       else if (TailBB->succ_size() == 2) {
   2149         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
   2150         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
   2151         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
   2152                                   ? TailBBFreq * TailToHeadProb.getCompl()
   2153                                   : TailToHeadFreq;
   2154         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
   2155                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
   2156       }
   2157     }
   2158 
   2159     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
   2160                       << getBlockName(*Iter)
   2161                       << " to the top: " << Cost.getFrequency() << "\n");
   2162 
   2163     if (Cost < SmallestRotationCost) {
   2164       SmallestRotationCost = Cost;
   2165       RotationPos = Iter;
   2166     }
   2167   }
   2168 
   2169   if (RotationPos != LoopChain.end()) {
   2170     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
   2171                       << " to the top\n");
   2172     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
   2173   }
   2174 }
   2175 
   2176 /// Collect blocks in the given loop that are to be placed.
   2177 ///
   2178 /// When profile data is available, exclude cold blocks from the returned set;
   2179 /// otherwise, collect all blocks in the loop.
   2180 MachineBlockPlacement::BlockFilterSet
   2181 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
   2182   BlockFilterSet LoopBlockSet;
   2183 
   2184   // Filter cold blocks off from LoopBlockSet when profile data is available.
   2185   // Collect the sum of frequencies of incoming edges to the loop header from
   2186   // outside. If we treat the loop as a super block, this is the frequency of
   2187   // the loop. Then for each block in the loop, we calculate the ratio between
   2188   // its frequency and the frequency of the loop block. When it is too small,
   2189   // don't add it to the loop chain. If there are outer loops, then this block
   2190   // will be merged into the first outer loop chain for which this block is not
   2191   // cold anymore. This needs precise profile data and we only do this when
   2192   // profile data is available.
   2193   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
   2194     BlockFrequency LoopFreq(0);
   2195     for (auto LoopPred : L.getHeader()->predecessors())
   2196       if (!L.contains(LoopPred))
   2197         LoopFreq += MBFI->getBlockFreq(LoopPred) *
   2198                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
   2199 
   2200     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
   2201       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
   2202       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
   2203         continue;
   2204       LoopBlockSet.insert(LoopBB);
   2205     }
   2206   } else
   2207     LoopBlockSet.insert(L.block_begin(), L.block_end());
   2208 
   2209   return LoopBlockSet;
   2210 }
   2211 
   2212 /// Forms basic block chains from the natural loop structures.
   2213 ///
   2214 /// These chains are designed to preserve the existing *structure* of the code
   2215 /// as much as possible. We can then stitch the chains together in a way which
   2216 /// both preserves the topological structure and minimizes taken conditional
   2217 /// branches.
   2218 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
   2219   // First recurse through any nested loops, building chains for those inner
   2220   // loops.
   2221   for (const MachineLoop *InnerLoop : L)
   2222     buildLoopChains(*InnerLoop);
   2223 
   2224   assert(BlockWorkList.empty() &&
   2225          "BlockWorkList not empty when starting to build loop chains.");
   2226   assert(EHPadWorkList.empty() &&
   2227          "EHPadWorkList not empty when starting to build loop chains.");
   2228   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
   2229 
   2230   // Check if we have profile data for this function. If yes, we will rotate
   2231   // this loop by modeling costs more precisely which requires the profile data
   2232   // for better layout.
   2233   bool RotateLoopWithProfile =
   2234       ForcePreciseRotationCost ||
   2235       (PreciseRotationCost && F->getFunction().hasProfileData());
   2236 
   2237   // First check to see if there is an obviously preferable top block for the
   2238   // loop. This will default to the header, but may end up as one of the
   2239   // predecessors to the header if there is one which will result in strictly
   2240   // fewer branches in the loop body.
   2241   // When we use profile data to rotate the loop, this is unnecessary.
   2242   MachineBasicBlock *LoopTop =
   2243       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
   2244 
   2245   // If we selected just the header for the loop top, look for a potentially
   2246   // profitable exit block in the event that rotating the loop can eliminate
   2247   // branches by placing an exit edge at the bottom.
   2248   //
   2249   // Loops are processed innermost to uttermost, make sure we clear
   2250   // PreferredLoopExit before processing a new loop.
   2251   PreferredLoopExit = nullptr;
   2252   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
   2253     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
   2254 
   2255   BlockChain &LoopChain = *BlockToChain[LoopTop];
   2256 
   2257   // FIXME: This is a really lame way of walking the chains in the loop: we
   2258   // walk the blocks, and use a set to prevent visiting a particular chain
   2259   // twice.
   2260   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
   2261   assert(LoopChain.UnscheduledPredecessors == 0 &&
   2262          "LoopChain should not have unscheduled predecessors.");
   2263   UpdatedPreds.insert(&LoopChain);
   2264 
   2265   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
   2266     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
   2267 
   2268   buildChain(LoopTop, LoopChain, &LoopBlockSet);
   2269 
   2270   if (RotateLoopWithProfile)
   2271     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
   2272   else
   2273     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
   2274 
   2275   LLVM_DEBUG({
   2276     // Crash at the end so we get all of the debugging output first.
   2277     bool BadLoop = false;
   2278     if (LoopChain.UnscheduledPredecessors) {
   2279       BadLoop = true;
   2280       dbgs() << "Loop chain contains a block without its preds placed!\n"
   2281              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
   2282              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
   2283     }
   2284     for (MachineBasicBlock *ChainBB : LoopChain) {
   2285       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
   2286       if (!LoopBlockSet.remove(ChainBB)) {
   2287         // We don't mark the loop as bad here because there are real situations
   2288         // where this can occur. For example, with an unanalyzable fallthrough
   2289         // from a loop block to a non-loop block or vice versa.
   2290         dbgs() << "Loop chain contains a block not contained by the loop!\n"
   2291                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
   2292                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
   2293                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
   2294       }
   2295     }
   2296 
   2297     if (!LoopBlockSet.empty()) {
   2298       BadLoop = true;
   2299       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
   2300         dbgs() << "Loop contains blocks never placed into a chain!\n"
   2301                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
   2302                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
   2303                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
   2304     }
   2305     assert(!BadLoop && "Detected problems with the placement of this loop.");
   2306   });
   2307 
   2308   BlockWorkList.clear();
   2309   EHPadWorkList.clear();
   2310 }
   2311 
   2312 void MachineBlockPlacement::buildCFGChains() {
   2313   // Ensure that every BB in the function has an associated chain to simplify
   2314   // the assumptions of the remaining algorithm.
   2315   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
   2316   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
   2317        ++FI) {
   2318     MachineBasicBlock *BB = &*FI;
   2319     BlockChain *Chain =
   2320         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
   2321     // Also, merge any blocks which we cannot reason about and must preserve
   2322     // the exact fallthrough behavior for.
   2323     while (true) {
   2324       Cond.clear();
   2325       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   2326       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
   2327         break;
   2328 
   2329       MachineFunction::iterator NextFI = std::next(FI);
   2330       MachineBasicBlock *NextBB = &*NextFI;
   2331       // Ensure that the layout successor is a viable block, as we know that
   2332       // fallthrough is a possibility.
   2333       assert(NextFI != FE && "Can't fallthrough past the last block.");
   2334       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
   2335                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
   2336                         << "\n");
   2337       Chain->merge(NextBB, nullptr);
   2338 #ifndef NDEBUG
   2339       BlocksWithUnanalyzableExits.insert(&*BB);
   2340 #endif
   2341       FI = NextFI;
   2342       BB = NextBB;
   2343     }
   2344   }
   2345 
   2346   // Build any loop-based chains.
   2347   PreferredLoopExit = nullptr;
   2348   for (MachineLoop *L : *MLI)
   2349     buildLoopChains(*L);
   2350 
   2351   assert(BlockWorkList.empty() &&
   2352          "BlockWorkList should be empty before building final chain.");
   2353   assert(EHPadWorkList.empty() &&
   2354          "EHPadWorkList should be empty before building final chain.");
   2355 
   2356   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
   2357   for (MachineBasicBlock &MBB : *F)
   2358     fillWorkLists(&MBB, UpdatedPreds);
   2359 
   2360   BlockChain &FunctionChain = *BlockToChain[&F->front()];
   2361   buildChain(&F->front(), FunctionChain);
   2362 
   2363 #ifndef NDEBUG
   2364   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
   2365 #endif
   2366   LLVM_DEBUG({
   2367     // Crash at the end so we get all of the debugging output first.
   2368     bool BadFunc = false;
   2369     FunctionBlockSetType FunctionBlockSet;
   2370     for (MachineBasicBlock &MBB : *F)
   2371       FunctionBlockSet.insert(&MBB);
   2372 
   2373     for (MachineBasicBlock *ChainBB : FunctionChain)
   2374       if (!FunctionBlockSet.erase(ChainBB)) {
   2375         BadFunc = true;
   2376         dbgs() << "Function chain contains a block not in the function!\n"
   2377                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
   2378       }
   2379 
   2380     if (!FunctionBlockSet.empty()) {
   2381       BadFunc = true;
   2382       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
   2383         dbgs() << "Function contains blocks never placed into a chain!\n"
   2384                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
   2385     }
   2386     assert(!BadFunc && "Detected problems with the block placement.");
   2387   });
   2388 
   2389   // Splice the blocks into place.
   2390   MachineFunction::iterator InsertPos = F->begin();
   2391   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
   2392   for (MachineBasicBlock *ChainBB : FunctionChain) {
   2393     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
   2394                                                             : "          ... ")
   2395                       << getBlockName(ChainBB) << "\n");
   2396     if (InsertPos != MachineFunction::iterator(ChainBB))
   2397       F->splice(InsertPos, ChainBB);
   2398     else
   2399       ++InsertPos;
   2400 
   2401     // Update the terminator of the previous block.
   2402     if (ChainBB == *FunctionChain.begin())
   2403       continue;
   2404     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
   2405 
   2406     // FIXME: It would be awesome of updateTerminator would just return rather
   2407     // than assert when the branch cannot be analyzed in order to remove this
   2408     // boiler plate.
   2409     Cond.clear();
   2410     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   2411 
   2412 #ifndef NDEBUG
   2413     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
   2414       // Given the exact block placement we chose, we may actually not _need_ to
   2415       // be able to edit PrevBB's terminator sequence, but not being _able_ to
   2416       // do that at this point is a bug.
   2417       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
   2418               !PrevBB->canFallThrough()) &&
   2419              "Unexpected block with un-analyzable fallthrough!");
   2420       Cond.clear();
   2421       TBB = FBB = nullptr;
   2422     }
   2423 #endif
   2424 
   2425     // The "PrevBB" is not yet updated to reflect current code layout, so,
   2426     //   o. it may fall-through to a block without explicit "goto" instruction
   2427     //      before layout, and no longer fall-through it after layout; or
   2428     //   o. just opposite.
   2429     //
   2430     // analyzeBranch() may return erroneous value for FBB when these two
   2431     // situations take place. For the first scenario FBB is mistakenly set NULL;
   2432     // for the 2nd scenario, the FBB, which is expected to be NULL, is
   2433     // mistakenly pointing to "*BI".
   2434     // Thus, if the future change needs to use FBB before the layout is set, it
   2435     // has to correct FBB first by using the code similar to the following:
   2436     //
   2437     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
   2438     //   PrevBB->updateTerminator();
   2439     //   Cond.clear();
   2440     //   TBB = FBB = nullptr;
   2441     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
   2442     //     // FIXME: This should never take place.
   2443     //     TBB = FBB = nullptr;
   2444     //   }
   2445     // }
   2446     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
   2447       PrevBB->updateTerminator();
   2448   }
   2449 
   2450   // Fixup the last block.
   2451   Cond.clear();
   2452   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   2453   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
   2454     F->back().updateTerminator();
   2455 
   2456   BlockWorkList.clear();
   2457   EHPadWorkList.clear();
   2458 }
   2459 
   2460 void MachineBlockPlacement::optimizeBranches() {
   2461   BlockChain &FunctionChain = *BlockToChain[&F->front()];
   2462   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
   2463 
   2464   // Now that all the basic blocks in the chain have the proper layout,
   2465   // make a final call to AnalyzeBranch with AllowModify set.
   2466   // Indeed, the target may be able to optimize the branches in a way we
   2467   // cannot because all branches may not be analyzable.
   2468   // E.g., the target may be able to remove an unconditional branch to
   2469   // a fallthrough when it occurs after predicated terminators.
   2470   for (MachineBasicBlock *ChainBB : FunctionChain) {
   2471     Cond.clear();
   2472     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   2473     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
   2474       // If PrevBB has a two-way branch, try to re-order the branches
   2475       // such that we branch to the successor with higher probability first.
   2476       if (TBB && !Cond.empty() && FBB &&
   2477           MBPI->getEdgeProbability(ChainBB, FBB) >
   2478               MBPI->getEdgeProbability(ChainBB, TBB) &&
   2479           !TII->reverseBranchCondition(Cond)) {
   2480         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
   2481                           << getBlockName(ChainBB) << "\n");
   2482         LLVM_DEBUG(dbgs() << "    Edge probability: "
   2483                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
   2484                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
   2485         DebugLoc dl; // FIXME: this is nowhere
   2486         TII->removeBranch(*ChainBB);
   2487         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
   2488         ChainBB->updateTerminator();
   2489       }
   2490     }
   2491   }
   2492 }
   2493 
   2494 void MachineBlockPlacement::alignBlocks() {
   2495   // Walk through the backedges of the function now that we have fully laid out
   2496   // the basic blocks and align the destination of each backedge. We don't rely
   2497   // exclusively on the loop info here so that we can align backedges in
   2498   // unnatural CFGs and backedges that were introduced purely because of the
   2499   // loop rotations done during this layout pass.
   2500   if (F->getFunction().optForSize())
   2501     return;
   2502   BlockChain &FunctionChain = *BlockToChain[&F->front()];
   2503   if (FunctionChain.begin() == FunctionChain.end())
   2504     return; // Empty chain.
   2505 
   2506   const BranchProbability ColdProb(1, 5); // 20%
   2507   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
   2508   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
   2509   for (MachineBasicBlock *ChainBB : FunctionChain) {
   2510     if (ChainBB == *FunctionChain.begin())
   2511       continue;
   2512 
   2513     // Don't align non-looping basic blocks. These are unlikely to execute
   2514     // enough times to matter in practice. Note that we'll still handle
   2515     // unnatural CFGs inside of a natural outer loop (the common case) and
   2516     // rotated loops.
   2517     MachineLoop *L = MLI->getLoopFor(ChainBB);
   2518     if (!L)
   2519       continue;
   2520 
   2521     unsigned Align = TLI->getPrefLoopAlignment(L);
   2522     if (!Align)
   2523       continue; // Don't care about loop alignment.
   2524 
   2525     // If the block is cold relative to the function entry don't waste space
   2526     // aligning it.
   2527     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
   2528     if (Freq < WeightedEntryFreq)
   2529       continue;
   2530 
   2531     // If the block is cold relative to its loop header, don't align it
   2532     // regardless of what edges into the block exist.
   2533     MachineBasicBlock *LoopHeader = L->getHeader();
   2534     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
   2535     if (Freq < (LoopHeaderFreq * ColdProb))
   2536       continue;
   2537 
   2538     // Check for the existence of a non-layout predecessor which would benefit
   2539     // from aligning this block.
   2540     MachineBasicBlock *LayoutPred =
   2541         &*std::prev(MachineFunction::iterator(ChainBB));
   2542 
   2543     // Force alignment if all the predecessors are jumps. We already checked
   2544     // that the block isn't cold above.
   2545     if (!LayoutPred->isSuccessor(ChainBB)) {
   2546       ChainBB->setAlignment(Align);
   2547       continue;
   2548     }
   2549 
   2550     // Align this block if the layout predecessor's edge into this block is
   2551     // cold relative to the block. When this is true, other predecessors make up
   2552     // all of the hot entries into the block and thus alignment is likely to be
   2553     // important.
   2554     BranchProbability LayoutProb =
   2555         MBPI->getEdgeProbability(LayoutPred, ChainBB);
   2556     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
   2557     if (LayoutEdgeFreq <= (Freq * ColdProb))
   2558       ChainBB->setAlignment(Align);
   2559   }
   2560 }
   2561 
   2562 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
   2563 /// it was duplicated into its chain predecessor and removed.
   2564 /// \p BB    - Basic block that may be duplicated.
   2565 ///
   2566 /// \p LPred - Chosen layout predecessor of \p BB.
   2567 ///            Updated to be the chain end if LPred is removed.
   2568 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
   2569 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
   2570 ///                  Used to identify which blocks to update predecessor
   2571 ///                  counts.
   2572 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
   2573 ///                          chosen in the given order due to unnatural CFG
   2574 ///                          only needed if \p BB is removed and
   2575 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
   2576 /// @return true if \p BB was removed.
   2577 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
   2578     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
   2579     const MachineBasicBlock *LoopHeaderBB,
   2580     BlockChain &Chain, BlockFilterSet *BlockFilter,
   2581     MachineFunction::iterator &PrevUnplacedBlockIt) {
   2582   bool Removed, DuplicatedToLPred;
   2583   bool DuplicatedToOriginalLPred;
   2584   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
   2585                                     PrevUnplacedBlockIt,
   2586                                     DuplicatedToLPred);
   2587   if (!Removed)
   2588     return false;
   2589   DuplicatedToOriginalLPred = DuplicatedToLPred;
   2590   // Iteratively try to duplicate again. It can happen that a block that is
   2591   // duplicated into is still small enough to be duplicated again.
   2592   // No need to call markBlockSuccessors in this case, as the blocks being
   2593   // duplicated from here on are already scheduled.
   2594   // Note that DuplicatedToLPred always implies Removed.
   2595   while (DuplicatedToLPred) {
   2596     assert(Removed && "Block must have been removed to be duplicated into its "
   2597            "layout predecessor.");
   2598     MachineBasicBlock *DupBB, *DupPred;
   2599     // The removal callback causes Chain.end() to be updated when a block is
   2600     // removed. On the first pass through the loop, the chain end should be the
   2601     // same as it was on function entry. On subsequent passes, because we are
   2602     // duplicating the block at the end of the chain, if it is removed the
   2603     // chain will have shrunk by one block.
   2604     BlockChain::iterator ChainEnd = Chain.end();
   2605     DupBB = *(--ChainEnd);
   2606     // Now try to duplicate again.
   2607     if (ChainEnd == Chain.begin())
   2608       break;
   2609     DupPred = *std::prev(ChainEnd);
   2610     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
   2611                                       PrevUnplacedBlockIt,
   2612                                       DuplicatedToLPred);
   2613   }
   2614   // If BB was duplicated into LPred, it is now scheduled. But because it was
   2615   // removed, markChainSuccessors won't be called for its chain. Instead we
   2616   // call markBlockSuccessors for LPred to achieve the same effect. This must go
   2617   // at the end because repeating the tail duplication can increase the number
   2618   // of unscheduled predecessors.
   2619   LPred = *std::prev(Chain.end());
   2620   if (DuplicatedToOriginalLPred)
   2621     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
   2622   return true;
   2623 }
   2624 
   2625 /// Tail duplicate \p BB into (some) predecessors if profitable.
   2626 /// \p BB    - Basic block that may be duplicated
   2627 /// \p LPred - Chosen layout predecessor of \p BB
   2628 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
   2629 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
   2630 ///                  Used to identify which blocks to update predecessor
   2631 ///                  counts.
   2632 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
   2633 ///                          chosen in the given order due to unnatural CFG
   2634 ///                          only needed if \p BB is removed and
   2635 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
   2636 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
   2637 ///                        only be true if the block was removed.
   2638 /// \return  - True if the block was duplicated into all preds and removed.
   2639 bool MachineBlockPlacement::maybeTailDuplicateBlock(
   2640     MachineBasicBlock *BB, MachineBasicBlock *LPred,
   2641     BlockChain &Chain, BlockFilterSet *BlockFilter,
   2642     MachineFunction::iterator &PrevUnplacedBlockIt,
   2643     bool &DuplicatedToLPred) {
   2644   DuplicatedToLPred = false;
   2645   if (!shouldTailDuplicate(BB))
   2646     return false;
   2647 
   2648   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
   2649                     << "\n");
   2650 
   2651   // This has to be a callback because none of it can be done after
   2652   // BB is deleted.
   2653   bool Removed = false;
   2654   auto RemovalCallback =
   2655       [&](MachineBasicBlock *RemBB) {
   2656         // Signal to outer function
   2657         Removed = true;
   2658 
   2659         // Conservative default.
   2660         bool InWorkList = true;
   2661         // Remove from the Chain and Chain Map
   2662         if (BlockToChain.count(RemBB)) {
   2663           BlockChain *Chain = BlockToChain[RemBB];
   2664           InWorkList = Chain->UnscheduledPredecessors == 0;
   2665           Chain->remove(RemBB);
   2666           BlockToChain.erase(RemBB);
   2667         }
   2668 
   2669         // Handle the unplaced block iterator
   2670         if (&(*PrevUnplacedBlockIt) == RemBB) {
   2671           PrevUnplacedBlockIt++;
   2672         }
   2673 
   2674         // Handle the Work Lists
   2675         if (InWorkList) {
   2676           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
   2677           if (RemBB->isEHPad())
   2678             RemoveList = EHPadWorkList;
   2679           RemoveList.erase(
   2680               llvm::remove_if(RemoveList,
   2681                               [RemBB](MachineBasicBlock *BB) {
   2682                                 return BB == RemBB;
   2683                               }),
   2684               RemoveList.end());
   2685         }
   2686 
   2687         // Handle the filter set
   2688         if (BlockFilter) {
   2689           BlockFilter->remove(RemBB);
   2690         }
   2691 
   2692         // Remove the block from loop info.
   2693         MLI->removeBlock(RemBB);
   2694         if (RemBB == PreferredLoopExit)
   2695           PreferredLoopExit = nullptr;
   2696 
   2697         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
   2698                           << getBlockName(RemBB) << "\n");
   2699       };
   2700   auto RemovalCallbackRef =
   2701       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
   2702 
   2703   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
   2704   bool IsSimple = TailDup.isSimpleBB(BB);
   2705   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
   2706                                  &DuplicatedPreds, &RemovalCallbackRef);
   2707 
   2708   // Update UnscheduledPredecessors to reflect tail-duplication.
   2709   DuplicatedToLPred = false;
   2710   for (MachineBasicBlock *Pred : DuplicatedPreds) {
   2711     // We're only looking for unscheduled predecessors that match the filter.
   2712     BlockChain* PredChain = BlockToChain[Pred];
   2713     if (Pred == LPred)
   2714       DuplicatedToLPred = true;
   2715     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
   2716         || PredChain == &Chain)
   2717       continue;
   2718     for (MachineBasicBlock *NewSucc : Pred->successors()) {
   2719       if (BlockFilter && !BlockFilter->count(NewSucc))
   2720         continue;
   2721       BlockChain *NewChain = BlockToChain[NewSucc];
   2722       if (NewChain != &Chain && NewChain != PredChain)
   2723         NewChain->UnscheduledPredecessors++;
   2724     }
   2725   }
   2726   return Removed;
   2727 }
   2728 
   2729 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
   2730   if (skipFunction(MF.getFunction()))
   2731     return false;
   2732 
   2733   // Check for single-block functions and skip them.
   2734   if (std::next(MF.begin()) == MF.end())
   2735     return false;
   2736 
   2737   F = &MF;
   2738   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   2739   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
   2740       getAnalysis<MachineBlockFrequencyInfo>());
   2741   MLI = &getAnalysis<MachineLoopInfo>();
   2742   TII = MF.getSubtarget().getInstrInfo();
   2743   TLI = MF.getSubtarget().getTargetLowering();
   2744   MPDT = nullptr;
   2745 
   2746   // Initialize PreferredLoopExit to nullptr here since it may never be set if
   2747   // there are no MachineLoops.
   2748   PreferredLoopExit = nullptr;
   2749 
   2750   assert(BlockToChain.empty() &&
   2751          "BlockToChain map should be empty before starting placement.");
   2752   assert(ComputedEdges.empty() &&
   2753          "Computed Edge map should be empty before starting placement.");
   2754 
   2755   unsigned TailDupSize = TailDupPlacementThreshold;
   2756   // If only the aggressive threshold is explicitly set, use it.
   2757   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
   2758       TailDupPlacementThreshold.getNumOccurrences() == 0)
   2759     TailDupSize = TailDupPlacementAggressiveThreshold;
   2760 
   2761   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
   2762   // For aggressive optimization, we can adjust some thresholds to be less
   2763   // conservative.
   2764   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
   2765     // At O3 we should be more willing to copy blocks for tail duplication. This
   2766     // increases size pressure, so we only do it at O3
   2767     // Do this unless only the regular threshold is explicitly set.
   2768     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
   2769         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
   2770       TailDupSize = TailDupPlacementAggressiveThreshold;
   2771   }
   2772 
   2773   if (allowTailDupPlacement()) {
   2774     MPDT = &getAnalysis<MachinePostDominatorTree>();
   2775     if (MF.getFunction().optForSize())
   2776       TailDupSize = 1;
   2777     bool PreRegAlloc = false;
   2778     TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
   2779     precomputeTriangleChains();
   2780   }
   2781 
   2782   buildCFGChains();
   2783 
   2784   // Changing the layout can create new tail merging opportunities.
   2785   // TailMerge can create jump into if branches that make CFG irreducible for
   2786   // HW that requires structured CFG.
   2787   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
   2788                          PassConfig->getEnableTailMerge() &&
   2789                          BranchFoldPlacement;
   2790   // No tail merging opportunities if the block number is less than four.
   2791   if (MF.size() > 3 && EnableTailMerge) {
   2792     unsigned TailMergeSize = TailDupSize + 1;
   2793     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
   2794                     *MBPI, TailMergeSize);
   2795 
   2796     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
   2797                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
   2798                             /*AfterBlockPlacement=*/true)) {
   2799       // Redo the layout if tail merging creates/removes/moves blocks.
   2800       BlockToChain.clear();
   2801       ComputedEdges.clear();
   2802       // Must redo the post-dominator tree if blocks were changed.
   2803       if (MPDT)
   2804         MPDT->runOnMachineFunction(MF);
   2805       ChainAllocator.DestroyAll();
   2806       buildCFGChains();
   2807     }
   2808   }
   2809 
   2810   optimizeBranches();
   2811   alignBlocks();
   2812 
   2813   BlockToChain.clear();
   2814   ComputedEdges.clear();
   2815   ChainAllocator.DestroyAll();
   2816 
   2817   if (AlignAllBlock)
   2818     // Align all of the blocks in the function to a specific alignment.
   2819     for (MachineBasicBlock &MBB : MF)
   2820       MBB.setAlignment(AlignAllBlock);
   2821   else if (AlignAllNonFallThruBlocks) {
   2822     // Align all of the blocks that have no fall-through predecessors to a
   2823     // specific alignment.
   2824     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
   2825       auto LayoutPred = std::prev(MBI);
   2826       if (!LayoutPred->isSuccessor(&*MBI))
   2827         MBI->setAlignment(AlignAllNonFallThruBlocks);
   2828     }
   2829   }
   2830   if (ViewBlockLayoutWithBFI != GVDT_None &&
   2831       (ViewBlockFreqFuncName.empty() ||
   2832        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
   2833     MBFI->view("MBP." + MF.getName(), false);
   2834   }
   2835 
   2836 
   2837   // We always return true as we have no way to track whether the final order
   2838   // differs from the original order.
   2839   return true;
   2840 }
   2841 
   2842 namespace {
   2843 
   2844 /// A pass to compute block placement statistics.
   2845 ///
   2846 /// A separate pass to compute interesting statistics for evaluating block
   2847 /// placement. This is separate from the actual placement pass so that they can
   2848 /// be computed in the absence of any placement transformations or when using
   2849 /// alternative placement strategies.
   2850 class MachineBlockPlacementStats : public MachineFunctionPass {
   2851   /// A handle to the branch probability pass.
   2852   const MachineBranchProbabilityInfo *MBPI;
   2853 
   2854   /// A handle to the function-wide block frequency pass.
   2855   const MachineBlockFrequencyInfo *MBFI;
   2856 
   2857 public:
   2858   static char ID; // Pass identification, replacement for typeid
   2859 
   2860   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
   2861     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
   2862   }
   2863 
   2864   bool runOnMachineFunction(MachineFunction &F) override;
   2865 
   2866   void getAnalysisUsage(AnalysisUsage &AU) const override {
   2867     AU.addRequired<MachineBranchProbabilityInfo>();
   2868     AU.addRequired<MachineBlockFrequencyInfo>();
   2869     AU.setPreservesAll();
   2870     MachineFunctionPass::getAnalysisUsage(AU);
   2871   }
   2872 };
   2873 
   2874 } // end anonymous namespace
   2875 
   2876 char MachineBlockPlacementStats::ID = 0;
   2877 
   2878 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
   2879 
   2880 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
   2881                       "Basic Block Placement Stats", false, false)
   2882 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
   2883 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
   2884 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
   2885                     "Basic Block Placement Stats", false, false)
   2886 
   2887 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
   2888   // Check for single-block functions and skip them.
   2889   if (std::next(F.begin()) == F.end())
   2890     return false;
   2891 
   2892   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   2893   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   2894 
   2895   for (MachineBasicBlock &MBB : F) {
   2896     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
   2897     Statistic &NumBranches =
   2898         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
   2899     Statistic &BranchTakenFreq =
   2900         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
   2901     for (MachineBasicBlock *Succ : MBB.successors()) {
   2902       // Skip if this successor is a fallthrough.
   2903       if (MBB.isLayoutSuccessor(Succ))
   2904         continue;
   2905 
   2906       BlockFrequency EdgeFreq =
   2907           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
   2908       ++NumBranches;
   2909       BranchTakenFreq += EdgeFreq.getFrequency();
   2910     }
   2911   }
   2912 
   2913   return false;
   2914 }
   2915