1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "BranchFolding.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetLowering.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Allocator.h" 54 #include "llvm/Support/BlockFrequency.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "block-placement" 75 76 STATISTIC(NumCondBranches, "Number of conditional branches"); 77 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 78 STATISTIC(CondBranchTakenFreq, 79 "Potential frequency of taking conditional branches"); 80 STATISTIC(UncondBranchTakenFreq, 81 "Potential frequency of taking unconditional branches"); 82 83 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 84 cl::desc("Force the alignment of all " 85 "blocks in the function."), 86 cl::init(0), cl::Hidden); 87 88 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 89 "align-all-nofallthru-blocks", 90 cl::desc("Force the alignment of all " 91 "blocks that have no fall-through predecessors (i.e. don't add " 92 "nops that are executed)."), 93 cl::init(0), cl::Hidden); 94 95 // FIXME: Find a good default for this flag and remove the flag. 96 static cl::opt<unsigned> ExitBlockBias( 97 "block-placement-exit-block-bias", 98 cl::desc("Block frequency percentage a loop exit block needs " 99 "over the original exit to be considered the new exit."), 100 cl::init(0), cl::Hidden); 101 102 // Definition: 103 // - Outlining: placement of a basic block outside the chain or hot path. 104 105 static cl::opt<unsigned> LoopToColdBlockRatio( 106 "loop-to-cold-block-ratio", 107 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 108 "(frequency of block) is greater than this ratio"), 109 cl::init(5), cl::Hidden); 110 111 static cl::opt<bool> ForceLoopColdBlock( 112 "force-loop-cold-block", 113 cl::desc("Force outlining cold blocks from loops."), 114 cl::init(false), cl::Hidden); 115 116 static cl::opt<bool> 117 PreciseRotationCost("precise-rotation-cost", 118 cl::desc("Model the cost of loop rotation more " 119 "precisely by using profile data."), 120 cl::init(false), cl::Hidden); 121 122 static cl::opt<bool> 123 ForcePreciseRotationCost("force-precise-rotation-cost", 124 cl::desc("Force the use of precise cost " 125 "loop rotation strategy."), 126 cl::init(false), cl::Hidden); 127 128 static cl::opt<unsigned> MisfetchCost( 129 "misfetch-cost", 130 cl::desc("Cost that models the probabilistic risk of an instruction " 131 "misfetch due to a jump comparing to falling through, whose cost " 132 "is zero."), 133 cl::init(1), cl::Hidden); 134 135 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 136 cl::desc("Cost of jump instructions."), 137 cl::init(1), cl::Hidden); 138 static cl::opt<bool> 139 TailDupPlacement("tail-dup-placement", 140 cl::desc("Perform tail duplication during placement. " 141 "Creates more fallthrough opportunites in " 142 "outline branches."), 143 cl::init(true), cl::Hidden); 144 145 static cl::opt<bool> 146 BranchFoldPlacement("branch-fold-placement", 147 cl::desc("Perform branch folding during placement. " 148 "Reduces code size."), 149 cl::init(true), cl::Hidden); 150 151 // Heuristic for tail duplication. 152 static cl::opt<unsigned> TailDupPlacementThreshold( 153 "tail-dup-placement-threshold", 154 cl::desc("Instruction cutoff for tail duplication during layout. " 155 "Tail merging during layout is forced to have a threshold " 156 "that won't conflict."), cl::init(2), 157 cl::Hidden); 158 159 // Heuristic for aggressive tail duplication. 160 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 161 "tail-dup-placement-aggressive-threshold", 162 cl::desc("Instruction cutoff for aggressive tail duplication during " 163 "layout. Used at -O3. Tail merging during layout is forced to " 164 "have a threshold that won't conflict."), cl::init(4), 165 cl::Hidden); 166 167 // Heuristic for tail duplication. 168 static cl::opt<unsigned> TailDupPlacementPenalty( 169 "tail-dup-placement-penalty", 170 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 171 "Copying can increase fallthrough, but it also increases icache " 172 "pressure. This parameter controls the penalty to account for that. " 173 "Percent as integer."), 174 cl::init(2), 175 cl::Hidden); 176 177 // Heuristic for triangle chains. 178 static cl::opt<unsigned> TriangleChainCount( 179 "triangle-chain-count", 180 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 181 "triangle tail duplication heuristic to kick in. 0 to disable."), 182 cl::init(2), 183 cl::Hidden); 184 185 extern cl::opt<unsigned> StaticLikelyProb; 186 extern cl::opt<unsigned> ProfileLikelyProb; 187 188 // Internal option used to control BFI display only after MBP pass. 189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 190 // -view-block-layout-with-bfi= 191 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 192 193 // Command line option to specify the name of the function for CFG dump 194 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 195 extern cl::opt<std::string> ViewBlockFreqFuncName; 196 197 namespace { 198 199 class BlockChain; 200 201 /// Type for our function-wide basic block -> block chain mapping. 202 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 203 204 /// A chain of blocks which will be laid out contiguously. 205 /// 206 /// This is the datastructure representing a chain of consecutive blocks that 207 /// are profitable to layout together in order to maximize fallthrough 208 /// probabilities and code locality. We also can use a block chain to represent 209 /// a sequence of basic blocks which have some external (correctness) 210 /// requirement for sequential layout. 211 /// 212 /// Chains can be built around a single basic block and can be merged to grow 213 /// them. They participate in a block-to-chain mapping, which is updated 214 /// automatically as chains are merged together. 215 class BlockChain { 216 /// The sequence of blocks belonging to this chain. 217 /// 218 /// This is the sequence of blocks for a particular chain. These will be laid 219 /// out in-order within the function. 220 SmallVector<MachineBasicBlock *, 4> Blocks; 221 222 /// A handle to the function-wide basic block to block chain mapping. 223 /// 224 /// This is retained in each block chain to simplify the computation of child 225 /// block chains for SCC-formation and iteration. We store the edges to child 226 /// basic blocks, and map them back to their associated chains using this 227 /// structure. 228 BlockToChainMapType &BlockToChain; 229 230 public: 231 /// Construct a new BlockChain. 232 /// 233 /// This builds a new block chain representing a single basic block in the 234 /// function. It also registers itself as the chain that block participates 235 /// in with the BlockToChain mapping. 236 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 237 : Blocks(1, BB), BlockToChain(BlockToChain) { 238 assert(BB && "Cannot create a chain with a null basic block"); 239 BlockToChain[BB] = this; 240 } 241 242 /// Iterator over blocks within the chain. 243 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 244 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 245 246 /// Beginning of blocks within the chain. 247 iterator begin() { return Blocks.begin(); } 248 const_iterator begin() const { return Blocks.begin(); } 249 250 /// End of blocks within the chain. 251 iterator end() { return Blocks.end(); } 252 const_iterator end() const { return Blocks.end(); } 253 254 bool remove(MachineBasicBlock* BB) { 255 for(iterator i = begin(); i != end(); ++i) { 256 if (*i == BB) { 257 Blocks.erase(i); 258 return true; 259 } 260 } 261 return false; 262 } 263 264 /// Merge a block chain into this one. 265 /// 266 /// This routine merges a block chain into this one. It takes care of forming 267 /// a contiguous sequence of basic blocks, updating the edge list, and 268 /// updating the block -> chain mapping. It does not free or tear down the 269 /// old chain, but the old chain's block list is no longer valid. 270 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 271 assert(BB && "Can't merge a null block."); 272 assert(!Blocks.empty() && "Can't merge into an empty chain."); 273 274 // Fast path in case we don't have a chain already. 275 if (!Chain) { 276 assert(!BlockToChain[BB] && 277 "Passed chain is null, but BB has entry in BlockToChain."); 278 Blocks.push_back(BB); 279 BlockToChain[BB] = this; 280 return; 281 } 282 283 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 284 assert(Chain->begin() != Chain->end()); 285 286 // Update the incoming blocks to point to this chain, and add them to the 287 // chain structure. 288 for (MachineBasicBlock *ChainBB : *Chain) { 289 Blocks.push_back(ChainBB); 290 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 291 BlockToChain[ChainBB] = this; 292 } 293 } 294 295 #ifndef NDEBUG 296 /// Dump the blocks in this chain. 297 LLVM_DUMP_METHOD void dump() { 298 for (MachineBasicBlock *MBB : *this) 299 MBB->dump(); 300 } 301 #endif // NDEBUG 302 303 /// Count of predecessors of any block within the chain which have not 304 /// yet been scheduled. In general, we will delay scheduling this chain 305 /// until those predecessors are scheduled (or we find a sufficiently good 306 /// reason to override this heuristic.) Note that when forming loop chains, 307 /// blocks outside the loop are ignored and treated as if they were already 308 /// scheduled. 309 /// 310 /// Note: This field is reinitialized multiple times - once for each loop, 311 /// and then once for the function as a whole. 312 unsigned UnscheduledPredecessors = 0; 313 }; 314 315 class MachineBlockPlacement : public MachineFunctionPass { 316 /// A type for a block filter set. 317 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 318 319 /// Pair struct containing basic block and taildup profitiability 320 struct BlockAndTailDupResult { 321 MachineBasicBlock *BB; 322 bool ShouldTailDup; 323 }; 324 325 /// Triple struct containing edge weight and the edge. 326 struct WeightedEdge { 327 BlockFrequency Weight; 328 MachineBasicBlock *Src; 329 MachineBasicBlock *Dest; 330 }; 331 332 /// work lists of blocks that are ready to be laid out 333 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 334 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 335 336 /// Edges that have already been computed as optimal. 337 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 338 339 /// Machine Function 340 MachineFunction *F; 341 342 /// A handle to the branch probability pass. 343 const MachineBranchProbabilityInfo *MBPI; 344 345 /// A handle to the function-wide block frequency pass. 346 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 347 348 /// A handle to the loop info. 349 MachineLoopInfo *MLI; 350 351 /// Preferred loop exit. 352 /// Member variable for convenience. It may be removed by duplication deep 353 /// in the call stack. 354 MachineBasicBlock *PreferredLoopExit; 355 356 /// A handle to the target's instruction info. 357 const TargetInstrInfo *TII; 358 359 /// A handle to the target's lowering info. 360 const TargetLoweringBase *TLI; 361 362 /// A handle to the post dominator tree. 363 MachinePostDominatorTree *MPDT; 364 365 /// Duplicator used to duplicate tails during placement. 366 /// 367 /// Placement decisions can open up new tail duplication opportunities, but 368 /// since tail duplication affects placement decisions of later blocks, it 369 /// must be done inline. 370 TailDuplicator TailDup; 371 372 /// Allocator and owner of BlockChain structures. 373 /// 374 /// We build BlockChains lazily while processing the loop structure of 375 /// a function. To reduce malloc traffic, we allocate them using this 376 /// slab-like allocator, and destroy them after the pass completes. An 377 /// important guarantee is that this allocator produces stable pointers to 378 /// the chains. 379 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 380 381 /// Function wide BasicBlock to BlockChain mapping. 382 /// 383 /// This mapping allows efficiently moving from any given basic block to the 384 /// BlockChain it participates in, if any. We use it to, among other things, 385 /// allow implicitly defining edges between chains as the existing edges 386 /// between basic blocks. 387 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 388 389 #ifndef NDEBUG 390 /// The set of basic blocks that have terminators that cannot be fully 391 /// analyzed. These basic blocks cannot be re-ordered safely by 392 /// MachineBlockPlacement, and we must preserve physical layout of these 393 /// blocks and their successors through the pass. 394 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 395 #endif 396 397 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 398 /// if the count goes to 0, add them to the appropriate work list. 399 void markChainSuccessors( 400 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 401 const BlockFilterSet *BlockFilter = nullptr); 402 403 /// Decrease the UnscheduledPredecessors count for a single block, and 404 /// if the count goes to 0, add them to the appropriate work list. 405 void markBlockSuccessors( 406 const BlockChain &Chain, const MachineBasicBlock *BB, 407 const MachineBasicBlock *LoopHeaderBB, 408 const BlockFilterSet *BlockFilter = nullptr); 409 410 BranchProbability 411 collectViableSuccessors( 412 const MachineBasicBlock *BB, const BlockChain &Chain, 413 const BlockFilterSet *BlockFilter, 414 SmallVector<MachineBasicBlock *, 4> &Successors); 415 bool shouldPredBlockBeOutlined( 416 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 417 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 418 BranchProbability SuccProb, BranchProbability HotProb); 419 bool repeatedlyTailDuplicateBlock( 420 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 421 const MachineBasicBlock *LoopHeaderBB, 422 BlockChain &Chain, BlockFilterSet *BlockFilter, 423 MachineFunction::iterator &PrevUnplacedBlockIt); 424 bool maybeTailDuplicateBlock( 425 MachineBasicBlock *BB, MachineBasicBlock *LPred, 426 BlockChain &Chain, BlockFilterSet *BlockFilter, 427 MachineFunction::iterator &PrevUnplacedBlockIt, 428 bool &DuplicatedToLPred); 429 bool hasBetterLayoutPredecessor( 430 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 431 const BlockChain &SuccChain, BranchProbability SuccProb, 432 BranchProbability RealSuccProb, const BlockChain &Chain, 433 const BlockFilterSet *BlockFilter); 434 BlockAndTailDupResult selectBestSuccessor( 435 const MachineBasicBlock *BB, const BlockChain &Chain, 436 const BlockFilterSet *BlockFilter); 437 MachineBasicBlock *selectBestCandidateBlock( 438 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 439 MachineBasicBlock *getFirstUnplacedBlock( 440 const BlockChain &PlacedChain, 441 MachineFunction::iterator &PrevUnplacedBlockIt, 442 const BlockFilterSet *BlockFilter); 443 444 /// Add a basic block to the work list if it is appropriate. 445 /// 446 /// If the optional parameter BlockFilter is provided, only MBB 447 /// present in the set will be added to the worklist. If nullptr 448 /// is provided, no filtering occurs. 449 void fillWorkLists(const MachineBasicBlock *MBB, 450 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 451 const BlockFilterSet *BlockFilter); 452 453 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 454 BlockFilterSet *BlockFilter = nullptr); 455 MachineBasicBlock *findBestLoopTop( 456 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 457 MachineBasicBlock *findBestLoopExit( 458 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 459 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 460 void buildLoopChains(const MachineLoop &L); 461 void rotateLoop( 462 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 463 const BlockFilterSet &LoopBlockSet); 464 void rotateLoopWithProfile( 465 BlockChain &LoopChain, const MachineLoop &L, 466 const BlockFilterSet &LoopBlockSet); 467 void buildCFGChains(); 468 void optimizeBranches(); 469 void alignBlocks(); 470 /// Returns true if a block should be tail-duplicated to increase fallthrough 471 /// opportunities. 472 bool shouldTailDuplicate(MachineBasicBlock *BB); 473 /// Check the edge frequencies to see if tail duplication will increase 474 /// fallthroughs. 475 bool isProfitableToTailDup( 476 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 477 BranchProbability QProb, 478 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 479 480 /// Check for a trellis layout. 481 bool isTrellis(const MachineBasicBlock *BB, 482 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 483 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 484 485 /// Get the best successor given a trellis layout. 486 BlockAndTailDupResult getBestTrellisSuccessor( 487 const MachineBasicBlock *BB, 488 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 489 BranchProbability AdjustedSumProb, const BlockChain &Chain, 490 const BlockFilterSet *BlockFilter); 491 492 /// Get the best pair of non-conflicting edges. 493 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 494 const MachineBasicBlock *BB, 495 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 496 497 /// Returns true if a block can tail duplicate into all unplaced 498 /// predecessors. Filters based on loop. 499 bool canTailDuplicateUnplacedPreds( 500 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 501 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 502 503 /// Find chains of triangles to tail-duplicate where a global analysis works, 504 /// but a local analysis would not find them. 505 void precomputeTriangleChains(); 506 507 public: 508 static char ID; // Pass identification, replacement for typeid 509 510 MachineBlockPlacement() : MachineFunctionPass(ID) { 511 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 512 } 513 514 bool runOnMachineFunction(MachineFunction &F) override; 515 516 bool allowTailDupPlacement() const { 517 assert(F); 518 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 519 } 520 521 void getAnalysisUsage(AnalysisUsage &AU) const override { 522 AU.addRequired<MachineBranchProbabilityInfo>(); 523 AU.addRequired<MachineBlockFrequencyInfo>(); 524 if (TailDupPlacement) 525 AU.addRequired<MachinePostDominatorTree>(); 526 AU.addRequired<MachineLoopInfo>(); 527 AU.addRequired<TargetPassConfig>(); 528 MachineFunctionPass::getAnalysisUsage(AU); 529 } 530 }; 531 532 } // end anonymous namespace 533 534 char MachineBlockPlacement::ID = 0; 535 536 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 537 538 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 539 "Branch Probability Basic Block Placement", false, false) 540 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 541 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 542 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 543 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 544 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 545 "Branch Probability Basic Block Placement", false, false) 546 547 #ifndef NDEBUG 548 /// Helper to print the name of a MBB. 549 /// 550 /// Only used by debug logging. 551 static std::string getBlockName(const MachineBasicBlock *BB) { 552 std::string Result; 553 raw_string_ostream OS(Result); 554 OS << printMBBReference(*BB); 555 OS << " ('" << BB->getName() << "')"; 556 OS.flush(); 557 return Result; 558 } 559 #endif 560 561 /// Mark a chain's successors as having one fewer preds. 562 /// 563 /// When a chain is being merged into the "placed" chain, this routine will 564 /// quickly walk the successors of each block in the chain and mark them as 565 /// having one fewer active predecessor. It also adds any successors of this 566 /// chain which reach the zero-predecessor state to the appropriate worklist. 567 void MachineBlockPlacement::markChainSuccessors( 568 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 569 const BlockFilterSet *BlockFilter) { 570 // Walk all the blocks in this chain, marking their successors as having 571 // a predecessor placed. 572 for (MachineBasicBlock *MBB : Chain) { 573 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 574 } 575 } 576 577 /// Mark a single block's successors as having one fewer preds. 578 /// 579 /// Under normal circumstances, this is only called by markChainSuccessors, 580 /// but if a block that was to be placed is completely tail-duplicated away, 581 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 582 /// for just that block. 583 void MachineBlockPlacement::markBlockSuccessors( 584 const BlockChain &Chain, const MachineBasicBlock *MBB, 585 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 586 // Add any successors for which this is the only un-placed in-loop 587 // predecessor to the worklist as a viable candidate for CFG-neutral 588 // placement. No subsequent placement of this block will violate the CFG 589 // shape, so we get to use heuristics to choose a favorable placement. 590 for (MachineBasicBlock *Succ : MBB->successors()) { 591 if (BlockFilter && !BlockFilter->count(Succ)) 592 continue; 593 BlockChain &SuccChain = *BlockToChain[Succ]; 594 // Disregard edges within a fixed chain, or edges to the loop header. 595 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 596 continue; 597 598 // This is a cross-chain edge that is within the loop, so decrement the 599 // loop predecessor count of the destination chain. 600 if (SuccChain.UnscheduledPredecessors == 0 || 601 --SuccChain.UnscheduledPredecessors > 0) 602 continue; 603 604 auto *NewBB = *SuccChain.begin(); 605 if (NewBB->isEHPad()) 606 EHPadWorkList.push_back(NewBB); 607 else 608 BlockWorkList.push_back(NewBB); 609 } 610 } 611 612 /// This helper function collects the set of successors of block 613 /// \p BB that are allowed to be its layout successors, and return 614 /// the total branch probability of edges from \p BB to those 615 /// blocks. 616 BranchProbability MachineBlockPlacement::collectViableSuccessors( 617 const MachineBasicBlock *BB, const BlockChain &Chain, 618 const BlockFilterSet *BlockFilter, 619 SmallVector<MachineBasicBlock *, 4> &Successors) { 620 // Adjust edge probabilities by excluding edges pointing to blocks that is 621 // either not in BlockFilter or is already in the current chain. Consider the 622 // following CFG: 623 // 624 // --->A 625 // | / \ 626 // | B C 627 // | \ / \ 628 // ----D E 629 // 630 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 631 // A->C is chosen as a fall-through, D won't be selected as a successor of C 632 // due to CFG constraint (the probability of C->D is not greater than 633 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 634 // when calculating the probability of C->D, D will be selected and we 635 // will get A C D B as the layout of this loop. 636 auto AdjustedSumProb = BranchProbability::getOne(); 637 for (MachineBasicBlock *Succ : BB->successors()) { 638 bool SkipSucc = false; 639 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 640 SkipSucc = true; 641 } else { 642 BlockChain *SuccChain = BlockToChain[Succ]; 643 if (SuccChain == &Chain) { 644 SkipSucc = true; 645 } else if (Succ != *SuccChain->begin()) { 646 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 647 << " -> Mid chain!\n"); 648 continue; 649 } 650 } 651 if (SkipSucc) 652 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 653 else 654 Successors.push_back(Succ); 655 } 656 657 return AdjustedSumProb; 658 } 659 660 /// The helper function returns the branch probability that is adjusted 661 /// or normalized over the new total \p AdjustedSumProb. 662 static BranchProbability 663 getAdjustedProbability(BranchProbability OrigProb, 664 BranchProbability AdjustedSumProb) { 665 BranchProbability SuccProb; 666 uint32_t SuccProbN = OrigProb.getNumerator(); 667 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 668 if (SuccProbN >= SuccProbD) 669 SuccProb = BranchProbability::getOne(); 670 else 671 SuccProb = BranchProbability(SuccProbN, SuccProbD); 672 673 return SuccProb; 674 } 675 676 /// Check if \p BB has exactly the successors in \p Successors. 677 static bool 678 hasSameSuccessors(MachineBasicBlock &BB, 679 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 680 if (BB.succ_size() != Successors.size()) 681 return false; 682 // We don't want to count self-loops 683 if (Successors.count(&BB)) 684 return false; 685 for (MachineBasicBlock *Succ : BB.successors()) 686 if (!Successors.count(Succ)) 687 return false; 688 return true; 689 } 690 691 /// Check if a block should be tail duplicated to increase fallthrough 692 /// opportunities. 693 /// \p BB Block to check. 694 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 695 // Blocks with single successors don't create additional fallthrough 696 // opportunities. Don't duplicate them. TODO: When conditional exits are 697 // analyzable, allow them to be duplicated. 698 bool IsSimple = TailDup.isSimpleBB(BB); 699 700 if (BB->succ_size() == 1) 701 return false; 702 return TailDup.shouldTailDuplicate(IsSimple, *BB); 703 } 704 705 /// Compare 2 BlockFrequency's with a small penalty for \p A. 706 /// In order to be conservative, we apply a X% penalty to account for 707 /// increased icache pressure and static heuristics. For small frequencies 708 /// we use only the numerators to improve accuracy. For simplicity, we assume the 709 /// penalty is less than 100% 710 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 711 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 712 uint64_t EntryFreq) { 713 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 714 BlockFrequency Gain = A - B; 715 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 716 } 717 718 /// Check the edge frequencies to see if tail duplication will increase 719 /// fallthroughs. It only makes sense to call this function when 720 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 721 /// always locally profitable if we would have picked \p Succ without 722 /// considering duplication. 723 bool MachineBlockPlacement::isProfitableToTailDup( 724 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 725 BranchProbability QProb, 726 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 727 // We need to do a probability calculation to make sure this is profitable. 728 // First: does succ have a successor that post-dominates? This affects the 729 // calculation. The 2 relevant cases are: 730 // BB BB 731 // | \Qout | \Qout 732 // P| C |P C 733 // = C' = C' 734 // | /Qin | /Qin 735 // | / | / 736 // Succ Succ 737 // / \ | \ V 738 // U/ =V |U \ 739 // / \ = D 740 // D E | / 741 // | / 742 // |/ 743 // PDom 744 // '=' : Branch taken for that CFG edge 745 // In the second case, Placing Succ while duplicating it into C prevents the 746 // fallthrough of Succ into either D or PDom, because they now have C as an 747 // unplaced predecessor 748 749 // Start by figuring out which case we fall into 750 MachineBasicBlock *PDom = nullptr; 751 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 752 // Only scan the relevant successors 753 auto AdjustedSuccSumProb = 754 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 755 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 756 auto BBFreq = MBFI->getBlockFreq(BB); 757 auto SuccFreq = MBFI->getBlockFreq(Succ); 758 BlockFrequency P = BBFreq * PProb; 759 BlockFrequency Qout = BBFreq * QProb; 760 uint64_t EntryFreq = MBFI->getEntryFreq(); 761 // If there are no more successors, it is profitable to copy, as it strictly 762 // increases fallthrough. 763 if (SuccSuccs.size() == 0) 764 return greaterWithBias(P, Qout, EntryFreq); 765 766 auto BestSuccSucc = BranchProbability::getZero(); 767 // Find the PDom or the best Succ if no PDom exists. 768 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 769 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 770 if (Prob > BestSuccSucc) 771 BestSuccSucc = Prob; 772 if (PDom == nullptr) 773 if (MPDT->dominates(SuccSucc, Succ)) { 774 PDom = SuccSucc; 775 break; 776 } 777 } 778 // For the comparisons, we need to know Succ's best incoming edge that isn't 779 // from BB. 780 auto SuccBestPred = BlockFrequency(0); 781 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 782 if (SuccPred == Succ || SuccPred == BB 783 || BlockToChain[SuccPred] == &Chain 784 || (BlockFilter && !BlockFilter->count(SuccPred))) 785 continue; 786 auto Freq = MBFI->getBlockFreq(SuccPred) 787 * MBPI->getEdgeProbability(SuccPred, Succ); 788 if (Freq > SuccBestPred) 789 SuccBestPred = Freq; 790 } 791 // Qin is Succ's best unplaced incoming edge that isn't BB 792 BlockFrequency Qin = SuccBestPred; 793 // If it doesn't have a post-dominating successor, here is the calculation: 794 // BB BB 795 // | \Qout | \ 796 // P| C | = 797 // = C' | C 798 // | /Qin | | 799 // | / | C' (+Succ) 800 // Succ Succ /| 801 // / \ | \/ | 802 // U/ =V | == | 803 // / \ | / \| 804 // D E D E 805 // '=' : Branch taken for that CFG edge 806 // Cost in the first case is: P + V 807 // For this calculation, we always assume P > Qout. If Qout > P 808 // The result of this function will be ignored at the caller. 809 // Let F = SuccFreq - Qin 810 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 811 812 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 813 BranchProbability UProb = BestSuccSucc; 814 BranchProbability VProb = AdjustedSuccSumProb - UProb; 815 BlockFrequency F = SuccFreq - Qin; 816 BlockFrequency V = SuccFreq * VProb; 817 BlockFrequency QinU = std::min(Qin, F) * UProb; 818 BlockFrequency BaseCost = P + V; 819 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 820 return greaterWithBias(BaseCost, DupCost, EntryFreq); 821 } 822 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 823 BranchProbability VProb = AdjustedSuccSumProb - UProb; 824 BlockFrequency U = SuccFreq * UProb; 825 BlockFrequency V = SuccFreq * VProb; 826 BlockFrequency F = SuccFreq - Qin; 827 // If there is a post-dominating successor, here is the calculation: 828 // BB BB BB BB 829 // | \Qout | \ | \Qout | \ 830 // |P C | = |P C | = 831 // = C' |P C = C' |P C 832 // | /Qin | | | /Qin | | 833 // | / | C' (+Succ) | / | C' (+Succ) 834 // Succ Succ /| Succ Succ /| 835 // | \ V | \/ | | \ V | \/ | 836 // |U \ |U /\ =? |U = |U /\ | 837 // = D = = =?| | D | = =| 838 // | / |/ D | / |/ D 839 // | / | / | = | / 840 // |/ | / |/ | = 841 // Dom Dom Dom Dom 842 // '=' : Branch taken for that CFG edge 843 // The cost for taken branches in the first case is P + U 844 // Let F = SuccFreq - Qin 845 // The cost in the second case (assuming independence), given the layout: 846 // BB, Succ, (C+Succ), D, Dom or the layout: 847 // BB, Succ, D, Dom, (C+Succ) 848 // is Qout + max(F, Qin) * U + min(F, Qin) 849 // compare P + U vs Qout + P * U + Qin. 850 // 851 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 852 // 853 // For the 3rd case, the cost is P + 2 * V 854 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 855 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 856 if (UProb > AdjustedSuccSumProb / 2 && 857 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 858 Chain, BlockFilter)) 859 // Cases 3 & 4 860 return greaterWithBias( 861 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 862 EntryFreq); 863 // Cases 1 & 2 864 return greaterWithBias((P + U), 865 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 866 std::max(Qin, F) * UProb), 867 EntryFreq); 868 } 869 870 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 871 /// successors form the lower part of a trellis. A successor set S forms the 872 /// lower part of a trellis if all of the predecessors of S are either in S or 873 /// have all of S as successors. We ignore trellises where BB doesn't have 2 874 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 875 /// are very uncommon and complex to compute optimally. Allowing edges within S 876 /// is not strictly a trellis, but the same algorithm works, so we allow it. 877 bool MachineBlockPlacement::isTrellis( 878 const MachineBasicBlock *BB, 879 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 880 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 881 // Technically BB could form a trellis with branching factor higher than 2. 882 // But that's extremely uncommon. 883 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 884 return false; 885 886 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 887 BB->succ_end()); 888 // To avoid reviewing the same predecessors twice. 889 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 890 891 for (MachineBasicBlock *Succ : ViableSuccs) { 892 int PredCount = 0; 893 for (auto SuccPred : Succ->predecessors()) { 894 // Allow triangle successors, but don't count them. 895 if (Successors.count(SuccPred)) { 896 // Make sure that it is actually a triangle. 897 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 898 if (!Successors.count(CheckSucc)) 899 return false; 900 continue; 901 } 902 const BlockChain *PredChain = BlockToChain[SuccPred]; 903 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 904 PredChain == &Chain || PredChain == BlockToChain[Succ]) 905 continue; 906 ++PredCount; 907 // Perform the successor check only once. 908 if (!SeenPreds.insert(SuccPred).second) 909 continue; 910 if (!hasSameSuccessors(*SuccPred, Successors)) 911 return false; 912 } 913 // If one of the successors has only BB as a predecessor, it is not a 914 // trellis. 915 if (PredCount < 1) 916 return false; 917 } 918 return true; 919 } 920 921 /// Pick the highest total weight pair of edges that can both be laid out. 922 /// The edges in \p Edges[0] are assumed to have a different destination than 923 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 924 /// the individual highest weight edges to the 2 different destinations, or in 925 /// case of a conflict, one of them should be replaced with a 2nd best edge. 926 std::pair<MachineBlockPlacement::WeightedEdge, 927 MachineBlockPlacement::WeightedEdge> 928 MachineBlockPlacement::getBestNonConflictingEdges( 929 const MachineBasicBlock *BB, 930 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 931 Edges) { 932 // Sort the edges, and then for each successor, find the best incoming 933 // predecessor. If the best incoming predecessors aren't the same, 934 // then that is clearly the best layout. If there is a conflict, one of the 935 // successors will have to fallthrough from the second best predecessor. We 936 // compare which combination is better overall. 937 938 // Sort for highest frequency. 939 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 940 941 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 942 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 943 auto BestA = Edges[0].begin(); 944 auto BestB = Edges[1].begin(); 945 // Arrange for the correct answer to be in BestA and BestB 946 // If the 2 best edges don't conflict, the answer is already there. 947 if (BestA->Src == BestB->Src) { 948 // Compare the total fallthrough of (Best + Second Best) for both pairs 949 auto SecondBestA = std::next(BestA); 950 auto SecondBestB = std::next(BestB); 951 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 952 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 953 if (BestAScore < BestBScore) 954 BestA = SecondBestA; 955 else 956 BestB = SecondBestB; 957 } 958 // Arrange for the BB edge to be in BestA if it exists. 959 if (BestB->Src == BB) 960 std::swap(BestA, BestB); 961 return std::make_pair(*BestA, *BestB); 962 } 963 964 /// Get the best successor from \p BB based on \p BB being part of a trellis. 965 /// We only handle trellises with 2 successors, so the algorithm is 966 /// straightforward: Find the best pair of edges that don't conflict. We find 967 /// the best incoming edge for each successor in the trellis. If those conflict, 968 /// we consider which of them should be replaced with the second best. 969 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 970 /// comes from \p BB, it will be in \p BestEdges[0] 971 MachineBlockPlacement::BlockAndTailDupResult 972 MachineBlockPlacement::getBestTrellisSuccessor( 973 const MachineBasicBlock *BB, 974 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 975 BranchProbability AdjustedSumProb, const BlockChain &Chain, 976 const BlockFilterSet *BlockFilter) { 977 978 BlockAndTailDupResult Result = {nullptr, false}; 979 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 980 BB->succ_end()); 981 982 // We assume size 2 because it's common. For general n, we would have to do 983 // the Hungarian algorithm, but it's not worth the complexity because more 984 // than 2 successors is fairly uncommon, and a trellis even more so. 985 if (Successors.size() != 2 || ViableSuccs.size() != 2) 986 return Result; 987 988 // Collect the edge frequencies of all edges that form the trellis. 989 SmallVector<WeightedEdge, 8> Edges[2]; 990 int SuccIndex = 0; 991 for (auto Succ : ViableSuccs) { 992 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 993 // Skip any placed predecessors that are not BB 994 if (SuccPred != BB) 995 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 996 BlockToChain[SuccPred] == &Chain || 997 BlockToChain[SuccPred] == BlockToChain[Succ]) 998 continue; 999 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1000 MBPI->getEdgeProbability(SuccPred, Succ); 1001 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1002 } 1003 ++SuccIndex; 1004 } 1005 1006 // Pick the best combination of 2 edges from all the edges in the trellis. 1007 WeightedEdge BestA, BestB; 1008 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1009 1010 if (BestA.Src != BB) { 1011 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1012 // we shouldn't choose any successor. We've already looked and there's a 1013 // better fallthrough edge for all the successors. 1014 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1015 return Result; 1016 } 1017 1018 // Did we pick the triangle edge? If tail-duplication is profitable, do 1019 // that instead. Otherwise merge the triangle edge now while we know it is 1020 // optimal. 1021 if (BestA.Dest == BestB.Src) { 1022 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1023 // would be better. 1024 MachineBasicBlock *Succ1 = BestA.Dest; 1025 MachineBasicBlock *Succ2 = BestB.Dest; 1026 // Check to see if tail-duplication would be profitable. 1027 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1028 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1029 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1030 Chain, BlockFilter)) { 1031 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1032 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1033 dbgs() << " Selected: " << getBlockName(Succ2) 1034 << ", probability: " << Succ2Prob 1035 << " (Tail Duplicate)\n"); 1036 Result.BB = Succ2; 1037 Result.ShouldTailDup = true; 1038 return Result; 1039 } 1040 } 1041 // We have already computed the optimal edge for the other side of the 1042 // trellis. 1043 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1044 1045 auto TrellisSucc = BestA.Dest; 1046 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1047 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1048 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1049 << ", probability: " << SuccProb << " (Trellis)\n"); 1050 Result.BB = TrellisSucc; 1051 return Result; 1052 } 1053 1054 /// When the option allowTailDupPlacement() is on, this method checks if the 1055 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1056 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1057 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1058 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1059 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1060 if (!shouldTailDuplicate(Succ)) 1061 return false; 1062 1063 // For CFG checking. 1064 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1065 BB->succ_end()); 1066 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1067 // Make sure all unplaced and unfiltered predecessors can be 1068 // tail-duplicated into. 1069 // Skip any blocks that are already placed or not in this loop. 1070 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1071 || BlockToChain[Pred] == &Chain) 1072 continue; 1073 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1074 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1075 // This will result in a trellis after tail duplication, so we don't 1076 // need to copy Succ into this predecessor. In the presence 1077 // of a trellis tail duplication can continue to be profitable. 1078 // For example: 1079 // A A 1080 // |\ |\ 1081 // | \ | \ 1082 // | C | C+BB 1083 // | / | | 1084 // |/ | | 1085 // BB => BB | 1086 // |\ |\/| 1087 // | \ |/\| 1088 // | D | D 1089 // | / | / 1090 // |/ |/ 1091 // Succ Succ 1092 // 1093 // After BB was duplicated into C, the layout looks like the one on the 1094 // right. BB and C now have the same successors. When considering 1095 // whether Succ can be duplicated into all its unplaced predecessors, we 1096 // ignore C. 1097 // We can do this because C already has a profitable fallthrough, namely 1098 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1099 // duplication and for this test. 1100 // 1101 // This allows trellises to be laid out in 2 separate chains 1102 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1103 // because it allows the creation of 2 fallthrough paths with links 1104 // between them, and we correctly identify the best layout for these 1105 // CFGs. We want to extend trellises that the user created in addition 1106 // to trellises created by tail-duplication, so we just look for the 1107 // CFG. 1108 continue; 1109 return false; 1110 } 1111 } 1112 return true; 1113 } 1114 1115 /// Find chains of triangles where we believe it would be profitable to 1116 /// tail-duplicate them all, but a local analysis would not find them. 1117 /// There are 3 ways this can be profitable: 1118 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1119 /// longer chains) 1120 /// 2) The chains are statically correlated. Branch probabilities have a very 1121 /// U-shaped distribution. 1122 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1123 /// If the branches in a chain are likely to be from the same side of the 1124 /// distribution as their predecessor, but are independent at runtime, this 1125 /// transformation is profitable. (Because the cost of being wrong is a small 1126 /// fixed cost, unlike the standard triangle layout where the cost of being 1127 /// wrong scales with the # of triangles.) 1128 /// 3) The chains are dynamically correlated. If the probability that a previous 1129 /// branch was taken positively influences whether the next branch will be 1130 /// taken 1131 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1132 void MachineBlockPlacement::precomputeTriangleChains() { 1133 struct TriangleChain { 1134 std::vector<MachineBasicBlock *> Edges; 1135 1136 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1137 : Edges({src, dst}) {} 1138 1139 void append(MachineBasicBlock *dst) { 1140 assert(getKey()->isSuccessor(dst) && 1141 "Attempting to append a block that is not a successor."); 1142 Edges.push_back(dst); 1143 } 1144 1145 unsigned count() const { return Edges.size() - 1; } 1146 1147 MachineBasicBlock *getKey() const { 1148 return Edges.back(); 1149 } 1150 }; 1151 1152 if (TriangleChainCount == 0) 1153 return; 1154 1155 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1156 // Map from last block to the chain that contains it. This allows us to extend 1157 // chains as we find new triangles. 1158 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1159 for (MachineBasicBlock &BB : *F) { 1160 // If BB doesn't have 2 successors, it doesn't start a triangle. 1161 if (BB.succ_size() != 2) 1162 continue; 1163 MachineBasicBlock *PDom = nullptr; 1164 for (MachineBasicBlock *Succ : BB.successors()) { 1165 if (!MPDT->dominates(Succ, &BB)) 1166 continue; 1167 PDom = Succ; 1168 break; 1169 } 1170 // If BB doesn't have a post-dominating successor, it doesn't form a 1171 // triangle. 1172 if (PDom == nullptr) 1173 continue; 1174 // If PDom has a hint that it is low probability, skip this triangle. 1175 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1176 continue; 1177 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1178 // we're looking for. 1179 if (!shouldTailDuplicate(PDom)) 1180 continue; 1181 bool CanTailDuplicate = true; 1182 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1183 // isn't the kind of triangle we're looking for. 1184 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1185 if (Pred == &BB) 1186 continue; 1187 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1188 CanTailDuplicate = false; 1189 break; 1190 } 1191 } 1192 // If we can't tail-duplicate PDom to its predecessors, then skip this 1193 // triangle. 1194 if (!CanTailDuplicate) 1195 continue; 1196 1197 // Now we have an interesting triangle. Insert it if it's not part of an 1198 // existing chain. 1199 // Note: This cannot be replaced with a call insert() or emplace() because 1200 // the find key is BB, but the insert/emplace key is PDom. 1201 auto Found = TriangleChainMap.find(&BB); 1202 // If it is, remove the chain from the map, grow it, and put it back in the 1203 // map with the end as the new key. 1204 if (Found != TriangleChainMap.end()) { 1205 TriangleChain Chain = std::move(Found->second); 1206 TriangleChainMap.erase(Found); 1207 Chain.append(PDom); 1208 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1209 } else { 1210 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1211 assert(InsertResult.second && "Block seen twice."); 1212 (void)InsertResult; 1213 } 1214 } 1215 1216 // Iterating over a DenseMap is safe here, because the only thing in the body 1217 // of the loop is inserting into another DenseMap (ComputedEdges). 1218 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1219 for (auto &ChainPair : TriangleChainMap) { 1220 TriangleChain &Chain = ChainPair.second; 1221 // Benchmarking has shown that due to branch correlation duplicating 2 or 1222 // more triangles is profitable, despite the calculations assuming 1223 // independence. 1224 if (Chain.count() < TriangleChainCount) 1225 continue; 1226 MachineBasicBlock *dst = Chain.Edges.back(); 1227 Chain.Edges.pop_back(); 1228 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1229 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1230 << getBlockName(dst) 1231 << " as pre-computed based on triangles.\n"); 1232 1233 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1234 assert(InsertResult.second && "Block seen twice."); 1235 (void)InsertResult; 1236 1237 dst = src; 1238 } 1239 } 1240 } 1241 1242 // When profile is not present, return the StaticLikelyProb. 1243 // When profile is available, we need to handle the triangle-shape CFG. 1244 static BranchProbability getLayoutSuccessorProbThreshold( 1245 const MachineBasicBlock *BB) { 1246 if (!BB->getParent()->getFunction().hasProfileData()) 1247 return BranchProbability(StaticLikelyProb, 100); 1248 if (BB->succ_size() == 2) { 1249 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1250 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1251 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1252 /* See case 1 below for the cost analysis. For BB->Succ to 1253 * be taken with smaller cost, the following needs to hold: 1254 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1255 * So the threshold T in the calculation below 1256 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1257 * So T / (1 - T) = 2, Yielding T = 2/3 1258 * Also adding user specified branch bias, we have 1259 * T = (2/3)*(ProfileLikelyProb/50) 1260 * = (2*ProfileLikelyProb)/150) 1261 */ 1262 return BranchProbability(2 * ProfileLikelyProb, 150); 1263 } 1264 } 1265 return BranchProbability(ProfileLikelyProb, 100); 1266 } 1267 1268 /// Checks to see if the layout candidate block \p Succ has a better layout 1269 /// predecessor than \c BB. If yes, returns true. 1270 /// \p SuccProb: The probability adjusted for only remaining blocks. 1271 /// Only used for logging 1272 /// \p RealSuccProb: The un-adjusted probability. 1273 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1274 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1275 /// considered 1276 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1277 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1278 const BlockChain &SuccChain, BranchProbability SuccProb, 1279 BranchProbability RealSuccProb, const BlockChain &Chain, 1280 const BlockFilterSet *BlockFilter) { 1281 1282 // There isn't a better layout when there are no unscheduled predecessors. 1283 if (SuccChain.UnscheduledPredecessors == 0) 1284 return false; 1285 1286 // There are two basic scenarios here: 1287 // ------------------------------------- 1288 // Case 1: triangular shape CFG (if-then): 1289 // BB 1290 // | \ 1291 // | \ 1292 // | Pred 1293 // | / 1294 // Succ 1295 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1296 // set Succ as the layout successor of BB. Picking Succ as BB's 1297 // successor breaks the CFG constraints (FIXME: define these constraints). 1298 // With this layout, Pred BB 1299 // is forced to be outlined, so the overall cost will be cost of the 1300 // branch taken from BB to Pred, plus the cost of back taken branch 1301 // from Pred to Succ, as well as the additional cost associated 1302 // with the needed unconditional jump instruction from Pred To Succ. 1303 1304 // The cost of the topological order layout is the taken branch cost 1305 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1306 // must hold: 1307 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1308 // < freq(BB->Succ) * taken_branch_cost. 1309 // Ignoring unconditional jump cost, we get 1310 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1311 // prob(BB->Succ) > 2 * prob(BB->Pred) 1312 // 1313 // When real profile data is available, we can precisely compute the 1314 // probability threshold that is needed for edge BB->Succ to be considered. 1315 // Without profile data, the heuristic requires the branch bias to be 1316 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1317 // ----------------------------------------------------------------- 1318 // Case 2: diamond like CFG (if-then-else): 1319 // S 1320 // / \ 1321 // | \ 1322 // BB Pred 1323 // \ / 1324 // Succ 1325 // .. 1326 // 1327 // The current block is BB and edge BB->Succ is now being evaluated. 1328 // Note that edge S->BB was previously already selected because 1329 // prob(S->BB) > prob(S->Pred). 1330 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1331 // choose Pred, we will have a topological ordering as shown on the left 1332 // in the picture below. If we choose Succ, we have the solution as shown 1333 // on the right: 1334 // 1335 // topo-order: 1336 // 1337 // S----- ---S 1338 // | | | | 1339 // ---BB | | BB 1340 // | | | | 1341 // | Pred-- | Succ-- 1342 // | | | | 1343 // ---Succ ---Pred-- 1344 // 1345 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1346 // = freq(S->Pred) + freq(S->BB) 1347 // 1348 // If we have profile data (i.e, branch probabilities can be trusted), the 1349 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1350 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1351 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1352 // means the cost of topological order is greater. 1353 // When profile data is not available, however, we need to be more 1354 // conservative. If the branch prediction is wrong, breaking the topo-order 1355 // will actually yield a layout with large cost. For this reason, we need 1356 // strong biased branch at block S with Prob(S->BB) in order to select 1357 // BB->Succ. This is equivalent to looking the CFG backward with backward 1358 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1359 // profile data). 1360 // -------------------------------------------------------------------------- 1361 // Case 3: forked diamond 1362 // S 1363 // / \ 1364 // / \ 1365 // BB Pred 1366 // | \ / | 1367 // | \ / | 1368 // | X | 1369 // | / \ | 1370 // | / \ | 1371 // S1 S2 1372 // 1373 // The current block is BB and edge BB->S1 is now being evaluated. 1374 // As above S->BB was already selected because 1375 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1376 // 1377 // topo-order: 1378 // 1379 // S-------| ---S 1380 // | | | | 1381 // ---BB | | BB 1382 // | | | | 1383 // | Pred----| | S1---- 1384 // | | | | 1385 // --(S1 or S2) ---Pred-- 1386 // | 1387 // S2 1388 // 1389 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1390 // + min(freq(Pred->S1), freq(Pred->S2)) 1391 // Non-topo-order cost: 1392 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1393 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1394 // is 0. Then the non topo layout is better when 1395 // freq(S->Pred) < freq(BB->S1). 1396 // This is exactly what is checked below. 1397 // Note there are other shapes that apply (Pred may not be a single block, 1398 // but they all fit this general pattern.) 1399 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1400 1401 // Make sure that a hot successor doesn't have a globally more 1402 // important predecessor. 1403 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1404 bool BadCFGConflict = false; 1405 1406 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1407 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1408 (BlockFilter && !BlockFilter->count(Pred)) || 1409 BlockToChain[Pred] == &Chain || 1410 // This check is redundant except for look ahead. This function is 1411 // called for lookahead by isProfitableToTailDup when BB hasn't been 1412 // placed yet. 1413 (Pred == BB)) 1414 continue; 1415 // Do backward checking. 1416 // For all cases above, we need a backward checking to filter out edges that 1417 // are not 'strongly' biased. 1418 // BB Pred 1419 // \ / 1420 // Succ 1421 // We select edge BB->Succ if 1422 // freq(BB->Succ) > freq(Succ) * HotProb 1423 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1424 // HotProb 1425 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1426 // Case 1 is covered too, because the first equation reduces to: 1427 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1428 BlockFrequency PredEdgeFreq = 1429 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1430 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1431 BadCFGConflict = true; 1432 break; 1433 } 1434 } 1435 1436 if (BadCFGConflict) { 1437 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1438 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1439 return true; 1440 } 1441 1442 return false; 1443 } 1444 1445 /// Select the best successor for a block. 1446 /// 1447 /// This looks across all successors of a particular block and attempts to 1448 /// select the "best" one to be the layout successor. It only considers direct 1449 /// successors which also pass the block filter. It will attempt to avoid 1450 /// breaking CFG structure, but cave and break such structures in the case of 1451 /// very hot successor edges. 1452 /// 1453 /// \returns The best successor block found, or null if none are viable, along 1454 /// with a boolean indicating if tail duplication is necessary. 1455 MachineBlockPlacement::BlockAndTailDupResult 1456 MachineBlockPlacement::selectBestSuccessor( 1457 const MachineBasicBlock *BB, const BlockChain &Chain, 1458 const BlockFilterSet *BlockFilter) { 1459 const BranchProbability HotProb(StaticLikelyProb, 100); 1460 1461 BlockAndTailDupResult BestSucc = { nullptr, false }; 1462 auto BestProb = BranchProbability::getZero(); 1463 1464 SmallVector<MachineBasicBlock *, 4> Successors; 1465 auto AdjustedSumProb = 1466 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1467 1468 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1469 << "\n"); 1470 1471 // if we already precomputed the best successor for BB, return that if still 1472 // applicable. 1473 auto FoundEdge = ComputedEdges.find(BB); 1474 if (FoundEdge != ComputedEdges.end()) { 1475 MachineBasicBlock *Succ = FoundEdge->second.BB; 1476 ComputedEdges.erase(FoundEdge); 1477 BlockChain *SuccChain = BlockToChain[Succ]; 1478 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1479 SuccChain != &Chain && Succ == *SuccChain->begin()) 1480 return FoundEdge->second; 1481 } 1482 1483 // if BB is part of a trellis, Use the trellis to determine the optimal 1484 // fallthrough edges 1485 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1486 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1487 BlockFilter); 1488 1489 // For blocks with CFG violations, we may be able to lay them out anyway with 1490 // tail-duplication. We keep this vector so we can perform the probability 1491 // calculations the minimum number of times. 1492 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1493 DupCandidates; 1494 for (MachineBasicBlock *Succ : Successors) { 1495 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1496 BranchProbability SuccProb = 1497 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1498 1499 BlockChain &SuccChain = *BlockToChain[Succ]; 1500 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1501 // predecessor that yields lower global cost. 1502 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1503 Chain, BlockFilter)) { 1504 // If tail duplication would make Succ profitable, place it. 1505 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1506 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1507 continue; 1508 } 1509 1510 LLVM_DEBUG( 1511 dbgs() << " Candidate: " << getBlockName(Succ) 1512 << ", probability: " << SuccProb 1513 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1514 << "\n"); 1515 1516 if (BestSucc.BB && BestProb >= SuccProb) { 1517 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1518 continue; 1519 } 1520 1521 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1522 BestSucc.BB = Succ; 1523 BestProb = SuccProb; 1524 } 1525 // Handle the tail duplication candidates in order of decreasing probability. 1526 // Stop at the first one that is profitable. Also stop if they are less 1527 // profitable than BestSucc. Position is important because we preserve it and 1528 // prefer first best match. Here we aren't comparing in order, so we capture 1529 // the position instead. 1530 if (DupCandidates.size() != 0) { 1531 auto cmp = 1532 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1533 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1534 return std::get<0>(a) > std::get<0>(b); 1535 }; 1536 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1537 } 1538 for(auto &Tup : DupCandidates) { 1539 BranchProbability DupProb; 1540 MachineBasicBlock *Succ; 1541 std::tie(DupProb, Succ) = Tup; 1542 if (DupProb < BestProb) 1543 break; 1544 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1545 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1546 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1547 << ", probability: " << DupProb 1548 << " (Tail Duplicate)\n"); 1549 BestSucc.BB = Succ; 1550 BestSucc.ShouldTailDup = true; 1551 break; 1552 } 1553 } 1554 1555 if (BestSucc.BB) 1556 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1557 1558 return BestSucc; 1559 } 1560 1561 /// Select the best block from a worklist. 1562 /// 1563 /// This looks through the provided worklist as a list of candidate basic 1564 /// blocks and select the most profitable one to place. The definition of 1565 /// profitable only really makes sense in the context of a loop. This returns 1566 /// the most frequently visited block in the worklist, which in the case of 1567 /// a loop, is the one most desirable to be physically close to the rest of the 1568 /// loop body in order to improve i-cache behavior. 1569 /// 1570 /// \returns The best block found, or null if none are viable. 1571 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1572 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1573 // Once we need to walk the worklist looking for a candidate, cleanup the 1574 // worklist of already placed entries. 1575 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1576 // some code complexity) into the loop below. 1577 WorkList.erase(llvm::remove_if(WorkList, 1578 [&](MachineBasicBlock *BB) { 1579 return BlockToChain.lookup(BB) == &Chain; 1580 }), 1581 WorkList.end()); 1582 1583 if (WorkList.empty()) 1584 return nullptr; 1585 1586 bool IsEHPad = WorkList[0]->isEHPad(); 1587 1588 MachineBasicBlock *BestBlock = nullptr; 1589 BlockFrequency BestFreq; 1590 for (MachineBasicBlock *MBB : WorkList) { 1591 assert(MBB->isEHPad() == IsEHPad && 1592 "EHPad mismatch between block and work list."); 1593 1594 BlockChain &SuccChain = *BlockToChain[MBB]; 1595 if (&SuccChain == &Chain) 1596 continue; 1597 1598 assert(SuccChain.UnscheduledPredecessors == 0 && 1599 "Found CFG-violating block"); 1600 1601 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1602 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1603 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1604 1605 // For ehpad, we layout the least probable first as to avoid jumping back 1606 // from least probable landingpads to more probable ones. 1607 // 1608 // FIXME: Using probability is probably (!) not the best way to achieve 1609 // this. We should probably have a more principled approach to layout 1610 // cleanup code. 1611 // 1612 // The goal is to get: 1613 // 1614 // +--------------------------+ 1615 // | V 1616 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1617 // 1618 // Rather than: 1619 // 1620 // +-------------------------------------+ 1621 // V | 1622 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1623 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1624 continue; 1625 1626 BestBlock = MBB; 1627 BestFreq = CandidateFreq; 1628 } 1629 1630 return BestBlock; 1631 } 1632 1633 /// Retrieve the first unplaced basic block. 1634 /// 1635 /// This routine is called when we are unable to use the CFG to walk through 1636 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1637 /// We walk through the function's blocks in order, starting from the 1638 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1639 /// re-scanning the entire sequence on repeated calls to this routine. 1640 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1641 const BlockChain &PlacedChain, 1642 MachineFunction::iterator &PrevUnplacedBlockIt, 1643 const BlockFilterSet *BlockFilter) { 1644 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1645 ++I) { 1646 if (BlockFilter && !BlockFilter->count(&*I)) 1647 continue; 1648 if (BlockToChain[&*I] != &PlacedChain) { 1649 PrevUnplacedBlockIt = I; 1650 // Now select the head of the chain to which the unplaced block belongs 1651 // as the block to place. This will force the entire chain to be placed, 1652 // and satisfies the requirements of merging chains. 1653 return *BlockToChain[&*I]->begin(); 1654 } 1655 } 1656 return nullptr; 1657 } 1658 1659 void MachineBlockPlacement::fillWorkLists( 1660 const MachineBasicBlock *MBB, 1661 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1662 const BlockFilterSet *BlockFilter = nullptr) { 1663 BlockChain &Chain = *BlockToChain[MBB]; 1664 if (!UpdatedPreds.insert(&Chain).second) 1665 return; 1666 1667 assert( 1668 Chain.UnscheduledPredecessors == 0 && 1669 "Attempting to place block with unscheduled predecessors in worklist."); 1670 for (MachineBasicBlock *ChainBB : Chain) { 1671 assert(BlockToChain[ChainBB] == &Chain && 1672 "Block in chain doesn't match BlockToChain map."); 1673 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1674 if (BlockFilter && !BlockFilter->count(Pred)) 1675 continue; 1676 if (BlockToChain[Pred] == &Chain) 1677 continue; 1678 ++Chain.UnscheduledPredecessors; 1679 } 1680 } 1681 1682 if (Chain.UnscheduledPredecessors != 0) 1683 return; 1684 1685 MachineBasicBlock *BB = *Chain.begin(); 1686 if (BB->isEHPad()) 1687 EHPadWorkList.push_back(BB); 1688 else 1689 BlockWorkList.push_back(BB); 1690 } 1691 1692 void MachineBlockPlacement::buildChain( 1693 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1694 BlockFilterSet *BlockFilter) { 1695 assert(HeadBB && "BB must not be null.\n"); 1696 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1697 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1698 1699 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1700 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1701 MachineBasicBlock *BB = *std::prev(Chain.end()); 1702 while (true) { 1703 assert(BB && "null block found at end of chain in loop."); 1704 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1705 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1706 1707 1708 // Look for the best viable successor if there is one to place immediately 1709 // after this block. 1710 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1711 MachineBasicBlock* BestSucc = Result.BB; 1712 bool ShouldTailDup = Result.ShouldTailDup; 1713 if (allowTailDupPlacement()) 1714 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1715 1716 // If an immediate successor isn't available, look for the best viable 1717 // block among those we've identified as not violating the loop's CFG at 1718 // this point. This won't be a fallthrough, but it will increase locality. 1719 if (!BestSucc) 1720 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1721 if (!BestSucc) 1722 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1723 1724 if (!BestSucc) { 1725 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1726 if (!BestSucc) 1727 break; 1728 1729 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1730 "layout successor until the CFG reduces\n"); 1731 } 1732 1733 // Placement may have changed tail duplication opportunities. 1734 // Check for that now. 1735 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1736 // If the chosen successor was duplicated into all its predecessors, 1737 // don't bother laying it out, just go round the loop again with BB as 1738 // the chain end. 1739 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1740 BlockFilter, PrevUnplacedBlockIt)) 1741 continue; 1742 } 1743 1744 // Place this block, updating the datastructures to reflect its placement. 1745 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1746 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1747 // we selected a successor that didn't fit naturally into the CFG. 1748 SuccChain.UnscheduledPredecessors = 0; 1749 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1750 << getBlockName(BestSucc) << "\n"); 1751 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1752 Chain.merge(BestSucc, &SuccChain); 1753 BB = *std::prev(Chain.end()); 1754 } 1755 1756 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1757 << getBlockName(*Chain.begin()) << "\n"); 1758 } 1759 1760 /// Find the best loop top block for layout. 1761 /// 1762 /// Look for a block which is strictly better than the loop header for laying 1763 /// out at the top of the loop. This looks for one and only one pattern: 1764 /// a latch block with no conditional exit. This block will cause a conditional 1765 /// jump around it or will be the bottom of the loop if we lay it out in place, 1766 /// but if it it doesn't end up at the bottom of the loop for any reason, 1767 /// rotation alone won't fix it. Because such a block will always result in an 1768 /// unconditional jump (for the backedge) rotating it in front of the loop 1769 /// header is always profitable. 1770 MachineBasicBlock * 1771 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1772 const BlockFilterSet &LoopBlockSet) { 1773 // Placing the latch block before the header may introduce an extra branch 1774 // that skips this block the first time the loop is executed, which we want 1775 // to avoid when optimising for size. 1776 // FIXME: in theory there is a case that does not introduce a new branch, 1777 // i.e. when the layout predecessor does not fallthrough to the loop header. 1778 // In practice this never happens though: there always seems to be a preheader 1779 // that can fallthrough and that is also placed before the header. 1780 if (F->getFunction().optForSize()) 1781 return L.getHeader(); 1782 1783 // Check that the header hasn't been fused with a preheader block due to 1784 // crazy branches. If it has, we need to start with the header at the top to 1785 // prevent pulling the preheader into the loop body. 1786 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1787 if (!LoopBlockSet.count(*HeaderChain.begin())) 1788 return L.getHeader(); 1789 1790 LLVM_DEBUG(dbgs() << "Finding best loop top for: " 1791 << getBlockName(L.getHeader()) << "\n"); 1792 1793 BlockFrequency BestPredFreq; 1794 MachineBasicBlock *BestPred = nullptr; 1795 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1796 if (!LoopBlockSet.count(Pred)) 1797 continue; 1798 LLVM_DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1799 << Pred->succ_size() << " successors, "; 1800 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1801 if (Pred->succ_size() > 1) 1802 continue; 1803 1804 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1805 if (!BestPred || PredFreq > BestPredFreq || 1806 (!(PredFreq < BestPredFreq) && 1807 Pred->isLayoutSuccessor(L.getHeader()))) { 1808 BestPred = Pred; 1809 BestPredFreq = PredFreq; 1810 } 1811 } 1812 1813 // If no direct predecessor is fine, just use the loop header. 1814 if (!BestPred) { 1815 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 1816 return L.getHeader(); 1817 } 1818 1819 // Walk backwards through any straight line of predecessors. 1820 while (BestPred->pred_size() == 1 && 1821 (*BestPred->pred_begin())->succ_size() == 1 && 1822 *BestPred->pred_begin() != L.getHeader()) 1823 BestPred = *BestPred->pred_begin(); 1824 1825 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1826 return BestPred; 1827 } 1828 1829 /// Find the best loop exiting block for layout. 1830 /// 1831 /// This routine implements the logic to analyze the loop looking for the best 1832 /// block to layout at the top of the loop. Typically this is done to maximize 1833 /// fallthrough opportunities. 1834 MachineBasicBlock * 1835 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1836 const BlockFilterSet &LoopBlockSet) { 1837 // We don't want to layout the loop linearly in all cases. If the loop header 1838 // is just a normal basic block in the loop, we want to look for what block 1839 // within the loop is the best one to layout at the top. However, if the loop 1840 // header has be pre-merged into a chain due to predecessors not having 1841 // analyzable branches, *and* the predecessor it is merged with is *not* part 1842 // of the loop, rotating the header into the middle of the loop will create 1843 // a non-contiguous range of blocks which is Very Bad. So start with the 1844 // header and only rotate if safe. 1845 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1846 if (!LoopBlockSet.count(*HeaderChain.begin())) 1847 return nullptr; 1848 1849 BlockFrequency BestExitEdgeFreq; 1850 unsigned BestExitLoopDepth = 0; 1851 MachineBasicBlock *ExitingBB = nullptr; 1852 // If there are exits to outer loops, loop rotation can severely limit 1853 // fallthrough opportunities unless it selects such an exit. Keep a set of 1854 // blocks where rotating to exit with that block will reach an outer loop. 1855 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1856 1857 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 1858 << getBlockName(L.getHeader()) << "\n"); 1859 for (MachineBasicBlock *MBB : L.getBlocks()) { 1860 BlockChain &Chain = *BlockToChain[MBB]; 1861 // Ensure that this block is at the end of a chain; otherwise it could be 1862 // mid-way through an inner loop or a successor of an unanalyzable branch. 1863 if (MBB != *std::prev(Chain.end())) 1864 continue; 1865 1866 // Now walk the successors. We need to establish whether this has a viable 1867 // exiting successor and whether it has a viable non-exiting successor. 1868 // We store the old exiting state and restore it if a viable looping 1869 // successor isn't found. 1870 MachineBasicBlock *OldExitingBB = ExitingBB; 1871 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1872 bool HasLoopingSucc = false; 1873 for (MachineBasicBlock *Succ : MBB->successors()) { 1874 if (Succ->isEHPad()) 1875 continue; 1876 if (Succ == MBB) 1877 continue; 1878 BlockChain &SuccChain = *BlockToChain[Succ]; 1879 // Don't split chains, either this chain or the successor's chain. 1880 if (&Chain == &SuccChain) { 1881 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1882 << getBlockName(Succ) << " (chain conflict)\n"); 1883 continue; 1884 } 1885 1886 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1887 if (LoopBlockSet.count(Succ)) { 1888 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1889 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1890 HasLoopingSucc = true; 1891 continue; 1892 } 1893 1894 unsigned SuccLoopDepth = 0; 1895 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1896 SuccLoopDepth = ExitLoop->getLoopDepth(); 1897 if (ExitLoop->contains(&L)) 1898 BlocksExitingToOuterLoop.insert(MBB); 1899 } 1900 1901 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1902 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1903 << getBlockName(Succ) << " [L:" << SuccLoopDepth 1904 << "] ("; 1905 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1906 // Note that we bias this toward an existing layout successor to retain 1907 // incoming order in the absence of better information. The exit must have 1908 // a frequency higher than the current exit before we consider breaking 1909 // the layout. 1910 BranchProbability Bias(100 - ExitBlockBias, 100); 1911 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1912 ExitEdgeFreq > BestExitEdgeFreq || 1913 (MBB->isLayoutSuccessor(Succ) && 1914 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1915 BestExitEdgeFreq = ExitEdgeFreq; 1916 ExitingBB = MBB; 1917 } 1918 } 1919 1920 if (!HasLoopingSucc) { 1921 // Restore the old exiting state, no viable looping successor was found. 1922 ExitingBB = OldExitingBB; 1923 BestExitEdgeFreq = OldBestExitEdgeFreq; 1924 } 1925 } 1926 // Without a candidate exiting block or with only a single block in the 1927 // loop, just use the loop header to layout the loop. 1928 if (!ExitingBB) { 1929 LLVM_DEBUG( 1930 dbgs() << " No other candidate exit blocks, using loop header\n"); 1931 return nullptr; 1932 } 1933 if (L.getNumBlocks() == 1) { 1934 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1935 return nullptr; 1936 } 1937 1938 // Also, if we have exit blocks which lead to outer loops but didn't select 1939 // one of them as the exiting block we are rotating toward, disable loop 1940 // rotation altogether. 1941 if (!BlocksExitingToOuterLoop.empty() && 1942 !BlocksExitingToOuterLoop.count(ExitingBB)) 1943 return nullptr; 1944 1945 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 1946 << "\n"); 1947 return ExitingBB; 1948 } 1949 1950 /// Attempt to rotate an exiting block to the bottom of the loop. 1951 /// 1952 /// Once we have built a chain, try to rotate it to line up the hot exit block 1953 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1954 /// branches. For example, if the loop has fallthrough into its header and out 1955 /// of its bottom already, don't rotate it. 1956 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1957 const MachineBasicBlock *ExitingBB, 1958 const BlockFilterSet &LoopBlockSet) { 1959 if (!ExitingBB) 1960 return; 1961 1962 MachineBasicBlock *Top = *LoopChain.begin(); 1963 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1964 1965 // If ExitingBB is already the last one in a chain then nothing to do. 1966 if (Bottom == ExitingBB) 1967 return; 1968 1969 bool ViableTopFallthrough = false; 1970 for (MachineBasicBlock *Pred : Top->predecessors()) { 1971 BlockChain *PredChain = BlockToChain[Pred]; 1972 if (!LoopBlockSet.count(Pred) && 1973 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1974 ViableTopFallthrough = true; 1975 break; 1976 } 1977 } 1978 1979 // If the header has viable fallthrough, check whether the current loop 1980 // bottom is a viable exiting block. If so, bail out as rotating will 1981 // introduce an unnecessary branch. 1982 if (ViableTopFallthrough) { 1983 for (MachineBasicBlock *Succ : Bottom->successors()) { 1984 BlockChain *SuccChain = BlockToChain[Succ]; 1985 if (!LoopBlockSet.count(Succ) && 1986 (!SuccChain || Succ == *SuccChain->begin())) 1987 return; 1988 } 1989 } 1990 1991 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 1992 if (ExitIt == LoopChain.end()) 1993 return; 1994 1995 // Rotating a loop exit to the bottom when there is a fallthrough to top 1996 // trades the entry fallthrough for an exit fallthrough. 1997 // If there is no bottom->top edge, but the chosen exit block does have 1998 // a fallthrough, we break that fallthrough for nothing in return. 1999 2000 // Let's consider an example. We have a built chain of basic blocks 2001 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2002 // By doing a rotation we get 2003 // Bk+1, ..., Bn, B1, ..., Bk 2004 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2005 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2006 // It might be compensated by fallthrough Bn -> B1. 2007 // So we have a condition to avoid creation of extra branch by loop rotation. 2008 // All below must be true to avoid loop rotation: 2009 // If there is a fallthrough to top (B1) 2010 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2011 // There is no fallthrough from bottom (Bn) to top (B1). 2012 // Please note that there is no exit fallthrough from Bn because we checked it 2013 // above. 2014 if (ViableTopFallthrough) { 2015 assert(std::next(ExitIt) != LoopChain.end() && 2016 "Exit should not be last BB"); 2017 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2018 if (ExitingBB->isSuccessor(NextBlockInChain)) 2019 if (!Bottom->isSuccessor(Top)) 2020 return; 2021 } 2022 2023 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2024 << " at bottom\n"); 2025 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2026 } 2027 2028 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2029 /// 2030 /// With profile data, we can determine the cost in terms of missed fall through 2031 /// opportunities when rotating a loop chain and select the best rotation. 2032 /// Basically, there are three kinds of cost to consider for each rotation: 2033 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2034 /// the loop to the loop header. 2035 /// 2. The possibly missed fall through edges (if they exist) from the loop 2036 /// exits to BB out of the loop. 2037 /// 3. The missed fall through edge (if it exists) from the last BB to the 2038 /// first BB in the loop chain. 2039 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2040 /// We select the best rotation with the smallest cost. 2041 void MachineBlockPlacement::rotateLoopWithProfile( 2042 BlockChain &LoopChain, const MachineLoop &L, 2043 const BlockFilterSet &LoopBlockSet) { 2044 auto HeaderBB = L.getHeader(); 2045 auto HeaderIter = llvm::find(LoopChain, HeaderBB); 2046 auto RotationPos = LoopChain.end(); 2047 2048 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2049 2050 // A utility lambda that scales up a block frequency by dividing it by a 2051 // branch probability which is the reciprocal of the scale. 2052 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2053 unsigned Scale) -> BlockFrequency { 2054 if (Scale == 0) 2055 return 0; 2056 // Use operator / between BlockFrequency and BranchProbability to implement 2057 // saturating multiplication. 2058 return Freq / BranchProbability(1, Scale); 2059 }; 2060 2061 // Compute the cost of the missed fall-through edge to the loop header if the 2062 // chain head is not the loop header. As we only consider natural loops with 2063 // single header, this computation can be done only once. 2064 BlockFrequency HeaderFallThroughCost(0); 2065 for (auto *Pred : HeaderBB->predecessors()) { 2066 BlockChain *PredChain = BlockToChain[Pred]; 2067 if (!LoopBlockSet.count(Pred) && 2068 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2069 auto EdgeFreq = 2070 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2071 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2072 // If the predecessor has only an unconditional jump to the header, we 2073 // need to consider the cost of this jump. 2074 if (Pred->succ_size() == 1) 2075 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2076 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2077 } 2078 } 2079 2080 // Here we collect all exit blocks in the loop, and for each exit we find out 2081 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2082 // as the sum of frequencies of exit edges we collect here, excluding the exit 2083 // edge from the tail of the loop chain. 2084 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2085 for (auto BB : LoopChain) { 2086 auto LargestExitEdgeProb = BranchProbability::getZero(); 2087 for (auto *Succ : BB->successors()) { 2088 BlockChain *SuccChain = BlockToChain[Succ]; 2089 if (!LoopBlockSet.count(Succ) && 2090 (!SuccChain || Succ == *SuccChain->begin())) { 2091 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2092 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2093 } 2094 } 2095 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2096 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2097 ExitsWithFreq.emplace_back(BB, ExitFreq); 2098 } 2099 } 2100 2101 // In this loop we iterate every block in the loop chain and calculate the 2102 // cost assuming the block is the head of the loop chain. When the loop ends, 2103 // we should have found the best candidate as the loop chain's head. 2104 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2105 EndIter = LoopChain.end(); 2106 Iter != EndIter; Iter++, TailIter++) { 2107 // TailIter is used to track the tail of the loop chain if the block we are 2108 // checking (pointed by Iter) is the head of the chain. 2109 if (TailIter == LoopChain.end()) 2110 TailIter = LoopChain.begin(); 2111 2112 auto TailBB = *TailIter; 2113 2114 // Calculate the cost by putting this BB to the top. 2115 BlockFrequency Cost = 0; 2116 2117 // If the current BB is the loop header, we need to take into account the 2118 // cost of the missed fall through edge from outside of the loop to the 2119 // header. 2120 if (Iter != HeaderIter) 2121 Cost += HeaderFallThroughCost; 2122 2123 // Collect the loop exit cost by summing up frequencies of all exit edges 2124 // except the one from the chain tail. 2125 for (auto &ExitWithFreq : ExitsWithFreq) 2126 if (TailBB != ExitWithFreq.first) 2127 Cost += ExitWithFreq.second; 2128 2129 // The cost of breaking the once fall-through edge from the tail to the top 2130 // of the loop chain. Here we need to consider three cases: 2131 // 1. If the tail node has only one successor, then we will get an 2132 // additional jmp instruction. So the cost here is (MisfetchCost + 2133 // JumpInstCost) * tail node frequency. 2134 // 2. If the tail node has two successors, then we may still get an 2135 // additional jmp instruction if the layout successor after the loop 2136 // chain is not its CFG successor. Note that the more frequently executed 2137 // jmp instruction will be put ahead of the other one. Assume the 2138 // frequency of those two branches are x and y, where x is the frequency 2139 // of the edge to the chain head, then the cost will be 2140 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2141 // 3. If the tail node has more than two successors (this rarely happens), 2142 // we won't consider any additional cost. 2143 if (TailBB->isSuccessor(*Iter)) { 2144 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2145 if (TailBB->succ_size() == 1) 2146 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2147 MisfetchCost + JumpInstCost); 2148 else if (TailBB->succ_size() == 2) { 2149 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2150 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2151 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2152 ? TailBBFreq * TailToHeadProb.getCompl() 2153 : TailToHeadFreq; 2154 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2155 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2156 } 2157 } 2158 2159 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2160 << getBlockName(*Iter) 2161 << " to the top: " << Cost.getFrequency() << "\n"); 2162 2163 if (Cost < SmallestRotationCost) { 2164 SmallestRotationCost = Cost; 2165 RotationPos = Iter; 2166 } 2167 } 2168 2169 if (RotationPos != LoopChain.end()) { 2170 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2171 << " to the top\n"); 2172 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2173 } 2174 } 2175 2176 /// Collect blocks in the given loop that are to be placed. 2177 /// 2178 /// When profile data is available, exclude cold blocks from the returned set; 2179 /// otherwise, collect all blocks in the loop. 2180 MachineBlockPlacement::BlockFilterSet 2181 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2182 BlockFilterSet LoopBlockSet; 2183 2184 // Filter cold blocks off from LoopBlockSet when profile data is available. 2185 // Collect the sum of frequencies of incoming edges to the loop header from 2186 // outside. If we treat the loop as a super block, this is the frequency of 2187 // the loop. Then for each block in the loop, we calculate the ratio between 2188 // its frequency and the frequency of the loop block. When it is too small, 2189 // don't add it to the loop chain. If there are outer loops, then this block 2190 // will be merged into the first outer loop chain for which this block is not 2191 // cold anymore. This needs precise profile data and we only do this when 2192 // profile data is available. 2193 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2194 BlockFrequency LoopFreq(0); 2195 for (auto LoopPred : L.getHeader()->predecessors()) 2196 if (!L.contains(LoopPred)) 2197 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2198 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2199 2200 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2201 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2202 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2203 continue; 2204 LoopBlockSet.insert(LoopBB); 2205 } 2206 } else 2207 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2208 2209 return LoopBlockSet; 2210 } 2211 2212 /// Forms basic block chains from the natural loop structures. 2213 /// 2214 /// These chains are designed to preserve the existing *structure* of the code 2215 /// as much as possible. We can then stitch the chains together in a way which 2216 /// both preserves the topological structure and minimizes taken conditional 2217 /// branches. 2218 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2219 // First recurse through any nested loops, building chains for those inner 2220 // loops. 2221 for (const MachineLoop *InnerLoop : L) 2222 buildLoopChains(*InnerLoop); 2223 2224 assert(BlockWorkList.empty() && 2225 "BlockWorkList not empty when starting to build loop chains."); 2226 assert(EHPadWorkList.empty() && 2227 "EHPadWorkList not empty when starting to build loop chains."); 2228 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2229 2230 // Check if we have profile data for this function. If yes, we will rotate 2231 // this loop by modeling costs more precisely which requires the profile data 2232 // for better layout. 2233 bool RotateLoopWithProfile = 2234 ForcePreciseRotationCost || 2235 (PreciseRotationCost && F->getFunction().hasProfileData()); 2236 2237 // First check to see if there is an obviously preferable top block for the 2238 // loop. This will default to the header, but may end up as one of the 2239 // predecessors to the header if there is one which will result in strictly 2240 // fewer branches in the loop body. 2241 // When we use profile data to rotate the loop, this is unnecessary. 2242 MachineBasicBlock *LoopTop = 2243 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2244 2245 // If we selected just the header for the loop top, look for a potentially 2246 // profitable exit block in the event that rotating the loop can eliminate 2247 // branches by placing an exit edge at the bottom. 2248 // 2249 // Loops are processed innermost to uttermost, make sure we clear 2250 // PreferredLoopExit before processing a new loop. 2251 PreferredLoopExit = nullptr; 2252 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2253 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2254 2255 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2256 2257 // FIXME: This is a really lame way of walking the chains in the loop: we 2258 // walk the blocks, and use a set to prevent visiting a particular chain 2259 // twice. 2260 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2261 assert(LoopChain.UnscheduledPredecessors == 0 && 2262 "LoopChain should not have unscheduled predecessors."); 2263 UpdatedPreds.insert(&LoopChain); 2264 2265 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2266 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2267 2268 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2269 2270 if (RotateLoopWithProfile) 2271 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2272 else 2273 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2274 2275 LLVM_DEBUG({ 2276 // Crash at the end so we get all of the debugging output first. 2277 bool BadLoop = false; 2278 if (LoopChain.UnscheduledPredecessors) { 2279 BadLoop = true; 2280 dbgs() << "Loop chain contains a block without its preds placed!\n" 2281 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2282 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2283 } 2284 for (MachineBasicBlock *ChainBB : LoopChain) { 2285 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2286 if (!LoopBlockSet.remove(ChainBB)) { 2287 // We don't mark the loop as bad here because there are real situations 2288 // where this can occur. For example, with an unanalyzable fallthrough 2289 // from a loop block to a non-loop block or vice versa. 2290 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2291 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2292 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2293 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2294 } 2295 } 2296 2297 if (!LoopBlockSet.empty()) { 2298 BadLoop = true; 2299 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2300 dbgs() << "Loop contains blocks never placed into a chain!\n" 2301 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2302 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2303 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2304 } 2305 assert(!BadLoop && "Detected problems with the placement of this loop."); 2306 }); 2307 2308 BlockWorkList.clear(); 2309 EHPadWorkList.clear(); 2310 } 2311 2312 void MachineBlockPlacement::buildCFGChains() { 2313 // Ensure that every BB in the function has an associated chain to simplify 2314 // the assumptions of the remaining algorithm. 2315 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2316 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2317 ++FI) { 2318 MachineBasicBlock *BB = &*FI; 2319 BlockChain *Chain = 2320 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2321 // Also, merge any blocks which we cannot reason about and must preserve 2322 // the exact fallthrough behavior for. 2323 while (true) { 2324 Cond.clear(); 2325 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2326 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2327 break; 2328 2329 MachineFunction::iterator NextFI = std::next(FI); 2330 MachineBasicBlock *NextBB = &*NextFI; 2331 // Ensure that the layout successor is a viable block, as we know that 2332 // fallthrough is a possibility. 2333 assert(NextFI != FE && "Can't fallthrough past the last block."); 2334 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2335 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2336 << "\n"); 2337 Chain->merge(NextBB, nullptr); 2338 #ifndef NDEBUG 2339 BlocksWithUnanalyzableExits.insert(&*BB); 2340 #endif 2341 FI = NextFI; 2342 BB = NextBB; 2343 } 2344 } 2345 2346 // Build any loop-based chains. 2347 PreferredLoopExit = nullptr; 2348 for (MachineLoop *L : *MLI) 2349 buildLoopChains(*L); 2350 2351 assert(BlockWorkList.empty() && 2352 "BlockWorkList should be empty before building final chain."); 2353 assert(EHPadWorkList.empty() && 2354 "EHPadWorkList should be empty before building final chain."); 2355 2356 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2357 for (MachineBasicBlock &MBB : *F) 2358 fillWorkLists(&MBB, UpdatedPreds); 2359 2360 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2361 buildChain(&F->front(), FunctionChain); 2362 2363 #ifndef NDEBUG 2364 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2365 #endif 2366 LLVM_DEBUG({ 2367 // Crash at the end so we get all of the debugging output first. 2368 bool BadFunc = false; 2369 FunctionBlockSetType FunctionBlockSet; 2370 for (MachineBasicBlock &MBB : *F) 2371 FunctionBlockSet.insert(&MBB); 2372 2373 for (MachineBasicBlock *ChainBB : FunctionChain) 2374 if (!FunctionBlockSet.erase(ChainBB)) { 2375 BadFunc = true; 2376 dbgs() << "Function chain contains a block not in the function!\n" 2377 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2378 } 2379 2380 if (!FunctionBlockSet.empty()) { 2381 BadFunc = true; 2382 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2383 dbgs() << "Function contains blocks never placed into a chain!\n" 2384 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2385 } 2386 assert(!BadFunc && "Detected problems with the block placement."); 2387 }); 2388 2389 // Splice the blocks into place. 2390 MachineFunction::iterator InsertPos = F->begin(); 2391 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2392 for (MachineBasicBlock *ChainBB : FunctionChain) { 2393 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2394 : " ... ") 2395 << getBlockName(ChainBB) << "\n"); 2396 if (InsertPos != MachineFunction::iterator(ChainBB)) 2397 F->splice(InsertPos, ChainBB); 2398 else 2399 ++InsertPos; 2400 2401 // Update the terminator of the previous block. 2402 if (ChainBB == *FunctionChain.begin()) 2403 continue; 2404 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2405 2406 // FIXME: It would be awesome of updateTerminator would just return rather 2407 // than assert when the branch cannot be analyzed in order to remove this 2408 // boiler plate. 2409 Cond.clear(); 2410 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2411 2412 #ifndef NDEBUG 2413 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2414 // Given the exact block placement we chose, we may actually not _need_ to 2415 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2416 // do that at this point is a bug. 2417 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2418 !PrevBB->canFallThrough()) && 2419 "Unexpected block with un-analyzable fallthrough!"); 2420 Cond.clear(); 2421 TBB = FBB = nullptr; 2422 } 2423 #endif 2424 2425 // The "PrevBB" is not yet updated to reflect current code layout, so, 2426 // o. it may fall-through to a block without explicit "goto" instruction 2427 // before layout, and no longer fall-through it after layout; or 2428 // o. just opposite. 2429 // 2430 // analyzeBranch() may return erroneous value for FBB when these two 2431 // situations take place. For the first scenario FBB is mistakenly set NULL; 2432 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2433 // mistakenly pointing to "*BI". 2434 // Thus, if the future change needs to use FBB before the layout is set, it 2435 // has to correct FBB first by using the code similar to the following: 2436 // 2437 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2438 // PrevBB->updateTerminator(); 2439 // Cond.clear(); 2440 // TBB = FBB = nullptr; 2441 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2442 // // FIXME: This should never take place. 2443 // TBB = FBB = nullptr; 2444 // } 2445 // } 2446 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2447 PrevBB->updateTerminator(); 2448 } 2449 2450 // Fixup the last block. 2451 Cond.clear(); 2452 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2453 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2454 F->back().updateTerminator(); 2455 2456 BlockWorkList.clear(); 2457 EHPadWorkList.clear(); 2458 } 2459 2460 void MachineBlockPlacement::optimizeBranches() { 2461 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2462 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2463 2464 // Now that all the basic blocks in the chain have the proper layout, 2465 // make a final call to AnalyzeBranch with AllowModify set. 2466 // Indeed, the target may be able to optimize the branches in a way we 2467 // cannot because all branches may not be analyzable. 2468 // E.g., the target may be able to remove an unconditional branch to 2469 // a fallthrough when it occurs after predicated terminators. 2470 for (MachineBasicBlock *ChainBB : FunctionChain) { 2471 Cond.clear(); 2472 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2473 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2474 // If PrevBB has a two-way branch, try to re-order the branches 2475 // such that we branch to the successor with higher probability first. 2476 if (TBB && !Cond.empty() && FBB && 2477 MBPI->getEdgeProbability(ChainBB, FBB) > 2478 MBPI->getEdgeProbability(ChainBB, TBB) && 2479 !TII->reverseBranchCondition(Cond)) { 2480 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2481 << getBlockName(ChainBB) << "\n"); 2482 LLVM_DEBUG(dbgs() << " Edge probability: " 2483 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2484 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2485 DebugLoc dl; // FIXME: this is nowhere 2486 TII->removeBranch(*ChainBB); 2487 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2488 ChainBB->updateTerminator(); 2489 } 2490 } 2491 } 2492 } 2493 2494 void MachineBlockPlacement::alignBlocks() { 2495 // Walk through the backedges of the function now that we have fully laid out 2496 // the basic blocks and align the destination of each backedge. We don't rely 2497 // exclusively on the loop info here so that we can align backedges in 2498 // unnatural CFGs and backedges that were introduced purely because of the 2499 // loop rotations done during this layout pass. 2500 if (F->getFunction().optForSize()) 2501 return; 2502 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2503 if (FunctionChain.begin() == FunctionChain.end()) 2504 return; // Empty chain. 2505 2506 const BranchProbability ColdProb(1, 5); // 20% 2507 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2508 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2509 for (MachineBasicBlock *ChainBB : FunctionChain) { 2510 if (ChainBB == *FunctionChain.begin()) 2511 continue; 2512 2513 // Don't align non-looping basic blocks. These are unlikely to execute 2514 // enough times to matter in practice. Note that we'll still handle 2515 // unnatural CFGs inside of a natural outer loop (the common case) and 2516 // rotated loops. 2517 MachineLoop *L = MLI->getLoopFor(ChainBB); 2518 if (!L) 2519 continue; 2520 2521 unsigned Align = TLI->getPrefLoopAlignment(L); 2522 if (!Align) 2523 continue; // Don't care about loop alignment. 2524 2525 // If the block is cold relative to the function entry don't waste space 2526 // aligning it. 2527 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2528 if (Freq < WeightedEntryFreq) 2529 continue; 2530 2531 // If the block is cold relative to its loop header, don't align it 2532 // regardless of what edges into the block exist. 2533 MachineBasicBlock *LoopHeader = L->getHeader(); 2534 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2535 if (Freq < (LoopHeaderFreq * ColdProb)) 2536 continue; 2537 2538 // Check for the existence of a non-layout predecessor which would benefit 2539 // from aligning this block. 2540 MachineBasicBlock *LayoutPred = 2541 &*std::prev(MachineFunction::iterator(ChainBB)); 2542 2543 // Force alignment if all the predecessors are jumps. We already checked 2544 // that the block isn't cold above. 2545 if (!LayoutPred->isSuccessor(ChainBB)) { 2546 ChainBB->setAlignment(Align); 2547 continue; 2548 } 2549 2550 // Align this block if the layout predecessor's edge into this block is 2551 // cold relative to the block. When this is true, other predecessors make up 2552 // all of the hot entries into the block and thus alignment is likely to be 2553 // important. 2554 BranchProbability LayoutProb = 2555 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2556 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2557 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2558 ChainBB->setAlignment(Align); 2559 } 2560 } 2561 2562 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2563 /// it was duplicated into its chain predecessor and removed. 2564 /// \p BB - Basic block that may be duplicated. 2565 /// 2566 /// \p LPred - Chosen layout predecessor of \p BB. 2567 /// Updated to be the chain end if LPred is removed. 2568 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2569 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2570 /// Used to identify which blocks to update predecessor 2571 /// counts. 2572 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2573 /// chosen in the given order due to unnatural CFG 2574 /// only needed if \p BB is removed and 2575 /// \p PrevUnplacedBlockIt pointed to \p BB. 2576 /// @return true if \p BB was removed. 2577 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2578 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2579 const MachineBasicBlock *LoopHeaderBB, 2580 BlockChain &Chain, BlockFilterSet *BlockFilter, 2581 MachineFunction::iterator &PrevUnplacedBlockIt) { 2582 bool Removed, DuplicatedToLPred; 2583 bool DuplicatedToOriginalLPred; 2584 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2585 PrevUnplacedBlockIt, 2586 DuplicatedToLPred); 2587 if (!Removed) 2588 return false; 2589 DuplicatedToOriginalLPred = DuplicatedToLPred; 2590 // Iteratively try to duplicate again. It can happen that a block that is 2591 // duplicated into is still small enough to be duplicated again. 2592 // No need to call markBlockSuccessors in this case, as the blocks being 2593 // duplicated from here on are already scheduled. 2594 // Note that DuplicatedToLPred always implies Removed. 2595 while (DuplicatedToLPred) { 2596 assert(Removed && "Block must have been removed to be duplicated into its " 2597 "layout predecessor."); 2598 MachineBasicBlock *DupBB, *DupPred; 2599 // The removal callback causes Chain.end() to be updated when a block is 2600 // removed. On the first pass through the loop, the chain end should be the 2601 // same as it was on function entry. On subsequent passes, because we are 2602 // duplicating the block at the end of the chain, if it is removed the 2603 // chain will have shrunk by one block. 2604 BlockChain::iterator ChainEnd = Chain.end(); 2605 DupBB = *(--ChainEnd); 2606 // Now try to duplicate again. 2607 if (ChainEnd == Chain.begin()) 2608 break; 2609 DupPred = *std::prev(ChainEnd); 2610 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2611 PrevUnplacedBlockIt, 2612 DuplicatedToLPred); 2613 } 2614 // If BB was duplicated into LPred, it is now scheduled. But because it was 2615 // removed, markChainSuccessors won't be called for its chain. Instead we 2616 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2617 // at the end because repeating the tail duplication can increase the number 2618 // of unscheduled predecessors. 2619 LPred = *std::prev(Chain.end()); 2620 if (DuplicatedToOriginalLPred) 2621 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2622 return true; 2623 } 2624 2625 /// Tail duplicate \p BB into (some) predecessors if profitable. 2626 /// \p BB - Basic block that may be duplicated 2627 /// \p LPred - Chosen layout predecessor of \p BB 2628 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2629 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2630 /// Used to identify which blocks to update predecessor 2631 /// counts. 2632 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2633 /// chosen in the given order due to unnatural CFG 2634 /// only needed if \p BB is removed and 2635 /// \p PrevUnplacedBlockIt pointed to \p BB. 2636 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2637 /// only be true if the block was removed. 2638 /// \return - True if the block was duplicated into all preds and removed. 2639 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2640 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2641 BlockChain &Chain, BlockFilterSet *BlockFilter, 2642 MachineFunction::iterator &PrevUnplacedBlockIt, 2643 bool &DuplicatedToLPred) { 2644 DuplicatedToLPred = false; 2645 if (!shouldTailDuplicate(BB)) 2646 return false; 2647 2648 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2649 << "\n"); 2650 2651 // This has to be a callback because none of it can be done after 2652 // BB is deleted. 2653 bool Removed = false; 2654 auto RemovalCallback = 2655 [&](MachineBasicBlock *RemBB) { 2656 // Signal to outer function 2657 Removed = true; 2658 2659 // Conservative default. 2660 bool InWorkList = true; 2661 // Remove from the Chain and Chain Map 2662 if (BlockToChain.count(RemBB)) { 2663 BlockChain *Chain = BlockToChain[RemBB]; 2664 InWorkList = Chain->UnscheduledPredecessors == 0; 2665 Chain->remove(RemBB); 2666 BlockToChain.erase(RemBB); 2667 } 2668 2669 // Handle the unplaced block iterator 2670 if (&(*PrevUnplacedBlockIt) == RemBB) { 2671 PrevUnplacedBlockIt++; 2672 } 2673 2674 // Handle the Work Lists 2675 if (InWorkList) { 2676 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2677 if (RemBB->isEHPad()) 2678 RemoveList = EHPadWorkList; 2679 RemoveList.erase( 2680 llvm::remove_if(RemoveList, 2681 [RemBB](MachineBasicBlock *BB) { 2682 return BB == RemBB; 2683 }), 2684 RemoveList.end()); 2685 } 2686 2687 // Handle the filter set 2688 if (BlockFilter) { 2689 BlockFilter->remove(RemBB); 2690 } 2691 2692 // Remove the block from loop info. 2693 MLI->removeBlock(RemBB); 2694 if (RemBB == PreferredLoopExit) 2695 PreferredLoopExit = nullptr; 2696 2697 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 2698 << getBlockName(RemBB) << "\n"); 2699 }; 2700 auto RemovalCallbackRef = 2701 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2702 2703 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2704 bool IsSimple = TailDup.isSimpleBB(BB); 2705 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2706 &DuplicatedPreds, &RemovalCallbackRef); 2707 2708 // Update UnscheduledPredecessors to reflect tail-duplication. 2709 DuplicatedToLPred = false; 2710 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2711 // We're only looking for unscheduled predecessors that match the filter. 2712 BlockChain* PredChain = BlockToChain[Pred]; 2713 if (Pred == LPred) 2714 DuplicatedToLPred = true; 2715 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2716 || PredChain == &Chain) 2717 continue; 2718 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2719 if (BlockFilter && !BlockFilter->count(NewSucc)) 2720 continue; 2721 BlockChain *NewChain = BlockToChain[NewSucc]; 2722 if (NewChain != &Chain && NewChain != PredChain) 2723 NewChain->UnscheduledPredecessors++; 2724 } 2725 } 2726 return Removed; 2727 } 2728 2729 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2730 if (skipFunction(MF.getFunction())) 2731 return false; 2732 2733 // Check for single-block functions and skip them. 2734 if (std::next(MF.begin()) == MF.end()) 2735 return false; 2736 2737 F = &MF; 2738 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2739 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2740 getAnalysis<MachineBlockFrequencyInfo>()); 2741 MLI = &getAnalysis<MachineLoopInfo>(); 2742 TII = MF.getSubtarget().getInstrInfo(); 2743 TLI = MF.getSubtarget().getTargetLowering(); 2744 MPDT = nullptr; 2745 2746 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2747 // there are no MachineLoops. 2748 PreferredLoopExit = nullptr; 2749 2750 assert(BlockToChain.empty() && 2751 "BlockToChain map should be empty before starting placement."); 2752 assert(ComputedEdges.empty() && 2753 "Computed Edge map should be empty before starting placement."); 2754 2755 unsigned TailDupSize = TailDupPlacementThreshold; 2756 // If only the aggressive threshold is explicitly set, use it. 2757 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2758 TailDupPlacementThreshold.getNumOccurrences() == 0) 2759 TailDupSize = TailDupPlacementAggressiveThreshold; 2760 2761 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2762 // For aggressive optimization, we can adjust some thresholds to be less 2763 // conservative. 2764 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2765 // At O3 we should be more willing to copy blocks for tail duplication. This 2766 // increases size pressure, so we only do it at O3 2767 // Do this unless only the regular threshold is explicitly set. 2768 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2769 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2770 TailDupSize = TailDupPlacementAggressiveThreshold; 2771 } 2772 2773 if (allowTailDupPlacement()) { 2774 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2775 if (MF.getFunction().optForSize()) 2776 TailDupSize = 1; 2777 bool PreRegAlloc = false; 2778 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 2779 precomputeTriangleChains(); 2780 } 2781 2782 buildCFGChains(); 2783 2784 // Changing the layout can create new tail merging opportunities. 2785 // TailMerge can create jump into if branches that make CFG irreducible for 2786 // HW that requires structured CFG. 2787 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2788 PassConfig->getEnableTailMerge() && 2789 BranchFoldPlacement; 2790 // No tail merging opportunities if the block number is less than four. 2791 if (MF.size() > 3 && EnableTailMerge) { 2792 unsigned TailMergeSize = TailDupSize + 1; 2793 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2794 *MBPI, TailMergeSize); 2795 2796 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2797 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2798 /*AfterBlockPlacement=*/true)) { 2799 // Redo the layout if tail merging creates/removes/moves blocks. 2800 BlockToChain.clear(); 2801 ComputedEdges.clear(); 2802 // Must redo the post-dominator tree if blocks were changed. 2803 if (MPDT) 2804 MPDT->runOnMachineFunction(MF); 2805 ChainAllocator.DestroyAll(); 2806 buildCFGChains(); 2807 } 2808 } 2809 2810 optimizeBranches(); 2811 alignBlocks(); 2812 2813 BlockToChain.clear(); 2814 ComputedEdges.clear(); 2815 ChainAllocator.DestroyAll(); 2816 2817 if (AlignAllBlock) 2818 // Align all of the blocks in the function to a specific alignment. 2819 for (MachineBasicBlock &MBB : MF) 2820 MBB.setAlignment(AlignAllBlock); 2821 else if (AlignAllNonFallThruBlocks) { 2822 // Align all of the blocks that have no fall-through predecessors to a 2823 // specific alignment. 2824 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2825 auto LayoutPred = std::prev(MBI); 2826 if (!LayoutPred->isSuccessor(&*MBI)) 2827 MBI->setAlignment(AlignAllNonFallThruBlocks); 2828 } 2829 } 2830 if (ViewBlockLayoutWithBFI != GVDT_None && 2831 (ViewBlockFreqFuncName.empty() || 2832 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 2833 MBFI->view("MBP." + MF.getName(), false); 2834 } 2835 2836 2837 // We always return true as we have no way to track whether the final order 2838 // differs from the original order. 2839 return true; 2840 } 2841 2842 namespace { 2843 2844 /// A pass to compute block placement statistics. 2845 /// 2846 /// A separate pass to compute interesting statistics for evaluating block 2847 /// placement. This is separate from the actual placement pass so that they can 2848 /// be computed in the absence of any placement transformations or when using 2849 /// alternative placement strategies. 2850 class MachineBlockPlacementStats : public MachineFunctionPass { 2851 /// A handle to the branch probability pass. 2852 const MachineBranchProbabilityInfo *MBPI; 2853 2854 /// A handle to the function-wide block frequency pass. 2855 const MachineBlockFrequencyInfo *MBFI; 2856 2857 public: 2858 static char ID; // Pass identification, replacement for typeid 2859 2860 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2861 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2862 } 2863 2864 bool runOnMachineFunction(MachineFunction &F) override; 2865 2866 void getAnalysisUsage(AnalysisUsage &AU) const override { 2867 AU.addRequired<MachineBranchProbabilityInfo>(); 2868 AU.addRequired<MachineBlockFrequencyInfo>(); 2869 AU.setPreservesAll(); 2870 MachineFunctionPass::getAnalysisUsage(AU); 2871 } 2872 }; 2873 2874 } // end anonymous namespace 2875 2876 char MachineBlockPlacementStats::ID = 0; 2877 2878 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2879 2880 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2881 "Basic Block Placement Stats", false, false) 2882 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2883 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2884 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2885 "Basic Block Placement Stats", false, false) 2886 2887 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2888 // Check for single-block functions and skip them. 2889 if (std::next(F.begin()) == F.end()) 2890 return false; 2891 2892 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2893 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2894 2895 for (MachineBasicBlock &MBB : F) { 2896 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2897 Statistic &NumBranches = 2898 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2899 Statistic &BranchTakenFreq = 2900 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2901 for (MachineBasicBlock *Succ : MBB.successors()) { 2902 // Skip if this successor is a fallthrough. 2903 if (MBB.isLayoutSuccessor(Succ)) 2904 continue; 2905 2906 BlockFrequency EdgeFreq = 2907 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2908 ++NumBranches; 2909 BranchTakenFreq += EdgeFreq.getFrequency(); 2910 } 2911 } 2912 2913 return false; 2914 } 2915