Home | History | Annotate | Download | only in X86
      1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// Provide a pass which mitigates speculative execution attacks which operate
     12 /// by speculating incorrectly past some predicate (a type check, bounds check,
     13 /// or other condition) to reach a load with invalid inputs and leak the data
     14 /// accessed by that load using a side channel out of the speculative domain.
     15 ///
     16 /// For details on the attacks, see the first variant in both the Project Zero
     17 /// writeup and the Spectre paper:
     18 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
     19 /// https://spectreattack.com/spectre.pdf
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "X86.h"
     24 #include "X86InstrBuilder.h"
     25 #include "X86InstrInfo.h"
     26 #include "X86Subtarget.h"
     27 #include "llvm/ADT/ArrayRef.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/Optional.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/ScopeExit.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/ADT/SmallSet.h"
     34 #include "llvm/ADT/SmallVector.h"
     35 #include "llvm/ADT/SparseBitVector.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/CodeGen/MachineBasicBlock.h"
     38 #include "llvm/CodeGen/MachineConstantPool.h"
     39 #include "llvm/CodeGen/MachineFunction.h"
     40 #include "llvm/CodeGen/MachineFunctionPass.h"
     41 #include "llvm/CodeGen/MachineInstr.h"
     42 #include "llvm/CodeGen/MachineInstrBuilder.h"
     43 #include "llvm/CodeGen/MachineModuleInfo.h"
     44 #include "llvm/CodeGen/MachineOperand.h"
     45 #include "llvm/CodeGen/MachineRegisterInfo.h"
     46 #include "llvm/CodeGen/MachineSSAUpdater.h"
     47 #include "llvm/CodeGen/TargetInstrInfo.h"
     48 #include "llvm/CodeGen/TargetRegisterInfo.h"
     49 #include "llvm/CodeGen/TargetSchedule.h"
     50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     51 #include "llvm/IR/DebugLoc.h"
     52 #include "llvm/MC/MCSchedule.h"
     53 #include "llvm/Pass.h"
     54 #include "llvm/Support/CommandLine.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/raw_ostream.h"
     57 #include <algorithm>
     58 #include <cassert>
     59 #include <iterator>
     60 #include <utility>
     61 
     62 using namespace llvm;
     63 
     64 #define PASS_KEY "x86-speculative-load-hardening"
     65 #define DEBUG_TYPE PASS_KEY
     66 
     67 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
     68 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
     69 STATISTIC(NumAddrRegsHardened,
     70           "Number of address mode used registers hardaned");
     71 STATISTIC(NumPostLoadRegsHardened,
     72           "Number of post-load register values hardened");
     73 STATISTIC(NumCallsOrJumpsHardened,
     74           "Number of calls or jumps requiring extra hardening");
     75 STATISTIC(NumInstsInserted, "Number of instructions inserted");
     76 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
     77 
     78 static cl::opt<bool> HardenEdgesWithLFENCE(
     79     PASS_KEY "-lfence",
     80     cl::desc(
     81         "Use LFENCE along each conditional edge to harden against speculative "
     82         "loads rather than conditional movs and poisoned pointers."),
     83     cl::init(false), cl::Hidden);
     84 
     85 static cl::opt<bool> EnablePostLoadHardening(
     86     PASS_KEY "-post-load",
     87     cl::desc("Harden the value loaded *after* it is loaded by "
     88              "flushing the loaded bits to 1. This is hard to do "
     89              "in general but can be done easily for GPRs."),
     90     cl::init(true), cl::Hidden);
     91 
     92 static cl::opt<bool> FenceCallAndRet(
     93     PASS_KEY "-fence-call-and-ret",
     94     cl::desc("Use a full speculation fence to harden both call and ret edges "
     95              "rather than a lighter weight mitigation."),
     96     cl::init(false), cl::Hidden);
     97 
     98 static cl::opt<bool> HardenInterprocedurally(
     99     PASS_KEY "-ip",
    100     cl::desc("Harden interprocedurally by passing our state in and out of "
    101              "functions in the high bits of the stack pointer."),
    102     cl::init(true), cl::Hidden);
    103 
    104 static cl::opt<bool>
    105     HardenLoads(PASS_KEY "-loads",
    106                 cl::desc("Sanitize loads from memory. When disable, no "
    107                          "significant security is provided."),
    108                 cl::init(true), cl::Hidden);
    109 
    110 static cl::opt<bool> HardenIndirectCallsAndJumps(
    111     PASS_KEY "-indirect",
    112     cl::desc("Harden indirect calls and jumps against using speculatively "
    113              "stored attacker controlled addresses. This is designed to "
    114              "mitigate Spectre v1.2 style attacks."),
    115     cl::init(true), cl::Hidden);
    116 
    117 namespace llvm {
    118 
    119 void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &);
    120 
    121 } // end namespace llvm
    122 
    123 namespace {
    124 
    125 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
    126 public:
    127   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) {
    128     initializeX86SpeculativeLoadHardeningPassPass(
    129         *PassRegistry::getPassRegistry());
    130   }
    131 
    132   StringRef getPassName() const override {
    133     return "X86 speculative load hardening";
    134   }
    135   bool runOnMachineFunction(MachineFunction &MF) override;
    136   void getAnalysisUsage(AnalysisUsage &AU) const override;
    137 
    138   /// Pass identification, replacement for typeid.
    139   static char ID;
    140 
    141 private:
    142   /// The information about a block's conditional terminators needed to trace
    143   /// our predicate state through the exiting edges.
    144   struct BlockCondInfo {
    145     MachineBasicBlock *MBB;
    146 
    147     // We mostly have one conditional branch, and in extremely rare cases have
    148     // two. Three and more are so rare as to be unimportant for compile time.
    149     SmallVector<MachineInstr *, 2> CondBrs;
    150 
    151     MachineInstr *UncondBr;
    152   };
    153 
    154   /// Manages the predicate state traced through the program.
    155   struct PredState {
    156     unsigned InitialReg;
    157     unsigned PoisonReg;
    158 
    159     const TargetRegisterClass *RC;
    160     MachineSSAUpdater SSA;
    161 
    162     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
    163         : RC(RC), SSA(MF) {}
    164   };
    165 
    166   const X86Subtarget *Subtarget;
    167   MachineRegisterInfo *MRI;
    168   const X86InstrInfo *TII;
    169   const TargetRegisterInfo *TRI;
    170 
    171   Optional<PredState> PS;
    172 
    173   void hardenEdgesWithLFENCE(MachineFunction &MF);
    174 
    175   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
    176 
    177   SmallVector<MachineInstr *, 16>
    178   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
    179 
    180   void unfoldCallAndJumpLoads(MachineFunction &MF);
    181 
    182   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
    183 
    184   unsigned saveEFLAGS(MachineBasicBlock &MBB,
    185                       MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
    186   void restoreEFLAGS(MachineBasicBlock &MBB,
    187                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    188                      unsigned OFReg);
    189 
    190   void mergePredStateIntoSP(MachineBasicBlock &MBB,
    191                             MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    192                             unsigned PredStateReg);
    193   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
    194                                   MachineBasicBlock::iterator InsertPt,
    195                                   DebugLoc Loc);
    196 
    197   void
    198   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
    199                  MachineOperand &IndexMO,
    200                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
    201   MachineInstr *
    202   sinkPostLoadHardenedInst(MachineInstr &MI,
    203                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
    204   bool canHardenRegister(unsigned Reg);
    205   unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
    206                                  MachineBasicBlock::iterator InsertPt,
    207                                  DebugLoc Loc);
    208   unsigned hardenPostLoad(MachineInstr &MI);
    209   void hardenReturnInstr(MachineInstr &MI);
    210   void tracePredStateThroughCall(MachineInstr &MI);
    211   void hardenIndirectCallOrJumpInstr(
    212       MachineInstr &MI,
    213       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
    214 };
    215 
    216 } // end anonymous namespace
    217 
    218 char X86SpeculativeLoadHardeningPass::ID = 0;
    219 
    220 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
    221     AnalysisUsage &AU) const {
    222   MachineFunctionPass::getAnalysisUsage(AU);
    223 }
    224 
    225 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
    226                                     MachineBasicBlock &Succ, int SuccCount,
    227                                     MachineInstr *Br, MachineInstr *&UncondBr,
    228                                     const X86InstrInfo &TII) {
    229   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
    230 
    231   MachineFunction &MF = *MBB.getParent();
    232 
    233   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
    234 
    235   // We have to insert the new block immediately after the current one as we
    236   // don't know what layout-successor relationships the successor has and we
    237   // may not be able to (and generally don't want to) try to fix those up.
    238   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
    239 
    240   // Update the branch instruction if necessary.
    241   if (Br) {
    242     assert(Br->getOperand(0).getMBB() == &Succ &&
    243            "Didn't start with the right target!");
    244     Br->getOperand(0).setMBB(&NewMBB);
    245 
    246     // If this successor was reached through a branch rather than fallthrough,
    247     // we might have *broken* fallthrough and so need to inject a new
    248     // unconditional branch.
    249     if (!UncondBr) {
    250       MachineBasicBlock &OldLayoutSucc =
    251           *std::next(MachineFunction::iterator(&NewMBB));
    252       assert(MBB.isSuccessor(&OldLayoutSucc) &&
    253              "Without an unconditional branch, the old layout successor should "
    254              "be an actual successor!");
    255       auto BrBuilder =
    256           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
    257       // Update the unconditional branch now that we've added one.
    258       UncondBr = &*BrBuilder;
    259     }
    260 
    261     // Insert unconditional "jump Succ" instruction in the new block if
    262     // necessary.
    263     if (!NewMBB.isLayoutSuccessor(&Succ)) {
    264       SmallVector<MachineOperand, 4> Cond;
    265       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
    266     }
    267   } else {
    268     assert(!UncondBr &&
    269            "Cannot have a branchless successor and an unconditional branch!");
    270     assert(NewMBB.isLayoutSuccessor(&Succ) &&
    271            "A non-branch successor must have been a layout successor before "
    272            "and now is a layout successor of the new block.");
    273   }
    274 
    275   // If this is the only edge to the successor, we can just replace it in the
    276   // CFG. Otherwise we need to add a new entry in the CFG for the new
    277   // successor.
    278   if (SuccCount == 1) {
    279     MBB.replaceSuccessor(&Succ, &NewMBB);
    280   } else {
    281     MBB.splitSuccessor(&Succ, &NewMBB);
    282   }
    283 
    284   // Hook up the edge from the new basic block to the old successor in the CFG.
    285   NewMBB.addSuccessor(&Succ);
    286 
    287   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
    288   for (MachineInstr &MI : Succ) {
    289     if (!MI.isPHI())
    290       break;
    291     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
    292          OpIdx += 2) {
    293       MachineOperand &OpV = MI.getOperand(OpIdx);
    294       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
    295       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
    296       if (OpMBB.getMBB() != &MBB)
    297         continue;
    298 
    299       // If this is the last edge to the succesor, just replace MBB in the PHI
    300       if (SuccCount == 1) {
    301         OpMBB.setMBB(&NewMBB);
    302         break;
    303       }
    304 
    305       // Otherwise, append a new pair of operands for the new incoming edge.
    306       MI.addOperand(MF, OpV);
    307       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
    308       break;
    309     }
    310   }
    311 
    312   // Inherit live-ins from the successor
    313   for (auto &LI : Succ.liveins())
    314     NewMBB.addLiveIn(LI);
    315 
    316   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
    317                     << Succ.getName() << "'.\n");
    318   return NewMBB;
    319 }
    320 
    321 /// Removing duplicate PHI operands to leave the PHI in a canonical and
    322 /// predictable form.
    323 ///
    324 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
    325 /// isn't what you might expect. We may have multiple entries in PHI nodes for
    326 /// a single predecessor. This makes CFG-updating extremely complex, so here we
    327 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
    328 /// one entry per predecessor, regardless of how many edges there are.
    329 static void canonicalizePHIOperands(MachineFunction &MF) {
    330   SmallPtrSet<MachineBasicBlock *, 4> Preds;
    331   SmallVector<int, 4> DupIndices;
    332   for (auto &MBB : MF)
    333     for (auto &MI : MBB) {
    334       if (!MI.isPHI())
    335         break;
    336 
    337       // First we scan the operands of the PHI looking for duplicate entries
    338       // a particular predecessor. We retain the operand index of each duplicate
    339       // entry found.
    340       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
    341            OpIdx += 2)
    342         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
    343           DupIndices.push_back(OpIdx);
    344 
    345       // Now walk the duplicate indices, removing both the block and value. Note
    346       // that these are stored as a vector making this element-wise removal
    347       // :w
    348       // potentially quadratic.
    349       //
    350       // FIXME: It is really frustrating that we have to use a quadratic
    351       // removal algorithm here. There should be a better way, but the use-def
    352       // updates required make that impossible using the public API.
    353       //
    354       // Note that we have to process these backwards so that we don't
    355       // invalidate other indices with each removal.
    356       while (!DupIndices.empty()) {
    357         int OpIdx = DupIndices.pop_back_val();
    358         // Remove both the block and value operand, again in reverse order to
    359         // preserve indices.
    360         MI.RemoveOperand(OpIdx + 1);
    361         MI.RemoveOperand(OpIdx);
    362       }
    363 
    364       Preds.clear();
    365     }
    366 }
    367 
    368 /// Helper to scan a function for loads vulnerable to misspeculation that we
    369 /// want to harden.
    370 ///
    371 /// We use this to avoid making changes to functions where there is nothing we
    372 /// need to do to harden against misspeculation.
    373 static bool hasVulnerableLoad(MachineFunction &MF) {
    374   for (MachineBasicBlock &MBB : MF) {
    375     for (MachineInstr &MI : MBB) {
    376       // Loads within this basic block after an LFENCE are not at risk of
    377       // speculatively executing with invalid predicates from prior control
    378       // flow. So break out of this block but continue scanning the function.
    379       if (MI.getOpcode() == X86::LFENCE)
    380         break;
    381 
    382       // Looking for loads only.
    383       if (!MI.mayLoad())
    384         continue;
    385 
    386       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
    387       if (MI.getOpcode() == X86::MFENCE)
    388         continue;
    389 
    390       // We found a load.
    391       return true;
    392     }
    393   }
    394 
    395   // No loads found.
    396   return false;
    397 }
    398 
    399 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
    400     MachineFunction &MF) {
    401   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
    402                     << " **********\n");
    403 
    404   Subtarget = &MF.getSubtarget<X86Subtarget>();
    405   MRI = &MF.getRegInfo();
    406   TII = Subtarget->getInstrInfo();
    407   TRI = Subtarget->getRegisterInfo();
    408 
    409   // FIXME: Support for 32-bit.
    410   PS.emplace(MF, &X86::GR64_NOSPRegClass);
    411 
    412   if (MF.begin() == MF.end())
    413     // Nothing to do for a degenerate empty function...
    414     return false;
    415 
    416   // We support an alternative hardening technique based on a debug flag.
    417   if (HardenEdgesWithLFENCE) {
    418     hardenEdgesWithLFENCE(MF);
    419     return true;
    420   }
    421 
    422   // Create a dummy debug loc to use for all the generated code here.
    423   DebugLoc Loc;
    424 
    425   MachineBasicBlock &Entry = *MF.begin();
    426   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
    427 
    428   // Do a quick scan to see if we have any checkable loads.
    429   bool HasVulnerableLoad = hasVulnerableLoad(MF);
    430 
    431   // See if we have any conditional branching blocks that we will need to trace
    432   // predicate state through.
    433   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
    434 
    435   // If we have no interesting conditions or loads, nothing to do here.
    436   if (!HasVulnerableLoad && Infos.empty())
    437     return true;
    438 
    439   // The poison value is required to be an all-ones value for many aspects of
    440   // this mitigation.
    441   const int PoisonVal = -1;
    442   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
    443   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
    444       .addImm(PoisonVal);
    445   ++NumInstsInserted;
    446 
    447   // If we have loads being hardened and we've asked for call and ret edges to
    448   // get a full fence-based mitigation, inject that fence.
    449   if (HasVulnerableLoad && FenceCallAndRet) {
    450     // We need to insert an LFENCE at the start of the function to suspend any
    451     // incoming misspeculation from the caller. This helps two-fold: the caller
    452     // may not have been protected as this code has been, and this code gets to
    453     // not take any specific action to protect across calls.
    454     // FIXME: We could skip this for functions which unconditionally return
    455     // a constant.
    456     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
    457     ++NumInstsInserted;
    458     ++NumLFENCEsInserted;
    459   }
    460 
    461   // If we guarded the entry with an LFENCE and have no conditionals to protect
    462   // in blocks, then we're done.
    463   if (FenceCallAndRet && Infos.empty())
    464     // We may have changed the function's code at this point to insert fences.
    465     return true;
    466 
    467   // For every basic block in the function which can b
    468   if (HardenInterprocedurally && !FenceCallAndRet) {
    469     // Set up the predicate state by extracting it from the incoming stack
    470     // pointer so we pick up any misspeculation in our caller.
    471     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
    472   } else {
    473     // Otherwise, just build the predicate state itself by zeroing a register
    474     // as we don't need any initial state.
    475     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
    476     unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
    477     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
    478                          PredStateSubReg);
    479     ++NumInstsInserted;
    480     MachineOperand *ZeroEFLAGSDefOp =
    481         ZeroI->findRegisterDefOperand(X86::EFLAGS);
    482     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
    483            "Must have an implicit def of EFLAGS!");
    484     ZeroEFLAGSDefOp->setIsDead(true);
    485     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
    486             PS->InitialReg)
    487         .addImm(0)
    488         .addReg(PredStateSubReg)
    489         .addImm(X86::sub_32bit);
    490   }
    491 
    492   // We're going to need to trace predicate state throughout the function's
    493   // CFG. Prepare for this by setting up our initial state of PHIs with unique
    494   // predecessor entries and all the initial predicate state.
    495   canonicalizePHIOperands(MF);
    496 
    497   // Track the updated values in an SSA updater to rewrite into SSA form at the
    498   // end.
    499   PS->SSA.Initialize(PS->InitialReg);
    500   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
    501 
    502   // Trace through the CFG.
    503   auto CMovs = tracePredStateThroughCFG(MF, Infos);
    504 
    505   // We may also enter basic blocks in this function via exception handling
    506   // control flow. Here, if we are hardening interprocedurally, we need to
    507   // re-capture the predicate state from the throwing code. In the Itanium ABI,
    508   // the throw will always look like a call to __cxa_throw and will have the
    509   // predicate state in the stack pointer, so extract fresh predicate state from
    510   // the stack pointer and make it available in SSA.
    511   // FIXME: Handle non-itanium ABI EH models.
    512   if (HardenInterprocedurally) {
    513     for (MachineBasicBlock &MBB : MF) {
    514       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
    515       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
    516       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
    517       if (!MBB.isEHPad())
    518         continue;
    519       PS->SSA.AddAvailableValue(
    520           &MBB,
    521           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
    522     }
    523   }
    524 
    525   // If we are going to harden calls and jumps we need to unfold their memory
    526   // operands.
    527   if (HardenIndirectCallsAndJumps)
    528     unfoldCallAndJumpLoads(MF);
    529 
    530   // Now that we have the predicate state available at the start of each block
    531   // in the CFG, trace it through each block, hardening vulnerable instructions
    532   // as we go.
    533   tracePredStateThroughBlocksAndHarden(MF);
    534 
    535   // Now rewrite all the uses of the pred state using the SSA updater to insert
    536   // PHIs connecting the state between blocks along the CFG edges.
    537   for (MachineInstr *CMovI : CMovs)
    538     for (MachineOperand &Op : CMovI->operands()) {
    539       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
    540         continue;
    541 
    542       PS->SSA.RewriteUse(Op);
    543     }
    544 
    545   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
    546              dbgs() << "\n"; MF.verify(this));
    547   return true;
    548 }
    549 
    550 /// Implements the naive hardening approach of putting an LFENCE after every
    551 /// potentially mis-predicted control flow construct.
    552 ///
    553 /// We include this as an alternative mostly for the purpose of comparison. The
    554 /// performance impact of this is expected to be extremely severe and not
    555 /// practical for any real-world users.
    556 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
    557     MachineFunction &MF) {
    558   // First, we scan the function looking for blocks that are reached along edges
    559   // that we might want to harden.
    560   SmallSetVector<MachineBasicBlock *, 8> Blocks;
    561   for (MachineBasicBlock &MBB : MF) {
    562     // If there are no or only one successor, nothing to do here.
    563     if (MBB.succ_size() <= 1)
    564       continue;
    565 
    566     // Skip blocks unless their terminators start with a branch. Other
    567     // terminators don't seem interesting for guarding against misspeculation.
    568     auto TermIt = MBB.getFirstTerminator();
    569     if (TermIt == MBB.end() || !TermIt->isBranch())
    570       continue;
    571 
    572     // Add all the non-EH-pad succossors to the blocks we want to harden. We
    573     // skip EH pads because there isn't really a condition of interest on
    574     // entering.
    575     for (MachineBasicBlock *SuccMBB : MBB.successors())
    576       if (!SuccMBB->isEHPad())
    577         Blocks.insert(SuccMBB);
    578   }
    579 
    580   for (MachineBasicBlock *MBB : Blocks) {
    581     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
    582     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
    583     ++NumInstsInserted;
    584     ++NumLFENCEsInserted;
    585   }
    586 }
    587 
    588 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
    589 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
    590   SmallVector<BlockCondInfo, 16> Infos;
    591 
    592   // Walk the function and build up a summary for each block's conditions that
    593   // we need to trace through.
    594   for (MachineBasicBlock &MBB : MF) {
    595     // If there are no or only one successor, nothing to do here.
    596     if (MBB.succ_size() <= 1)
    597       continue;
    598 
    599     // We want to reliably handle any conditional branch terminators in the
    600     // MBB, so we manually analyze the branch. We can handle all of the
    601     // permutations here, including ones that analyze branch cannot.
    602     //
    603     // The approach is to walk backwards across the terminators, resetting at
    604     // any unconditional non-indirect branch, and track all conditional edges
    605     // to basic blocks as well as the fallthrough or unconditional successor
    606     // edge. For each conditional edge, we track the target and the opposite
    607     // condition code in order to inject a "no-op" cmov into that successor
    608     // that will harden the predicate. For the fallthrough/unconditional
    609     // edge, we inject a separate cmov for each conditional branch with
    610     // matching condition codes. This effectively implements an "and" of the
    611     // condition flags, even if there isn't a single condition flag that would
    612     // directly implement that. We don't bother trying to optimize either of
    613     // these cases because if such an optimization is possible, LLVM should
    614     // have optimized the conditional *branches* in that way already to reduce
    615     // instruction count. This late, we simply assume the minimal number of
    616     // branch instructions is being emitted and use that to guide our cmov
    617     // insertion.
    618 
    619     BlockCondInfo Info = {&MBB, {}, nullptr};
    620 
    621     // Now walk backwards through the terminators and build up successors they
    622     // reach and the conditions.
    623     for (MachineInstr &MI : llvm::reverse(MBB)) {
    624       // Once we've handled all the terminators, we're done.
    625       if (!MI.isTerminator())
    626         break;
    627 
    628       // If we see a non-branch terminator, we can't handle anything so bail.
    629       if (!MI.isBranch()) {
    630         Info.CondBrs.clear();
    631         break;
    632       }
    633 
    634       // If we see an unconditional branch, reset our state, clear any
    635       // fallthrough, and set this is the "else" successor.
    636       if (MI.getOpcode() == X86::JMP_1) {
    637         Info.CondBrs.clear();
    638         Info.UncondBr = &MI;
    639         continue;
    640       }
    641 
    642       // If we get an invalid condition, we have an indirect branch or some
    643       // other unanalyzable "fallthrough" case. We model this as a nullptr for
    644       // the destination so we can still guard any conditional successors.
    645       // Consider code sequences like:
    646       // ```
    647       //   jCC L1
    648       //   jmpq *%rax
    649       // ```
    650       // We still want to harden the edge to `L1`.
    651       if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) {
    652         Info.CondBrs.clear();
    653         Info.UncondBr = &MI;
    654         continue;
    655       }
    656 
    657       // We have a vanilla conditional branch, add it to our list.
    658       Info.CondBrs.push_back(&MI);
    659     }
    660     if (Info.CondBrs.empty()) {
    661       ++NumBranchesUntraced;
    662       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
    663                  MBB.dump());
    664       continue;
    665     }
    666 
    667     Infos.push_back(Info);
    668   }
    669 
    670   return Infos;
    671 }
    672 
    673 /// Trace the predicate state through the CFG, instrumenting each conditional
    674 /// branch such that misspeculation through an edge will poison the predicate
    675 /// state.
    676 ///
    677 /// Returns the list of inserted CMov instructions so that they can have their
    678 /// uses of the predicate state rewritten into proper SSA form once it is
    679 /// complete.
    680 SmallVector<MachineInstr *, 16>
    681 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
    682     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
    683   // Collect the inserted cmov instructions so we can rewrite their uses of the
    684   // predicate state into SSA form.
    685   SmallVector<MachineInstr *, 16> CMovs;
    686 
    687   // Now walk all of the basic blocks looking for ones that end in conditional
    688   // jumps where we need to update this register along each edge.
    689   for (const BlockCondInfo &Info : Infos) {
    690     MachineBasicBlock &MBB = *Info.MBB;
    691     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
    692     MachineInstr *UncondBr = Info.UncondBr;
    693 
    694     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
    695                       << "\n");
    696     ++NumCondBranchesTraced;
    697 
    698     // Compute the non-conditional successor as either the target of any
    699     // unconditional branch or the layout successor.
    700     MachineBasicBlock *UncondSucc =
    701         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
    702                         ? UncondBr->getOperand(0).getMBB()
    703                         : nullptr)
    704                  : &*std::next(MachineFunction::iterator(&MBB));
    705 
    706     // Count how many edges there are to any given successor.
    707     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
    708     if (UncondSucc)
    709       ++SuccCounts[UncondSucc];
    710     for (auto *CondBr : CondBrs)
    711       ++SuccCounts[CondBr->getOperand(0).getMBB()];
    712 
    713     // A lambda to insert cmov instructions into a block checking all of the
    714     // condition codes in a sequence.
    715     auto BuildCheckingBlockForSuccAndConds =
    716         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
    717             MachineInstr *Br, MachineInstr *&UncondBr,
    718             ArrayRef<X86::CondCode> Conds) {
    719           // First, we split the edge to insert the checking block into a safe
    720           // location.
    721           auto &CheckingMBB =
    722               (SuccCount == 1 && Succ.pred_size() == 1)
    723                   ? Succ
    724                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
    725 
    726           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
    727           if (!LiveEFLAGS)
    728             CheckingMBB.addLiveIn(X86::EFLAGS);
    729 
    730           // Now insert the cmovs to implement the checks.
    731           auto InsertPt = CheckingMBB.begin();
    732           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
    733                  "Should never have a PHI in the initial checking block as it "
    734                  "always has a single predecessor!");
    735 
    736           // We will wire each cmov to each other, but need to start with the
    737           // incoming pred state.
    738           unsigned CurStateReg = PS->InitialReg;
    739 
    740           for (X86::CondCode Cond : Conds) {
    741             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
    742             auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes);
    743 
    744             unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
    745             // Note that we intentionally use an empty debug location so that
    746             // this picks up the preceding location.
    747             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
    748                                  TII->get(CMovOp), UpdatedStateReg)
    749                              .addReg(CurStateReg)
    750                              .addReg(PS->PoisonReg);
    751             // If this is the last cmov and the EFLAGS weren't originally
    752             // live-in, mark them as killed.
    753             if (!LiveEFLAGS && Cond == Conds.back())
    754               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
    755 
    756             ++NumInstsInserted;
    757             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
    758                        dbgs() << "\n");
    759 
    760             // The first one of the cmovs will be using the top level
    761             // `PredStateReg` and need to get rewritten into SSA form.
    762             if (CurStateReg == PS->InitialReg)
    763               CMovs.push_back(&*CMovI);
    764 
    765             // The next cmov should start from this one's def.
    766             CurStateReg = UpdatedStateReg;
    767           }
    768 
    769           // And put the last one into the available values for SSA form of our
    770           // predicate state.
    771           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
    772         };
    773 
    774     std::vector<X86::CondCode> UncondCodeSeq;
    775     for (auto *CondBr : CondBrs) {
    776       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
    777       int &SuccCount = SuccCounts[&Succ];
    778 
    779       X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode());
    780       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
    781       UncondCodeSeq.push_back(Cond);
    782 
    783       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
    784                                         {InvCond});
    785 
    786       // Decrement the successor count now that we've split one of the edges.
    787       // We need to keep the count of edges to the successor accurate in order
    788       // to know above when to *replace* the successor in the CFG vs. just
    789       // adding the new successor.
    790       --SuccCount;
    791     }
    792 
    793     // Since we may have split edges and changed the number of successors,
    794     // normalize the probabilities. This avoids doing it each time we split an
    795     // edge.
    796     MBB.normalizeSuccProbs();
    797 
    798     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
    799     // need to intersect the other condition codes. We can do this by just
    800     // doing a cmov for each one.
    801     if (!UncondSucc)
    802       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
    803       // just skip this and continue.
    804       continue;
    805 
    806     assert(SuccCounts[UncondSucc] == 1 &&
    807            "We should never have more than one edge to the unconditional "
    808            "successor at this point because every other edge must have been "
    809            "split above!");
    810 
    811     // Sort and unique the codes to minimize them.
    812     llvm::sort(UncondCodeSeq.begin(), UncondCodeSeq.end());
    813     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
    814                         UncondCodeSeq.end());
    815 
    816     // Build a checking version of the successor.
    817     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
    818                                       UncondBr, UncondBr, UncondCodeSeq);
    819   }
    820 
    821   return CMovs;
    822 }
    823 
    824 /// Compute the register class for the unfolded load.
    825 ///
    826 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
    827 /// a way to unfold into a newly created vreg rather than requiring a register
    828 /// input.
    829 static const TargetRegisterClass *
    830 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
    831                            unsigned Opcode) {
    832   unsigned Index;
    833   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
    834       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
    835   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
    836   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
    837 }
    838 
    839 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
    840     MachineFunction &MF) {
    841   for (MachineBasicBlock &MBB : MF)
    842     for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
    843       // Grab a reference and increment the iterator so we can remove this
    844       // instruction if needed without disturbing the iteration.
    845       MachineInstr &MI = *MII++;
    846 
    847       // Must either be a call or a branch.
    848       if (!MI.isCall() && !MI.isBranch())
    849         continue;
    850       // We only care about loading variants of these instructions.
    851       if (!MI.mayLoad())
    852         continue;
    853 
    854       switch (MI.getOpcode()) {
    855       default: {
    856         LLVM_DEBUG(
    857             dbgs() << "ERROR: Found an unexpected loading branch or call "
    858                       "instruction:\n";
    859             MI.dump(); dbgs() << "\n");
    860         report_fatal_error("Unexpected loading branch or call!");
    861       }
    862 
    863       case X86::FARCALL16m:
    864       case X86::FARCALL32m:
    865       case X86::FARCALL64:
    866       case X86::FARJMP16m:
    867       case X86::FARJMP32m:
    868       case X86::FARJMP64:
    869         // We cannot mitigate far jumps or calls, but we also don't expect them
    870         // to be vulnerable to Spectre v1.2 style attacks.
    871         continue;
    872 
    873       case X86::CALL16m:
    874       case X86::CALL16m_NT:
    875       case X86::CALL32m:
    876       case X86::CALL32m_NT:
    877       case X86::CALL64m:
    878       case X86::CALL64m_NT:
    879       case X86::JMP16m:
    880       case X86::JMP16m_NT:
    881       case X86::JMP32m:
    882       case X86::JMP32m_NT:
    883       case X86::JMP64m:
    884       case X86::JMP64m_NT:
    885       case X86::TAILJMPm64:
    886       case X86::TAILJMPm64_REX:
    887       case X86::TAILJMPm:
    888       case X86::TCRETURNmi64:
    889       case X86::TCRETURNmi: {
    890         // Use the generic unfold logic now that we know we're dealing with
    891         // expected instructions.
    892         // FIXME: We don't have test coverage for all of these!
    893         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
    894         if (!UnfoldedRC) {
    895           LLVM_DEBUG(dbgs()
    896                          << "ERROR: Unable to unfold load from instruction:\n";
    897                      MI.dump(); dbgs() << "\n");
    898           report_fatal_error("Unable to unfold load!");
    899         }
    900         unsigned Reg = MRI->createVirtualRegister(UnfoldedRC);
    901         SmallVector<MachineInstr *, 2> NewMIs;
    902         // If we were able to compute an unfolded reg class, any failure here
    903         // is just a programming error so just assert.
    904         bool Unfolded =
    905             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
    906                                      /*UnfoldStore*/ false, NewMIs);
    907         (void)Unfolded;
    908         assert(Unfolded &&
    909                "Computed unfolded register class but failed to unfold");
    910         // Now stitch the new instructions into place and erase the old one.
    911         for (auto *NewMI : NewMIs)
    912           MBB.insert(MI.getIterator(), NewMI);
    913         MI.eraseFromParent();
    914         LLVM_DEBUG({
    915           dbgs() << "Unfolded load successfully into:\n";
    916           for (auto *NewMI : NewMIs) {
    917             NewMI->dump();
    918             dbgs() << "\n";
    919           }
    920         });
    921         continue;
    922       }
    923       }
    924       llvm_unreachable("Escaped switch with default!");
    925     }
    926 }
    927 
    928 /// Returns true if the instruction has no behavior (specified or otherwise)
    929 /// that is based on the value of any of its register operands
    930 ///
    931 /// A classical example of something that is inherently not data invariant is an
    932 /// indirect jump -- the destination is loaded into icache based on the bits set
    933 /// in the jump destination register.
    934 ///
    935 /// FIXME: This should become part of our instruction tables.
    936 static bool isDataInvariant(MachineInstr &MI) {
    937   switch (MI.getOpcode()) {
    938   default:
    939     // By default, assume that the instruction is not data invariant.
    940     return false;
    941 
    942     // Some target-independent operations that trivially lower to data-invariant
    943     // instructions.
    944   case TargetOpcode::COPY:
    945   case TargetOpcode::INSERT_SUBREG:
    946   case TargetOpcode::SUBREG_TO_REG:
    947     return true;
    948 
    949   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
    950   // However, they set flags and are perhaps the most surprisingly constant
    951   // time operations so we call them out here separately.
    952   case X86::IMUL16rr:
    953   case X86::IMUL16rri8:
    954   case X86::IMUL16rri:
    955   case X86::IMUL32rr:
    956   case X86::IMUL32rri8:
    957   case X86::IMUL32rri:
    958   case X86::IMUL64rr:
    959   case X86::IMUL64rri32:
    960   case X86::IMUL64rri8:
    961 
    962   // Bit scanning and counting instructions that are somewhat surprisingly
    963   // constant time as they scan across bits and do other fairly complex
    964   // operations like popcnt, but are believed to be constant time on x86.
    965   // However, these set flags.
    966   case X86::BSF16rr:
    967   case X86::BSF32rr:
    968   case X86::BSF64rr:
    969   case X86::BSR16rr:
    970   case X86::BSR32rr:
    971   case X86::BSR64rr:
    972   case X86::LZCNT16rr:
    973   case X86::LZCNT32rr:
    974   case X86::LZCNT64rr:
    975   case X86::POPCNT16rr:
    976   case X86::POPCNT32rr:
    977   case X86::POPCNT64rr:
    978   case X86::TZCNT16rr:
    979   case X86::TZCNT32rr:
    980   case X86::TZCNT64rr:
    981 
    982   // Bit manipulation instructions are effectively combinations of basic
    983   // arithmetic ops, and should still execute in constant time. These also
    984   // set flags.
    985   case X86::BLCFILL32rr:
    986   case X86::BLCFILL64rr:
    987   case X86::BLCI32rr:
    988   case X86::BLCI64rr:
    989   case X86::BLCIC32rr:
    990   case X86::BLCIC64rr:
    991   case X86::BLCMSK32rr:
    992   case X86::BLCMSK64rr:
    993   case X86::BLCS32rr:
    994   case X86::BLCS64rr:
    995   case X86::BLSFILL32rr:
    996   case X86::BLSFILL64rr:
    997   case X86::BLSI32rr:
    998   case X86::BLSI64rr:
    999   case X86::BLSIC32rr:
   1000   case X86::BLSIC64rr:
   1001   case X86::BLSMSK32rr:
   1002   case X86::BLSMSK64rr:
   1003   case X86::BLSR32rr:
   1004   case X86::BLSR64rr:
   1005   case X86::TZMSK32rr:
   1006   case X86::TZMSK64rr:
   1007 
   1008   // Bit extracting and clearing instructions should execute in constant time,
   1009   // and set flags.
   1010   case X86::BEXTR32rr:
   1011   case X86::BEXTR64rr:
   1012   case X86::BEXTRI32ri:
   1013   case X86::BEXTRI64ri:
   1014   case X86::BZHI32rr:
   1015   case X86::BZHI64rr:
   1016 
   1017   // Shift and rotate.
   1018   case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1:
   1019   case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
   1020   case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri:
   1021   case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1:
   1022   case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
   1023   case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri:
   1024   case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1:
   1025   case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
   1026   case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri:
   1027   case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1:
   1028   case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
   1029   case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri:
   1030   case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1:
   1031   case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
   1032   case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri:
   1033   case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
   1034   case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
   1035   case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
   1036   case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:
   1037 
   1038   // Basic arithmetic is constant time on the input but does set flags.
   1039   case X86::ADC8rr:   case X86::ADC8ri:
   1040   case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8:
   1041   case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8:
   1042   case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32:
   1043   case X86::ADD8rr:   case X86::ADD8ri:
   1044   case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8:
   1045   case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8:
   1046   case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32:
   1047   case X86::AND8rr:   case X86::AND8ri:
   1048   case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8:
   1049   case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8:
   1050   case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32:
   1051   case X86::OR8rr:    case X86::OR8ri:
   1052   case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8:
   1053   case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8:
   1054   case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32:
   1055   case X86::SBB8rr:   case X86::SBB8ri:
   1056   case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8:
   1057   case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8:
   1058   case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32:
   1059   case X86::SUB8rr:   case X86::SUB8ri:
   1060   case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8:
   1061   case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8:
   1062   case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32:
   1063   case X86::XOR8rr:   case X86::XOR8ri:
   1064   case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8:
   1065   case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8:
   1066   case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32:
   1067   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
   1068   case X86::ADCX32rr: case X86::ADCX64rr:
   1069   case X86::ADOX32rr: case X86::ADOX64rr:
   1070   case X86::ANDN32rr: case X86::ANDN64rr:
   1071   // Unary arithmetic operations.
   1072   case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
   1073   case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
   1074   case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
   1075     // Check whether the EFLAGS implicit-def is dead. We assume that this will
   1076     // always find the implicit-def because this code should only be reached
   1077     // for instructions that do in fact implicitly def this.
   1078     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
   1079       // If we would clobber EFLAGS that are used, just bail for now.
   1080       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
   1081                  MI.dump(); dbgs() << "\n");
   1082       return false;
   1083     }
   1084 
   1085     // Otherwise, fallthrough to handle these the same as instructions that
   1086     // don't set EFLAGS.
   1087     LLVM_FALLTHROUGH;
   1088 
   1089   // Unlike other arithmetic, NOT doesn't set EFLAGS.
   1090   case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:
   1091 
   1092   // Various move instructions used to zero or sign extend things. Note that we
   1093   // intentionally don't support the _NOREX variants as we can't handle that
   1094   // register constraint anyways.
   1095   case X86::MOVSX16rr8:
   1096   case X86::MOVSX32rr8: case X86::MOVSX32rr16:
   1097   case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
   1098   case X86::MOVZX16rr8:
   1099   case X86::MOVZX32rr8: case X86::MOVZX32rr16:
   1100   case X86::MOVZX64rr8: case X86::MOVZX64rr16:
   1101   case X86::MOV32rr:
   1102 
   1103   // Arithmetic instructions that are both constant time and don't set flags.
   1104   case X86::RORX32ri:
   1105   case X86::RORX64ri:
   1106   case X86::SARX32rr:
   1107   case X86::SARX64rr:
   1108   case X86::SHLX32rr:
   1109   case X86::SHLX64rr:
   1110   case X86::SHRX32rr:
   1111   case X86::SHRX64rr:
   1112 
   1113   // LEA doesn't actually access memory, and its arithmetic is constant time.
   1114   case X86::LEA16r:
   1115   case X86::LEA32r:
   1116   case X86::LEA64_32r:
   1117   case X86::LEA64r:
   1118     return true;
   1119   }
   1120 }
   1121 
   1122 /// Returns true if the instruction has no behavior (specified or otherwise)
   1123 /// that is based on the value loaded from memory or the value of any
   1124 /// non-address register operands.
   1125 ///
   1126 /// For example, if the latency of the instruction is dependent on the
   1127 /// particular bits set in any of the registers *or* any of the bits loaded from
   1128 /// memory.
   1129 ///
   1130 /// A classical example of something that is inherently not data invariant is an
   1131 /// indirect jump -- the destination is loaded into icache based on the bits set
   1132 /// in the jump destination register.
   1133 ///
   1134 /// FIXME: This should become part of our instruction tables.
   1135 static bool isDataInvariantLoad(MachineInstr &MI) {
   1136   switch (MI.getOpcode()) {
   1137   default:
   1138     // By default, assume that the load will immediately leak.
   1139     return false;
   1140 
   1141   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
   1142   // However, they set flags and are perhaps the most surprisingly constant
   1143   // time operations so we call them out here separately.
   1144   case X86::IMUL16rm:
   1145   case X86::IMUL16rmi8:
   1146   case X86::IMUL16rmi:
   1147   case X86::IMUL32rm:
   1148   case X86::IMUL32rmi8:
   1149   case X86::IMUL32rmi:
   1150   case X86::IMUL64rm:
   1151   case X86::IMUL64rmi32:
   1152   case X86::IMUL64rmi8:
   1153 
   1154   // Bit scanning and counting instructions that are somewhat surprisingly
   1155   // constant time as they scan across bits and do other fairly complex
   1156   // operations like popcnt, but are believed to be constant time on x86.
   1157   // However, these set flags.
   1158   case X86::BSF16rm:
   1159   case X86::BSF32rm:
   1160   case X86::BSF64rm:
   1161   case X86::BSR16rm:
   1162   case X86::BSR32rm:
   1163   case X86::BSR64rm:
   1164   case X86::LZCNT16rm:
   1165   case X86::LZCNT32rm:
   1166   case X86::LZCNT64rm:
   1167   case X86::POPCNT16rm:
   1168   case X86::POPCNT32rm:
   1169   case X86::POPCNT64rm:
   1170   case X86::TZCNT16rm:
   1171   case X86::TZCNT32rm:
   1172   case X86::TZCNT64rm:
   1173 
   1174   // Bit manipulation instructions are effectively combinations of basic
   1175   // arithmetic ops, and should still execute in constant time. These also
   1176   // set flags.
   1177   case X86::BLCFILL32rm:
   1178   case X86::BLCFILL64rm:
   1179   case X86::BLCI32rm:
   1180   case X86::BLCI64rm:
   1181   case X86::BLCIC32rm:
   1182   case X86::BLCIC64rm:
   1183   case X86::BLCMSK32rm:
   1184   case X86::BLCMSK64rm:
   1185   case X86::BLCS32rm:
   1186   case X86::BLCS64rm:
   1187   case X86::BLSFILL32rm:
   1188   case X86::BLSFILL64rm:
   1189   case X86::BLSI32rm:
   1190   case X86::BLSI64rm:
   1191   case X86::BLSIC32rm:
   1192   case X86::BLSIC64rm:
   1193   case X86::BLSMSK32rm:
   1194   case X86::BLSMSK64rm:
   1195   case X86::BLSR32rm:
   1196   case X86::BLSR64rm:
   1197   case X86::TZMSK32rm:
   1198   case X86::TZMSK64rm:
   1199 
   1200   // Bit extracting and clearing instructions should execute in constant time,
   1201   // and set flags.
   1202   case X86::BEXTR32rm:
   1203   case X86::BEXTR64rm:
   1204   case X86::BEXTRI32mi:
   1205   case X86::BEXTRI64mi:
   1206   case X86::BZHI32rm:
   1207   case X86::BZHI64rm:
   1208 
   1209   // Basic arithmetic is constant time on the input but does set flags.
   1210   case X86::ADC8rm:
   1211   case X86::ADC16rm:
   1212   case X86::ADC32rm:
   1213   case X86::ADC64rm:
   1214   case X86::ADCX32rm:
   1215   case X86::ADCX64rm:
   1216   case X86::ADD8rm:
   1217   case X86::ADD16rm:
   1218   case X86::ADD32rm:
   1219   case X86::ADD64rm:
   1220   case X86::ADOX32rm:
   1221   case X86::ADOX64rm:
   1222   case X86::AND8rm:
   1223   case X86::AND16rm:
   1224   case X86::AND32rm:
   1225   case X86::AND64rm:
   1226   case X86::ANDN32rm:
   1227   case X86::ANDN64rm:
   1228   case X86::OR8rm:
   1229   case X86::OR16rm:
   1230   case X86::OR32rm:
   1231   case X86::OR64rm:
   1232   case X86::SBB8rm:
   1233   case X86::SBB16rm:
   1234   case X86::SBB32rm:
   1235   case X86::SBB64rm:
   1236   case X86::SUB8rm:
   1237   case X86::SUB16rm:
   1238   case X86::SUB32rm:
   1239   case X86::SUB64rm:
   1240   case X86::XOR8rm:
   1241   case X86::XOR16rm:
   1242   case X86::XOR32rm:
   1243   case X86::XOR64rm:
   1244     // Check whether the EFLAGS implicit-def is dead. We assume that this will
   1245     // always find the implicit-def because this code should only be reached
   1246     // for instructions that do in fact implicitly def this.
   1247     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
   1248       // If we would clobber EFLAGS that are used, just bail for now.
   1249       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
   1250                  MI.dump(); dbgs() << "\n");
   1251       return false;
   1252     }
   1253 
   1254     // Otherwise, fallthrough to handle these the same as instructions that
   1255     // don't set EFLAGS.
   1256     LLVM_FALLTHROUGH;
   1257 
   1258   // Integer multiply w/o affecting flags is still believed to be constant
   1259   // time on x86. Called out separately as this is among the most surprising
   1260   // instructions to exhibit that behavior.
   1261   case X86::MULX32rm:
   1262   case X86::MULX64rm:
   1263 
   1264   // Arithmetic instructions that are both constant time and don't set flags.
   1265   case X86::RORX32mi:
   1266   case X86::RORX64mi:
   1267   case X86::SARX32rm:
   1268   case X86::SARX64rm:
   1269   case X86::SHLX32rm:
   1270   case X86::SHLX64rm:
   1271   case X86::SHRX32rm:
   1272   case X86::SHRX64rm:
   1273 
   1274   // Conversions are believed to be constant time and don't set flags.
   1275   case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
   1276   case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm:
   1277   case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
   1278   case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm:
   1279   case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm:
   1280   case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm:
   1281   case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm:
   1282   case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm:
   1283   case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm:
   1284   case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm:
   1285   // AVX512 added unsigned integer conversions.
   1286   case X86::VCVTTSD2USI64Zrm:
   1287   case X86::VCVTTSD2USIZrm:
   1288   case X86::VCVTTSS2USI64Zrm:
   1289   case X86::VCVTTSS2USIZrm:
   1290   case X86::VCVTUSI2SDZrm:
   1291   case X86::VCVTUSI642SDZrm:
   1292   case X86::VCVTUSI2SSZrm:
   1293   case X86::VCVTUSI642SSZrm:
   1294 
   1295   // Loads to register don't set flags.
   1296   case X86::MOV8rm:
   1297   case X86::MOV8rm_NOREX:
   1298   case X86::MOV16rm:
   1299   case X86::MOV32rm:
   1300   case X86::MOV64rm:
   1301   case X86::MOVSX16rm8:
   1302   case X86::MOVSX32rm16:
   1303   case X86::MOVSX32rm8:
   1304   case X86::MOVSX32rm8_NOREX:
   1305   case X86::MOVSX64rm16:
   1306   case X86::MOVSX64rm32:
   1307   case X86::MOVSX64rm8:
   1308   case X86::MOVZX16rm8:
   1309   case X86::MOVZX32rm16:
   1310   case X86::MOVZX32rm8:
   1311   case X86::MOVZX32rm8_NOREX:
   1312   case X86::MOVZX64rm16:
   1313   case X86::MOVZX64rm8:
   1314     return true;
   1315   }
   1316 }
   1317 
   1318 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
   1319                          const TargetRegisterInfo &TRI) {
   1320   // Check if EFLAGS are alive by seeing if there is a def of them or they
   1321   // live-in, and then seeing if that def is in turn used.
   1322   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
   1323     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
   1324       // If the def is dead, then EFLAGS is not live.
   1325       if (DefOp->isDead())
   1326         return false;
   1327 
   1328       // Otherwise we've def'ed it, and it is live.
   1329       return true;
   1330     }
   1331     // While at this instruction, also check if we use and kill EFLAGS
   1332     // which means it isn't live.
   1333     if (MI.killsRegister(X86::EFLAGS, &TRI))
   1334       return false;
   1335   }
   1336 
   1337   // If we didn't find anything conclusive (neither definitely alive or
   1338   // definitely dead) return whether it lives into the block.
   1339   return MBB.isLiveIn(X86::EFLAGS);
   1340 }
   1341 
   1342 /// Trace the predicate state through each of the blocks in the function,
   1343 /// hardening everything necessary along the way.
   1344 ///
   1345 /// We call this routine once the initial predicate state has been established
   1346 /// for each basic block in the function in the SSA updater. This routine traces
   1347 /// it through the instructions within each basic block, and for non-returning
   1348 /// blocks informs the SSA updater about the final state that lives out of the
   1349 /// block. Along the way, it hardens any vulnerable instruction using the
   1350 /// currently valid predicate state. We have to do these two things together
   1351 /// because the SSA updater only works across blocks. Within a block, we track
   1352 /// the current predicate state directly and update it as it changes.
   1353 ///
   1354 /// This operates in two passes over each block. First, we analyze the loads in
   1355 /// the block to determine which strategy will be used to harden them: hardening
   1356 /// the address or hardening the loaded value when loaded into a register
   1357 /// amenable to hardening. We have to process these first because the two
   1358 /// strategies may interact -- later hardening may change what strategy we wish
   1359 /// to use. We also will analyze data dependencies between loads and avoid
   1360 /// hardening those loads that are data dependent on a load with a hardened
   1361 /// address. We also skip hardening loads already behind an LFENCE as that is
   1362 /// sufficient to harden them against misspeculation.
   1363 ///
   1364 /// Second, we actively trace the predicate state through the block, applying
   1365 /// the hardening steps we determined necessary in the first pass as we go.
   1366 ///
   1367 /// These two passes are applied to each basic block. We operate one block at a
   1368 /// time to simplify reasoning about reachability and sequencing.
   1369 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
   1370     MachineFunction &MF) {
   1371   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
   1372   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
   1373 
   1374   SmallSet<unsigned, 16> HardenedAddrRegs;
   1375 
   1376   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
   1377 
   1378   // Track the set of load-dependent registers through the basic block. Because
   1379   // the values of these registers have an existing data dependency on a loaded
   1380   // value which we would have checked, we can omit any checks on them.
   1381   SparseBitVector<> LoadDepRegs;
   1382 
   1383   for (MachineBasicBlock &MBB : MF) {
   1384     // The first pass over the block: collect all the loads which can have their
   1385     // loaded value hardened and all the loads that instead need their address
   1386     // hardened. During this walk we propagate load dependence for address
   1387     // hardened loads and also look for LFENCE to stop hardening wherever
   1388     // possible. When deciding whether or not to harden the loaded value or not,
   1389     // we check to see if any registers used in the address will have been
   1390     // hardened at this point and if so, harden any remaining address registers
   1391     // as that often successfully re-uses hardened addresses and minimizes
   1392     // instructions.
   1393     //
   1394     // FIXME: We should consider an aggressive mode where we continue to keep as
   1395     // many loads value hardened even when some address register hardening would
   1396     // be free (due to reuse).
   1397     //
   1398     // Note that we only need this pass if we are actually hardening loads.
   1399     if (HardenLoads)
   1400       for (MachineInstr &MI : MBB) {
   1401         // We naively assume that all def'ed registers of an instruction have
   1402         // a data dependency on all of their operands.
   1403         // FIXME: Do a more careful analysis of x86 to build a conservative
   1404         // model here.
   1405         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
   1406               return Op.isReg() && LoadDepRegs.test(Op.getReg());
   1407             }))
   1408           for (MachineOperand &Def : MI.defs())
   1409             if (Def.isReg())
   1410               LoadDepRegs.set(Def.getReg());
   1411 
   1412         // Both Intel and AMD are guiding that they will change the semantics of
   1413         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
   1414         // no more need to guard things in this block.
   1415         if (MI.getOpcode() == X86::LFENCE)
   1416           break;
   1417 
   1418         // If this instruction cannot load, nothing to do.
   1419         if (!MI.mayLoad())
   1420           continue;
   1421 
   1422         // Some instructions which "load" are trivially safe or unimportant.
   1423         if (MI.getOpcode() == X86::MFENCE)
   1424           continue;
   1425 
   1426         // Extract the memory operand information about this instruction.
   1427         // FIXME: This doesn't handle loading pseudo instructions which we often
   1428         // could handle with similarly generic logic. We probably need to add an
   1429         // MI-layer routine similar to the MC-layer one we use here which maps
   1430         // pseudos much like this maps real instructions.
   1431         const MCInstrDesc &Desc = MI.getDesc();
   1432         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
   1433         if (MemRefBeginIdx < 0) {
   1434           LLVM_DEBUG(dbgs()
   1435                          << "WARNING: unable to harden loading instruction: ";
   1436                      MI.dump());
   1437           continue;
   1438         }
   1439 
   1440         MemRefBeginIdx += X86II::getOperandBias(Desc);
   1441 
   1442         MachineOperand &BaseMO =
   1443             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
   1444         MachineOperand &IndexMO =
   1445             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
   1446 
   1447         // If we have at least one (non-frame-index, non-RIP) register operand,
   1448         // and neither operand is load-dependent, we need to check the load.
   1449         unsigned BaseReg = 0, IndexReg = 0;
   1450         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
   1451             BaseMO.getReg() != X86::NoRegister)
   1452           BaseReg = BaseMO.getReg();
   1453         if (IndexMO.getReg() != X86::NoRegister)
   1454           IndexReg = IndexMO.getReg();
   1455 
   1456         if (!BaseReg && !IndexReg)
   1457           // No register operands!
   1458           continue;
   1459 
   1460         // If any register operand is dependent, this load is dependent and we
   1461         // needn't check it.
   1462         // FIXME: Is this true in the case where we are hardening loads after
   1463         // they complete? Unclear, need to investigate.
   1464         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
   1465             (IndexReg && LoadDepRegs.test(IndexReg)))
   1466           continue;
   1467 
   1468         // If post-load hardening is enabled, this load is compatible with
   1469         // post-load hardening, and we aren't already going to harden one of the
   1470         // address registers, queue it up to be hardened post-load. Notably,
   1471         // even once hardened this won't introduce a useful dependency that
   1472         // could prune out subsequent loads.
   1473         if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
   1474             MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
   1475             canHardenRegister(MI.getOperand(0).getReg()) &&
   1476             !HardenedAddrRegs.count(BaseReg) &&
   1477             !HardenedAddrRegs.count(IndexReg)) {
   1478           HardenPostLoad.insert(&MI);
   1479           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
   1480           continue;
   1481         }
   1482 
   1483         // Record this instruction for address hardening and record its register
   1484         // operands as being address-hardened.
   1485         HardenLoadAddr.insert(&MI);
   1486         if (BaseReg)
   1487           HardenedAddrRegs.insert(BaseReg);
   1488         if (IndexReg)
   1489           HardenedAddrRegs.insert(IndexReg);
   1490 
   1491         for (MachineOperand &Def : MI.defs())
   1492           if (Def.isReg())
   1493             LoadDepRegs.set(Def.getReg());
   1494       }
   1495 
   1496     // Now re-walk the instructions in the basic block, and apply whichever
   1497     // hardening strategy we have elected. Note that we do this in a second
   1498     // pass specifically so that we have the complete set of instructions for
   1499     // which we will do post-load hardening and can defer it in certain
   1500     // circumstances.
   1501     //
   1502     // FIXME: This could probably be made even more effective by doing it
   1503     // across the entire function. Rather than just walking the flat list
   1504     // backwards here, we could walk the function in PO and each block bottom
   1505     // up, allowing us to in some cases sink hardening across block blocks. As
   1506     // long as the in-block predicate state is used at the eventual hardening
   1507     // site, this remains safe.
   1508     for (MachineInstr &MI : MBB) {
   1509       if (HardenLoads) {
   1510         // We cannot both require hardening the def of a load and its address.
   1511         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
   1512                "Requested to harden both the address and def of a load!");
   1513 
   1514         // Check if this is a load whose address needs to be hardened.
   1515         if (HardenLoadAddr.erase(&MI)) {
   1516           const MCInstrDesc &Desc = MI.getDesc();
   1517           int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
   1518           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
   1519 
   1520           MemRefBeginIdx += X86II::getOperandBias(Desc);
   1521 
   1522           MachineOperand &BaseMO =
   1523               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
   1524           MachineOperand &IndexMO =
   1525               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
   1526           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
   1527           continue;
   1528         }
   1529 
   1530         // Test if this instruction is one of our post load instructions (and
   1531         // remove it from the set if so).
   1532         if (HardenPostLoad.erase(&MI)) {
   1533           assert(!MI.isCall() && "Must not try to post-load harden a call!");
   1534 
   1535           // If this is a data-invariant load, we want to try and sink any
   1536           // hardening as far as possible.
   1537           if (isDataInvariantLoad(MI)) {
   1538             // Sink the instruction we'll need to harden as far as we can down
   1539             // the graph.
   1540             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
   1541 
   1542             // If we managed to sink this instruction, update everything so we
   1543             // harden that instruction when we reach it in the instruction
   1544             // sequence.
   1545             if (SunkMI != &MI) {
   1546               // If in sinking there was no instruction needing to be hardened,
   1547               // we're done.
   1548               if (!SunkMI)
   1549                 continue;
   1550 
   1551               // Otherwise, add this to the set of defs we harden.
   1552               HardenPostLoad.insert(SunkMI);
   1553               continue;
   1554             }
   1555           }
   1556 
   1557           unsigned HardenedReg = hardenPostLoad(MI);
   1558 
   1559           // Mark the resulting hardened register as such so we don't re-harden.
   1560           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
   1561 
   1562           continue;
   1563         }
   1564 
   1565         // Check for an indirect call or branch that may need its input hardened
   1566         // even if we couldn't find the specific load used, or were able to
   1567         // avoid hardening it for some reason. Note that here we cannot break
   1568         // out afterward as we may still need to handle any call aspect of this
   1569         // instruction.
   1570         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
   1571           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
   1572       }
   1573 
   1574       // After we finish hardening loads we handle interprocedural hardening if
   1575       // enabled and relevant for this instruction.
   1576       if (!HardenInterprocedurally)
   1577         continue;
   1578       if (!MI.isCall() && !MI.isReturn())
   1579         continue;
   1580 
   1581       // If this is a direct return (IE, not a tail call) just directly harden
   1582       // it.
   1583       if (MI.isReturn() && !MI.isCall()) {
   1584         hardenReturnInstr(MI);
   1585         continue;
   1586       }
   1587 
   1588       // Otherwise we have a call. We need to handle transferring the predicate
   1589       // state into a call and recovering it after the call returns unless this
   1590       // is a tail call.
   1591       assert(MI.isCall() && "Should only reach here for calls!");
   1592       tracePredStateThroughCall(MI);
   1593     }
   1594 
   1595     HardenPostLoad.clear();
   1596     HardenLoadAddr.clear();
   1597     HardenedAddrRegs.clear();
   1598     AddrRegToHardenedReg.clear();
   1599 
   1600     // Currently, we only track data-dependent loads within a basic block.
   1601     // FIXME: We should see if this is necessary or if we could be more
   1602     // aggressive here without opening up attack avenues.
   1603     LoadDepRegs.clear();
   1604   }
   1605 }
   1606 
   1607 /// Save EFLAGS into the returned GPR. This can in turn be restored with
   1608 /// `restoreEFLAGS`.
   1609 ///
   1610 /// Note that LLVM can only lower very simple patterns of saved and restored
   1611 /// EFLAGS registers. The restore should always be within the same basic block
   1612 /// as the save so that no PHI nodes are inserted.
   1613 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
   1614     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
   1615     DebugLoc Loc) {
   1616   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
   1617   // what instruction selection does.
   1618   unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
   1619   // We directly copy the FLAGS register and rely on later lowering to clean
   1620   // this up into the appropriate setCC instructions.
   1621   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
   1622   ++NumInstsInserted;
   1623   return Reg;
   1624 }
   1625 
   1626 /// Restore EFLAGS from the provided GPR. This should be produced by
   1627 /// `saveEFLAGS`.
   1628 ///
   1629 /// This must be done within the same basic block as the save in order to
   1630 /// reliably lower.
   1631 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
   1632     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
   1633     unsigned Reg) {
   1634   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
   1635   ++NumInstsInserted;
   1636 }
   1637 
   1638 /// Takes the current predicate state (in a register) and merges it into the
   1639 /// stack pointer. The state is essentially a single bit, but we merge this in
   1640 /// a way that won't form non-canonical pointers and also will be preserved
   1641 /// across normal stack adjustments.
   1642 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
   1643     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
   1644     unsigned PredStateReg) {
   1645   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
   1646   // FIXME: This hard codes a shift distance based on the number of bits needed
   1647   // to stay canonical on 64-bit. We should compute this somehow and support
   1648   // 32-bit as part of that.
   1649   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
   1650                     .addReg(PredStateReg, RegState::Kill)
   1651                     .addImm(47);
   1652   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
   1653   ++NumInstsInserted;
   1654   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
   1655                  .addReg(X86::RSP)
   1656                  .addReg(TmpReg, RegState::Kill);
   1657   OrI->addRegisterDead(X86::EFLAGS, TRI);
   1658   ++NumInstsInserted;
   1659 }
   1660 
   1661 /// Extracts the predicate state stored in the high bits of the stack pointer.
   1662 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
   1663     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
   1664     DebugLoc Loc) {
   1665   unsigned PredStateReg = MRI->createVirtualRegister(PS->RC);
   1666   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
   1667 
   1668   // We know that the stack pointer will have any preserved predicate state in
   1669   // its high bit. We just want to smear this across the other bits. Turns out,
   1670   // this is exactly what an arithmetic right shift does.
   1671   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
   1672       .addReg(X86::RSP);
   1673   auto ShiftI =
   1674       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
   1675           .addReg(TmpReg, RegState::Kill)
   1676           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
   1677   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
   1678   ++NumInstsInserted;
   1679 
   1680   return PredStateReg;
   1681 }
   1682 
   1683 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
   1684     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
   1685     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
   1686   MachineBasicBlock &MBB = *MI.getParent();
   1687   DebugLoc Loc = MI.getDebugLoc();
   1688 
   1689   // Check if EFLAGS are alive by seeing if there is a def of them or they
   1690   // live-in, and then seeing if that def is in turn used.
   1691   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
   1692 
   1693   SmallVector<MachineOperand *, 2> HardenOpRegs;
   1694 
   1695   if (BaseMO.isFI()) {
   1696     // A frame index is never a dynamically controllable load, so only
   1697     // harden it if we're covering fixed address loads as well.
   1698     LLVM_DEBUG(
   1699         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
   1700         MI.dump(); dbgs() << "\n");
   1701   } else if (BaseMO.getReg() == X86::RIP ||
   1702              BaseMO.getReg() == X86::NoRegister) {
   1703     // For both RIP-relative addressed loads or absolute loads, we cannot
   1704     // meaningfully harden them because the address being loaded has no
   1705     // dynamic component.
   1706     //
   1707     // FIXME: When using a segment base (like TLS does) we end up with the
   1708     // dynamic address being the base plus -1 because we can't mutate the
   1709     // segment register here. This allows the signed 32-bit offset to point at
   1710     // valid segment-relative addresses and load them successfully.
   1711     LLVM_DEBUG(
   1712         dbgs() << "  Cannot harden base of "
   1713                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
   1714                << " address in a load!");
   1715   } else {
   1716     assert(BaseMO.isReg() &&
   1717            "Only allowed to have a frame index or register base.");
   1718     HardenOpRegs.push_back(&BaseMO);
   1719   }
   1720 
   1721   if (IndexMO.getReg() != X86::NoRegister &&
   1722       (HardenOpRegs.empty() ||
   1723        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
   1724     HardenOpRegs.push_back(&IndexMO);
   1725 
   1726   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
   1727          "Should have exactly one or two registers to harden!");
   1728   assert((HardenOpRegs.size() == 1 ||
   1729           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
   1730          "Should not have two of the same registers!");
   1731 
   1732   // Remove any registers that have alreaded been checked.
   1733   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
   1734     // See if this operand's register has already been checked.
   1735     auto It = AddrRegToHardenedReg.find(Op->getReg());
   1736     if (It == AddrRegToHardenedReg.end())
   1737       // Not checked, so retain this one.
   1738       return false;
   1739 
   1740     // Otherwise, we can directly update this operand and remove it.
   1741     Op->setReg(It->second);
   1742     return true;
   1743   });
   1744   // If there are none left, we're done.
   1745   if (HardenOpRegs.empty())
   1746     return;
   1747 
   1748   // Compute the current predicate state.
   1749   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
   1750 
   1751   auto InsertPt = MI.getIterator();
   1752 
   1753   // If EFLAGS are live and we don't have access to instructions that avoid
   1754   // clobbering EFLAGS we need to save and restore them. This in turn makes
   1755   // the EFLAGS no longer live.
   1756   unsigned FlagsReg = 0;
   1757   if (EFLAGSLive && !Subtarget->hasBMI2()) {
   1758     EFLAGSLive = false;
   1759     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
   1760   }
   1761 
   1762   for (MachineOperand *Op : HardenOpRegs) {
   1763     unsigned OpReg = Op->getReg();
   1764     auto *OpRC = MRI->getRegClass(OpReg);
   1765     unsigned TmpReg = MRI->createVirtualRegister(OpRC);
   1766 
   1767     // If this is a vector register, we'll need somewhat custom logic to handle
   1768     // hardening it.
   1769     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
   1770                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
   1771       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
   1772       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
   1773 
   1774       // Move our state into a vector register.
   1775       // FIXME: We could skip this at the cost of longer encodings with AVX-512
   1776       // but that doesn't seem likely worth it.
   1777       unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
   1778       auto MovI =
   1779           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
   1780               .addReg(StateReg);
   1781       (void)MovI;
   1782       ++NumInstsInserted;
   1783       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
   1784 
   1785       // Broadcast it across the vector register.
   1786       unsigned VBStateReg = MRI->createVirtualRegister(OpRC);
   1787       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
   1788                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
   1789                                                   : X86::VPBROADCASTQYrr),
   1790                                 VBStateReg)
   1791                             .addReg(VStateReg);
   1792       (void)BroadcastI;
   1793       ++NumInstsInserted;
   1794       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
   1795                  dbgs() << "\n");
   1796 
   1797       // Merge our potential poison state into the value with a vector or.
   1798       auto OrI =
   1799           BuildMI(MBB, InsertPt, Loc,
   1800                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
   1801               .addReg(VBStateReg)
   1802               .addReg(OpReg);
   1803       (void)OrI;
   1804       ++NumInstsInserted;
   1805       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
   1806     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
   1807                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
   1808                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
   1809       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
   1810       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
   1811       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
   1812       if (Is128Bit || Is256Bit)
   1813         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
   1814 
   1815       // Broadcast our state into a vector register.
   1816       unsigned VStateReg = MRI->createVirtualRegister(OpRC);
   1817       unsigned BroadcastOp =
   1818           Is128Bit ? X86::VPBROADCASTQrZ128r
   1819                    : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
   1820       auto BroadcastI =
   1821           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
   1822               .addReg(StateReg);
   1823       (void)BroadcastI;
   1824       ++NumInstsInserted;
   1825       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
   1826                  dbgs() << "\n");
   1827 
   1828       // Merge our potential poison state into the value with a vector or.
   1829       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
   1830                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
   1831       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
   1832                      .addReg(VStateReg)
   1833                      .addReg(OpReg);
   1834       (void)OrI;
   1835       ++NumInstsInserted;
   1836       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
   1837     } else {
   1838       // FIXME: Need to support GR32 here for 32-bit code.
   1839       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
   1840              "Not a supported register class for address hardening!");
   1841 
   1842       if (!EFLAGSLive) {
   1843         // Merge our potential poison state into the value with an or.
   1844         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
   1845                        .addReg(StateReg)
   1846                        .addReg(OpReg);
   1847         OrI->addRegisterDead(X86::EFLAGS, TRI);
   1848         ++NumInstsInserted;
   1849         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
   1850       } else {
   1851         // We need to avoid touching EFLAGS so shift out all but the least
   1852         // significant bit using the instruction that doesn't update flags.
   1853         auto ShiftI =
   1854             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
   1855                 .addReg(OpReg)
   1856                 .addReg(StateReg);
   1857         (void)ShiftI;
   1858         ++NumInstsInserted;
   1859         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
   1860                    dbgs() << "\n");
   1861       }
   1862     }
   1863 
   1864     // Record this register as checked and update the operand.
   1865     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
   1866            "Should not have checked this register yet!");
   1867     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
   1868     Op->setReg(TmpReg);
   1869     ++NumAddrRegsHardened;
   1870   }
   1871 
   1872   // And restore the flags if needed.
   1873   if (FlagsReg)
   1874     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
   1875 }
   1876 
   1877 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
   1878     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
   1879   assert(isDataInvariantLoad(InitialMI) &&
   1880          "Cannot get here with a non-invariant load!");
   1881 
   1882   // See if we can sink hardening the loaded value.
   1883   auto SinkCheckToSingleUse =
   1884       [&](MachineInstr &MI) -> Optional<MachineInstr *> {
   1885     unsigned DefReg = MI.getOperand(0).getReg();
   1886 
   1887     // We need to find a single use which we can sink the check. We can
   1888     // primarily do this because many uses may already end up checked on their
   1889     // own.
   1890     MachineInstr *SingleUseMI = nullptr;
   1891     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
   1892       // If we're already going to harden this use, it is data invariant and
   1893       // within our block.
   1894       if (HardenedInstrs.count(&UseMI)) {
   1895         if (!isDataInvariantLoad(UseMI)) {
   1896           // If we've already decided to harden a non-load, we must have sunk
   1897           // some other post-load hardened instruction to it and it must itself
   1898           // be data-invariant.
   1899           assert(isDataInvariant(UseMI) &&
   1900                  "Data variant instruction being hardened!");
   1901           continue;
   1902         }
   1903 
   1904         // Otherwise, this is a load and the load component can't be data
   1905         // invariant so check how this register is being used.
   1906         const MCInstrDesc &Desc = UseMI.getDesc();
   1907         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
   1908         assert(MemRefBeginIdx >= 0 &&
   1909                "Should always have mem references here!");
   1910         MemRefBeginIdx += X86II::getOperandBias(Desc);
   1911 
   1912         MachineOperand &BaseMO =
   1913             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
   1914         MachineOperand &IndexMO =
   1915             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
   1916         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
   1917             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
   1918           // The load uses the register as part of its address making it not
   1919           // invariant.
   1920           return {};
   1921 
   1922         continue;
   1923       }
   1924 
   1925       if (SingleUseMI)
   1926         // We already have a single use, this would make two. Bail.
   1927         return {};
   1928 
   1929       // If this single use isn't data invariant, isn't in this block, or has
   1930       // interfering EFLAGS, we can't sink the hardening to it.
   1931       if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
   1932         return {};
   1933 
   1934       // If this instruction defines multiple registers bail as we won't harden
   1935       // all of them.
   1936       if (UseMI.getDesc().getNumDefs() > 1)
   1937         return {};
   1938 
   1939       // If this register isn't a virtual register we can't walk uses of sanely,
   1940       // just bail. Also check that its register class is one of the ones we
   1941       // can harden.
   1942       unsigned UseDefReg = UseMI.getOperand(0).getReg();
   1943       if (!TRI->isVirtualRegister(UseDefReg) ||
   1944           !canHardenRegister(UseDefReg))
   1945         return {};
   1946 
   1947       SingleUseMI = &UseMI;
   1948     }
   1949 
   1950     // If SingleUseMI is still null, there is no use that needs its own
   1951     // checking. Otherwise, it is the single use that needs checking.
   1952     return {SingleUseMI};
   1953   };
   1954 
   1955   MachineInstr *MI = &InitialMI;
   1956   while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
   1957     // Update which MI we're checking now.
   1958     MI = *SingleUse;
   1959     if (!MI)
   1960       break;
   1961   }
   1962 
   1963   return MI;
   1964 }
   1965 
   1966 bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
   1967   auto *RC = MRI->getRegClass(Reg);
   1968   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
   1969   if (RegBytes > 8)
   1970     // We don't support post-load hardening of vectors.
   1971     return false;
   1972 
   1973   // If this register class is explicitly constrained to a class that doesn't
   1974   // require REX prefix, we may not be able to satisfy that constraint when
   1975   // emitting the hardening instructions, so bail out here.
   1976   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
   1977   // end up both with a NOREX and REX-only register as operands to the hardening
   1978   // instructions. It would be better to fix that code to handle this situation
   1979   // rather than hack around it in this way.
   1980   const TargetRegisterClass *NOREXRegClasses[] = {
   1981       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
   1982       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
   1983   if (RC == NOREXRegClasses[Log2_32(RegBytes)])
   1984     return false;
   1985 
   1986   const TargetRegisterClass *GPRRegClasses[] = {
   1987       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
   1988       &X86::GR64RegClass};
   1989   return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]);
   1990 }
   1991 
   1992 /// Harden a value in a register.
   1993 ///
   1994 /// This is the low-level logic to fully harden a value sitting in a register
   1995 /// against leaking during speculative execution.
   1996 ///
   1997 /// Unlike hardening an address that is used by a load, this routine is required
   1998 /// to hide *all* incoming bits in the register.
   1999 ///
   2000 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
   2001 /// larger than the predicate state register. FIXME: We should support vector
   2002 /// registers here by broadcasting the predicate state.
   2003 ///
   2004 /// The new, hardened virtual register is returned. It will have the same
   2005 /// register class as `Reg`.
   2006 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
   2007     unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
   2008     DebugLoc Loc) {
   2009   assert(canHardenRegister(Reg) && "Cannot harden this register!");
   2010   assert(TRI->isVirtualRegister(Reg) && "Cannot harden a physical register!");
   2011 
   2012   auto *RC = MRI->getRegClass(Reg);
   2013   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
   2014 
   2015   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
   2016 
   2017   // FIXME: Need to teach this about 32-bit mode.
   2018   if (Bytes != 8) {
   2019     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
   2020     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
   2021     unsigned NarrowStateReg = MRI->createVirtualRegister(RC);
   2022     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
   2023         .addReg(StateReg, 0, SubRegImm);
   2024     StateReg = NarrowStateReg;
   2025   }
   2026 
   2027   unsigned FlagsReg = 0;
   2028   if (isEFLAGSLive(MBB, InsertPt, *TRI))
   2029     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
   2030 
   2031   unsigned NewReg = MRI->createVirtualRegister(RC);
   2032   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
   2033   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
   2034   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
   2035                  .addReg(StateReg)
   2036                  .addReg(Reg);
   2037   OrI->addRegisterDead(X86::EFLAGS, TRI);
   2038   ++NumInstsInserted;
   2039   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
   2040 
   2041   if (FlagsReg)
   2042     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
   2043 
   2044   return NewReg;
   2045 }
   2046 
   2047 /// Harden a load by hardening the loaded value in the defined register.
   2048 ///
   2049 /// We can harden a non-leaking load into a register without touching the
   2050 /// address by just hiding all of the loaded bits during misspeculation. We use
   2051 /// an `or` instruction to do this because we set up our poison value as all
   2052 /// ones. And the goal is just for the loaded bits to not be exposed to
   2053 /// execution and coercing them to one is sufficient.
   2054 ///
   2055 /// Returns the newly hardened register.
   2056 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
   2057   MachineBasicBlock &MBB = *MI.getParent();
   2058   DebugLoc Loc = MI.getDebugLoc();
   2059 
   2060   auto &DefOp = MI.getOperand(0);
   2061   unsigned OldDefReg = DefOp.getReg();
   2062   auto *DefRC = MRI->getRegClass(OldDefReg);
   2063 
   2064   // Because we want to completely replace the uses of this def'ed value with
   2065   // the hardened value, create a dedicated new register that will only be used
   2066   // to communicate the unhardened value to the hardening.
   2067   unsigned UnhardenedReg = MRI->createVirtualRegister(DefRC);
   2068   DefOp.setReg(UnhardenedReg);
   2069 
   2070   // Now harden this register's value, getting a hardened reg that is safe to
   2071   // use. Note that we insert the instructions to compute this *after* the
   2072   // defining instruction, not before it.
   2073   unsigned HardenedReg = hardenValueInRegister(
   2074       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
   2075 
   2076   // Finally, replace the old register (which now only has the uses of the
   2077   // original def) with the hardened register.
   2078   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
   2079 
   2080   ++NumPostLoadRegsHardened;
   2081   return HardenedReg;
   2082 }
   2083 
   2084 /// Harden a return instruction.
   2085 ///
   2086 /// Returns implicitly perform a load which we need to harden. Without hardening
   2087 /// this load, an attacker my speculatively write over the return address to
   2088 /// steer speculation of the return to an attacker controlled address. This is
   2089 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
   2090 /// this paper:
   2091 /// https://people.csail.mit.edu/vlk/spectre11.pdf
   2092 ///
   2093 /// We can harden this by introducing an LFENCE that will delay any load of the
   2094 /// return address until prior instructions have retired (and thus are not being
   2095 /// speculated), or we can harden the address used by the implicit load: the
   2096 /// stack pointer.
   2097 ///
   2098 /// If we are not using an LFENCE, hardening the stack pointer has an additional
   2099 /// benefit: it allows us to pass the predicate state accumulated in this
   2100 /// function back to the caller. In the absence of a BCBS attack on the return,
   2101 /// the caller will typically be resumed and speculatively executed due to the
   2102 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
   2103 /// priority. It is possible that some code from the caller will be executed
   2104 /// speculatively even during a BCBS-attacked return until the steering takes
   2105 /// effect. Whenever this happens, the caller can recover the (poisoned)
   2106 /// predicate state from the stack pointer and continue to harden loads.
   2107 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
   2108   MachineBasicBlock &MBB = *MI.getParent();
   2109   DebugLoc Loc = MI.getDebugLoc();
   2110   auto InsertPt = MI.getIterator();
   2111 
   2112   if (FenceCallAndRet) {
   2113     // Simply forcibly block speculation of loads out of the function by using
   2114     // an LFENCE. This is potentially a heavy-weight mitigation strategy, but
   2115     // should be secure, is simple from an ABI perspective, and the cost can be
   2116     // minimized through inlining.
   2117     //
   2118     // FIXME: We should investigate ways to establish a strong data-dependency
   2119     // on the return. However, poisoning the stack pointer is unlikely to work
   2120     // because the return is *predicted* rather than relying on the load of the
   2121     // return address to actually resolve.
   2122     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LFENCE));
   2123     ++NumInstsInserted;
   2124     ++NumLFENCEsInserted;
   2125     return;
   2126   }
   2127 
   2128   // Take our predicate state, shift it to the high 17 bits (so that we keep
   2129   // pointers canonical) and merge it into RSP. This will allow the caller to
   2130   // extract it when we return (speculatively).
   2131   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
   2132 }
   2133 
   2134 /// Trace the predicate state through a call.
   2135 ///
   2136 /// There are several layers of this needed to handle the full complexity of
   2137 /// calls.
   2138 ///
   2139 /// First, we need to send the predicate state into the called function. We do
   2140 /// this by merging it into the high bits of the stack pointer.
   2141 ///
   2142 /// For tail calls, this is all we need to do.
   2143 ///
   2144 /// For calls where we might return to control flow, we further need to extract
   2145 /// the predicate state built up within that function from the high bits of the
   2146 /// stack pointer, and make that the newly available predicate state.
   2147 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
   2148     MachineInstr &MI) {
   2149   MachineBasicBlock &MBB = *MI.getParent();
   2150   auto InsertPt = MI.getIterator();
   2151   DebugLoc Loc = MI.getDebugLoc();
   2152 
   2153   // First, we transfer the predicate state into the called function by merging
   2154   // it into the stack pointer. This will kill the current def of the state.
   2155   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
   2156   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
   2157 
   2158   // If this call is also a return, it is a tail call and we don't need anything
   2159   // else to handle it so just continue.
   2160   // FIXME: We should also handle noreturn calls.
   2161   if (MI.isReturn())
   2162     return;
   2163 
   2164   // We need to step past the call and recover the predicate state from SP after
   2165   // the return, and make this new state available.
   2166   ++InsertPt;
   2167   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
   2168   PS->SSA.AddAvailableValue(&MBB, NewStateReg);
   2169 }
   2170 
   2171 /// An attacker may speculatively store over a value that is then speculatively
   2172 /// loaded and used as the target of an indirect call or jump instruction. This
   2173 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
   2174 /// in this paper:
   2175 /// https://people.csail.mit.edu/vlk/spectre11.pdf
   2176 ///
   2177 /// When this happens, the speculative execution of the call or jump will end up
   2178 /// being steered to this attacker controlled address. While most such loads
   2179 /// will be adequately hardened already, we want to ensure that they are
   2180 /// definitively treated as needing post-load hardening. While address hardening
   2181 /// is sufficient to prevent secret data from leaking to the attacker, it may
   2182 /// not be sufficient to prevent an attacker from steering speculative
   2183 /// execution. We forcibly unfolded all relevant loads above and so will always
   2184 /// have an opportunity to post-load harden here, we just need to scan for cases
   2185 /// not already flagged and add them.
   2186 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
   2187     MachineInstr &MI,
   2188     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
   2189   switch (MI.getOpcode()) {
   2190   case X86::FARCALL16m:
   2191   case X86::FARCALL32m:
   2192   case X86::FARCALL64:
   2193   case X86::FARJMP16m:
   2194   case X86::FARJMP32m:
   2195   case X86::FARJMP64:
   2196     // We don't need to harden either far calls or far jumps as they are
   2197     // safe from Spectre.
   2198     return;
   2199 
   2200   default:
   2201     break;
   2202   }
   2203 
   2204   // We should never see a loading instruction at this point, as those should
   2205   // have been unfolded.
   2206   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
   2207 
   2208   // If the first operand isn't a register, this is a branch or call
   2209   // instruction with an immediate operand which doesn't need to be hardened.
   2210   if (!MI.getOperand(0).isReg())
   2211     return;
   2212 
   2213   // For all of these, the target register is the first operand of the
   2214   // instruction.
   2215   auto &TargetOp = MI.getOperand(0);
   2216   unsigned OldTargetReg = TargetOp.getReg();
   2217 
   2218   // Try to lookup a hardened version of this register. We retain a reference
   2219   // here as we want to update the map to track any newly computed hardened
   2220   // register.
   2221   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
   2222 
   2223   // If we don't have a hardened register yet, compute one. Otherwise, just use
   2224   // the already hardened register.
   2225   //
   2226   // FIXME: It is a little suspect that we use partially hardened registers that
   2227   // only feed addresses. The complexity of partial hardening with SHRX
   2228   // continues to pile up. Should definitively measure its value and consider
   2229   // eliminating it.
   2230   if (!HardenedTargetReg)
   2231     HardenedTargetReg = hardenValueInRegister(
   2232         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
   2233 
   2234   // Set the target operand to the hardened register.
   2235   TargetOp.setReg(HardenedTargetReg);
   2236 
   2237   ++NumCallsOrJumpsHardened;
   2238 }
   2239 
   2240 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, DEBUG_TYPE,
   2241                       "X86 speculative load hardener", false, false)
   2242 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, DEBUG_TYPE,
   2243                     "X86 speculative load hardener", false, false)
   2244 
   2245 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
   2246   return new X86SpeculativeLoadHardeningPass();
   2247 }
   2248