1 // Copyright 2012 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Image transforms and color space conversion methods for lossless decoder. 11 // 12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com) 13 // Jyrki Alakuijala (jyrki (at) google.com) 14 // Urvang Joshi (urvang (at) google.com) 15 16 #include "src/dsp/dsp.h" 17 18 #include <assert.h> 19 #include <math.h> 20 #include <stdlib.h> 21 #include "src/dec/vp8li_dec.h" 22 #include "src/utils/endian_inl_utils.h" 23 #include "src/dsp/lossless.h" 24 #include "src/dsp/lossless_common.h" 25 26 //------------------------------------------------------------------------------ 27 // Image transforms. 28 29 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { 30 return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); 31 } 32 33 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { 34 return Average2(Average2(a0, a2), a1); 35 } 36 37 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, 38 uint32_t a2, uint32_t a3) { 39 return Average2(Average2(a0, a1), Average2(a2, a3)); 40 } 41 42 static WEBP_INLINE uint32_t Clip255(uint32_t a) { 43 if (a < 256) { 44 return a; 45 } 46 // return 0, when a is a negative integer. 47 // return 255, when a is positive. 48 return ~a >> 24; 49 } 50 51 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { 52 return Clip255(a + b - c); 53 } 54 55 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, 56 uint32_t c2) { 57 const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); 58 const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, 59 (c1 >> 16) & 0xff, 60 (c2 >> 16) & 0xff); 61 const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, 62 (c1 >> 8) & 0xff, 63 (c2 >> 8) & 0xff); 64 const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); 65 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; 66 } 67 68 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { 69 return Clip255(a + (a - b) / 2); 70 } 71 72 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, 73 uint32_t c2) { 74 const uint32_t ave = Average2(c0, c1); 75 const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); 76 const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); 77 const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); 78 const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); 79 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; 80 } 81 82 // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is 83 // inlined. 84 #if defined(__arm__) && LOCAL_GCC_VERSION <= 0x409 85 # define LOCAL_INLINE __attribute__ ((noinline)) 86 #else 87 # define LOCAL_INLINE WEBP_INLINE 88 #endif 89 90 static LOCAL_INLINE int Sub3(int a, int b, int c) { 91 const int pb = b - c; 92 const int pa = a - c; 93 return abs(pb) - abs(pa); 94 } 95 96 #undef LOCAL_INLINE 97 98 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { 99 const int pa_minus_pb = 100 Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + 101 Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + 102 Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + 103 Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); 104 return (pa_minus_pb <= 0) ? a : b; 105 } 106 107 //------------------------------------------------------------------------------ 108 // Predictors 109 110 static uint32_t Predictor0_C(uint32_t left, const uint32_t* const top) { 111 (void)top; 112 (void)left; 113 return ARGB_BLACK; 114 } 115 static uint32_t Predictor1_C(uint32_t left, const uint32_t* const top) { 116 (void)top; 117 return left; 118 } 119 static uint32_t Predictor2_C(uint32_t left, const uint32_t* const top) { 120 (void)left; 121 return top[0]; 122 } 123 static uint32_t Predictor3_C(uint32_t left, const uint32_t* const top) { 124 (void)left; 125 return top[1]; 126 } 127 static uint32_t Predictor4_C(uint32_t left, const uint32_t* const top) { 128 (void)left; 129 return top[-1]; 130 } 131 static uint32_t Predictor5_C(uint32_t left, const uint32_t* const top) { 132 const uint32_t pred = Average3(left, top[0], top[1]); 133 return pred; 134 } 135 static uint32_t Predictor6_C(uint32_t left, const uint32_t* const top) { 136 const uint32_t pred = Average2(left, top[-1]); 137 return pred; 138 } 139 static uint32_t Predictor7_C(uint32_t left, const uint32_t* const top) { 140 const uint32_t pred = Average2(left, top[0]); 141 return pred; 142 } 143 static uint32_t Predictor8_C(uint32_t left, const uint32_t* const top) { 144 const uint32_t pred = Average2(top[-1], top[0]); 145 (void)left; 146 return pred; 147 } 148 static uint32_t Predictor9_C(uint32_t left, const uint32_t* const top) { 149 const uint32_t pred = Average2(top[0], top[1]); 150 (void)left; 151 return pred; 152 } 153 static uint32_t Predictor10_C(uint32_t left, const uint32_t* const top) { 154 const uint32_t pred = Average4(left, top[-1], top[0], top[1]); 155 return pred; 156 } 157 static uint32_t Predictor11_C(uint32_t left, const uint32_t* const top) { 158 const uint32_t pred = Select(top[0], left, top[-1]); 159 return pred; 160 } 161 static uint32_t Predictor12_C(uint32_t left, const uint32_t* const top) { 162 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); 163 return pred; 164 } 165 static uint32_t Predictor13_C(uint32_t left, const uint32_t* const top) { 166 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); 167 return pred; 168 } 169 170 GENERATE_PREDICTOR_ADD(Predictor0_C, PredictorAdd0_C) 171 static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper, 172 int num_pixels, uint32_t* out) { 173 int i; 174 uint32_t left = out[-1]; 175 for (i = 0; i < num_pixels; ++i) { 176 out[i] = left = VP8LAddPixels(in[i], left); 177 } 178 (void)upper; 179 } 180 GENERATE_PREDICTOR_ADD(Predictor2_C, PredictorAdd2_C) 181 GENERATE_PREDICTOR_ADD(Predictor3_C, PredictorAdd3_C) 182 GENERATE_PREDICTOR_ADD(Predictor4_C, PredictorAdd4_C) 183 GENERATE_PREDICTOR_ADD(Predictor5_C, PredictorAdd5_C) 184 GENERATE_PREDICTOR_ADD(Predictor6_C, PredictorAdd6_C) 185 GENERATE_PREDICTOR_ADD(Predictor7_C, PredictorAdd7_C) 186 GENERATE_PREDICTOR_ADD(Predictor8_C, PredictorAdd8_C) 187 GENERATE_PREDICTOR_ADD(Predictor9_C, PredictorAdd9_C) 188 GENERATE_PREDICTOR_ADD(Predictor10_C, PredictorAdd10_C) 189 GENERATE_PREDICTOR_ADD(Predictor11_C, PredictorAdd11_C) 190 GENERATE_PREDICTOR_ADD(Predictor12_C, PredictorAdd12_C) 191 GENERATE_PREDICTOR_ADD(Predictor13_C, PredictorAdd13_C) 192 193 //------------------------------------------------------------------------------ 194 195 // Inverse prediction. 196 static void PredictorInverseTransform_C(const VP8LTransform* const transform, 197 int y_start, int y_end, 198 const uint32_t* in, uint32_t* out) { 199 const int width = transform->xsize_; 200 if (y_start == 0) { // First Row follows the L (mode=1) mode. 201 PredictorAdd0_C(in, NULL, 1, out); 202 PredictorAdd1_C(in + 1, NULL, width - 1, out + 1); 203 in += width; 204 out += width; 205 ++y_start; 206 } 207 208 { 209 int y = y_start; 210 const int tile_width = 1 << transform->bits_; 211 const int mask = tile_width - 1; 212 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); 213 const uint32_t* pred_mode_base = 214 transform->data_ + (y >> transform->bits_) * tiles_per_row; 215 216 while (y < y_end) { 217 const uint32_t* pred_mode_src = pred_mode_base; 218 int x = 1; 219 // First pixel follows the T (mode=2) mode. 220 PredictorAdd2_C(in, out - width, 1, out); 221 // .. the rest: 222 while (x < width) { 223 const VP8LPredictorAddSubFunc pred_func = 224 VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; 225 int x_end = (x & ~mask) + tile_width; 226 if (x_end > width) x_end = width; 227 pred_func(in + x, out + x - width, x_end - x, out + x); 228 x = x_end; 229 } 230 in += width; 231 out += width; 232 ++y; 233 if ((y & mask) == 0) { // Use the same mask, since tiles are squares. 234 pred_mode_base += tiles_per_row; 235 } 236 } 237 } 238 } 239 240 // Add green to blue and red channels (i.e. perform the inverse transform of 241 // 'subtract green'). 242 void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, 243 uint32_t* dst) { 244 int i; 245 for (i = 0; i < num_pixels; ++i) { 246 const uint32_t argb = src[i]; 247 const uint32_t green = ((argb >> 8) & 0xff); 248 uint32_t red_blue = (argb & 0x00ff00ffu); 249 red_blue += (green << 16) | green; 250 red_blue &= 0x00ff00ffu; 251 dst[i] = (argb & 0xff00ff00u) | red_blue; 252 } 253 } 254 255 static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, 256 int8_t color) { 257 return ((int)color_pred * color) >> 5; 258 } 259 260 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, 261 VP8LMultipliers* const m) { 262 m->green_to_red_ = (color_code >> 0) & 0xff; 263 m->green_to_blue_ = (color_code >> 8) & 0xff; 264 m->red_to_blue_ = (color_code >> 16) & 0xff; 265 } 266 267 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, 268 const uint32_t* src, int num_pixels, 269 uint32_t* dst) { 270 int i; 271 for (i = 0; i < num_pixels; ++i) { 272 const uint32_t argb = src[i]; 273 const uint32_t green = argb >> 8; 274 const uint32_t red = argb >> 16; 275 int new_red = red & 0xff; 276 int new_blue = argb & 0xff; 277 new_red += ColorTransformDelta(m->green_to_red_, green); 278 new_red &= 0xff; 279 new_blue += ColorTransformDelta(m->green_to_blue_, green); 280 new_blue += ColorTransformDelta(m->red_to_blue_, new_red); 281 new_blue &= 0xff; 282 dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); 283 } 284 } 285 286 // Color space inverse transform. 287 static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform, 288 int y_start, int y_end, 289 const uint32_t* src, uint32_t* dst) { 290 const int width = transform->xsize_; 291 const int tile_width = 1 << transform->bits_; 292 const int mask = tile_width - 1; 293 const int safe_width = width & ~mask; 294 const int remaining_width = width - safe_width; 295 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); 296 int y = y_start; 297 const uint32_t* pred_row = 298 transform->data_ + (y >> transform->bits_) * tiles_per_row; 299 300 while (y < y_end) { 301 const uint32_t* pred = pred_row; 302 VP8LMultipliers m = { 0, 0, 0 }; 303 const uint32_t* const src_safe_end = src + safe_width; 304 const uint32_t* const src_end = src + width; 305 while (src < src_safe_end) { 306 ColorCodeToMultipliers(*pred++, &m); 307 VP8LTransformColorInverse(&m, src, tile_width, dst); 308 src += tile_width; 309 dst += tile_width; 310 } 311 if (src < src_end) { // Left-overs using C-version. 312 ColorCodeToMultipliers(*pred++, &m); 313 VP8LTransformColorInverse(&m, src, remaining_width, dst); 314 src += remaining_width; 315 dst += remaining_width; 316 } 317 ++y; 318 if ((y & mask) == 0) pred_row += tiles_per_row; 319 } 320 } 321 322 // Separate out pixels packed together using pixel-bundling. 323 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). 324 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ 325 GET_INDEX, GET_VALUE) \ 326 static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ 327 TYPE* dst, int y_start, int y_end, int width) { \ 328 int y; \ 329 for (y = y_start; y < y_end; ++y) { \ 330 int x; \ 331 for (x = 0; x < width; ++x) { \ 332 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ 333 } \ 334 } \ 335 } \ 336 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ 337 int y_start, int y_end, const TYPE* src, \ 338 TYPE* dst) { \ 339 int y; \ 340 const int bits_per_pixel = 8 >> transform->bits_; \ 341 const int width = transform->xsize_; \ 342 const uint32_t* const color_map = transform->data_; \ 343 if (bits_per_pixel < 8) { \ 344 const int pixels_per_byte = 1 << transform->bits_; \ 345 const int count_mask = pixels_per_byte - 1; \ 346 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ 347 for (y = y_start; y < y_end; ++y) { \ 348 uint32_t packed_pixels = 0; \ 349 int x; \ 350 for (x = 0; x < width; ++x) { \ 351 /* We need to load fresh 'packed_pixels' once every */ \ 352 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ 353 /* is a power of 2, so can just use a mask for that, instead of */ \ 354 /* decrementing a counter. */ \ 355 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ 356 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ 357 packed_pixels >>= bits_per_pixel; \ 358 } \ 359 } \ 360 } else { \ 361 VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ 362 } \ 363 } 364 365 COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static, 366 uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue) 367 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, , 368 uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue) 369 370 #undef COLOR_INDEX_INVERSE 371 372 void VP8LInverseTransform(const VP8LTransform* const transform, 373 int row_start, int row_end, 374 const uint32_t* const in, uint32_t* const out) { 375 const int width = transform->xsize_; 376 assert(row_start < row_end); 377 assert(row_end <= transform->ysize_); 378 switch (transform->type_) { 379 case SUBTRACT_GREEN: 380 VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); 381 break; 382 case PREDICTOR_TRANSFORM: 383 PredictorInverseTransform_C(transform, row_start, row_end, in, out); 384 if (row_end != transform->ysize_) { 385 // The last predicted row in this iteration will be the top-pred row 386 // for the first row in next iteration. 387 memcpy(out - width, out + (row_end - row_start - 1) * width, 388 width * sizeof(*out)); 389 } 390 break; 391 case CROSS_COLOR_TRANSFORM: 392 ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out); 393 break; 394 case COLOR_INDEXING_TRANSFORM: 395 if (in == out && transform->bits_ > 0) { 396 // Move packed pixels to the end of unpacked region, so that unpacking 397 // can occur seamlessly. 398 // Also, note that this is the only transform that applies on 399 // the effective width of VP8LSubSampleSize(xsize_, bits_). All other 400 // transforms work on effective width of xsize_. 401 const int out_stride = (row_end - row_start) * width; 402 const int in_stride = (row_end - row_start) * 403 VP8LSubSampleSize(transform->xsize_, transform->bits_); 404 uint32_t* const src = out + out_stride - in_stride; 405 memmove(src, out, in_stride * sizeof(*src)); 406 ColorIndexInverseTransform_C(transform, row_start, row_end, src, out); 407 } else { 408 ColorIndexInverseTransform_C(transform, row_start, row_end, in, out); 409 } 410 break; 411 } 412 } 413 414 //------------------------------------------------------------------------------ 415 // Color space conversion. 416 417 static int is_big_endian(void) { 418 static const union { 419 uint16_t w; 420 uint8_t b[2]; 421 } tmp = { 1 }; 422 return (tmp.b[0] != 1); 423 } 424 425 void VP8LConvertBGRAToRGB_C(const uint32_t* src, 426 int num_pixels, uint8_t* dst) { 427 const uint32_t* const src_end = src + num_pixels; 428 while (src < src_end) { 429 const uint32_t argb = *src++; 430 *dst++ = (argb >> 16) & 0xff; 431 *dst++ = (argb >> 8) & 0xff; 432 *dst++ = (argb >> 0) & 0xff; 433 } 434 } 435 436 void VP8LConvertBGRAToRGBA_C(const uint32_t* src, 437 int num_pixels, uint8_t* dst) { 438 const uint32_t* const src_end = src + num_pixels; 439 while (src < src_end) { 440 const uint32_t argb = *src++; 441 *dst++ = (argb >> 16) & 0xff; 442 *dst++ = (argb >> 8) & 0xff; 443 *dst++ = (argb >> 0) & 0xff; 444 *dst++ = (argb >> 24) & 0xff; 445 } 446 } 447 448 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, 449 int num_pixels, uint8_t* dst) { 450 const uint32_t* const src_end = src + num_pixels; 451 while (src < src_end) { 452 const uint32_t argb = *src++; 453 const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); 454 const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); 455 #if (WEBP_SWAP_16BIT_CSP == 1) 456 *dst++ = ba; 457 *dst++ = rg; 458 #else 459 *dst++ = rg; 460 *dst++ = ba; 461 #endif 462 } 463 } 464 465 void VP8LConvertBGRAToRGB565_C(const uint32_t* src, 466 int num_pixels, uint8_t* dst) { 467 const uint32_t* const src_end = src + num_pixels; 468 while (src < src_end) { 469 const uint32_t argb = *src++; 470 const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); 471 const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); 472 #if (WEBP_SWAP_16BIT_CSP == 1) 473 *dst++ = gb; 474 *dst++ = rg; 475 #else 476 *dst++ = rg; 477 *dst++ = gb; 478 #endif 479 } 480 } 481 482 void VP8LConvertBGRAToBGR_C(const uint32_t* src, 483 int num_pixels, uint8_t* dst) { 484 const uint32_t* const src_end = src + num_pixels; 485 while (src < src_end) { 486 const uint32_t argb = *src++; 487 *dst++ = (argb >> 0) & 0xff; 488 *dst++ = (argb >> 8) & 0xff; 489 *dst++ = (argb >> 16) & 0xff; 490 } 491 } 492 493 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, 494 int swap_on_big_endian) { 495 if (is_big_endian() == swap_on_big_endian) { 496 const uint32_t* const src_end = src + num_pixels; 497 while (src < src_end) { 498 const uint32_t argb = *src++; 499 WebPUint32ToMem(dst, BSwap32(argb)); 500 dst += sizeof(argb); 501 } 502 } else { 503 memcpy(dst, src, num_pixels * sizeof(*src)); 504 } 505 } 506 507 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, 508 WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { 509 switch (out_colorspace) { 510 case MODE_RGB: 511 VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); 512 break; 513 case MODE_RGBA: 514 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); 515 break; 516 case MODE_rgbA: 517 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); 518 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); 519 break; 520 case MODE_BGR: 521 VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); 522 break; 523 case MODE_BGRA: 524 CopyOrSwap(in_data, num_pixels, rgba, 1); 525 break; 526 case MODE_bgrA: 527 CopyOrSwap(in_data, num_pixels, rgba, 1); 528 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); 529 break; 530 case MODE_ARGB: 531 CopyOrSwap(in_data, num_pixels, rgba, 0); 532 break; 533 case MODE_Argb: 534 CopyOrSwap(in_data, num_pixels, rgba, 0); 535 WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); 536 break; 537 case MODE_RGBA_4444: 538 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); 539 break; 540 case MODE_rgbA_4444: 541 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); 542 WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); 543 break; 544 case MODE_RGB_565: 545 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); 546 break; 547 default: 548 assert(0); // Code flow should not reach here. 549 } 550 } 551 552 //------------------------------------------------------------------------------ 553 554 VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; 555 VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; 556 VP8LPredictorFunc VP8LPredictors[16]; 557 558 // exposed plain-C implementations 559 VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; 560 VP8LPredictorFunc VP8LPredictors_C[16]; 561 562 VP8LTransformColorInverseFunc VP8LTransformColorInverse; 563 564 VP8LConvertFunc VP8LConvertBGRAToRGB; 565 VP8LConvertFunc VP8LConvertBGRAToRGBA; 566 VP8LConvertFunc VP8LConvertBGRAToRGBA4444; 567 VP8LConvertFunc VP8LConvertBGRAToRGB565; 568 VP8LConvertFunc VP8LConvertBGRAToBGR; 569 570 VP8LMapARGBFunc VP8LMapColor32b; 571 VP8LMapAlphaFunc VP8LMapColor8b; 572 573 extern void VP8LDspInitSSE2(void); 574 extern void VP8LDspInitNEON(void); 575 extern void VP8LDspInitMIPSdspR2(void); 576 extern void VP8LDspInitMSA(void); 577 578 #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ 579 (OUT)[0] = IN##0_C; \ 580 (OUT)[1] = IN##1_C; \ 581 (OUT)[2] = IN##2_C; \ 582 (OUT)[3] = IN##3_C; \ 583 (OUT)[4] = IN##4_C; \ 584 (OUT)[5] = IN##5_C; \ 585 (OUT)[6] = IN##6_C; \ 586 (OUT)[7] = IN##7_C; \ 587 (OUT)[8] = IN##8_C; \ 588 (OUT)[9] = IN##9_C; \ 589 (OUT)[10] = IN##10_C; \ 590 (OUT)[11] = IN##11_C; \ 591 (OUT)[12] = IN##12_C; \ 592 (OUT)[13] = IN##13_C; \ 593 (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \ 594 (OUT)[15] = IN##0_C; \ 595 } while (0); 596 597 WEBP_DSP_INIT_FUNC(VP8LDspInit) { 598 COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) 599 COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) 600 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) 601 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) 602 603 #if !WEBP_NEON_OMIT_C_CODE 604 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; 605 606 VP8LTransformColorInverse = VP8LTransformColorInverse_C; 607 608 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; 609 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; 610 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; 611 #endif 612 613 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; 614 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; 615 616 VP8LMapColor32b = MapARGB_C; 617 VP8LMapColor8b = MapAlpha_C; 618 619 // If defined, use CPUInfo() to overwrite some pointers with faster versions. 620 if (VP8GetCPUInfo != NULL) { 621 #if defined(WEBP_USE_SSE2) 622 if (VP8GetCPUInfo(kSSE2)) { 623 VP8LDspInitSSE2(); 624 } 625 #endif 626 #if defined(WEBP_USE_MIPS_DSP_R2) 627 if (VP8GetCPUInfo(kMIPSdspR2)) { 628 VP8LDspInitMIPSdspR2(); 629 } 630 #endif 631 #if defined(WEBP_USE_MSA) 632 if (VP8GetCPUInfo(kMSA)) { 633 VP8LDspInitMSA(); 634 } 635 #endif 636 } 637 638 #if defined(WEBP_USE_NEON) 639 if (WEBP_NEON_OMIT_C_CODE || 640 (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { 641 VP8LDspInitNEON(); 642 } 643 #endif 644 645 assert(VP8LAddGreenToBlueAndRed != NULL); 646 assert(VP8LTransformColorInverse != NULL); 647 assert(VP8LConvertBGRAToRGBA != NULL); 648 assert(VP8LConvertBGRAToRGB != NULL); 649 assert(VP8LConvertBGRAToBGR != NULL); 650 assert(VP8LConvertBGRAToRGBA4444 != NULL); 651 assert(VP8LConvertBGRAToRGB565 != NULL); 652 assert(VP8LMapColor32b != NULL); 653 assert(VP8LMapColor8b != NULL); 654 } 655 #undef COPY_PREDICTOR_ARRAY 656 657 //------------------------------------------------------------------------------ 658