1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the DAGTypeLegalizer class. This is a private interface 11 // shared between the code that implements the SelectionDAG::LegalizeTypes 12 // method. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 18 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Debug.h" 24 25 namespace llvm { 26 27 //===----------------------------------------------------------------------===// 28 /// This takes an arbitrary SelectionDAG as input and hacks on it until only 29 /// value types the target machine can handle are left. This involves promoting 30 /// small sizes to large sizes or splitting up large values into small values. 31 /// 32 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { 33 const TargetLowering &TLI; 34 SelectionDAG &DAG; 35 public: 36 /// This pass uses the NodeId on the SDNodes to hold information about the 37 /// state of the node. The enum has all the values. 38 enum NodeIdFlags { 39 /// All operands have been processed, so this node is ready to be handled. 40 ReadyToProcess = 0, 41 42 /// This is a new node, not before seen, that was created in the process of 43 /// legalizing some other node. 44 NewNode = -1, 45 46 /// This node's ID needs to be set to the number of its unprocessed 47 /// operands. 48 Unanalyzed = -2, 49 50 /// This is a node that has already been processed. 51 Processed = -3 52 53 // 1+ - This is a node which has this many unprocessed operands. 54 }; 55 private: 56 57 /// This is a bitvector that contains two bits for each simple value type, 58 /// where the two bits correspond to the LegalizeAction enum from 59 /// TargetLowering. This can be queried with "getTypeAction(VT)". 60 TargetLowering::ValueTypeActionImpl ValueTypeActions; 61 62 /// Return how we should legalize values of this type. 63 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { 64 return TLI.getTypeAction(*DAG.getContext(), VT); 65 } 66 67 /// Return true if this type is legal on this target. 68 bool isTypeLegal(EVT VT) const { 69 return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; 70 } 71 72 /// Return true if this is a simple legal type. 73 bool isSimpleLegalType(EVT VT) const { 74 return VT.isSimple() && TLI.isTypeLegal(VT); 75 } 76 77 /// Return true if this type can be passed in registers. 78 /// For example, x86_64's f128, should to be legally in registers 79 /// and only some operations converted to library calls or integer 80 /// bitwise operations. 81 bool isLegalInHWReg(EVT VT) const { 82 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 83 return VT == NVT && isSimpleLegalType(VT); 84 } 85 86 EVT getSetCCResultType(EVT VT) const { 87 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 88 } 89 90 /// Pretend all of this node's results are legal. 91 bool IgnoreNodeResults(SDNode *N) const { 92 return N->getOpcode() == ISD::TargetConstant || 93 N->getOpcode() == ISD::Register; 94 } 95 96 // Bijection from SDValue to unique id. As each created node gets a 97 // new id we do not need to worry about reuse expunging. Should we 98 // run out of ids, we can do a one time expensive compactifcation. 99 typedef unsigned TableId; 100 101 TableId NextValueId = 1; 102 103 SmallDenseMap<SDValue, TableId, 8> ValueToIdMap; 104 SmallDenseMap<TableId, SDValue, 8> IdToValueMap; 105 106 /// For integer nodes that are below legal width, this map indicates what 107 /// promoted value to use. 108 SmallDenseMap<TableId, TableId, 8> PromotedIntegers; 109 110 /// For integer nodes that need to be expanded this map indicates which 111 /// operands are the expanded version of the input. 112 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers; 113 114 /// For floating-point nodes converted to integers of the same size, this map 115 /// indicates the converted value to use. 116 SmallDenseMap<TableId, TableId, 8> SoftenedFloats; 117 118 /// For floating-point nodes that have a smaller precision than the smallest 119 /// supported precision, this map indicates what promoted value to use. 120 SmallDenseMap<TableId, TableId, 8> PromotedFloats; 121 122 /// For float nodes that need to be expanded this map indicates which operands 123 /// are the expanded version of the input. 124 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats; 125 126 /// For nodes that are <1 x ty>, this map indicates the scalar value of type 127 /// 'ty' to use. 128 SmallDenseMap<TableId, TableId, 8> ScalarizedVectors; 129 130 /// For nodes that need to be split this map indicates which operands are the 131 /// expanded version of the input. 132 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors; 133 134 /// For vector nodes that need to be widened, indicates the widened value to 135 /// use. 136 SmallDenseMap<TableId, TableId, 8> WidenedVectors; 137 138 /// For values that have been replaced with another, indicates the replacement 139 /// value to use. 140 SmallDenseMap<TableId, TableId, 8> ReplacedValues; 141 142 /// This defines a worklist of nodes to process. In order to be pushed onto 143 /// this worklist, all operands of a node must have already been processed. 144 SmallVector<SDNode*, 128> Worklist; 145 146 TableId getTableId(SDValue V) { 147 assert(V.getNode() && "Getting TableId on SDValue()"); 148 149 auto I = ValueToIdMap.find(V); 150 if (I != ValueToIdMap.end()) { 151 // replace if there's been a shift. 152 RemapId(I->second); 153 assert(I->second && "All Ids should be nonzero"); 154 return I->second; 155 } 156 // Add if it's not there. 157 ValueToIdMap.insert(std::make_pair(V, NextValueId)); 158 IdToValueMap.insert(std::make_pair(NextValueId, V)); 159 ++NextValueId; 160 assert(NextValueId != 0 && 161 "Ran out of Ids. Increase id type size or add compactification"); 162 return NextValueId - 1; 163 } 164 165 const SDValue &getSDValue(TableId &Id) { 166 RemapId(Id); 167 assert(Id && "TableId should be non-zero"); 168 return IdToValueMap[Id]; 169 } 170 171 public: 172 explicit DAGTypeLegalizer(SelectionDAG &dag) 173 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 174 ValueTypeActions(TLI.getValueTypeActions()) { 175 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 176 "Too many value types for ValueTypeActions to hold!"); 177 } 178 179 /// This is the main entry point for the type legalizer. This does a 180 /// top-down traversal of the dag, legalizing types as it goes. Returns 181 /// "true" if it made any changes. 182 bool run(); 183 184 void NoteDeletion(SDNode *Old, SDNode *New) { 185 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 186 TableId NewId = getTableId(SDValue(New, i)); 187 TableId OldId = getTableId(SDValue(Old, i)); 188 189 if (OldId != NewId) 190 ReplacedValues[OldId] = NewId; 191 192 // Delete Node from tables. 193 ValueToIdMap.erase(SDValue(Old, i)); 194 IdToValueMap.erase(OldId); 195 PromotedIntegers.erase(OldId); 196 ExpandedIntegers.erase(OldId); 197 SoftenedFloats.erase(OldId); 198 PromotedFloats.erase(OldId); 199 ExpandedFloats.erase(OldId); 200 ScalarizedVectors.erase(OldId); 201 SplitVectors.erase(OldId); 202 WidenedVectors.erase(OldId); 203 } 204 } 205 206 SelectionDAG &getDAG() const { return DAG; } 207 208 private: 209 SDNode *AnalyzeNewNode(SDNode *N); 210 void AnalyzeNewValue(SDValue &Val); 211 void PerformExpensiveChecks(); 212 void RemapId(TableId &Id); 213 void RemapValue(SDValue &V); 214 215 // Common routines. 216 SDValue BitConvertToInteger(SDValue Op); 217 SDValue BitConvertVectorToIntegerVector(SDValue Op); 218 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); 219 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); 220 bool CustomWidenLowerNode(SDNode *N, EVT VT); 221 222 /// Replace each result of the given MERGE_VALUES node with the corresponding 223 /// input operand, except for the result 'ResNo', for which the corresponding 224 /// input operand is returned. 225 SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); 226 227 SDValue JoinIntegers(SDValue Lo, SDValue Hi); 228 SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned); 229 230 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 231 SDNode *Node, bool isSigned); 232 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 233 234 SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); 235 236 void ReplaceValueWith(SDValue From, SDValue To); 237 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 238 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, 239 SDValue &Lo, SDValue &Hi); 240 241 void AddToWorklist(SDNode *N) { 242 N->setNodeId(ReadyToProcess); 243 Worklist.push_back(N); 244 } 245 246 //===--------------------------------------------------------------------===// 247 // Integer Promotion Support: LegalizeIntegerTypes.cpp 248 //===--------------------------------------------------------------------===// 249 250 /// Given a processed operand Op which was promoted to a larger integer type, 251 /// this returns the promoted value. The low bits of the promoted value 252 /// corresponding to the original type are exactly equal to Op. 253 /// The extra bits contain rubbish, so the promoted value may need to be zero- 254 /// or sign-extended from the original type before it is usable (the helpers 255 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). 256 /// For example, if Op is an i16 and was promoted to an i32, then this method 257 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper 258 /// 16 bits of which contain rubbish. 259 SDValue GetPromotedInteger(SDValue Op) { 260 TableId &PromotedId = PromotedIntegers[getTableId(Op)]; 261 SDValue PromotedOp = getSDValue(PromotedId); 262 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 263 return PromotedOp; 264 } 265 void SetPromotedInteger(SDValue Op, SDValue Result); 266 267 /// Get a promoted operand and sign extend it to the final size. 268 SDValue SExtPromotedInteger(SDValue Op) { 269 EVT OldVT = Op.getValueType(); 270 SDLoc dl(Op); 271 Op = GetPromotedInteger(Op); 272 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, 273 DAG.getValueType(OldVT)); 274 } 275 276 /// Get a promoted operand and zero extend it to the final size. 277 SDValue ZExtPromotedInteger(SDValue Op) { 278 EVT OldVT = Op.getValueType(); 279 SDLoc dl(Op); 280 Op = GetPromotedInteger(Op); 281 return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType()); 282 } 283 284 // Integer Result Promotion. 285 void PromoteIntegerResult(SDNode *N, unsigned ResNo); 286 SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 287 SDValue PromoteIntRes_AssertSext(SDNode *N); 288 SDValue PromoteIntRes_AssertZext(SDNode *N); 289 SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); 290 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); 291 SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); 292 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); 293 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); 294 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); 295 SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N); 296 SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N); 297 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); 298 SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); 299 SDValue PromoteIntRes_BITCAST(SDNode *N); 300 SDValue PromoteIntRes_BSWAP(SDNode *N); 301 SDValue PromoteIntRes_BITREVERSE(SDNode *N); 302 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); 303 SDValue PromoteIntRes_Constant(SDNode *N); 304 SDValue PromoteIntRes_CTLZ(SDNode *N); 305 SDValue PromoteIntRes_CTPOP(SDNode *N); 306 SDValue PromoteIntRes_CTTZ(SDNode *N); 307 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); 308 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); 309 SDValue PromoteIntRes_FP_TO_FP16(SDNode *N); 310 SDValue PromoteIntRes_INT_EXTEND(SDNode *N); 311 SDValue PromoteIntRes_LOAD(LoadSDNode *N); 312 SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); 313 SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N); 314 SDValue PromoteIntRes_Overflow(SDNode *N); 315 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); 316 SDValue PromoteIntRes_SELECT(SDNode *N); 317 SDValue PromoteIntRes_VSELECT(SDNode *N); 318 SDValue PromoteIntRes_SELECT_CC(SDNode *N); 319 SDValue PromoteIntRes_SETCC(SDNode *N); 320 SDValue PromoteIntRes_SHL(SDNode *N); 321 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); 322 SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N); 323 SDValue PromoteIntRes_SExtIntBinOp(SDNode *N); 324 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); 325 SDValue PromoteIntRes_SRA(SDNode *N); 326 SDValue PromoteIntRes_SRL(SDNode *N); 327 SDValue PromoteIntRes_TRUNCATE(SDNode *N); 328 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); 329 SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo); 330 SDValue PromoteIntRes_UNDEF(SDNode *N); 331 SDValue PromoteIntRes_VAARG(SDNode *N); 332 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); 333 334 // Integer Operand Promotion. 335 bool PromoteIntegerOperand(SDNode *N, unsigned OpNo); 336 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); 337 SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); 338 SDValue PromoteIntOp_BITCAST(SDNode *N); 339 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); 340 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); 341 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); 342 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); 343 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); 344 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); 345 SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N); 346 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); 347 SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N); 348 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); 349 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); 350 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); 351 SDValue PromoteIntOp_Shift(SDNode *N); 352 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); 353 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); 354 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); 355 SDValue PromoteIntOp_TRUNCATE(SDNode *N); 356 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); 357 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); 358 SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 359 SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); 360 SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); 361 SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo); 362 SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo); 363 364 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); 365 366 //===--------------------------------------------------------------------===// 367 // Integer Expansion Support: LegalizeIntegerTypes.cpp 368 //===--------------------------------------------------------------------===// 369 370 /// Given a processed operand Op which was expanded into two integers of half 371 /// the size, this returns the two halves. The low bits of Op are exactly 372 /// equal to the bits of Lo; the high bits exactly equal Hi. 373 /// For example, if Op is an i64 which was expanded into two i32's, then this 374 /// method returns the two i32's, with Lo being equal to the lower 32 bits of 375 /// Op, and Hi being equal to the upper 32 bits. 376 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 377 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); 378 379 // Integer Result Expansion. 380 void ExpandIntegerResult(SDNode *N, unsigned ResNo); 381 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 382 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); 383 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); 384 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); 385 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); 386 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); 387 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); 388 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); 389 void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi); 390 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 391 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); 392 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); 393 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 394 void ExpandIntRes_FLT_ROUNDS (SDNode *N, SDValue &Lo, SDValue &Hi); 395 void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); 396 void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); 397 398 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); 399 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 400 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); 401 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); 402 void ExpandIntRes_ADDSUBCARRY (SDNode *N, SDValue &Lo, SDValue &Hi); 403 void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi); 404 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); 405 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); 406 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 407 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); 408 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 409 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); 410 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); 411 412 void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi); 413 414 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 415 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 416 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); 417 418 void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 419 420 void ExpandShiftByConstant(SDNode *N, const APInt &Amt, 421 SDValue &Lo, SDValue &Hi); 422 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 423 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 424 425 // Integer Operand Expansion. 426 bool ExpandIntegerOperand(SDNode *N, unsigned OpNo); 427 SDValue ExpandIntOp_BR_CC(SDNode *N); 428 SDValue ExpandIntOp_SELECT_CC(SDNode *N); 429 SDValue ExpandIntOp_SETCC(SDNode *N); 430 SDValue ExpandIntOp_SETCCCARRY(SDNode *N); 431 SDValue ExpandIntOp_Shift(SDNode *N); 432 SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); 433 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); 434 SDValue ExpandIntOp_TRUNCATE(SDNode *N); 435 SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); 436 SDValue ExpandIntOp_RETURNADDR(SDNode *N); 437 SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); 438 439 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 440 ISD::CondCode &CCCode, const SDLoc &dl); 441 442 //===--------------------------------------------------------------------===// 443 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp 444 //===--------------------------------------------------------------------===// 445 446 /// Given an operand Op of Float type, returns the integer if the Op is not 447 /// supported in target HW and converted to the integer. 448 /// The integer contains exactly the same bits as Op - only the type changed. 449 /// For example, if Op is an f32 which was softened to an i32, then this 450 /// method returns an i32, the bits of which coincide with those of Op. 451 /// If the Op can be efficiently supported in target HW or the operand must 452 /// stay in a register, the Op is not converted to an integer. 453 /// In that case, the given op is returned. 454 SDValue GetSoftenedFloat(SDValue Op) { 455 TableId Id = getTableId(Op); 456 auto Iter = SoftenedFloats.find(Id); 457 if (Iter == SoftenedFloats.end()) { 458 assert(isSimpleLegalType(Op.getValueType()) && 459 "Operand wasn't converted to integer?"); 460 return Op; 461 } 462 SDValue SoftenedOp = getSDValue(Iter->second); 463 assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?"); 464 return SoftenedOp; 465 } 466 void SetSoftenedFloat(SDValue Op, SDValue Result); 467 468 // Convert Float Results to Integer for Non-HW-supported Operations. 469 bool SoftenFloatResult(SDNode *N, unsigned ResNo); 470 SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 471 SDValue SoftenFloatRes_BITCAST(SDNode *N, unsigned ResNo); 472 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); 473 SDValue SoftenFloatRes_ConstantFP(SDNode *N, unsigned ResNo); 474 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo); 475 SDValue SoftenFloatRes_FABS(SDNode *N, unsigned ResNo); 476 SDValue SoftenFloatRes_FMINNUM(SDNode *N); 477 SDValue SoftenFloatRes_FMAXNUM(SDNode *N); 478 SDValue SoftenFloatRes_FADD(SDNode *N); 479 SDValue SoftenFloatRes_FCEIL(SDNode *N); 480 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N, unsigned ResNo); 481 SDValue SoftenFloatRes_FCOS(SDNode *N); 482 SDValue SoftenFloatRes_FDIV(SDNode *N); 483 SDValue SoftenFloatRes_FEXP(SDNode *N); 484 SDValue SoftenFloatRes_FEXP2(SDNode *N); 485 SDValue SoftenFloatRes_FFLOOR(SDNode *N); 486 SDValue SoftenFloatRes_FLOG(SDNode *N); 487 SDValue SoftenFloatRes_FLOG2(SDNode *N); 488 SDValue SoftenFloatRes_FLOG10(SDNode *N); 489 SDValue SoftenFloatRes_FMA(SDNode *N); 490 SDValue SoftenFloatRes_FMUL(SDNode *N); 491 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); 492 SDValue SoftenFloatRes_FNEG(SDNode *N, unsigned ResNo); 493 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); 494 SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); 495 SDValue SoftenFloatRes_FP_ROUND(SDNode *N); 496 SDValue SoftenFloatRes_FPOW(SDNode *N); 497 SDValue SoftenFloatRes_FPOWI(SDNode *N); 498 SDValue SoftenFloatRes_FREM(SDNode *N); 499 SDValue SoftenFloatRes_FRINT(SDNode *N); 500 SDValue SoftenFloatRes_FROUND(SDNode *N); 501 SDValue SoftenFloatRes_FSIN(SDNode *N); 502 SDValue SoftenFloatRes_FSQRT(SDNode *N); 503 SDValue SoftenFloatRes_FSUB(SDNode *N); 504 SDValue SoftenFloatRes_FTRUNC(SDNode *N); 505 SDValue SoftenFloatRes_LOAD(SDNode *N, unsigned ResNo); 506 SDValue SoftenFloatRes_SELECT(SDNode *N, unsigned ResNo); 507 SDValue SoftenFloatRes_SELECT_CC(SDNode *N, unsigned ResNo); 508 SDValue SoftenFloatRes_UNDEF(SDNode *N); 509 SDValue SoftenFloatRes_VAARG(SDNode *N); 510 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); 511 512 // Return true if we can skip softening the given operand or SDNode because 513 // either it was soften before by SoftenFloatResult and references to the 514 // operand were replaced by ReplaceValueWith or it's value type is legal in HW 515 // registers and the operand can be left unchanged. 516 bool CanSkipSoftenFloatOperand(SDNode *N, unsigned OpNo); 517 518 // Convert Float Operand to Integer for Non-HW-supported Operations. 519 bool SoftenFloatOperand(SDNode *N, unsigned OpNo); 520 SDValue SoftenFloatOp_BITCAST(SDNode *N); 521 SDValue SoftenFloatOp_COPY_TO_REG(SDNode *N); 522 SDValue SoftenFloatOp_BR_CC(SDNode *N); 523 SDValue SoftenFloatOp_FABS(SDNode *N); 524 SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N); 525 SDValue SoftenFloatOp_FNEG(SDNode *N); 526 SDValue SoftenFloatOp_FP_EXTEND(SDNode *N); 527 SDValue SoftenFloatOp_FP_ROUND(SDNode *N); 528 SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N); 529 SDValue SoftenFloatOp_SELECT(SDNode *N); 530 SDValue SoftenFloatOp_SELECT_CC(SDNode *N); 531 SDValue SoftenFloatOp_SETCC(SDNode *N); 532 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); 533 534 //===--------------------------------------------------------------------===// 535 // Float Expansion Support: LegalizeFloatTypes.cpp 536 //===--------------------------------------------------------------------===// 537 538 /// Given a processed operand Op which was expanded into two floating-point 539 /// values of half the size, this returns the two halves. 540 /// The low bits of Op are exactly equal to the bits of Lo; the high bits 541 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded 542 /// into two f64's, then this method returns the two f64's, with Lo being 543 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. 544 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); 545 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); 546 547 // Float Result Expansion. 548 void ExpandFloatResult(SDNode *N, unsigned ResNo); 549 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); 550 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); 551 void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 552 void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 553 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); 554 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); 555 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); 556 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); 557 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 558 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); 559 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); 560 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); 561 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); 562 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); 563 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); 564 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); 565 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); 566 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); 567 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); 568 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 569 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); 570 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); 571 void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); 572 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); 573 void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); 574 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); 575 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); 576 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 577 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); 578 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 579 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); 580 581 // Float Operand Expansion. 582 bool ExpandFloatOperand(SDNode *N, unsigned OpNo); 583 SDValue ExpandFloatOp_BR_CC(SDNode *N); 584 SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); 585 SDValue ExpandFloatOp_FP_ROUND(SDNode *N); 586 SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N); 587 SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N); 588 SDValue ExpandFloatOp_SELECT_CC(SDNode *N); 589 SDValue ExpandFloatOp_SETCC(SDNode *N); 590 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); 591 592 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 593 ISD::CondCode &CCCode, const SDLoc &dl); 594 595 //===--------------------------------------------------------------------===// 596 // Float promotion support: LegalizeFloatTypes.cpp 597 //===--------------------------------------------------------------------===// 598 599 SDValue GetPromotedFloat(SDValue Op) { 600 TableId &PromotedId = PromotedFloats[getTableId(Op)]; 601 SDValue PromotedOp = getSDValue(PromotedId); 602 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 603 return PromotedOp; 604 } 605 void SetPromotedFloat(SDValue Op, SDValue Result); 606 607 void PromoteFloatResult(SDNode *N, unsigned ResNo); 608 SDValue PromoteFloatRes_BITCAST(SDNode *N); 609 SDValue PromoteFloatRes_BinOp(SDNode *N); 610 SDValue PromoteFloatRes_ConstantFP(SDNode *N); 611 SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); 612 SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); 613 SDValue PromoteFloatRes_FMAD(SDNode *N); 614 SDValue PromoteFloatRes_FPOWI(SDNode *N); 615 SDValue PromoteFloatRes_FP_ROUND(SDNode *N); 616 SDValue PromoteFloatRes_LOAD(SDNode *N); 617 SDValue PromoteFloatRes_SELECT(SDNode *N); 618 SDValue PromoteFloatRes_SELECT_CC(SDNode *N); 619 SDValue PromoteFloatRes_UnaryOp(SDNode *N); 620 SDValue PromoteFloatRes_UNDEF(SDNode *N); 621 SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); 622 623 bool PromoteFloatOperand(SDNode *N, unsigned OpNo); 624 SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); 625 SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); 626 SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); 627 SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo); 628 SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); 629 SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); 630 SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); 631 632 //===--------------------------------------------------------------------===// 633 // Scalarization Support: LegalizeVectorTypes.cpp 634 //===--------------------------------------------------------------------===// 635 636 /// Given a processed one-element vector Op which was scalarized to its 637 /// element type, this returns the element. For example, if Op is a v1i32, 638 /// Op = < i32 val >, this method returns val, an i32. 639 SDValue GetScalarizedVector(SDValue Op) { 640 TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)]; 641 SDValue ScalarizedOp = getSDValue(ScalarizedId); 642 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); 643 return ScalarizedOp; 644 } 645 void SetScalarizedVector(SDValue Op, SDValue Result); 646 647 // Vector Result Scalarization: <1 x ty> -> ty. 648 void ScalarizeVectorResult(SDNode *N, unsigned ResNo); 649 SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 650 SDValue ScalarizeVecRes_BinOp(SDNode *N); 651 SDValue ScalarizeVecRes_TernaryOp(SDNode *N); 652 SDValue ScalarizeVecRes_UnaryOp(SDNode *N); 653 SDValue ScalarizeVecRes_InregOp(SDNode *N); 654 SDValue ScalarizeVecRes_VecInregOp(SDNode *N); 655 656 SDValue ScalarizeVecRes_BITCAST(SDNode *N); 657 SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); 658 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); 659 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); 660 SDValue ScalarizeVecRes_FPOWI(SDNode *N); 661 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); 662 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); 663 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); 664 SDValue ScalarizeVecRes_VSELECT(SDNode *N); 665 SDValue ScalarizeVecRes_SELECT(SDNode *N); 666 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); 667 SDValue ScalarizeVecRes_SETCC(SDNode *N); 668 SDValue ScalarizeVecRes_UNDEF(SDNode *N); 669 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); 670 671 // Vector Operand Scalarization: <1 x ty> -> ty. 672 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); 673 SDValue ScalarizeVecOp_BITCAST(SDNode *N); 674 SDValue ScalarizeVecOp_UnaryOp(SDNode *N); 675 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); 676 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 677 SDValue ScalarizeVecOp_VSELECT(SDNode *N); 678 SDValue ScalarizeVecOp_VSETCC(SDNode *N); 679 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); 680 SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); 681 682 //===--------------------------------------------------------------------===// 683 // Vector Splitting Support: LegalizeVectorTypes.cpp 684 //===--------------------------------------------------------------------===// 685 686 /// Given a processed vector Op which was split into vectors of half the size, 687 /// this method returns the halves. The first elements of Op coincide with the 688 /// elements of Lo; the remaining elements of Op coincide with the elements of 689 /// Hi: Op is what you would get by concatenating Lo and Hi. 690 /// For example, if Op is a v8i32 that was split into two v4i32's, then this 691 /// method returns the two v4i32's, with Lo corresponding to the first 4 692 /// elements of Op, and Hi to the last 4 elements. 693 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); 694 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); 695 696 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. 697 void SplitVectorResult(SDNode *N, unsigned ResNo); 698 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); 699 void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 700 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 701 void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); 702 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); 703 void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi); 704 void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi); 705 706 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); 707 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 708 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); 709 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 710 void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 711 void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); 712 void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi); 713 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 714 void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi); 715 void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi); 716 void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi); 717 void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 718 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); 719 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, 720 SDValue &Hi); 721 722 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. 723 bool SplitVectorOperand(SDNode *N, unsigned OpNo); 724 SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); 725 SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo); 726 SDValue SplitVecOp_UnaryOp(SDNode *N); 727 SDValue SplitVecOp_TruncateHelper(SDNode *N); 728 729 SDValue SplitVecOp_BITCAST(SDNode *N); 730 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); 731 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 732 SDValue SplitVecOp_ExtVecInRegOp(SDNode *N); 733 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); 734 SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 735 SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); 736 SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo); 737 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); 738 SDValue SplitVecOp_VSETCC(SDNode *N); 739 SDValue SplitVecOp_FP_ROUND(SDNode *N); 740 SDValue SplitVecOp_FCOPYSIGN(SDNode *N); 741 742 //===--------------------------------------------------------------------===// 743 // Vector Widening Support: LegalizeVectorTypes.cpp 744 //===--------------------------------------------------------------------===// 745 746 /// Given a processed vector Op which was widened into a larger vector, this 747 /// method returns the larger vector. The elements of the returned vector 748 /// consist of the elements of Op followed by elements containing rubbish. 749 /// For example, if Op is a v2i32 that was widened to a v4i32, then this 750 /// method returns a v4i32 for which the first two elements are the same as 751 /// those of Op, while the last two elements contain rubbish. 752 SDValue GetWidenedVector(SDValue Op) { 753 TableId &WidenedId = WidenedVectors[getTableId(Op)]; 754 SDValue WidenedOp = getSDValue(WidenedId); 755 assert(WidenedOp.getNode() && "Operand wasn't widened?"); 756 return WidenedOp; 757 } 758 void SetWidenedVector(SDValue Op, SDValue Result); 759 760 // Widen Vector Result Promotion. 761 void WidenVectorResult(SDNode *N, unsigned ResNo); 762 SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); 763 SDValue WidenVecRes_BITCAST(SDNode* N); 764 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); 765 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); 766 SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N); 767 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); 768 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); 769 SDValue WidenVecRes_LOAD(SDNode* N); 770 SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); 771 SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N); 772 SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N); 773 SDValue WidenVecRes_SELECT(SDNode* N); 774 SDValue WidenVSELECTAndMask(SDNode *N); 775 SDValue WidenVecRes_SELECT_CC(SDNode* N); 776 SDValue WidenVecRes_SETCC(SDNode* N); 777 SDValue WidenVecRes_UNDEF(SDNode *N); 778 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); 779 780 SDValue WidenVecRes_Ternary(SDNode *N); 781 SDValue WidenVecRes_Binary(SDNode *N); 782 SDValue WidenVecRes_BinaryCanTrap(SDNode *N); 783 SDValue WidenVecRes_Convert(SDNode *N); 784 SDValue WidenVecRes_FCOPYSIGN(SDNode *N); 785 SDValue WidenVecRes_POWI(SDNode *N); 786 SDValue WidenVecRes_Shift(SDNode *N); 787 SDValue WidenVecRes_Unary(SDNode *N); 788 SDValue WidenVecRes_InregOp(SDNode *N); 789 790 // Widen Vector Operand. 791 bool WidenVectorOperand(SDNode *N, unsigned OpNo); 792 SDValue WidenVecOp_BITCAST(SDNode *N); 793 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); 794 SDValue WidenVecOp_EXTEND(SDNode *N); 795 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 796 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); 797 SDValue WidenVecOp_STORE(SDNode* N); 798 SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); 799 SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo); 800 SDValue WidenVecOp_SETCC(SDNode* N); 801 802 SDValue WidenVecOp_Convert(SDNode *N); 803 SDValue WidenVecOp_FCOPYSIGN(SDNode *N); 804 805 //===--------------------------------------------------------------------===// 806 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp 807 //===--------------------------------------------------------------------===// 808 809 /// Helper function to generate a set of loads to load a vector with a 810 /// resulting wider type. It takes: 811 /// LdChain: list of chains for the load to be generated. 812 /// Ld: load to widen 813 SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, 814 LoadSDNode *LD); 815 816 /// Helper function to generate a set of extension loads to load a vector with 817 /// a resulting wider type. It takes: 818 /// LdChain: list of chains for the load to be generated. 819 /// Ld: load to widen 820 /// ExtType: extension element type 821 SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, 822 LoadSDNode *LD, ISD::LoadExtType ExtType); 823 824 /// Helper function to generate a set of stores to store a widen vector into 825 /// non-widen memory. 826 /// StChain: list of chains for the stores we have generated 827 /// ST: store of a widen value 828 void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST); 829 830 /// Helper function to generate a set of stores to store a truncate widen 831 /// vector into non-widen memory. 832 /// StChain: list of chains for the stores we have generated 833 /// ST: store of a widen value 834 void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain, 835 StoreSDNode *ST); 836 837 /// Modifies a vector input (widen or narrows) to a vector of NVT. The 838 /// input vector must have the same element type as NVT. 839 /// When FillWithZeroes is "on" the vector will be widened with zeroes. 840 /// By default, the vector will be widened with undefined values. 841 SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false); 842 843 /// Return a mask of vector type MaskVT to replace InMask. Also adjust 844 /// MaskVT to ToMaskVT if needed with vector extension or truncation. 845 SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT); 846 847 /// Get the target mask VT, and widen if needed. 848 EVT getSETCCWidenedResultTy(SDValue SetCC); 849 850 //===--------------------------------------------------------------------===// 851 // Generic Splitting: LegalizeTypesGeneric.cpp 852 //===--------------------------------------------------------------------===// 853 854 // Legalization methods which only use that the illegal type is split into two 855 // not necessarily identical types. As such they can be used for splitting 856 // vectors and expanding integers and floats. 857 858 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 859 if (Op.getValueType().isVector()) 860 GetSplitVector(Op, Lo, Hi); 861 else if (Op.getValueType().isInteger()) 862 GetExpandedInteger(Op, Lo, Hi); 863 else 864 GetExpandedFloat(Op, Lo, Hi); 865 } 866 867 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the 868 /// given value. 869 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); 870 871 // Generic Result Splitting. 872 void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, 873 SDValue &Lo, SDValue &Hi); 874 void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi); 875 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); 876 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); 877 878 //===--------------------------------------------------------------------===// 879 // Generic Expansion: LegalizeTypesGeneric.cpp 880 //===--------------------------------------------------------------------===// 881 882 // Legalization methods which only use that the illegal type is split into two 883 // identical types of half the size, and that the Lo/Hi part is stored first 884 // in memory on little/big-endian machines, followed by the Hi/Lo part. As 885 // such they can be used for expanding integers and floats. 886 887 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 888 if (Op.getValueType().isInteger()) 889 GetExpandedInteger(Op, Lo, Hi); 890 else 891 GetExpandedFloat(Op, Lo, Hi); 892 } 893 894 895 /// This function will split the integer \p Op into \p NumElements 896 /// operations of type \p EltVT and store them in \p Ops. 897 void IntegerToVector(SDValue Op, unsigned NumElements, 898 SmallVectorImpl<SDValue> &Ops, EVT EltVT); 899 900 // Generic Result Expansion. 901 void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, 902 SDValue &Lo, SDValue &Hi); 903 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); 904 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); 905 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); 906 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 907 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); 908 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); 909 910 // Generic Operand Expansion. 911 SDValue ExpandOp_BITCAST (SDNode *N); 912 SDValue ExpandOp_BUILD_VECTOR (SDNode *N); 913 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); 914 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); 915 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); 916 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); 917 }; 918 919 } // end namespace llvm. 920 921 #endif 922