Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DAGTypeLegalizer class.  This is a private interface
     11 // shared between the code that implements the SelectionDAG::LegalizeTypes
     12 // method.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
     17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
     18 
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/CodeGen/SelectionDAG.h"
     21 #include "llvm/CodeGen/TargetLowering.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/Debug.h"
     24 
     25 namespace llvm {
     26 
     27 //===----------------------------------------------------------------------===//
     28 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
     29 /// value types the target machine can handle are left. This involves promoting
     30 /// small sizes to large sizes or splitting up large values into small values.
     31 ///
     32 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
     33   const TargetLowering &TLI;
     34   SelectionDAG &DAG;
     35 public:
     36   /// This pass uses the NodeId on the SDNodes to hold information about the
     37   /// state of the node. The enum has all the values.
     38   enum NodeIdFlags {
     39     /// All operands have been processed, so this node is ready to be handled.
     40     ReadyToProcess = 0,
     41 
     42     /// This is a new node, not before seen, that was created in the process of
     43     /// legalizing some other node.
     44     NewNode = -1,
     45 
     46     /// This node's ID needs to be set to the number of its unprocessed
     47     /// operands.
     48     Unanalyzed = -2,
     49 
     50     /// This is a node that has already been processed.
     51     Processed = -3
     52 
     53     // 1+ - This is a node which has this many unprocessed operands.
     54   };
     55 private:
     56 
     57   /// This is a bitvector that contains two bits for each simple value type,
     58   /// where the two bits correspond to the LegalizeAction enum from
     59   /// TargetLowering. This can be queried with "getTypeAction(VT)".
     60   TargetLowering::ValueTypeActionImpl ValueTypeActions;
     61 
     62   /// Return how we should legalize values of this type.
     63   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
     64     return TLI.getTypeAction(*DAG.getContext(), VT);
     65   }
     66 
     67   /// Return true if this type is legal on this target.
     68   bool isTypeLegal(EVT VT) const {
     69     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
     70   }
     71 
     72   /// Return true if this is a simple legal type.
     73   bool isSimpleLegalType(EVT VT) const {
     74     return VT.isSimple() && TLI.isTypeLegal(VT);
     75   }
     76 
     77   /// Return true if this type can be passed in registers.
     78   /// For example, x86_64's f128, should to be legally in registers
     79   /// and only some operations converted to library calls or integer
     80   /// bitwise operations.
     81   bool isLegalInHWReg(EVT VT) const {
     82     EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
     83     return VT == NVT && isSimpleLegalType(VT);
     84   }
     85 
     86   EVT getSetCCResultType(EVT VT) const {
     87     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
     88   }
     89 
     90   /// Pretend all of this node's results are legal.
     91   bool IgnoreNodeResults(SDNode *N) const {
     92     return N->getOpcode() == ISD::TargetConstant ||
     93            N->getOpcode() == ISD::Register;
     94   }
     95 
     96   // Bijection from SDValue to unique id. As each created node gets a
     97   // new id we do not need to worry about reuse expunging.  Should we
     98   // run out of ids, we can do a one time expensive compactifcation.
     99   typedef unsigned TableId;
    100 
    101   TableId NextValueId = 1;
    102 
    103   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
    104   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
    105 
    106   /// For integer nodes that are below legal width, this map indicates what
    107   /// promoted value to use.
    108   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
    109 
    110   /// For integer nodes that need to be expanded this map indicates which
    111   /// operands are the expanded version of the input.
    112   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
    113 
    114   /// For floating-point nodes converted to integers of the same size, this map
    115   /// indicates the converted value to use.
    116   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
    117 
    118   /// For floating-point nodes that have a smaller precision than the smallest
    119   /// supported precision, this map indicates what promoted value to use.
    120   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
    121 
    122   /// For float nodes that need to be expanded this map indicates which operands
    123   /// are the expanded version of the input.
    124   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
    125 
    126   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
    127   /// 'ty' to use.
    128   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
    129 
    130   /// For nodes that need to be split this map indicates which operands are the
    131   /// expanded version of the input.
    132   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
    133 
    134   /// For vector nodes that need to be widened, indicates the widened value to
    135   /// use.
    136   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
    137 
    138   /// For values that have been replaced with another, indicates the replacement
    139   /// value to use.
    140   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
    141 
    142   /// This defines a worklist of nodes to process. In order to be pushed onto
    143   /// this worklist, all operands of a node must have already been processed.
    144   SmallVector<SDNode*, 128> Worklist;
    145 
    146   TableId getTableId(SDValue V) {
    147     assert(V.getNode() && "Getting TableId on SDValue()");
    148 
    149     auto I = ValueToIdMap.find(V);
    150     if (I != ValueToIdMap.end()) {
    151       // replace if there's been a shift.
    152       RemapId(I->second);
    153       assert(I->second && "All Ids should be nonzero");
    154       return I->second;
    155     }
    156     // Add if it's not there.
    157     ValueToIdMap.insert(std::make_pair(V, NextValueId));
    158     IdToValueMap.insert(std::make_pair(NextValueId, V));
    159     ++NextValueId;
    160     assert(NextValueId != 0 &&
    161            "Ran out of Ids. Increase id type size or add compactification");
    162     return NextValueId - 1;
    163   }
    164 
    165   const SDValue &getSDValue(TableId &Id) {
    166     RemapId(Id);
    167     assert(Id && "TableId should be non-zero");
    168     return IdToValueMap[Id];
    169   }
    170 
    171 public:
    172   explicit DAGTypeLegalizer(SelectionDAG &dag)
    173     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
    174     ValueTypeActions(TLI.getValueTypeActions()) {
    175     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
    176                   "Too many value types for ValueTypeActions to hold!");
    177   }
    178 
    179   /// This is the main entry point for the type legalizer.  This does a
    180   /// top-down traversal of the dag, legalizing types as it goes.  Returns
    181   /// "true" if it made any changes.
    182   bool run();
    183 
    184   void NoteDeletion(SDNode *Old, SDNode *New) {
    185     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
    186       TableId NewId = getTableId(SDValue(New, i));
    187       TableId OldId = getTableId(SDValue(Old, i));
    188 
    189       if (OldId != NewId)
    190         ReplacedValues[OldId] = NewId;
    191 
    192       // Delete Node from tables.
    193       ValueToIdMap.erase(SDValue(Old, i));
    194       IdToValueMap.erase(OldId);
    195       PromotedIntegers.erase(OldId);
    196       ExpandedIntegers.erase(OldId);
    197       SoftenedFloats.erase(OldId);
    198       PromotedFloats.erase(OldId);
    199       ExpandedFloats.erase(OldId);
    200       ScalarizedVectors.erase(OldId);
    201       SplitVectors.erase(OldId);
    202       WidenedVectors.erase(OldId);
    203     }
    204   }
    205 
    206   SelectionDAG &getDAG() const { return DAG; }
    207 
    208 private:
    209   SDNode *AnalyzeNewNode(SDNode *N);
    210   void AnalyzeNewValue(SDValue &Val);
    211   void PerformExpensiveChecks();
    212   void RemapId(TableId &Id);
    213   void RemapValue(SDValue &V);
    214 
    215   // Common routines.
    216   SDValue BitConvertToInteger(SDValue Op);
    217   SDValue BitConvertVectorToIntegerVector(SDValue Op);
    218   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
    219   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
    220   bool CustomWidenLowerNode(SDNode *N, EVT VT);
    221 
    222   /// Replace each result of the given MERGE_VALUES node with the corresponding
    223   /// input operand, except for the result 'ResNo', for which the corresponding
    224   /// input operand is returned.
    225   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
    226 
    227   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
    228   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
    229 
    230   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
    231                                                  SDNode *Node, bool isSigned);
    232   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
    233 
    234   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
    235 
    236   void ReplaceValueWith(SDValue From, SDValue To);
    237   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    238   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
    239                     SDValue &Lo, SDValue &Hi);
    240 
    241   void AddToWorklist(SDNode *N) {
    242     N->setNodeId(ReadyToProcess);
    243     Worklist.push_back(N);
    244   }
    245 
    246   //===--------------------------------------------------------------------===//
    247   // Integer Promotion Support: LegalizeIntegerTypes.cpp
    248   //===--------------------------------------------------------------------===//
    249 
    250   /// Given a processed operand Op which was promoted to a larger integer type,
    251   /// this returns the promoted value. The low bits of the promoted value
    252   /// corresponding to the original type are exactly equal to Op.
    253   /// The extra bits contain rubbish, so the promoted value may need to be zero-
    254   /// or sign-extended from the original type before it is usable (the helpers
    255   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
    256   /// For example, if Op is an i16 and was promoted to an i32, then this method
    257   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
    258   /// 16 bits of which contain rubbish.
    259   SDValue GetPromotedInteger(SDValue Op) {
    260     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
    261     SDValue PromotedOp = getSDValue(PromotedId);
    262     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    263     return PromotedOp;
    264   }
    265   void SetPromotedInteger(SDValue Op, SDValue Result);
    266 
    267   /// Get a promoted operand and sign extend it to the final size.
    268   SDValue SExtPromotedInteger(SDValue Op) {
    269     EVT OldVT = Op.getValueType();
    270     SDLoc dl(Op);
    271     Op = GetPromotedInteger(Op);
    272     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
    273                        DAG.getValueType(OldVT));
    274   }
    275 
    276   /// Get a promoted operand and zero extend it to the final size.
    277   SDValue ZExtPromotedInteger(SDValue Op) {
    278     EVT OldVT = Op.getValueType();
    279     SDLoc dl(Op);
    280     Op = GetPromotedInteger(Op);
    281     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
    282   }
    283 
    284   // Integer Result Promotion.
    285   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
    286   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    287   SDValue PromoteIntRes_AssertSext(SDNode *N);
    288   SDValue PromoteIntRes_AssertZext(SDNode *N);
    289   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
    290   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
    291   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
    292   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
    293   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
    294   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
    295   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
    296   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
    297   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
    298   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
    299   SDValue PromoteIntRes_BITCAST(SDNode *N);
    300   SDValue PromoteIntRes_BSWAP(SDNode *N);
    301   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
    302   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
    303   SDValue PromoteIntRes_Constant(SDNode *N);
    304   SDValue PromoteIntRes_CTLZ(SDNode *N);
    305   SDValue PromoteIntRes_CTPOP(SDNode *N);
    306   SDValue PromoteIntRes_CTTZ(SDNode *N);
    307   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
    308   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
    309   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
    310   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
    311   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
    312   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
    313   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
    314   SDValue PromoteIntRes_Overflow(SDNode *N);
    315   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
    316   SDValue PromoteIntRes_SELECT(SDNode *N);
    317   SDValue PromoteIntRes_VSELECT(SDNode *N);
    318   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
    319   SDValue PromoteIntRes_SETCC(SDNode *N);
    320   SDValue PromoteIntRes_SHL(SDNode *N);
    321   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
    322   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
    323   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
    324   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
    325   SDValue PromoteIntRes_SRA(SDNode *N);
    326   SDValue PromoteIntRes_SRL(SDNode *N);
    327   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
    328   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
    329   SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
    330   SDValue PromoteIntRes_UNDEF(SDNode *N);
    331   SDValue PromoteIntRes_VAARG(SDNode *N);
    332   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
    333 
    334   // Integer Operand Promotion.
    335   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
    336   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
    337   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
    338   SDValue PromoteIntOp_BITCAST(SDNode *N);
    339   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
    340   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
    341   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
    342   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
    343   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
    344   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
    345   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
    346   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
    347   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
    348   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
    349   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
    350   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
    351   SDValue PromoteIntOp_Shift(SDNode *N);
    352   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
    353   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
    354   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    355   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
    356   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
    357   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
    358   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
    359   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
    360   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
    361   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
    362   SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
    363 
    364   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
    365 
    366   //===--------------------------------------------------------------------===//
    367   // Integer Expansion Support: LegalizeIntegerTypes.cpp
    368   //===--------------------------------------------------------------------===//
    369 
    370   /// Given a processed operand Op which was expanded into two integers of half
    371   /// the size, this returns the two halves. The low bits of Op are exactly
    372   /// equal to the bits of Lo; the high bits exactly equal Hi.
    373   /// For example, if Op is an i64 which was expanded into two i32's, then this
    374   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
    375   /// Op, and Hi being equal to the upper 32 bits.
    376   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    377   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
    378 
    379   // Integer Result Expansion.
    380   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
    381   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
    382   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    383   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    384   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
    385   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    386   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    387   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    388   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    389   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
    390   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    391   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
    392   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
    393   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    394   void ExpandIntRes_FLT_ROUNDS        (SDNode *N, SDValue &Lo, SDValue &Hi);
    395   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    396   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    397 
    398   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
    399   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
    400   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
    401   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
    402   void ExpandIntRes_ADDSUBCARRY       (SDNode *N, SDValue &Lo, SDValue &Hi);
    403   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
    404   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    405   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
    406   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    407   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    408   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    409   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    410   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
    411 
    412   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
    413 
    414   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    415   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    416   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
    417 
    418   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
    419 
    420   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
    421                              SDValue &Lo, SDValue &Hi);
    422   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    423   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    424 
    425   // Integer Operand Expansion.
    426   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
    427   SDValue ExpandIntOp_BR_CC(SDNode *N);
    428   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
    429   SDValue ExpandIntOp_SETCC(SDNode *N);
    430   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
    431   SDValue ExpandIntOp_Shift(SDNode *N);
    432   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
    433   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    434   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
    435   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
    436   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
    437   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
    438 
    439   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    440                                   ISD::CondCode &CCCode, const SDLoc &dl);
    441 
    442   //===--------------------------------------------------------------------===//
    443   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
    444   //===--------------------------------------------------------------------===//
    445 
    446   /// Given an operand Op of Float type, returns the integer if the Op is not
    447   /// supported in target HW and converted to the integer.
    448   /// The integer contains exactly the same bits as Op - only the type changed.
    449   /// For example, if Op is an f32 which was softened to an i32, then this
    450   /// method returns an i32, the bits of which coincide with those of Op.
    451   /// If the Op can be efficiently supported in target HW or the operand must
    452   /// stay in a register, the Op is not converted to an integer.
    453   /// In that case, the given op is returned.
    454   SDValue GetSoftenedFloat(SDValue Op) {
    455     TableId Id = getTableId(Op);
    456     auto Iter = SoftenedFloats.find(Id);
    457     if (Iter == SoftenedFloats.end()) {
    458       assert(isSimpleLegalType(Op.getValueType()) &&
    459              "Operand wasn't converted to integer?");
    460       return Op;
    461     }
    462     SDValue SoftenedOp = getSDValue(Iter->second);
    463     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
    464     return SoftenedOp;
    465   }
    466   void SetSoftenedFloat(SDValue Op, SDValue Result);
    467 
    468   // Convert Float Results to Integer for Non-HW-supported Operations.
    469   bool SoftenFloatResult(SDNode *N, unsigned ResNo);
    470   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    471   SDValue SoftenFloatRes_BITCAST(SDNode *N, unsigned ResNo);
    472   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
    473   SDValue SoftenFloatRes_ConstantFP(SDNode *N, unsigned ResNo);
    474   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
    475   SDValue SoftenFloatRes_FABS(SDNode *N, unsigned ResNo);
    476   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
    477   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
    478   SDValue SoftenFloatRes_FADD(SDNode *N);
    479   SDValue SoftenFloatRes_FCEIL(SDNode *N);
    480   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N, unsigned ResNo);
    481   SDValue SoftenFloatRes_FCOS(SDNode *N);
    482   SDValue SoftenFloatRes_FDIV(SDNode *N);
    483   SDValue SoftenFloatRes_FEXP(SDNode *N);
    484   SDValue SoftenFloatRes_FEXP2(SDNode *N);
    485   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
    486   SDValue SoftenFloatRes_FLOG(SDNode *N);
    487   SDValue SoftenFloatRes_FLOG2(SDNode *N);
    488   SDValue SoftenFloatRes_FLOG10(SDNode *N);
    489   SDValue SoftenFloatRes_FMA(SDNode *N);
    490   SDValue SoftenFloatRes_FMUL(SDNode *N);
    491   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
    492   SDValue SoftenFloatRes_FNEG(SDNode *N, unsigned ResNo);
    493   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
    494   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
    495   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
    496   SDValue SoftenFloatRes_FPOW(SDNode *N);
    497   SDValue SoftenFloatRes_FPOWI(SDNode *N);
    498   SDValue SoftenFloatRes_FREM(SDNode *N);
    499   SDValue SoftenFloatRes_FRINT(SDNode *N);
    500   SDValue SoftenFloatRes_FROUND(SDNode *N);
    501   SDValue SoftenFloatRes_FSIN(SDNode *N);
    502   SDValue SoftenFloatRes_FSQRT(SDNode *N);
    503   SDValue SoftenFloatRes_FSUB(SDNode *N);
    504   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
    505   SDValue SoftenFloatRes_LOAD(SDNode *N, unsigned ResNo);
    506   SDValue SoftenFloatRes_SELECT(SDNode *N, unsigned ResNo);
    507   SDValue SoftenFloatRes_SELECT_CC(SDNode *N, unsigned ResNo);
    508   SDValue SoftenFloatRes_UNDEF(SDNode *N);
    509   SDValue SoftenFloatRes_VAARG(SDNode *N);
    510   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
    511 
    512   // Return true if we can skip softening the given operand or SDNode because
    513   // either it was soften before by SoftenFloatResult and references to the
    514   // operand were replaced by ReplaceValueWith or it's value type is legal in HW
    515   // registers and the operand can be left unchanged.
    516   bool CanSkipSoftenFloatOperand(SDNode *N, unsigned OpNo);
    517 
    518   // Convert Float Operand to Integer for Non-HW-supported Operations.
    519   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
    520   SDValue SoftenFloatOp_BITCAST(SDNode *N);
    521   SDValue SoftenFloatOp_COPY_TO_REG(SDNode *N);
    522   SDValue SoftenFloatOp_BR_CC(SDNode *N);
    523   SDValue SoftenFloatOp_FABS(SDNode *N);
    524   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
    525   SDValue SoftenFloatOp_FNEG(SDNode *N);
    526   SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
    527   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
    528   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
    529   SDValue SoftenFloatOp_SELECT(SDNode *N);
    530   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
    531   SDValue SoftenFloatOp_SETCC(SDNode *N);
    532   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
    533 
    534   //===--------------------------------------------------------------------===//
    535   // Float Expansion Support: LegalizeFloatTypes.cpp
    536   //===--------------------------------------------------------------------===//
    537 
    538   /// Given a processed operand Op which was expanded into two floating-point
    539   /// values of half the size, this returns the two halves.
    540   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
    541   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
    542   /// into two f64's, then this method returns the two f64's, with Lo being
    543   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
    544   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
    545   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
    546 
    547   // Float Result Expansion.
    548   void ExpandFloatResult(SDNode *N, unsigned ResNo);
    549   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
    550   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    551   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
    552   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
    553   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    554   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
    555   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
    556   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    557   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
    558   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
    559   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    560   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
    561   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    562   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    563   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
    564   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
    565   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
    566   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
    567   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    568   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
    569   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
    570   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
    571   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
    572   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    573   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
    574   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
    575   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    576   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
    577   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
    578   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    579   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
    580 
    581   // Float Operand Expansion.
    582   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
    583   SDValue ExpandFloatOp_BR_CC(SDNode *N);
    584   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
    585   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
    586   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
    587   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
    588   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
    589   SDValue ExpandFloatOp_SETCC(SDNode *N);
    590   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
    591 
    592   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    593                                 ISD::CondCode &CCCode, const SDLoc &dl);
    594 
    595   //===--------------------------------------------------------------------===//
    596   // Float promotion support: LegalizeFloatTypes.cpp
    597   //===--------------------------------------------------------------------===//
    598 
    599   SDValue GetPromotedFloat(SDValue Op) {
    600     TableId &PromotedId = PromotedFloats[getTableId(Op)];
    601     SDValue PromotedOp = getSDValue(PromotedId);
    602     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    603     return PromotedOp;
    604   }
    605   void SetPromotedFloat(SDValue Op, SDValue Result);
    606 
    607   void PromoteFloatResult(SDNode *N, unsigned ResNo);
    608   SDValue PromoteFloatRes_BITCAST(SDNode *N);
    609   SDValue PromoteFloatRes_BinOp(SDNode *N);
    610   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
    611   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
    612   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
    613   SDValue PromoteFloatRes_FMAD(SDNode *N);
    614   SDValue PromoteFloatRes_FPOWI(SDNode *N);
    615   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
    616   SDValue PromoteFloatRes_LOAD(SDNode *N);
    617   SDValue PromoteFloatRes_SELECT(SDNode *N);
    618   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
    619   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
    620   SDValue PromoteFloatRes_UNDEF(SDNode *N);
    621   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
    622 
    623   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
    624   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
    625   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
    626   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
    627   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
    628   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
    629   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
    630   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
    631 
    632   //===--------------------------------------------------------------------===//
    633   // Scalarization Support: LegalizeVectorTypes.cpp
    634   //===--------------------------------------------------------------------===//
    635 
    636   /// Given a processed one-element vector Op which was scalarized to its
    637   /// element type, this returns the element. For example, if Op is a v1i32,
    638   /// Op = < i32 val >, this method returns val, an i32.
    639   SDValue GetScalarizedVector(SDValue Op) {
    640     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
    641     SDValue ScalarizedOp = getSDValue(ScalarizedId);
    642     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
    643     return ScalarizedOp;
    644   }
    645   void SetScalarizedVector(SDValue Op, SDValue Result);
    646 
    647   // Vector Result Scalarization: <1 x ty> -> ty.
    648   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
    649   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    650   SDValue ScalarizeVecRes_BinOp(SDNode *N);
    651   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
    652   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
    653   SDValue ScalarizeVecRes_InregOp(SDNode *N);
    654   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
    655 
    656   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
    657   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
    658   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
    659   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
    660   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
    661   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
    662   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
    663   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
    664   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
    665   SDValue ScalarizeVecRes_SELECT(SDNode *N);
    666   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
    667   SDValue ScalarizeVecRes_SETCC(SDNode *N);
    668   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
    669   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
    670 
    671   // Vector Operand Scalarization: <1 x ty> -> ty.
    672   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
    673   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
    674   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
    675   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
    676   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    677   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
    678   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
    679   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    680   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
    681 
    682   //===--------------------------------------------------------------------===//
    683   // Vector Splitting Support: LegalizeVectorTypes.cpp
    684   //===--------------------------------------------------------------------===//
    685 
    686   /// Given a processed vector Op which was split into vectors of half the size,
    687   /// this method returns the halves. The first elements of Op coincide with the
    688   /// elements of Lo; the remaining elements of Op coincide with the elements of
    689   /// Hi: Op is what you would get by concatenating Lo and Hi.
    690   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
    691   /// method returns the two v4i32's, with Lo corresponding to the first 4
    692   /// elements of Op, and Hi to the last 4 elements.
    693   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
    694   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
    695 
    696   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
    697   void SplitVectorResult(SDNode *N, unsigned ResNo);
    698   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    699   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    700   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    701   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    702   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    703   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    704   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    705 
    706   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
    707   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    708   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
    709   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    710   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    711   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
    712   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
    713   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    714   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
    715   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
    716   void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi);
    717   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    718   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
    719   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
    720                                   SDValue &Hi);
    721 
    722   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
    723   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
    724   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
    725   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
    726   SDValue SplitVecOp_UnaryOp(SDNode *N);
    727   SDValue SplitVecOp_TruncateHelper(SDNode *N);
    728 
    729   SDValue SplitVecOp_BITCAST(SDNode *N);
    730   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    731   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    732   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
    733   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    734   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
    735   SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
    736   SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo);
    737   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
    738   SDValue SplitVecOp_VSETCC(SDNode *N);
    739   SDValue SplitVecOp_FP_ROUND(SDNode *N);
    740   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
    741 
    742   //===--------------------------------------------------------------------===//
    743   // Vector Widening Support: LegalizeVectorTypes.cpp
    744   //===--------------------------------------------------------------------===//
    745 
    746   /// Given a processed vector Op which was widened into a larger vector, this
    747   /// method returns the larger vector. The elements of the returned vector
    748   /// consist of the elements of Op followed by elements containing rubbish.
    749   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
    750   /// method returns a v4i32 for which the first two elements are the same as
    751   /// those of Op, while the last two elements contain rubbish.
    752   SDValue GetWidenedVector(SDValue Op) {
    753     TableId &WidenedId = WidenedVectors[getTableId(Op)];
    754     SDValue WidenedOp = getSDValue(WidenedId);
    755     assert(WidenedOp.getNode() && "Operand wasn't widened?");
    756     return WidenedOp;
    757   }
    758   void SetWidenedVector(SDValue Op, SDValue Result);
    759 
    760   // Widen Vector Result Promotion.
    761   void WidenVectorResult(SDNode *N, unsigned ResNo);
    762   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
    763   SDValue WidenVecRes_BITCAST(SDNode* N);
    764   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
    765   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
    766   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
    767   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
    768   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
    769   SDValue WidenVecRes_LOAD(SDNode* N);
    770   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
    771   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
    772   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
    773   SDValue WidenVecRes_SELECT(SDNode* N);
    774   SDValue WidenVSELECTAndMask(SDNode *N);
    775   SDValue WidenVecRes_SELECT_CC(SDNode* N);
    776   SDValue WidenVecRes_SETCC(SDNode* N);
    777   SDValue WidenVecRes_UNDEF(SDNode *N);
    778   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
    779 
    780   SDValue WidenVecRes_Ternary(SDNode *N);
    781   SDValue WidenVecRes_Binary(SDNode *N);
    782   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
    783   SDValue WidenVecRes_Convert(SDNode *N);
    784   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
    785   SDValue WidenVecRes_POWI(SDNode *N);
    786   SDValue WidenVecRes_Shift(SDNode *N);
    787   SDValue WidenVecRes_Unary(SDNode *N);
    788   SDValue WidenVecRes_InregOp(SDNode *N);
    789 
    790   // Widen Vector Operand.
    791   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
    792   SDValue WidenVecOp_BITCAST(SDNode *N);
    793   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
    794   SDValue WidenVecOp_EXTEND(SDNode *N);
    795   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    796   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    797   SDValue WidenVecOp_STORE(SDNode* N);
    798   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
    799   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
    800   SDValue WidenVecOp_SETCC(SDNode* N);
    801 
    802   SDValue WidenVecOp_Convert(SDNode *N);
    803   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
    804 
    805   //===--------------------------------------------------------------------===//
    806   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
    807   //===--------------------------------------------------------------------===//
    808 
    809   /// Helper function to generate a set of loads to load a vector with a
    810   /// resulting wider type. It takes:
    811   ///   LdChain: list of chains for the load to be generated.
    812   ///   Ld:      load to widen
    813   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
    814                               LoadSDNode *LD);
    815 
    816   /// Helper function to generate a set of extension loads to load a vector with
    817   /// a resulting wider type. It takes:
    818   ///   LdChain: list of chains for the load to be generated.
    819   ///   Ld:      load to widen
    820   ///   ExtType: extension element type
    821   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
    822                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
    823 
    824   /// Helper function to generate a set of stores to store a widen vector into
    825   /// non-widen memory.
    826   ///   StChain: list of chains for the stores we have generated
    827   ///   ST:      store of a widen value
    828   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
    829 
    830   /// Helper function to generate a set of stores to store a truncate widen
    831   /// vector into non-widen memory.
    832   ///   StChain: list of chains for the stores we have generated
    833   ///   ST:      store of a widen value
    834   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
    835                                  StoreSDNode *ST);
    836 
    837   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
    838   /// input vector must have the same element type as NVT.
    839   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
    840   /// By default, the vector will be widened with undefined values.
    841   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
    842 
    843   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
    844   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
    845   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
    846 
    847   /// Get the target mask VT, and widen if needed.
    848   EVT getSETCCWidenedResultTy(SDValue SetCC);
    849 
    850   //===--------------------------------------------------------------------===//
    851   // Generic Splitting: LegalizeTypesGeneric.cpp
    852   //===--------------------------------------------------------------------===//
    853 
    854   // Legalization methods which only use that the illegal type is split into two
    855   // not necessarily identical types.  As such they can be used for splitting
    856   // vectors and expanding integers and floats.
    857 
    858   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    859     if (Op.getValueType().isVector())
    860       GetSplitVector(Op, Lo, Hi);
    861     else if (Op.getValueType().isInteger())
    862       GetExpandedInteger(Op, Lo, Hi);
    863     else
    864       GetExpandedFloat(Op, Lo, Hi);
    865   }
    866 
    867   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
    868   /// given value.
    869   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
    870 
    871   // Generic Result Splitting.
    872   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
    873                              SDValue &Lo, SDValue &Hi);
    874   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
    875   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
    876   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
    877 
    878   //===--------------------------------------------------------------------===//
    879   // Generic Expansion: LegalizeTypesGeneric.cpp
    880   //===--------------------------------------------------------------------===//
    881 
    882   // Legalization methods which only use that the illegal type is split into two
    883   // identical types of half the size, and that the Lo/Hi part is stored first
    884   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
    885   // such they can be used for expanding integers and floats.
    886 
    887   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    888     if (Op.getValueType().isInteger())
    889       GetExpandedInteger(Op, Lo, Hi);
    890     else
    891       GetExpandedFloat(Op, Lo, Hi);
    892   }
    893 
    894 
    895   /// This function will split the integer \p Op into \p NumElements
    896   /// operations of type \p EltVT and store them in \p Ops.
    897   void IntegerToVector(SDValue Op, unsigned NumElements,
    898                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
    899 
    900   // Generic Result Expansion.
    901   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
    902                                     SDValue &Lo, SDValue &Hi);
    903   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
    904   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
    905   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
    906   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    907   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
    908   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
    909 
    910   // Generic Operand Expansion.
    911   SDValue ExpandOp_BITCAST          (SDNode *N);
    912   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
    913   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
    914   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
    915   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
    916   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
    917 };
    918 
    919 } // end namespace llvm.
    920 
    921 #endif
    922