Home | History | Annotate | Download | only in Utils
      1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inlining of a function into a call site, resolving
     11 // parameters and the return value as appropriate.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/None.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SetVector.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/StringExtras.h"
     23 #include "llvm/ADT/iterator_range.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Analysis/AssumptionCache.h"
     26 #include "llvm/Analysis/BlockFrequencyInfo.h"
     27 #include "llvm/Analysis/CallGraph.h"
     28 #include "llvm/Analysis/CaptureTracking.h"
     29 #include "llvm/Analysis/EHPersonalities.h"
     30 #include "llvm/Analysis/InstructionSimplify.h"
     31 #include "llvm/Analysis/ProfileSummaryInfo.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Analysis/ValueTracking.h"
     34 #include "llvm/IR/Argument.h"
     35 #include "llvm/IR/BasicBlock.h"
     36 #include "llvm/IR/CFG.h"
     37 #include "llvm/IR/CallSite.h"
     38 #include "llvm/IR/Constant.h"
     39 #include "llvm/IR/Constants.h"
     40 #include "llvm/IR/DIBuilder.h"
     41 #include "llvm/IR/DataLayout.h"
     42 #include "llvm/IR/DebugInfoMetadata.h"
     43 #include "llvm/IR/DebugLoc.h"
     44 #include "llvm/IR/DerivedTypes.h"
     45 #include "llvm/IR/Dominators.h"
     46 #include "llvm/IR/Function.h"
     47 #include "llvm/IR/IRBuilder.h"
     48 #include "llvm/IR/InstrTypes.h"
     49 #include "llvm/IR/Instruction.h"
     50 #include "llvm/IR/Instructions.h"
     51 #include "llvm/IR/IntrinsicInst.h"
     52 #include "llvm/IR/Intrinsics.h"
     53 #include "llvm/IR/LLVMContext.h"
     54 #include "llvm/IR/MDBuilder.h"
     55 #include "llvm/IR/Metadata.h"
     56 #include "llvm/IR/Module.h"
     57 #include "llvm/IR/Type.h"
     58 #include "llvm/IR/User.h"
     59 #include "llvm/IR/Value.h"
     60 #include "llvm/Support/Casting.h"
     61 #include "llvm/Support/CommandLine.h"
     62 #include "llvm/Support/ErrorHandling.h"
     63 #include "llvm/Transforms/Utils/Cloning.h"
     64 #include "llvm/Transforms/Utils/ValueMapper.h"
     65 #include <algorithm>
     66 #include <cassert>
     67 #include <cstdint>
     68 #include <iterator>
     69 #include <limits>
     70 #include <string>
     71 #include <utility>
     72 #include <vector>
     73 
     74 using namespace llvm;
     75 using ProfileCount = Function::ProfileCount;
     76 
     77 static cl::opt<bool>
     78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
     79   cl::Hidden,
     80   cl::desc("Convert noalias attributes to metadata during inlining."));
     81 
     82 static cl::opt<bool>
     83 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
     84   cl::init(true), cl::Hidden,
     85   cl::desc("Convert align attributes to assumptions during inlining."));
     86 
     87 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
     88                           AAResults *CalleeAAR, bool InsertLifetime) {
     89   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
     90 }
     91 
     92 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
     93                           AAResults *CalleeAAR, bool InsertLifetime) {
     94   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
     95 }
     96 
     97 namespace {
     98 
     99   /// A class for recording information about inlining a landing pad.
    100   class LandingPadInliningInfo {
    101     /// Destination of the invoke's unwind.
    102     BasicBlock *OuterResumeDest;
    103 
    104     /// Destination for the callee's resume.
    105     BasicBlock *InnerResumeDest = nullptr;
    106 
    107     /// LandingPadInst associated with the invoke.
    108     LandingPadInst *CallerLPad = nullptr;
    109 
    110     /// PHI for EH values from landingpad insts.
    111     PHINode *InnerEHValuesPHI = nullptr;
    112 
    113     SmallVector<Value*, 8> UnwindDestPHIValues;
    114 
    115   public:
    116     LandingPadInliningInfo(InvokeInst *II)
    117         : OuterResumeDest(II->getUnwindDest()) {
    118       // If there are PHI nodes in the unwind destination block, we need to keep
    119       // track of which values came into them from the invoke before removing
    120       // the edge from this block.
    121       BasicBlock *InvokeBB = II->getParent();
    122       BasicBlock::iterator I = OuterResumeDest->begin();
    123       for (; isa<PHINode>(I); ++I) {
    124         // Save the value to use for this edge.
    125         PHINode *PHI = cast<PHINode>(I);
    126         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
    127       }
    128 
    129       CallerLPad = cast<LandingPadInst>(I);
    130     }
    131 
    132     /// The outer unwind destination is the target of
    133     /// unwind edges introduced for calls within the inlined function.
    134     BasicBlock *getOuterResumeDest() const {
    135       return OuterResumeDest;
    136     }
    137 
    138     BasicBlock *getInnerResumeDest();
    139 
    140     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
    141 
    142     /// Forward the 'resume' instruction to the caller's landing pad block.
    143     /// When the landing pad block has only one predecessor, this is
    144     /// a simple branch. When there is more than one predecessor, we need to
    145     /// split the landing pad block after the landingpad instruction and jump
    146     /// to there.
    147     void forwardResume(ResumeInst *RI,
    148                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
    149 
    150     /// Add incoming-PHI values to the unwind destination block for the given
    151     /// basic block, using the values for the original invoke's source block.
    152     void addIncomingPHIValuesFor(BasicBlock *BB) const {
    153       addIncomingPHIValuesForInto(BB, OuterResumeDest);
    154     }
    155 
    156     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
    157       BasicBlock::iterator I = dest->begin();
    158       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    159         PHINode *phi = cast<PHINode>(I);
    160         phi->addIncoming(UnwindDestPHIValues[i], src);
    161       }
    162     }
    163   };
    164 
    165 } // end anonymous namespace
    166 
    167 /// Get or create a target for the branch from ResumeInsts.
    168 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
    169   if (InnerResumeDest) return InnerResumeDest;
    170 
    171   // Split the landing pad.
    172   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
    173   InnerResumeDest =
    174     OuterResumeDest->splitBasicBlock(SplitPoint,
    175                                      OuterResumeDest->getName() + ".body");
    176 
    177   // The number of incoming edges we expect to the inner landing pad.
    178   const unsigned PHICapacity = 2;
    179 
    180   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
    181   Instruction *InsertPoint = &InnerResumeDest->front();
    182   BasicBlock::iterator I = OuterResumeDest->begin();
    183   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    184     PHINode *OuterPHI = cast<PHINode>(I);
    185     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
    186                                         OuterPHI->getName() + ".lpad-body",
    187                                         InsertPoint);
    188     OuterPHI->replaceAllUsesWith(InnerPHI);
    189     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
    190   }
    191 
    192   // Create a PHI for the exception values.
    193   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
    194                                      "eh.lpad-body", InsertPoint);
    195   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
    196   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
    197 
    198   // All done.
    199   return InnerResumeDest;
    200 }
    201 
    202 /// Forward the 'resume' instruction to the caller's landing pad block.
    203 /// When the landing pad block has only one predecessor, this is a simple
    204 /// branch. When there is more than one predecessor, we need to split the
    205 /// landing pad block after the landingpad instruction and jump to there.
    206 void LandingPadInliningInfo::forwardResume(
    207     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
    208   BasicBlock *Dest = getInnerResumeDest();
    209   BasicBlock *Src = RI->getParent();
    210 
    211   BranchInst::Create(Dest, Src);
    212 
    213   // Update the PHIs in the destination. They were inserted in an order which
    214   // makes this work.
    215   addIncomingPHIValuesForInto(Src, Dest);
    216 
    217   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
    218   RI->eraseFromParent();
    219 }
    220 
    221 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
    222 static Value *getParentPad(Value *EHPad) {
    223   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
    224     return FPI->getParentPad();
    225   return cast<CatchSwitchInst>(EHPad)->getParentPad();
    226 }
    227 
    228 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
    229 
    230 /// Helper for getUnwindDestToken that does the descendant-ward part of
    231 /// the search.
    232 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
    233                                        UnwindDestMemoTy &MemoMap) {
    234   SmallVector<Instruction *, 8> Worklist(1, EHPad);
    235 
    236   while (!Worklist.empty()) {
    237     Instruction *CurrentPad = Worklist.pop_back_val();
    238     // We only put pads on the worklist that aren't in the MemoMap.  When
    239     // we find an unwind dest for a pad we may update its ancestors, but
    240     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
    241     // so they should never get updated while queued on the worklist.
    242     assert(!MemoMap.count(CurrentPad));
    243     Value *UnwindDestToken = nullptr;
    244     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
    245       if (CatchSwitch->hasUnwindDest()) {
    246         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
    247       } else {
    248         // Catchswitch doesn't have a 'nounwind' variant, and one might be
    249         // annotated as "unwinds to caller" when really it's nounwind (see
    250         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
    251         // parent's unwind dest from this.  We can check its catchpads'
    252         // descendants, since they might include a cleanuppad with an
    253         // "unwinds to caller" cleanupret, which can be trusted.
    254         for (auto HI = CatchSwitch->handler_begin(),
    255                   HE = CatchSwitch->handler_end();
    256              HI != HE && !UnwindDestToken; ++HI) {
    257           BasicBlock *HandlerBlock = *HI;
    258           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
    259           for (User *Child : CatchPad->users()) {
    260             // Intentionally ignore invokes here -- since the catchswitch is
    261             // marked "unwind to caller", it would be a verifier error if it
    262             // contained an invoke which unwinds out of it, so any invoke we'd
    263             // encounter must unwind to some child of the catch.
    264             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
    265               continue;
    266 
    267             Instruction *ChildPad = cast<Instruction>(Child);
    268             auto Memo = MemoMap.find(ChildPad);
    269             if (Memo == MemoMap.end()) {
    270               // Haven't figured out this child pad yet; queue it.
    271               Worklist.push_back(ChildPad);
    272               continue;
    273             }
    274             // We've already checked this child, but might have found that
    275             // it offers no proof either way.
    276             Value *ChildUnwindDestToken = Memo->second;
    277             if (!ChildUnwindDestToken)
    278               continue;
    279             // We already know the child's unwind dest, which can either
    280             // be ConstantTokenNone to indicate unwind to caller, or can
    281             // be another child of the catchpad.  Only the former indicates
    282             // the unwind dest of the catchswitch.
    283             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
    284               UnwindDestToken = ChildUnwindDestToken;
    285               break;
    286             }
    287             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
    288           }
    289         }
    290       }
    291     } else {
    292       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
    293       for (User *U : CleanupPad->users()) {
    294         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
    295           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
    296             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
    297           else
    298             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
    299           break;
    300         }
    301         Value *ChildUnwindDestToken;
    302         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
    303           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
    304         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
    305           Instruction *ChildPad = cast<Instruction>(U);
    306           auto Memo = MemoMap.find(ChildPad);
    307           if (Memo == MemoMap.end()) {
    308             // Haven't resolved this child yet; queue it and keep searching.
    309             Worklist.push_back(ChildPad);
    310             continue;
    311           }
    312           // We've checked this child, but still need to ignore it if it
    313           // had no proof either way.
    314           ChildUnwindDestToken = Memo->second;
    315           if (!ChildUnwindDestToken)
    316             continue;
    317         } else {
    318           // Not a relevant user of the cleanuppad
    319           continue;
    320         }
    321         // In a well-formed program, the child/invoke must either unwind to
    322         // an(other) child of the cleanup, or exit the cleanup.  In the
    323         // first case, continue searching.
    324         if (isa<Instruction>(ChildUnwindDestToken) &&
    325             getParentPad(ChildUnwindDestToken) == CleanupPad)
    326           continue;
    327         UnwindDestToken = ChildUnwindDestToken;
    328         break;
    329       }
    330     }
    331     // If we haven't found an unwind dest for CurrentPad, we may have queued its
    332     // children, so move on to the next in the worklist.
    333     if (!UnwindDestToken)
    334       continue;
    335 
    336     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
    337     // any ancestors of CurrentPad up to but not including UnwindDestToken's
    338     // parent pad.  Record this in the memo map, and check to see if the
    339     // original EHPad being queried is one of the ones exited.
    340     Value *UnwindParent;
    341     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
    342       UnwindParent = getParentPad(UnwindPad);
    343     else
    344       UnwindParent = nullptr;
    345     bool ExitedOriginalPad = false;
    346     for (Instruction *ExitedPad = CurrentPad;
    347          ExitedPad && ExitedPad != UnwindParent;
    348          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
    349       // Skip over catchpads since they just follow their catchswitches.
    350       if (isa<CatchPadInst>(ExitedPad))
    351         continue;
    352       MemoMap[ExitedPad] = UnwindDestToken;
    353       ExitedOriginalPad |= (ExitedPad == EHPad);
    354     }
    355 
    356     if (ExitedOriginalPad)
    357       return UnwindDestToken;
    358 
    359     // Continue the search.
    360   }
    361 
    362   // No definitive information is contained within this funclet.
    363   return nullptr;
    364 }
    365 
    366 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
    367 /// return that pad instruction.  If it unwinds to caller, return
    368 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
    369 /// return nullptr.
    370 ///
    371 /// This routine gets invoked for calls in funclets in inlinees when inlining
    372 /// an invoke.  Since many funclets don't have calls inside them, it's queried
    373 /// on-demand rather than building a map of pads to unwind dests up front.
    374 /// Determining a funclet's unwind dest may require recursively searching its
    375 /// descendants, and also ancestors and cousins if the descendants don't provide
    376 /// an answer.  Since most funclets will have their unwind dest immediately
    377 /// available as the unwind dest of a catchswitch or cleanupret, this routine
    378 /// searches top-down from the given pad and then up. To avoid worst-case
    379 /// quadratic run-time given that approach, it uses a memo map to avoid
    380 /// re-processing funclet trees.  The callers that rewrite the IR as they go
    381 /// take advantage of this, for correctness, by checking/forcing rewritten
    382 /// pads' entries to match the original callee view.
    383 static Value *getUnwindDestToken(Instruction *EHPad,
    384                                  UnwindDestMemoTy &MemoMap) {
    385   // Catchpads unwind to the same place as their catchswitch;
    386   // redirct any queries on catchpads so the code below can
    387   // deal with just catchswitches and cleanuppads.
    388   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
    389     EHPad = CPI->getCatchSwitch();
    390 
    391   // Check if we've already determined the unwind dest for this pad.
    392   auto Memo = MemoMap.find(EHPad);
    393   if (Memo != MemoMap.end())
    394     return Memo->second;
    395 
    396   // Search EHPad and, if necessary, its descendants.
    397   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
    398   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
    399   if (UnwindDestToken)
    400     return UnwindDestToken;
    401 
    402   // No information is available for this EHPad from itself or any of its
    403   // descendants.  An unwind all the way out to a pad in the caller would
    404   // need also to agree with the unwind dest of the parent funclet, so
    405   // search up the chain to try to find a funclet with information.  Put
    406   // null entries in the memo map to avoid re-processing as we go up.
    407   MemoMap[EHPad] = nullptr;
    408 #ifndef NDEBUG
    409   SmallPtrSet<Instruction *, 4> TempMemos;
    410   TempMemos.insert(EHPad);
    411 #endif
    412   Instruction *LastUselessPad = EHPad;
    413   Value *AncestorToken;
    414   for (AncestorToken = getParentPad(EHPad);
    415        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
    416        AncestorToken = getParentPad(AncestorToken)) {
    417     // Skip over catchpads since they just follow their catchswitches.
    418     if (isa<CatchPadInst>(AncestorPad))
    419       continue;
    420     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
    421     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
    422     // call to getUnwindDestToken, that would mean that AncestorPad had no
    423     // information in itself, its descendants, or its ancestors.  If that
    424     // were the case, then we should also have recorded the lack of information
    425     // for the descendant that we're coming from.  So assert that we don't
    426     // find a null entry in the MemoMap for AncestorPad.
    427     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
    428     auto AncestorMemo = MemoMap.find(AncestorPad);
    429     if (AncestorMemo == MemoMap.end()) {
    430       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
    431     } else {
    432       UnwindDestToken = AncestorMemo->second;
    433     }
    434     if (UnwindDestToken)
    435       break;
    436     LastUselessPad = AncestorPad;
    437     MemoMap[LastUselessPad] = nullptr;
    438 #ifndef NDEBUG
    439     TempMemos.insert(LastUselessPad);
    440 #endif
    441   }
    442 
    443   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
    444   // returned nullptr (and likewise for EHPad and any of its ancestors up to
    445   // LastUselessPad), so LastUselessPad has no information from below.  Since
    446   // getUnwindDestTokenHelper must investigate all downward paths through
    447   // no-information nodes to prove that a node has no information like this,
    448   // and since any time it finds information it records it in the MemoMap for
    449   // not just the immediately-containing funclet but also any ancestors also
    450   // exited, it must be the case that, walking downward from LastUselessPad,
    451   // visiting just those nodes which have not been mapped to an unwind dest
    452   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
    453   // they are just used to keep getUnwindDestTokenHelper from repeating work),
    454   // any node visited must have been exhaustively searched with no information
    455   // for it found.
    456   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
    457   while (!Worklist.empty()) {
    458     Instruction *UselessPad = Worklist.pop_back_val();
    459     auto Memo = MemoMap.find(UselessPad);
    460     if (Memo != MemoMap.end() && Memo->second) {
    461       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
    462       // that it is a funclet that does have information about unwinding to
    463       // a particular destination; its parent was a useless pad.
    464       // Since its parent has no information, the unwind edge must not escape
    465       // the parent, and must target a sibling of this pad.  This local unwind
    466       // gives us no information about EHPad.  Leave it and the subtree rooted
    467       // at it alone.
    468       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
    469       continue;
    470     }
    471     // We know we don't have information for UselesPad.  If it has an entry in
    472     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
    473     // added on this invocation of getUnwindDestToken; if a previous invocation
    474     // recorded nullptr, it would have had to prove that the ancestors of
    475     // UselessPad, which include LastUselessPad, had no information, and that
    476     // in turn would have required proving that the descendants of
    477     // LastUselesPad, which include EHPad, have no information about
    478     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
    479     // the MemoMap on that invocation, which isn't the case if we got here.
    480     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
    481     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
    482     // information that we'd be contradicting by making a map entry for it
    483     // (which is something that getUnwindDestTokenHelper must have proved for
    484     // us to get here).  Just assert on is direct users here; the checks in
    485     // this downward walk at its descendants will verify that they don't have
    486     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
    487     // unwind edges or unwind to a sibling).
    488     MemoMap[UselessPad] = UnwindDestToken;
    489     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
    490       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
    491       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
    492         auto *CatchPad = HandlerBlock->getFirstNonPHI();
    493         for (User *U : CatchPad->users()) {
    494           assert(
    495               (!isa<InvokeInst>(U) ||
    496                (getParentPad(
    497                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
    498                 CatchPad)) &&
    499               "Expected useless pad");
    500           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
    501             Worklist.push_back(cast<Instruction>(U));
    502         }
    503       }
    504     } else {
    505       assert(isa<CleanupPadInst>(UselessPad));
    506       for (User *U : UselessPad->users()) {
    507         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
    508         assert((!isa<InvokeInst>(U) ||
    509                 (getParentPad(
    510                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
    511                  UselessPad)) &&
    512                "Expected useless pad");
    513         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
    514           Worklist.push_back(cast<Instruction>(U));
    515       }
    516     }
    517   }
    518 
    519   return UnwindDestToken;
    520 }
    521 
    522 /// When we inline a basic block into an invoke,
    523 /// we have to turn all of the calls that can throw into invokes.
    524 /// This function analyze BB to see if there are any calls, and if so,
    525 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
    526 /// nodes in that block with the values specified in InvokeDestPHIValues.
    527 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
    528     BasicBlock *BB, BasicBlock *UnwindEdge,
    529     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
    530   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    531     Instruction *I = &*BBI++;
    532 
    533     // We only need to check for function calls: inlined invoke
    534     // instructions require no special handling.
    535     CallInst *CI = dyn_cast<CallInst>(I);
    536 
    537     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
    538       continue;
    539 
    540     // We do not need to (and in fact, cannot) convert possibly throwing calls
    541     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
    542     // invokes.  The caller's "segment" of the deoptimization continuation
    543     // attached to the newly inlined @llvm.experimental_deoptimize
    544     // (resp. @llvm.experimental.guard) call should contain the exception
    545     // handling logic, if any.
    546     if (auto *F = CI->getCalledFunction())
    547       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
    548           F->getIntrinsicID() == Intrinsic::experimental_guard)
    549         continue;
    550 
    551     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
    552       // This call is nested inside a funclet.  If that funclet has an unwind
    553       // destination within the inlinee, then unwinding out of this call would
    554       // be UB.  Rewriting this call to an invoke which targets the inlined
    555       // invoke's unwind dest would give the call's parent funclet multiple
    556       // unwind destinations, which is something that subsequent EH table
    557       // generation can't handle and that the veirifer rejects.  So when we
    558       // see such a call, leave it as a call.
    559       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
    560       Value *UnwindDestToken =
    561           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
    562       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
    563         continue;
    564 #ifndef NDEBUG
    565       Instruction *MemoKey;
    566       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
    567         MemoKey = CatchPad->getCatchSwitch();
    568       else
    569         MemoKey = FuncletPad;
    570       assert(FuncletUnwindMap->count(MemoKey) &&
    571              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
    572              "must get memoized to avoid confusing later searches");
    573 #endif // NDEBUG
    574     }
    575 
    576     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
    577     return BB;
    578   }
    579   return nullptr;
    580 }
    581 
    582 /// If we inlined an invoke site, we need to convert calls
    583 /// in the body of the inlined function into invokes.
    584 ///
    585 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
    586 /// block of the inlined code (the last block is the end of the function),
    587 /// and InlineCodeInfo is information about the code that got inlined.
    588 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
    589                                     ClonedCodeInfo &InlinedCodeInfo) {
    590   BasicBlock *InvokeDest = II->getUnwindDest();
    591 
    592   Function *Caller = FirstNewBlock->getParent();
    593 
    594   // The inlined code is currently at the end of the function, scan from the
    595   // start of the inlined code to its end, checking for stuff we need to
    596   // rewrite.
    597   LandingPadInliningInfo Invoke(II);
    598 
    599   // Get all of the inlined landing pad instructions.
    600   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
    601   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
    602        I != E; ++I)
    603     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
    604       InlinedLPads.insert(II->getLandingPadInst());
    605 
    606   // Append the clauses from the outer landing pad instruction into the inlined
    607   // landing pad instructions.
    608   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
    609   for (LandingPadInst *InlinedLPad : InlinedLPads) {
    610     unsigned OuterNum = OuterLPad->getNumClauses();
    611     InlinedLPad->reserveClauses(OuterNum);
    612     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
    613       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
    614     if (OuterLPad->isCleanup())
    615       InlinedLPad->setCleanup(true);
    616   }
    617 
    618   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
    619        BB != E; ++BB) {
    620     if (InlinedCodeInfo.ContainsCalls)
    621       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
    622               &*BB, Invoke.getOuterResumeDest()))
    623         // Update any PHI nodes in the exceptional block to indicate that there
    624         // is now a new entry in them.
    625         Invoke.addIncomingPHIValuesFor(NewBB);
    626 
    627     // Forward any resumes that are remaining here.
    628     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
    629       Invoke.forwardResume(RI, InlinedLPads);
    630   }
    631 
    632   // Now that everything is happy, we have one final detail.  The PHI nodes in
    633   // the exception destination block still have entries due to the original
    634   // invoke instruction. Eliminate these entries (which might even delete the
    635   // PHI node) now.
    636   InvokeDest->removePredecessor(II->getParent());
    637 }
    638 
    639 /// If we inlined an invoke site, we need to convert calls
    640 /// in the body of the inlined function into invokes.
    641 ///
    642 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
    643 /// block of the inlined code (the last block is the end of the function),
    644 /// and InlineCodeInfo is information about the code that got inlined.
    645 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
    646                                ClonedCodeInfo &InlinedCodeInfo) {
    647   BasicBlock *UnwindDest = II->getUnwindDest();
    648   Function *Caller = FirstNewBlock->getParent();
    649 
    650   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
    651 
    652   // If there are PHI nodes in the unwind destination block, we need to keep
    653   // track of which values came into them from the invoke before removing the
    654   // edge from this block.
    655   SmallVector<Value *, 8> UnwindDestPHIValues;
    656   BasicBlock *InvokeBB = II->getParent();
    657   for (Instruction &I : *UnwindDest) {
    658     // Save the value to use for this edge.
    659     PHINode *PHI = dyn_cast<PHINode>(&I);
    660     if (!PHI)
    661       break;
    662     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
    663   }
    664 
    665   // Add incoming-PHI values to the unwind destination block for the given basic
    666   // block, using the values for the original invoke's source block.
    667   auto UpdatePHINodes = [&](BasicBlock *Src) {
    668     BasicBlock::iterator I = UnwindDest->begin();
    669     for (Value *V : UnwindDestPHIValues) {
    670       PHINode *PHI = cast<PHINode>(I);
    671       PHI->addIncoming(V, Src);
    672       ++I;
    673     }
    674   };
    675 
    676   // This connects all the instructions which 'unwind to caller' to the invoke
    677   // destination.
    678   UnwindDestMemoTy FuncletUnwindMap;
    679   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
    680        BB != E; ++BB) {
    681     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
    682       if (CRI->unwindsToCaller()) {
    683         auto *CleanupPad = CRI->getCleanupPad();
    684         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
    685         CRI->eraseFromParent();
    686         UpdatePHINodes(&*BB);
    687         // Finding a cleanupret with an unwind destination would confuse
    688         // subsequent calls to getUnwindDestToken, so map the cleanuppad
    689         // to short-circuit any such calls and recognize this as an "unwind
    690         // to caller" cleanup.
    691         assert(!FuncletUnwindMap.count(CleanupPad) ||
    692                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
    693         FuncletUnwindMap[CleanupPad] =
    694             ConstantTokenNone::get(Caller->getContext());
    695       }
    696     }
    697 
    698     Instruction *I = BB->getFirstNonPHI();
    699     if (!I->isEHPad())
    700       continue;
    701 
    702     Instruction *Replacement = nullptr;
    703     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
    704       if (CatchSwitch->unwindsToCaller()) {
    705         Value *UnwindDestToken;
    706         if (auto *ParentPad =
    707                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
    708           // This catchswitch is nested inside another funclet.  If that
    709           // funclet has an unwind destination within the inlinee, then
    710           // unwinding out of this catchswitch would be UB.  Rewriting this
    711           // catchswitch to unwind to the inlined invoke's unwind dest would
    712           // give the parent funclet multiple unwind destinations, which is
    713           // something that subsequent EH table generation can't handle and
    714           // that the veirifer rejects.  So when we see such a call, leave it
    715           // as "unwind to caller".
    716           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
    717           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
    718             continue;
    719         } else {
    720           // This catchswitch has no parent to inherit constraints from, and
    721           // none of its descendants can have an unwind edge that exits it and
    722           // targets another funclet in the inlinee.  It may or may not have a
    723           // descendant that definitively has an unwind to caller.  In either
    724           // case, we'll have to assume that any unwinds out of it may need to
    725           // be routed to the caller, so treat it as though it has a definitive
    726           // unwind to caller.
    727           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
    728         }
    729         auto *NewCatchSwitch = CatchSwitchInst::Create(
    730             CatchSwitch->getParentPad(), UnwindDest,
    731             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
    732             CatchSwitch);
    733         for (BasicBlock *PadBB : CatchSwitch->handlers())
    734           NewCatchSwitch->addHandler(PadBB);
    735         // Propagate info for the old catchswitch over to the new one in
    736         // the unwind map.  This also serves to short-circuit any subsequent
    737         // checks for the unwind dest of this catchswitch, which would get
    738         // confused if they found the outer handler in the callee.
    739         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
    740         Replacement = NewCatchSwitch;
    741       }
    742     } else if (!isa<FuncletPadInst>(I)) {
    743       llvm_unreachable("unexpected EHPad!");
    744     }
    745 
    746     if (Replacement) {
    747       Replacement->takeName(I);
    748       I->replaceAllUsesWith(Replacement);
    749       I->eraseFromParent();
    750       UpdatePHINodes(&*BB);
    751     }
    752   }
    753 
    754   if (InlinedCodeInfo.ContainsCalls)
    755     for (Function::iterator BB = FirstNewBlock->getIterator(),
    756                             E = Caller->end();
    757          BB != E; ++BB)
    758       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
    759               &*BB, UnwindDest, &FuncletUnwindMap))
    760         // Update any PHI nodes in the exceptional block to indicate that there
    761         // is now a new entry in them.
    762         UpdatePHINodes(NewBB);
    763 
    764   // Now that everything is happy, we have one final detail.  The PHI nodes in
    765   // the exception destination block still have entries due to the original
    766   // invoke instruction. Eliminate these entries (which might even delete the
    767   // PHI node) now.
    768   UnwindDest->removePredecessor(InvokeBB);
    769 }
    770 
    771 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
    772 /// that metadata should be propagated to all memory-accessing cloned
    773 /// instructions.
    774 static void PropagateParallelLoopAccessMetadata(CallSite CS,
    775                                                 ValueToValueMapTy &VMap) {
    776   MDNode *M =
    777     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
    778   if (!M)
    779     return;
    780 
    781   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
    782        VMI != VMIE; ++VMI) {
    783     if (!VMI->second)
    784       continue;
    785 
    786     Instruction *NI = dyn_cast<Instruction>(VMI->second);
    787     if (!NI)
    788       continue;
    789 
    790     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
    791         M = MDNode::concatenate(PM, M);
    792       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
    793     } else if (NI->mayReadOrWriteMemory()) {
    794       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
    795     }
    796   }
    797 }
    798 
    799 /// When inlining a function that contains noalias scope metadata,
    800 /// this metadata needs to be cloned so that the inlined blocks
    801 /// have different "unique scopes" at every call site. Were this not done, then
    802 /// aliasing scopes from a function inlined into a caller multiple times could
    803 /// not be differentiated (and this would lead to miscompiles because the
    804 /// non-aliasing property communicated by the metadata could have
    805 /// call-site-specific control dependencies).
    806 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
    807   const Function *CalledFunc = CS.getCalledFunction();
    808   SetVector<const MDNode *> MD;
    809 
    810   // Note: We could only clone the metadata if it is already used in the
    811   // caller. I'm omitting that check here because it might confuse
    812   // inter-procedural alias analysis passes. We can revisit this if it becomes
    813   // an efficiency or overhead problem.
    814 
    815   for (const BasicBlock &I : *CalledFunc)
    816     for (const Instruction &J : I) {
    817       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
    818         MD.insert(M);
    819       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
    820         MD.insert(M);
    821     }
    822 
    823   if (MD.empty())
    824     return;
    825 
    826   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
    827   // the set.
    828   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
    829   while (!Queue.empty()) {
    830     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
    831     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
    832       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
    833         if (MD.insert(M1))
    834           Queue.push_back(M1);
    835   }
    836 
    837   // Now we have a complete set of all metadata in the chains used to specify
    838   // the noalias scopes and the lists of those scopes.
    839   SmallVector<TempMDTuple, 16> DummyNodes;
    840   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
    841   for (const MDNode *I : MD) {
    842     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
    843     MDMap[I].reset(DummyNodes.back().get());
    844   }
    845 
    846   // Create new metadata nodes to replace the dummy nodes, replacing old
    847   // metadata references with either a dummy node or an already-created new
    848   // node.
    849   for (const MDNode *I : MD) {
    850     SmallVector<Metadata *, 4> NewOps;
    851     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
    852       const Metadata *V = I->getOperand(i);
    853       if (const MDNode *M = dyn_cast<MDNode>(V))
    854         NewOps.push_back(MDMap[M]);
    855       else
    856         NewOps.push_back(const_cast<Metadata *>(V));
    857     }
    858 
    859     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
    860     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
    861     assert(TempM->isTemporary() && "Expected temporary node");
    862 
    863     TempM->replaceAllUsesWith(NewM);
    864   }
    865 
    866   // Now replace the metadata in the new inlined instructions with the
    867   // repacements from the map.
    868   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
    869        VMI != VMIE; ++VMI) {
    870     if (!VMI->second)
    871       continue;
    872 
    873     Instruction *NI = dyn_cast<Instruction>(VMI->second);
    874     if (!NI)
    875       continue;
    876 
    877     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
    878       MDNode *NewMD = MDMap[M];
    879       // If the call site also had alias scope metadata (a list of scopes to
    880       // which instructions inside it might belong), propagate those scopes to
    881       // the inlined instructions.
    882       if (MDNode *CSM =
    883               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
    884         NewMD = MDNode::concatenate(NewMD, CSM);
    885       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
    886     } else if (NI->mayReadOrWriteMemory()) {
    887       if (MDNode *M =
    888               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
    889         NI->setMetadata(LLVMContext::MD_alias_scope, M);
    890     }
    891 
    892     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
    893       MDNode *NewMD = MDMap[M];
    894       // If the call site also had noalias metadata (a list of scopes with
    895       // which instructions inside it don't alias), propagate those scopes to
    896       // the inlined instructions.
    897       if (MDNode *CSM =
    898               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
    899         NewMD = MDNode::concatenate(NewMD, CSM);
    900       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
    901     } else if (NI->mayReadOrWriteMemory()) {
    902       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
    903         NI->setMetadata(LLVMContext::MD_noalias, M);
    904     }
    905   }
    906 }
    907 
    908 /// If the inlined function has noalias arguments,
    909 /// then add new alias scopes for each noalias argument, tag the mapped noalias
    910 /// parameters with noalias metadata specifying the new scope, and tag all
    911 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
    912 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
    913                                   const DataLayout &DL, AAResults *CalleeAAR) {
    914   if (!EnableNoAliasConversion)
    915     return;
    916 
    917   const Function *CalledFunc = CS.getCalledFunction();
    918   SmallVector<const Argument *, 4> NoAliasArgs;
    919 
    920   for (const Argument &Arg : CalledFunc->args())
    921     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
    922       NoAliasArgs.push_back(&Arg);
    923 
    924   if (NoAliasArgs.empty())
    925     return;
    926 
    927   // To do a good job, if a noalias variable is captured, we need to know if
    928   // the capture point dominates the particular use we're considering.
    929   DominatorTree DT;
    930   DT.recalculate(const_cast<Function&>(*CalledFunc));
    931 
    932   // noalias indicates that pointer values based on the argument do not alias
    933   // pointer values which are not based on it. So we add a new "scope" for each
    934   // noalias function argument. Accesses using pointers based on that argument
    935   // become part of that alias scope, accesses using pointers not based on that
    936   // argument are tagged as noalias with that scope.
    937 
    938   DenseMap<const Argument *, MDNode *> NewScopes;
    939   MDBuilder MDB(CalledFunc->getContext());
    940 
    941   // Create a new scope domain for this function.
    942   MDNode *NewDomain =
    943     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
    944   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
    945     const Argument *A = NoAliasArgs[i];
    946 
    947     std::string Name = CalledFunc->getName();
    948     if (A->hasName()) {
    949       Name += ": %";
    950       Name += A->getName();
    951     } else {
    952       Name += ": argument ";
    953       Name += utostr(i);
    954     }
    955 
    956     // Note: We always create a new anonymous root here. This is true regardless
    957     // of the linkage of the callee because the aliasing "scope" is not just a
    958     // property of the callee, but also all control dependencies in the caller.
    959     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
    960     NewScopes.insert(std::make_pair(A, NewScope));
    961   }
    962 
    963   // Iterate over all new instructions in the map; for all memory-access
    964   // instructions, add the alias scope metadata.
    965   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
    966        VMI != VMIE; ++VMI) {
    967     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
    968       if (!VMI->second)
    969         continue;
    970 
    971       Instruction *NI = dyn_cast<Instruction>(VMI->second);
    972       if (!NI)
    973         continue;
    974 
    975       bool IsArgMemOnlyCall = false, IsFuncCall = false;
    976       SmallVector<const Value *, 2> PtrArgs;
    977 
    978       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    979         PtrArgs.push_back(LI->getPointerOperand());
    980       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    981         PtrArgs.push_back(SI->getPointerOperand());
    982       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
    983         PtrArgs.push_back(VAAI->getPointerOperand());
    984       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
    985         PtrArgs.push_back(CXI->getPointerOperand());
    986       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
    987         PtrArgs.push_back(RMWI->getPointerOperand());
    988       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
    989         // If we know that the call does not access memory, then we'll still
    990         // know that about the inlined clone of this call site, and we don't
    991         // need to add metadata.
    992         if (ICS.doesNotAccessMemory())
    993           continue;
    994 
    995         IsFuncCall = true;
    996         if (CalleeAAR) {
    997           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
    998           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
    999               MRB == FMRB_OnlyReadsArgumentPointees)
   1000             IsArgMemOnlyCall = true;
   1001         }
   1002 
   1003         for (Value *Arg : ICS.args()) {
   1004           // We need to check the underlying objects of all arguments, not just
   1005           // the pointer arguments, because we might be passing pointers as
   1006           // integers, etc.
   1007           // However, if we know that the call only accesses pointer arguments,
   1008           // then we only need to check the pointer arguments.
   1009           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
   1010             continue;
   1011 
   1012           PtrArgs.push_back(Arg);
   1013         }
   1014       }
   1015 
   1016       // If we found no pointers, then this instruction is not suitable for
   1017       // pairing with an instruction to receive aliasing metadata.
   1018       // However, if this is a call, this we might just alias with none of the
   1019       // noalias arguments.
   1020       if (PtrArgs.empty() && !IsFuncCall)
   1021         continue;
   1022 
   1023       // It is possible that there is only one underlying object, but you
   1024       // need to go through several PHIs to see it, and thus could be
   1025       // repeated in the Objects list.
   1026       SmallPtrSet<const Value *, 4> ObjSet;
   1027       SmallVector<Metadata *, 4> Scopes, NoAliases;
   1028 
   1029       SmallSetVector<const Argument *, 4> NAPtrArgs;
   1030       for (const Value *V : PtrArgs) {
   1031         SmallVector<Value *, 4> Objects;
   1032         GetUnderlyingObjects(const_cast<Value*>(V),
   1033                              Objects, DL, /* LI = */ nullptr);
   1034 
   1035         for (Value *O : Objects)
   1036           ObjSet.insert(O);
   1037       }
   1038 
   1039       // Figure out if we're derived from anything that is not a noalias
   1040       // argument.
   1041       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
   1042       for (const Value *V : ObjSet) {
   1043         // Is this value a constant that cannot be derived from any pointer
   1044         // value (we need to exclude constant expressions, for example, that
   1045         // are formed from arithmetic on global symbols).
   1046         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
   1047                              isa<ConstantPointerNull>(V) ||
   1048                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
   1049         if (IsNonPtrConst)
   1050           continue;
   1051 
   1052         // If this is anything other than a noalias argument, then we cannot
   1053         // completely describe the aliasing properties using alias.scope
   1054         // metadata (and, thus, won't add any).
   1055         if (const Argument *A = dyn_cast<Argument>(V)) {
   1056           if (!A->hasNoAliasAttr())
   1057             UsesAliasingPtr = true;
   1058         } else {
   1059           UsesAliasingPtr = true;
   1060         }
   1061 
   1062         // If this is not some identified function-local object (which cannot
   1063         // directly alias a noalias argument), or some other argument (which,
   1064         // by definition, also cannot alias a noalias argument), then we could
   1065         // alias a noalias argument that has been captured).
   1066         if (!isa<Argument>(V) &&
   1067             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
   1068           CanDeriveViaCapture = true;
   1069       }
   1070 
   1071       // A function call can always get captured noalias pointers (via other
   1072       // parameters, globals, etc.).
   1073       if (IsFuncCall && !IsArgMemOnlyCall)
   1074         CanDeriveViaCapture = true;
   1075 
   1076       // First, we want to figure out all of the sets with which we definitely
   1077       // don't alias. Iterate over all noalias set, and add those for which:
   1078       //   1. The noalias argument is not in the set of objects from which we
   1079       //      definitely derive.
   1080       //   2. The noalias argument has not yet been captured.
   1081       // An arbitrary function that might load pointers could see captured
   1082       // noalias arguments via other noalias arguments or globals, and so we
   1083       // must always check for prior capture.
   1084       for (const Argument *A : NoAliasArgs) {
   1085         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
   1086                                  // It might be tempting to skip the
   1087                                  // PointerMayBeCapturedBefore check if
   1088                                  // A->hasNoCaptureAttr() is true, but this is
   1089                                  // incorrect because nocapture only guarantees
   1090                                  // that no copies outlive the function, not
   1091                                  // that the value cannot be locally captured.
   1092                                  !PointerMayBeCapturedBefore(A,
   1093                                    /* ReturnCaptures */ false,
   1094                                    /* StoreCaptures */ false, I, &DT)))
   1095           NoAliases.push_back(NewScopes[A]);
   1096       }
   1097 
   1098       if (!NoAliases.empty())
   1099         NI->setMetadata(LLVMContext::MD_noalias,
   1100                         MDNode::concatenate(
   1101                             NI->getMetadata(LLVMContext::MD_noalias),
   1102                             MDNode::get(CalledFunc->getContext(), NoAliases)));
   1103 
   1104       // Next, we want to figure out all of the sets to which we might belong.
   1105       // We might belong to a set if the noalias argument is in the set of
   1106       // underlying objects. If there is some non-noalias argument in our list
   1107       // of underlying objects, then we cannot add a scope because the fact
   1108       // that some access does not alias with any set of our noalias arguments
   1109       // cannot itself guarantee that it does not alias with this access
   1110       // (because there is some pointer of unknown origin involved and the
   1111       // other access might also depend on this pointer). We also cannot add
   1112       // scopes to arbitrary functions unless we know they don't access any
   1113       // non-parameter pointer-values.
   1114       bool CanAddScopes = !UsesAliasingPtr;
   1115       if (CanAddScopes && IsFuncCall)
   1116         CanAddScopes = IsArgMemOnlyCall;
   1117 
   1118       if (CanAddScopes)
   1119         for (const Argument *A : NoAliasArgs) {
   1120           if (ObjSet.count(A))
   1121             Scopes.push_back(NewScopes[A]);
   1122         }
   1123 
   1124       if (!Scopes.empty())
   1125         NI->setMetadata(
   1126             LLVMContext::MD_alias_scope,
   1127             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
   1128                                 MDNode::get(CalledFunc->getContext(), Scopes)));
   1129     }
   1130   }
   1131 }
   1132 
   1133 /// If the inlined function has non-byval align arguments, then
   1134 /// add @llvm.assume-based alignment assumptions to preserve this information.
   1135 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
   1136   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
   1137     return;
   1138 
   1139   AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
   1140   auto &DL = CS.getCaller()->getParent()->getDataLayout();
   1141 
   1142   // To avoid inserting redundant assumptions, we should check for assumptions
   1143   // already in the caller. To do this, we might need a DT of the caller.
   1144   DominatorTree DT;
   1145   bool DTCalculated = false;
   1146 
   1147   Function *CalledFunc = CS.getCalledFunction();
   1148   for (Argument &Arg : CalledFunc->args()) {
   1149     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
   1150     if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
   1151       if (!DTCalculated) {
   1152         DT.recalculate(*CS.getCaller());
   1153         DTCalculated = true;
   1154       }
   1155 
   1156       // If we can already prove the asserted alignment in the context of the
   1157       // caller, then don't bother inserting the assumption.
   1158       Value *ArgVal = CS.getArgument(Arg.getArgNo());
   1159       if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
   1160         continue;
   1161 
   1162       CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
   1163                               .CreateAlignmentAssumption(DL, ArgVal, Align);
   1164       AC->registerAssumption(NewAsmp);
   1165     }
   1166   }
   1167 }
   1168 
   1169 /// Once we have cloned code over from a callee into the caller,
   1170 /// update the specified callgraph to reflect the changes we made.
   1171 /// Note that it's possible that not all code was copied over, so only
   1172 /// some edges of the callgraph may remain.
   1173 static void UpdateCallGraphAfterInlining(CallSite CS,
   1174                                          Function::iterator FirstNewBlock,
   1175                                          ValueToValueMapTy &VMap,
   1176                                          InlineFunctionInfo &IFI) {
   1177   CallGraph &CG = *IFI.CG;
   1178   const Function *Caller = CS.getCaller();
   1179   const Function *Callee = CS.getCalledFunction();
   1180   CallGraphNode *CalleeNode = CG[Callee];
   1181   CallGraphNode *CallerNode = CG[Caller];
   1182 
   1183   // Since we inlined some uninlined call sites in the callee into the caller,
   1184   // add edges from the caller to all of the callees of the callee.
   1185   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
   1186 
   1187   // Consider the case where CalleeNode == CallerNode.
   1188   CallGraphNode::CalledFunctionsVector CallCache;
   1189   if (CalleeNode == CallerNode) {
   1190     CallCache.assign(I, E);
   1191     I = CallCache.begin();
   1192     E = CallCache.end();
   1193   }
   1194 
   1195   for (; I != E; ++I) {
   1196     const Value *OrigCall = I->first;
   1197 
   1198     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
   1199     // Only copy the edge if the call was inlined!
   1200     if (VMI == VMap.end() || VMI->second == nullptr)
   1201       continue;
   1202 
   1203     // If the call was inlined, but then constant folded, there is no edge to
   1204     // add.  Check for this case.
   1205     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
   1206     if (!NewCall)
   1207       continue;
   1208 
   1209     // We do not treat intrinsic calls like real function calls because we
   1210     // expect them to become inline code; do not add an edge for an intrinsic.
   1211     CallSite CS = CallSite(NewCall);
   1212     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
   1213       continue;
   1214 
   1215     // Remember that this call site got inlined for the client of
   1216     // InlineFunction.
   1217     IFI.InlinedCalls.push_back(NewCall);
   1218 
   1219     // It's possible that inlining the callsite will cause it to go from an
   1220     // indirect to a direct call by resolving a function pointer.  If this
   1221     // happens, set the callee of the new call site to a more precise
   1222     // destination.  This can also happen if the call graph node of the caller
   1223     // was just unnecessarily imprecise.
   1224     if (!I->second->getFunction())
   1225       if (Function *F = CallSite(NewCall).getCalledFunction()) {
   1226         // Indirect call site resolved to direct call.
   1227         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
   1228 
   1229         continue;
   1230       }
   1231 
   1232     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
   1233   }
   1234 
   1235   // Update the call graph by deleting the edge from Callee to Caller.  We must
   1236   // do this after the loop above in case Caller and Callee are the same.
   1237   CallerNode->removeCallEdgeFor(CS);
   1238 }
   1239 
   1240 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
   1241                                     BasicBlock *InsertBlock,
   1242                                     InlineFunctionInfo &IFI) {
   1243   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
   1244   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
   1245 
   1246   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
   1247 
   1248   // Always generate a memcpy of alignment 1 here because we don't know
   1249   // the alignment of the src pointer.  Other optimizations can infer
   1250   // better alignment.
   1251   Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
   1252 }
   1253 
   1254 /// When inlining a call site that has a byval argument,
   1255 /// we have to make the implicit memcpy explicit by adding it.
   1256 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
   1257                                   const Function *CalledFunc,
   1258                                   InlineFunctionInfo &IFI,
   1259                                   unsigned ByValAlignment) {
   1260   PointerType *ArgTy = cast<PointerType>(Arg->getType());
   1261   Type *AggTy = ArgTy->getElementType();
   1262 
   1263   Function *Caller = TheCall->getFunction();
   1264   const DataLayout &DL = Caller->getParent()->getDataLayout();
   1265 
   1266   // If the called function is readonly, then it could not mutate the caller's
   1267   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
   1268   // temporary.
   1269   if (CalledFunc->onlyReadsMemory()) {
   1270     // If the byval argument has a specified alignment that is greater than the
   1271     // passed in pointer, then we either have to round up the input pointer or
   1272     // give up on this transformation.
   1273     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
   1274       return Arg;
   1275 
   1276     AssumptionCache *AC =
   1277         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
   1278 
   1279     // If the pointer is already known to be sufficiently aligned, or if we can
   1280     // round it up to a larger alignment, then we don't need a temporary.
   1281     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
   1282         ByValAlignment)
   1283       return Arg;
   1284 
   1285     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
   1286     // for code quality, but rarely happens and is required for correctness.
   1287   }
   1288 
   1289   // Create the alloca.  If we have DataLayout, use nice alignment.
   1290   unsigned Align = DL.getPrefTypeAlignment(AggTy);
   1291 
   1292   // If the byval had an alignment specified, we *must* use at least that
   1293   // alignment, as it is required by the byval argument (and uses of the
   1294   // pointer inside the callee).
   1295   Align = std::max(Align, ByValAlignment);
   1296 
   1297   Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
   1298                                     nullptr, Align, Arg->getName(),
   1299                                     &*Caller->begin()->begin());
   1300   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
   1301 
   1302   // Uses of the argument in the function should use our new alloca
   1303   // instead.
   1304   return NewAlloca;
   1305 }
   1306 
   1307 // Check whether this Value is used by a lifetime intrinsic.
   1308 static bool isUsedByLifetimeMarker(Value *V) {
   1309   for (User *U : V->users()) {
   1310     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
   1311       switch (II->getIntrinsicID()) {
   1312       default: break;
   1313       case Intrinsic::lifetime_start:
   1314       case Intrinsic::lifetime_end:
   1315         return true;
   1316       }
   1317     }
   1318   }
   1319   return false;
   1320 }
   1321 
   1322 // Check whether the given alloca already has
   1323 // lifetime.start or lifetime.end intrinsics.
   1324 static bool hasLifetimeMarkers(AllocaInst *AI) {
   1325   Type *Ty = AI->getType();
   1326   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
   1327                                        Ty->getPointerAddressSpace());
   1328   if (Ty == Int8PtrTy)
   1329     return isUsedByLifetimeMarker(AI);
   1330 
   1331   // Do a scan to find all the casts to i8*.
   1332   for (User *U : AI->users()) {
   1333     if (U->getType() != Int8PtrTy) continue;
   1334     if (U->stripPointerCasts() != AI) continue;
   1335     if (isUsedByLifetimeMarker(U))
   1336       return true;
   1337   }
   1338   return false;
   1339 }
   1340 
   1341 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
   1342 /// block. Allocas used in inalloca calls and allocas of dynamic array size
   1343 /// cannot be static.
   1344 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
   1345   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
   1346 }
   1347 
   1348 /// Update inlined instructions' line numbers to
   1349 /// to encode location where these instructions are inlined.
   1350 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
   1351                              Instruction *TheCall, bool CalleeHasDebugInfo) {
   1352   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
   1353   if (!TheCallDL)
   1354     return;
   1355 
   1356   auto &Ctx = Fn->getContext();
   1357   DILocation *InlinedAtNode = TheCallDL;
   1358 
   1359   // Create a unique call site, not to be confused with any other call from the
   1360   // same location.
   1361   InlinedAtNode = DILocation::getDistinct(
   1362       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
   1363       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
   1364 
   1365   // Cache the inlined-at nodes as they're built so they are reused, without
   1366   // this every instruction's inlined-at chain would become distinct from each
   1367   // other.
   1368   DenseMap<const MDNode *, MDNode *> IANodes;
   1369 
   1370   for (; FI != Fn->end(); ++FI) {
   1371     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
   1372          BI != BE; ++BI) {
   1373       if (DebugLoc DL = BI->getDebugLoc()) {
   1374         auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
   1375                                             IANodes);
   1376         auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
   1377         BI->setDebugLoc(IDL);
   1378         continue;
   1379       }
   1380 
   1381       if (CalleeHasDebugInfo)
   1382         continue;
   1383 
   1384       // If the inlined instruction has no line number, make it look as if it
   1385       // originates from the call location. This is important for
   1386       // ((__always_inline__, __nodebug__)) functions which must use caller
   1387       // location for all instructions in their function body.
   1388 
   1389       // Don't update static allocas, as they may get moved later.
   1390       if (auto *AI = dyn_cast<AllocaInst>(BI))
   1391         if (allocaWouldBeStaticInEntry(AI))
   1392           continue;
   1393 
   1394       BI->setDebugLoc(TheCallDL);
   1395     }
   1396   }
   1397 }
   1398 
   1399 /// Update the block frequencies of the caller after a callee has been inlined.
   1400 ///
   1401 /// Each block cloned into the caller has its block frequency scaled by the
   1402 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
   1403 /// callee's entry block gets the same frequency as the callsite block and the
   1404 /// relative frequencies of all cloned blocks remain the same after cloning.
   1405 static void updateCallerBFI(BasicBlock *CallSiteBlock,
   1406                             const ValueToValueMapTy &VMap,
   1407                             BlockFrequencyInfo *CallerBFI,
   1408                             BlockFrequencyInfo *CalleeBFI,
   1409                             const BasicBlock &CalleeEntryBlock) {
   1410   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
   1411   for (auto const &Entry : VMap) {
   1412     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
   1413       continue;
   1414     auto *OrigBB = cast<BasicBlock>(Entry.first);
   1415     auto *ClonedBB = cast<BasicBlock>(Entry.second);
   1416     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
   1417     if (!ClonedBBs.insert(ClonedBB).second) {
   1418       // Multiple blocks in the callee might get mapped to one cloned block in
   1419       // the caller since we prune the callee as we clone it. When that happens,
   1420       // we want to use the maximum among the original blocks' frequencies.
   1421       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
   1422       if (NewFreq > Freq)
   1423         Freq = NewFreq;
   1424     }
   1425     CallerBFI->setBlockFreq(ClonedBB, Freq);
   1426   }
   1427   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
   1428   CallerBFI->setBlockFreqAndScale(
   1429       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
   1430       ClonedBBs);
   1431 }
   1432 
   1433 /// Update the branch metadata for cloned call instructions.
   1434 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
   1435                               const ProfileCount &CalleeEntryCount,
   1436                               const Instruction *TheCall,
   1437                               ProfileSummaryInfo *PSI,
   1438                               BlockFrequencyInfo *CallerBFI) {
   1439   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
   1440       CalleeEntryCount.getCount() < 1)
   1441     return;
   1442   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
   1443   uint64_t CallCount =
   1444       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
   1445                CalleeEntryCount.getCount());
   1446 
   1447   for (auto const &Entry : VMap)
   1448     if (isa<CallInst>(Entry.first))
   1449       if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
   1450         CI->updateProfWeight(CallCount, CalleeEntryCount.getCount());
   1451   for (BasicBlock &BB : *Callee)
   1452     // No need to update the callsite if it is pruned during inlining.
   1453     if (VMap.count(&BB))
   1454       for (Instruction &I : BB)
   1455         if (CallInst *CI = dyn_cast<CallInst>(&I))
   1456           CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount,
   1457                                CalleeEntryCount.getCount());
   1458 }
   1459 
   1460 /// Update the entry count of callee after inlining.
   1461 ///
   1462 /// The callsite's block count is subtracted from the callee's function entry
   1463 /// count.
   1464 static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
   1465                               Instruction *CallInst, Function *Callee,
   1466                               ProfileSummaryInfo *PSI) {
   1467   // If the callee has a original count of N, and the estimated count of
   1468   // callsite is M, the new callee count is set to N - M. M is estimated from
   1469   // the caller's entry count, its entry block frequency and the block frequency
   1470   // of the callsite.
   1471   auto CalleeCount = Callee->getEntryCount();
   1472   if (!CalleeCount.hasValue() || !PSI)
   1473     return;
   1474   auto CallCount = PSI->getProfileCount(CallInst, CallerBFI);
   1475   if (!CallCount.hasValue())
   1476     return;
   1477   // Since CallSiteCount is an estimate, it could exceed the original callee
   1478   // count and has to be set to 0.
   1479   if (CallCount.getValue() > CalleeCount.getCount())
   1480     CalleeCount.setCount(0);
   1481   else
   1482     CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue());
   1483   Callee->setEntryCount(CalleeCount);
   1484 }
   1485 
   1486 /// This function inlines the called function into the basic block of the
   1487 /// caller. This returns false if it is not possible to inline this call.
   1488 /// The program is still in a well defined state if this occurs though.
   1489 ///
   1490 /// Note that this only does one level of inlining.  For example, if the
   1491 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
   1492 /// exists in the instruction stream.  Similarly this will inline a recursive
   1493 /// function by one level.
   1494 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
   1495                           AAResults *CalleeAAR, bool InsertLifetime,
   1496                           Function *ForwardVarArgsTo) {
   1497   Instruction *TheCall = CS.getInstruction();
   1498   assert(TheCall->getParent() && TheCall->getFunction()
   1499          && "Instruction not in function!");
   1500 
   1501   // If IFI has any state in it, zap it before we fill it in.
   1502   IFI.reset();
   1503 
   1504   Function *CalledFunc = CS.getCalledFunction();
   1505   if (!CalledFunc ||               // Can't inline external function or indirect
   1506       CalledFunc->isDeclaration()) // call!
   1507     return false;
   1508 
   1509   // The inliner does not know how to inline through calls with operand bundles
   1510   // in general ...
   1511   if (CS.hasOperandBundles()) {
   1512     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
   1513       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
   1514       // ... but it knows how to inline through "deopt" operand bundles ...
   1515       if (Tag == LLVMContext::OB_deopt)
   1516         continue;
   1517       // ... and "funclet" operand bundles.
   1518       if (Tag == LLVMContext::OB_funclet)
   1519         continue;
   1520 
   1521       return false;
   1522     }
   1523   }
   1524 
   1525   // If the call to the callee cannot throw, set the 'nounwind' flag on any
   1526   // calls that we inline.
   1527   bool MarkNoUnwind = CS.doesNotThrow();
   1528 
   1529   BasicBlock *OrigBB = TheCall->getParent();
   1530   Function *Caller = OrigBB->getParent();
   1531 
   1532   // GC poses two hazards to inlining, which only occur when the callee has GC:
   1533   //  1. If the caller has no GC, then the callee's GC must be propagated to the
   1534   //     caller.
   1535   //  2. If the caller has a differing GC, it is invalid to inline.
   1536   if (CalledFunc->hasGC()) {
   1537     if (!Caller->hasGC())
   1538       Caller->setGC(CalledFunc->getGC());
   1539     else if (CalledFunc->getGC() != Caller->getGC())
   1540       return false;
   1541   }
   1542 
   1543   // Get the personality function from the callee if it contains a landing pad.
   1544   Constant *CalledPersonality =
   1545       CalledFunc->hasPersonalityFn()
   1546           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
   1547           : nullptr;
   1548 
   1549   // Find the personality function used by the landing pads of the caller. If it
   1550   // exists, then check to see that it matches the personality function used in
   1551   // the callee.
   1552   Constant *CallerPersonality =
   1553       Caller->hasPersonalityFn()
   1554           ? Caller->getPersonalityFn()->stripPointerCasts()
   1555           : nullptr;
   1556   if (CalledPersonality) {
   1557     if (!CallerPersonality)
   1558       Caller->setPersonalityFn(CalledPersonality);
   1559     // If the personality functions match, then we can perform the
   1560     // inlining. Otherwise, we can't inline.
   1561     // TODO: This isn't 100% true. Some personality functions are proper
   1562     //       supersets of others and can be used in place of the other.
   1563     else if (CalledPersonality != CallerPersonality)
   1564       return false;
   1565   }
   1566 
   1567   // We need to figure out which funclet the callsite was in so that we may
   1568   // properly nest the callee.
   1569   Instruction *CallSiteEHPad = nullptr;
   1570   if (CallerPersonality) {
   1571     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
   1572     if (isScopedEHPersonality(Personality)) {
   1573       Optional<OperandBundleUse> ParentFunclet =
   1574           CS.getOperandBundle(LLVMContext::OB_funclet);
   1575       if (ParentFunclet)
   1576         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
   1577 
   1578       // OK, the inlining site is legal.  What about the target function?
   1579 
   1580       if (CallSiteEHPad) {
   1581         if (Personality == EHPersonality::MSVC_CXX) {
   1582           // The MSVC personality cannot tolerate catches getting inlined into
   1583           // cleanup funclets.
   1584           if (isa<CleanupPadInst>(CallSiteEHPad)) {
   1585             // Ok, the call site is within a cleanuppad.  Let's check the callee
   1586             // for catchpads.
   1587             for (const BasicBlock &CalledBB : *CalledFunc) {
   1588               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
   1589                 return false;
   1590             }
   1591           }
   1592         } else if (isAsynchronousEHPersonality(Personality)) {
   1593           // SEH is even less tolerant, there may not be any sort of exceptional
   1594           // funclet in the callee.
   1595           for (const BasicBlock &CalledBB : *CalledFunc) {
   1596             if (CalledBB.isEHPad())
   1597               return false;
   1598           }
   1599         }
   1600       }
   1601     }
   1602   }
   1603 
   1604   // Determine if we are dealing with a call in an EHPad which does not unwind
   1605   // to caller.
   1606   bool EHPadForCallUnwindsLocally = false;
   1607   if (CallSiteEHPad && CS.isCall()) {
   1608     UnwindDestMemoTy FuncletUnwindMap;
   1609     Value *CallSiteUnwindDestToken =
   1610         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
   1611 
   1612     EHPadForCallUnwindsLocally =
   1613         CallSiteUnwindDestToken &&
   1614         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
   1615   }
   1616 
   1617   // Get an iterator to the last basic block in the function, which will have
   1618   // the new function inlined after it.
   1619   Function::iterator LastBlock = --Caller->end();
   1620 
   1621   // Make sure to capture all of the return instructions from the cloned
   1622   // function.
   1623   SmallVector<ReturnInst*, 8> Returns;
   1624   ClonedCodeInfo InlinedFunctionInfo;
   1625   Function::iterator FirstNewBlock;
   1626 
   1627   { // Scope to destroy VMap after cloning.
   1628     ValueToValueMapTy VMap;
   1629     // Keep a list of pair (dst, src) to emit byval initializations.
   1630     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
   1631 
   1632     auto &DL = Caller->getParent()->getDataLayout();
   1633 
   1634     // Calculate the vector of arguments to pass into the function cloner, which
   1635     // matches up the formal to the actual argument values.
   1636     CallSite::arg_iterator AI = CS.arg_begin();
   1637     unsigned ArgNo = 0;
   1638     for (Function::arg_iterator I = CalledFunc->arg_begin(),
   1639          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
   1640       Value *ActualArg = *AI;
   1641 
   1642       // When byval arguments actually inlined, we need to make the copy implied
   1643       // by them explicit.  However, we don't do this if the callee is readonly
   1644       // or readnone, because the copy would be unneeded: the callee doesn't
   1645       // modify the struct.
   1646       if (CS.isByValArgument(ArgNo)) {
   1647         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
   1648                                         CalledFunc->getParamAlignment(ArgNo));
   1649         if (ActualArg != *AI)
   1650           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
   1651       }
   1652 
   1653       VMap[&*I] = ActualArg;
   1654     }
   1655 
   1656     // Add alignment assumptions if necessary. We do this before the inlined
   1657     // instructions are actually cloned into the caller so that we can easily
   1658     // check what will be known at the start of the inlined code.
   1659     AddAlignmentAssumptions(CS, IFI);
   1660 
   1661     // We want the inliner to prune the code as it copies.  We would LOVE to
   1662     // have no dead or constant instructions leftover after inlining occurs
   1663     // (which can happen, e.g., because an argument was constant), but we'll be
   1664     // happy with whatever the cloner can do.
   1665     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
   1666                               /*ModuleLevelChanges=*/false, Returns, ".i",
   1667                               &InlinedFunctionInfo, TheCall);
   1668     // Remember the first block that is newly cloned over.
   1669     FirstNewBlock = LastBlock; ++FirstNewBlock;
   1670 
   1671     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
   1672       // Update the BFI of blocks cloned into the caller.
   1673       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
   1674                       CalledFunc->front());
   1675 
   1676     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
   1677                       IFI.PSI, IFI.CallerBFI);
   1678     // Update the profile count of callee.
   1679     updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);
   1680 
   1681     // Inject byval arguments initialization.
   1682     for (std::pair<Value*, Value*> &Init : ByValInit)
   1683       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
   1684                               &*FirstNewBlock, IFI);
   1685 
   1686     Optional<OperandBundleUse> ParentDeopt =
   1687         CS.getOperandBundle(LLVMContext::OB_deopt);
   1688     if (ParentDeopt) {
   1689       SmallVector<OperandBundleDef, 2> OpDefs;
   1690 
   1691       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
   1692         Instruction *I = dyn_cast_or_null<Instruction>(VH);
   1693         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
   1694 
   1695         OpDefs.clear();
   1696 
   1697         CallSite ICS(I);
   1698         OpDefs.reserve(ICS.getNumOperandBundles());
   1699 
   1700         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
   1701           auto ChildOB = ICS.getOperandBundleAt(i);
   1702           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
   1703             // If the inlined call has other operand bundles, let them be
   1704             OpDefs.emplace_back(ChildOB);
   1705             continue;
   1706           }
   1707 
   1708           // It may be useful to separate this logic (of handling operand
   1709           // bundles) out to a separate "policy" component if this gets crowded.
   1710           // Prepend the parent's deoptimization continuation to the newly
   1711           // inlined call's deoptimization continuation.
   1712           std::vector<Value *> MergedDeoptArgs;
   1713           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
   1714                                   ChildOB.Inputs.size());
   1715 
   1716           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
   1717                                  ParentDeopt->Inputs.begin(),
   1718                                  ParentDeopt->Inputs.end());
   1719           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
   1720                                  ChildOB.Inputs.end());
   1721 
   1722           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
   1723         }
   1724 
   1725         Instruction *NewI = nullptr;
   1726         if (isa<CallInst>(I))
   1727           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
   1728         else
   1729           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
   1730 
   1731         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
   1732         // this even if the call returns void.
   1733         I->replaceAllUsesWith(NewI);
   1734 
   1735         VH = nullptr;
   1736         I->eraseFromParent();
   1737       }
   1738     }
   1739 
   1740     // Update the callgraph if requested.
   1741     if (IFI.CG)
   1742       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
   1743 
   1744     // For 'nodebug' functions, the associated DISubprogram is always null.
   1745     // Conservatively avoid propagating the callsite debug location to
   1746     // instructions inlined from a function whose DISubprogram is not null.
   1747     fixupLineNumbers(Caller, FirstNewBlock, TheCall,
   1748                      CalledFunc->getSubprogram() != nullptr);
   1749 
   1750     // Clone existing noalias metadata if necessary.
   1751     CloneAliasScopeMetadata(CS, VMap);
   1752 
   1753     // Add noalias metadata if necessary.
   1754     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
   1755 
   1756     // Propagate llvm.mem.parallel_loop_access if necessary.
   1757     PropagateParallelLoopAccessMetadata(CS, VMap);
   1758 
   1759     // Register any cloned assumptions.
   1760     if (IFI.GetAssumptionCache)
   1761       for (BasicBlock &NewBlock :
   1762            make_range(FirstNewBlock->getIterator(), Caller->end()))
   1763         for (Instruction &I : NewBlock) {
   1764           if (auto *II = dyn_cast<IntrinsicInst>(&I))
   1765             if (II->getIntrinsicID() == Intrinsic::assume)
   1766               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
   1767         }
   1768   }
   1769 
   1770   // If there are any alloca instructions in the block that used to be the entry
   1771   // block for the callee, move them to the entry block of the caller.  First
   1772   // calculate which instruction they should be inserted before.  We insert the
   1773   // instructions at the end of the current alloca list.
   1774   {
   1775     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
   1776     for (BasicBlock::iterator I = FirstNewBlock->begin(),
   1777          E = FirstNewBlock->end(); I != E; ) {
   1778       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
   1779       if (!AI) continue;
   1780 
   1781       // If the alloca is now dead, remove it.  This often occurs due to code
   1782       // specialization.
   1783       if (AI->use_empty()) {
   1784         AI->eraseFromParent();
   1785         continue;
   1786       }
   1787 
   1788       if (!allocaWouldBeStaticInEntry(AI))
   1789         continue;
   1790 
   1791       // Keep track of the static allocas that we inline into the caller.
   1792       IFI.StaticAllocas.push_back(AI);
   1793 
   1794       // Scan for the block of allocas that we can move over, and move them
   1795       // all at once.
   1796       while (isa<AllocaInst>(I) &&
   1797              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
   1798         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
   1799         ++I;
   1800       }
   1801 
   1802       // Transfer all of the allocas over in a block.  Using splice means
   1803       // that the instructions aren't removed from the symbol table, then
   1804       // reinserted.
   1805       Caller->getEntryBlock().getInstList().splice(
   1806           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
   1807     }
   1808     // Move any dbg.declares describing the allocas into the entry basic block.
   1809     DIBuilder DIB(*Caller->getParent());
   1810     for (auto &AI : IFI.StaticAllocas)
   1811       replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0,
   1812                                  DIExpression::NoDeref);
   1813   }
   1814 
   1815   SmallVector<Value*,4> VarArgsToForward;
   1816   SmallVector<AttributeSet, 4> VarArgsAttrs;
   1817   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
   1818        i < CS.getNumArgOperands(); i++) {
   1819     VarArgsToForward.push_back(CS.getArgOperand(i));
   1820     VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
   1821   }
   1822 
   1823   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
   1824   if (InlinedFunctionInfo.ContainsCalls) {
   1825     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
   1826     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
   1827       CallSiteTailKind = CI->getTailCallKind();
   1828 
   1829     // For inlining purposes, the "notail" marker is the same as no marker.
   1830     if (CallSiteTailKind == CallInst::TCK_NoTail)
   1831       CallSiteTailKind = CallInst::TCK_None;
   1832 
   1833     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
   1834          ++BB) {
   1835       for (auto II = BB->begin(); II != BB->end();) {
   1836         Instruction &I = *II++;
   1837         CallInst *CI = dyn_cast<CallInst>(&I);
   1838         if (!CI)
   1839           continue;
   1840 
   1841         // Forward varargs from inlined call site to calls to the
   1842         // ForwardVarArgsTo function, if requested, and to musttail calls.
   1843         if (!VarArgsToForward.empty() &&
   1844             ((ForwardVarArgsTo &&
   1845               CI->getCalledFunction() == ForwardVarArgsTo) ||
   1846              CI->isMustTailCall())) {
   1847           // Collect attributes for non-vararg parameters.
   1848           AttributeList Attrs = CI->getAttributes();
   1849           SmallVector<AttributeSet, 8> ArgAttrs;
   1850           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
   1851             for (unsigned ArgNo = 0;
   1852                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
   1853               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
   1854           }
   1855 
   1856           // Add VarArg attributes.
   1857           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
   1858           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
   1859                                      Attrs.getRetAttributes(), ArgAttrs);
   1860           // Add VarArgs to existing parameters.
   1861           SmallVector<Value *, 6> Params(CI->arg_operands());
   1862           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
   1863           CallInst *NewCI =
   1864               CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction()
   1865                                                        : CI->getCalledValue(),
   1866                                Params, "", CI);
   1867           NewCI->setDebugLoc(CI->getDebugLoc());
   1868           NewCI->setAttributes(Attrs);
   1869           NewCI->setCallingConv(CI->getCallingConv());
   1870           CI->replaceAllUsesWith(NewCI);
   1871           CI->eraseFromParent();
   1872           CI = NewCI;
   1873         }
   1874 
   1875         if (Function *F = CI->getCalledFunction())
   1876           InlinedDeoptimizeCalls |=
   1877               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
   1878 
   1879         // We need to reduce the strength of any inlined tail calls.  For
   1880         // musttail, we have to avoid introducing potential unbounded stack
   1881         // growth.  For example, if functions 'f' and 'g' are mutually recursive
   1882         // with musttail, we can inline 'g' into 'f' so long as we preserve
   1883         // musttail on the cloned call to 'f'.  If either the inlined call site
   1884         // or the cloned call site is *not* musttail, the program already has
   1885         // one frame of stack growth, so it's safe to remove musttail.  Here is
   1886         // a table of example transformations:
   1887         //
   1888         //    f -> musttail g -> musttail f  ==>  f -> musttail f
   1889         //    f -> musttail g ->     tail f  ==>  f ->     tail f
   1890         //    f ->          g -> musttail f  ==>  f ->          f
   1891         //    f ->          g ->     tail f  ==>  f ->          f
   1892         //
   1893         // Inlined notail calls should remain notail calls.
   1894         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
   1895         if (ChildTCK != CallInst::TCK_NoTail)
   1896           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
   1897         CI->setTailCallKind(ChildTCK);
   1898         InlinedMustTailCalls |= CI->isMustTailCall();
   1899 
   1900         // Calls inlined through a 'nounwind' call site should be marked
   1901         // 'nounwind'.
   1902         if (MarkNoUnwind)
   1903           CI->setDoesNotThrow();
   1904       }
   1905     }
   1906   }
   1907 
   1908   // Leave lifetime markers for the static alloca's, scoping them to the
   1909   // function we just inlined.
   1910   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
   1911     IRBuilder<> builder(&FirstNewBlock->front());
   1912     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
   1913       AllocaInst *AI = IFI.StaticAllocas[ai];
   1914       // Don't mark swifterror allocas. They can't have bitcast uses.
   1915       if (AI->isSwiftError())
   1916         continue;
   1917 
   1918       // If the alloca is already scoped to something smaller than the whole
   1919       // function then there's no need to add redundant, less accurate markers.
   1920       if (hasLifetimeMarkers(AI))
   1921         continue;
   1922 
   1923       // Try to determine the size of the allocation.
   1924       ConstantInt *AllocaSize = nullptr;
   1925       if (ConstantInt *AIArraySize =
   1926           dyn_cast<ConstantInt>(AI->getArraySize())) {
   1927         auto &DL = Caller->getParent()->getDataLayout();
   1928         Type *AllocaType = AI->getAllocatedType();
   1929         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
   1930         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
   1931 
   1932         // Don't add markers for zero-sized allocas.
   1933         if (AllocaArraySize == 0)
   1934           continue;
   1935 
   1936         // Check that array size doesn't saturate uint64_t and doesn't
   1937         // overflow when it's multiplied by type size.
   1938         if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
   1939             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
   1940                 AllocaTypeSize) {
   1941           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
   1942                                         AllocaArraySize * AllocaTypeSize);
   1943         }
   1944       }
   1945 
   1946       builder.CreateLifetimeStart(AI, AllocaSize);
   1947       for (ReturnInst *RI : Returns) {
   1948         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
   1949         // call and a return.  The return kills all local allocas.
   1950         if (InlinedMustTailCalls &&
   1951             RI->getParent()->getTerminatingMustTailCall())
   1952           continue;
   1953         if (InlinedDeoptimizeCalls &&
   1954             RI->getParent()->getTerminatingDeoptimizeCall())
   1955           continue;
   1956         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
   1957       }
   1958     }
   1959   }
   1960 
   1961   // If the inlined code contained dynamic alloca instructions, wrap the inlined
   1962   // code with llvm.stacksave/llvm.stackrestore intrinsics.
   1963   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
   1964     Module *M = Caller->getParent();
   1965     // Get the two intrinsics we care about.
   1966     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
   1967     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
   1968 
   1969     // Insert the llvm.stacksave.
   1970     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
   1971                              .CreateCall(StackSave, {}, "savedstack");
   1972 
   1973     // Insert a call to llvm.stackrestore before any return instructions in the
   1974     // inlined function.
   1975     for (ReturnInst *RI : Returns) {
   1976       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
   1977       // call and a return.  The return will restore the stack pointer.
   1978       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
   1979         continue;
   1980       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
   1981         continue;
   1982       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
   1983     }
   1984   }
   1985 
   1986   // If we are inlining for an invoke instruction, we must make sure to rewrite
   1987   // any call instructions into invoke instructions.  This is sensitive to which
   1988   // funclet pads were top-level in the inlinee, so must be done before
   1989   // rewriting the "parent pad" links.
   1990   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
   1991     BasicBlock *UnwindDest = II->getUnwindDest();
   1992     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
   1993     if (isa<LandingPadInst>(FirstNonPHI)) {
   1994       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
   1995     } else {
   1996       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
   1997     }
   1998   }
   1999 
   2000   // Update the lexical scopes of the new funclets and callsites.
   2001   // Anything that had 'none' as its parent is now nested inside the callsite's
   2002   // EHPad.
   2003 
   2004   if (CallSiteEHPad) {
   2005     for (Function::iterator BB = FirstNewBlock->getIterator(),
   2006                             E = Caller->end();
   2007          BB != E; ++BB) {
   2008       // Add bundle operands to any top-level call sites.
   2009       SmallVector<OperandBundleDef, 1> OpBundles;
   2010       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
   2011         Instruction *I = &*BBI++;
   2012         CallSite CS(I);
   2013         if (!CS)
   2014           continue;
   2015 
   2016         // Skip call sites which are nounwind intrinsics.
   2017         auto *CalledFn =
   2018             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
   2019         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
   2020           continue;
   2021 
   2022         // Skip call sites which already have a "funclet" bundle.
   2023         if (CS.getOperandBundle(LLVMContext::OB_funclet))
   2024           continue;
   2025 
   2026         CS.getOperandBundlesAsDefs(OpBundles);
   2027         OpBundles.emplace_back("funclet", CallSiteEHPad);
   2028 
   2029         Instruction *NewInst;
   2030         if (CS.isCall())
   2031           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
   2032         else
   2033           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
   2034         NewInst->takeName(I);
   2035         I->replaceAllUsesWith(NewInst);
   2036         I->eraseFromParent();
   2037 
   2038         OpBundles.clear();
   2039       }
   2040 
   2041       // It is problematic if the inlinee has a cleanupret which unwinds to
   2042       // caller and we inline it into a call site which doesn't unwind but into
   2043       // an EH pad that does.  Such an edge must be dynamically unreachable.
   2044       // As such, we replace the cleanupret with unreachable.
   2045       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
   2046         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
   2047           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
   2048 
   2049       Instruction *I = BB->getFirstNonPHI();
   2050       if (!I->isEHPad())
   2051         continue;
   2052 
   2053       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
   2054         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
   2055           CatchSwitch->setParentPad(CallSiteEHPad);
   2056       } else {
   2057         auto *FPI = cast<FuncletPadInst>(I);
   2058         if (isa<ConstantTokenNone>(FPI->getParentPad()))
   2059           FPI->setParentPad(CallSiteEHPad);
   2060       }
   2061     }
   2062   }
   2063 
   2064   if (InlinedDeoptimizeCalls) {
   2065     // We need to at least remove the deoptimizing returns from the Return set,
   2066     // so that the control flow from those returns does not get merged into the
   2067     // caller (but terminate it instead).  If the caller's return type does not
   2068     // match the callee's return type, we also need to change the return type of
   2069     // the intrinsic.
   2070     if (Caller->getReturnType() == TheCall->getType()) {
   2071       auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
   2072         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
   2073       });
   2074       Returns.erase(NewEnd, Returns.end());
   2075     } else {
   2076       SmallVector<ReturnInst *, 8> NormalReturns;
   2077       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
   2078           Caller->getParent(), Intrinsic::experimental_deoptimize,
   2079           {Caller->getReturnType()});
   2080 
   2081       for (ReturnInst *RI : Returns) {
   2082         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
   2083         if (!DeoptCall) {
   2084           NormalReturns.push_back(RI);
   2085           continue;
   2086         }
   2087 
   2088         // The calling convention on the deoptimize call itself may be bogus,
   2089         // since the code we're inlining may have undefined behavior (and may
   2090         // never actually execute at runtime); but all
   2091         // @llvm.experimental.deoptimize declarations have to have the same
   2092         // calling convention in a well-formed module.
   2093         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
   2094         NewDeoptIntrinsic->setCallingConv(CallingConv);
   2095         auto *CurBB = RI->getParent();
   2096         RI->eraseFromParent();
   2097 
   2098         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
   2099                                          DeoptCall->arg_end());
   2100 
   2101         SmallVector<OperandBundleDef, 1> OpBundles;
   2102         DeoptCall->getOperandBundlesAsDefs(OpBundles);
   2103         DeoptCall->eraseFromParent();
   2104         assert(!OpBundles.empty() &&
   2105                "Expected at least the deopt operand bundle");
   2106 
   2107         IRBuilder<> Builder(CurBB);
   2108         CallInst *NewDeoptCall =
   2109             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
   2110         NewDeoptCall->setCallingConv(CallingConv);
   2111         if (NewDeoptCall->getType()->isVoidTy())
   2112           Builder.CreateRetVoid();
   2113         else
   2114           Builder.CreateRet(NewDeoptCall);
   2115       }
   2116 
   2117       // Leave behind the normal returns so we can merge control flow.
   2118       std::swap(Returns, NormalReturns);
   2119     }
   2120   }
   2121 
   2122   // Handle any inlined musttail call sites.  In order for a new call site to be
   2123   // musttail, the source of the clone and the inlined call site must have been
   2124   // musttail.  Therefore it's safe to return without merging control into the
   2125   // phi below.
   2126   if (InlinedMustTailCalls) {
   2127     // Check if we need to bitcast the result of any musttail calls.
   2128     Type *NewRetTy = Caller->getReturnType();
   2129     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
   2130 
   2131     // Handle the returns preceded by musttail calls separately.
   2132     SmallVector<ReturnInst *, 8> NormalReturns;
   2133     for (ReturnInst *RI : Returns) {
   2134       CallInst *ReturnedMustTail =
   2135           RI->getParent()->getTerminatingMustTailCall();
   2136       if (!ReturnedMustTail) {
   2137         NormalReturns.push_back(RI);
   2138         continue;
   2139       }
   2140       if (!NeedBitCast)
   2141         continue;
   2142 
   2143       // Delete the old return and any preceding bitcast.
   2144       BasicBlock *CurBB = RI->getParent();
   2145       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
   2146       RI->eraseFromParent();
   2147       if (OldCast)
   2148         OldCast->eraseFromParent();
   2149 
   2150       // Insert a new bitcast and return with the right type.
   2151       IRBuilder<> Builder(CurBB);
   2152       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
   2153     }
   2154 
   2155     // Leave behind the normal returns so we can merge control flow.
   2156     std::swap(Returns, NormalReturns);
   2157   }
   2158 
   2159   // Now that all of the transforms on the inlined code have taken place but
   2160   // before we splice the inlined code into the CFG and lose track of which
   2161   // blocks were actually inlined, collect the call sites. We only do this if
   2162   // call graph updates weren't requested, as those provide value handle based
   2163   // tracking of inlined call sites instead.
   2164   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
   2165     // Otherwise just collect the raw call sites that were inlined.
   2166     for (BasicBlock &NewBB :
   2167          make_range(FirstNewBlock->getIterator(), Caller->end()))
   2168       for (Instruction &I : NewBB)
   2169         if (auto CS = CallSite(&I))
   2170           IFI.InlinedCallSites.push_back(CS);
   2171   }
   2172 
   2173   // If we cloned in _exactly one_ basic block, and if that block ends in a
   2174   // return instruction, we splice the body of the inlined callee directly into
   2175   // the calling basic block.
   2176   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
   2177     // Move all of the instructions right before the call.
   2178     OrigBB->getInstList().splice(TheCall->getIterator(),
   2179                                  FirstNewBlock->getInstList(),
   2180                                  FirstNewBlock->begin(), FirstNewBlock->end());
   2181     // Remove the cloned basic block.
   2182     Caller->getBasicBlockList().pop_back();
   2183 
   2184     // If the call site was an invoke instruction, add a branch to the normal
   2185     // destination.
   2186     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
   2187       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
   2188       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
   2189     }
   2190 
   2191     // If the return instruction returned a value, replace uses of the call with
   2192     // uses of the returned value.
   2193     if (!TheCall->use_empty()) {
   2194       ReturnInst *R = Returns[0];
   2195       if (TheCall == R->getReturnValue())
   2196         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
   2197       else
   2198         TheCall->replaceAllUsesWith(R->getReturnValue());
   2199     }
   2200     // Since we are now done with the Call/Invoke, we can delete it.
   2201     TheCall->eraseFromParent();
   2202 
   2203     // Since we are now done with the return instruction, delete it also.
   2204     Returns[0]->eraseFromParent();
   2205 
   2206     // We are now done with the inlining.
   2207     return true;
   2208   }
   2209 
   2210   // Otherwise, we have the normal case, of more than one block to inline or
   2211   // multiple return sites.
   2212 
   2213   // We want to clone the entire callee function into the hole between the
   2214   // "starter" and "ender" blocks.  How we accomplish this depends on whether
   2215   // this is an invoke instruction or a call instruction.
   2216   BasicBlock *AfterCallBB;
   2217   BranchInst *CreatedBranchToNormalDest = nullptr;
   2218   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
   2219 
   2220     // Add an unconditional branch to make this look like the CallInst case...
   2221     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
   2222 
   2223     // Split the basic block.  This guarantees that no PHI nodes will have to be
   2224     // updated due to new incoming edges, and make the invoke case more
   2225     // symmetric to the call case.
   2226     AfterCallBB =
   2227         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
   2228                                 CalledFunc->getName() + ".exit");
   2229 
   2230   } else {  // It's a call
   2231     // If this is a call instruction, we need to split the basic block that
   2232     // the call lives in.
   2233     //
   2234     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
   2235                                           CalledFunc->getName() + ".exit");
   2236   }
   2237 
   2238   if (IFI.CallerBFI) {
   2239     // Copy original BB's block frequency to AfterCallBB
   2240     IFI.CallerBFI->setBlockFreq(
   2241         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
   2242   }
   2243 
   2244   // Change the branch that used to go to AfterCallBB to branch to the first
   2245   // basic block of the inlined function.
   2246   //
   2247   TerminatorInst *Br = OrigBB->getTerminator();
   2248   assert(Br && Br->getOpcode() == Instruction::Br &&
   2249          "splitBasicBlock broken!");
   2250   Br->setOperand(0, &*FirstNewBlock);
   2251 
   2252   // Now that the function is correct, make it a little bit nicer.  In
   2253   // particular, move the basic blocks inserted from the end of the function
   2254   // into the space made by splitting the source basic block.
   2255   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
   2256                                      Caller->getBasicBlockList(), FirstNewBlock,
   2257                                      Caller->end());
   2258 
   2259   // Handle all of the return instructions that we just cloned in, and eliminate
   2260   // any users of the original call/invoke instruction.
   2261   Type *RTy = CalledFunc->getReturnType();
   2262 
   2263   PHINode *PHI = nullptr;
   2264   if (Returns.size() > 1) {
   2265     // The PHI node should go at the front of the new basic block to merge all
   2266     // possible incoming values.
   2267     if (!TheCall->use_empty()) {
   2268       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
   2269                             &AfterCallBB->front());
   2270       // Anything that used the result of the function call should now use the
   2271       // PHI node as their operand.
   2272       TheCall->replaceAllUsesWith(PHI);
   2273     }
   2274 
   2275     // Loop over all of the return instructions adding entries to the PHI node
   2276     // as appropriate.
   2277     if (PHI) {
   2278       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
   2279         ReturnInst *RI = Returns[i];
   2280         assert(RI->getReturnValue()->getType() == PHI->getType() &&
   2281                "Ret value not consistent in function!");
   2282         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
   2283       }
   2284     }
   2285 
   2286     // Add a branch to the merge points and remove return instructions.
   2287     DebugLoc Loc;
   2288     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
   2289       ReturnInst *RI = Returns[i];
   2290       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
   2291       Loc = RI->getDebugLoc();
   2292       BI->setDebugLoc(Loc);
   2293       RI->eraseFromParent();
   2294     }
   2295     // We need to set the debug location to *somewhere* inside the
   2296     // inlined function. The line number may be nonsensical, but the
   2297     // instruction will at least be associated with the right
   2298     // function.
   2299     if (CreatedBranchToNormalDest)
   2300       CreatedBranchToNormalDest->setDebugLoc(Loc);
   2301   } else if (!Returns.empty()) {
   2302     // Otherwise, if there is exactly one return value, just replace anything
   2303     // using the return value of the call with the computed value.
   2304     if (!TheCall->use_empty()) {
   2305       if (TheCall == Returns[0]->getReturnValue())
   2306         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
   2307       else
   2308         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
   2309     }
   2310 
   2311     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
   2312     BasicBlock *ReturnBB = Returns[0]->getParent();
   2313     ReturnBB->replaceAllUsesWith(AfterCallBB);
   2314 
   2315     // Splice the code from the return block into the block that it will return
   2316     // to, which contains the code that was after the call.
   2317     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
   2318                                       ReturnBB->getInstList());
   2319 
   2320     if (CreatedBranchToNormalDest)
   2321       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
   2322 
   2323     // Delete the return instruction now and empty ReturnBB now.
   2324     Returns[0]->eraseFromParent();
   2325     ReturnBB->eraseFromParent();
   2326   } else if (!TheCall->use_empty()) {
   2327     // No returns, but something is using the return value of the call.  Just
   2328     // nuke the result.
   2329     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
   2330   }
   2331 
   2332   // Since we are now done with the Call/Invoke, we can delete it.
   2333   TheCall->eraseFromParent();
   2334 
   2335   // If we inlined any musttail calls and the original return is now
   2336   // unreachable, delete it.  It can only contain a bitcast and ret.
   2337   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
   2338     AfterCallBB->eraseFromParent();
   2339 
   2340   // We should always be able to fold the entry block of the function into the
   2341   // single predecessor of the block...
   2342   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
   2343   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
   2344 
   2345   // Splice the code entry block into calling block, right before the
   2346   // unconditional branch.
   2347   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
   2348   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
   2349 
   2350   // Remove the unconditional branch.
   2351   OrigBB->getInstList().erase(Br);
   2352 
   2353   // Now we can remove the CalleeEntry block, which is now empty.
   2354   Caller->getBasicBlockList().erase(CalleeEntry);
   2355 
   2356   // If we inserted a phi node, check to see if it has a single value (e.g. all
   2357   // the entries are the same or undef).  If so, remove the PHI so it doesn't
   2358   // block other optimizations.
   2359   if (PHI) {
   2360     AssumptionCache *AC =
   2361         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
   2362     auto &DL = Caller->getParent()->getDataLayout();
   2363     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
   2364       PHI->replaceAllUsesWith(V);
   2365       PHI->eraseFromParent();
   2366     }
   2367   }
   2368 
   2369   return true;
   2370 }
   2371