1 /* 2 * Copyright 2014 Google Inc. All rights reserved. 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 #include <cmath> 17 #include "flatbuffers/flatbuffers.h" 18 #include "flatbuffers/idl.h" 19 #include "flatbuffers/minireflect.h" 20 #include "flatbuffers/registry.h" 21 #include "flatbuffers/util.h" 22 23 // clang-format off 24 #ifdef FLATBUFFERS_CPP98_STL 25 #include "flatbuffers/stl_emulation.h" 26 namespace std { 27 using flatbuffers::unique_ptr; 28 } 29 #endif 30 // clang-format on 31 32 #include "monster_test_generated.h" 33 #include "namespace_test/namespace_test1_generated.h" 34 #include "namespace_test/namespace_test2_generated.h" 35 #include "union_vector/union_vector_generated.h" 36 #include "monster_extra_generated.h" 37 #include "test_assert.h" 38 39 #include "flatbuffers/flexbuffers.h" 40 41 using namespace MyGame::Example; 42 43 void FlatBufferBuilderTest(); 44 45 // Include simple random number generator to ensure results will be the 46 // same cross platform. 47 // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator 48 uint32_t lcg_seed = 48271; 49 uint32_t lcg_rand() { 50 return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL; 51 } 52 void lcg_reset() { lcg_seed = 48271; } 53 54 std::string test_data_path = 55 #ifdef BAZEL_TEST_DATA_PATH 56 "../com_github_google_flatbuffers/tests/"; 57 #else 58 "tests/"; 59 #endif 60 61 // example of how to build up a serialized buffer algorithmically: 62 flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) { 63 flatbuffers::FlatBufferBuilder builder; 64 65 auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20)); 66 67 auto name = builder.CreateString("MyMonster"); 68 69 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; 70 auto inventory = builder.CreateVector(inv_data, 10); 71 72 // Alternatively, create the vector first, and fill in data later: 73 // unsigned char *inv_buf = nullptr; 74 // auto inventory = builder.CreateUninitializedVector<unsigned char>( 75 // 10, &inv_buf); 76 // memcpy(inv_buf, inv_data, 10); 77 78 Test tests[] = { Test(10, 20), Test(30, 40) }; 79 auto testv = builder.CreateVectorOfStructs(tests, 2); 80 81 // clang-format off 82 #ifndef FLATBUFFERS_CPP98_STL 83 // Create a vector of structures from a lambda. 84 auto testv2 = builder.CreateVectorOfStructs<Test>( 85 2, [&](size_t i, Test* s) -> void { 86 *s = tests[i]; 87 }); 88 #else 89 // Create a vector of structures using a plain old C++ function. 90 auto testv2 = builder.CreateVectorOfStructs<Test>( 91 2, [](size_t i, Test* s, void *state) -> void { 92 *s = (reinterpret_cast<Test*>(state))[i]; 93 }, tests); 94 #endif // FLATBUFFERS_CPP98_STL 95 // clang-format on 96 97 // create monster with very few fields set: 98 // (same functionality as CreateMonster below, but sets fields manually) 99 flatbuffers::Offset<Monster> mlocs[3]; 100 auto fred = builder.CreateString("Fred"); 101 auto barney = builder.CreateString("Barney"); 102 auto wilma = builder.CreateString("Wilma"); 103 MonsterBuilder mb1(builder); 104 mb1.add_name(fred); 105 mlocs[0] = mb1.Finish(); 106 MonsterBuilder mb2(builder); 107 mb2.add_name(barney); 108 mb2.add_hp(1000); 109 mlocs[1] = mb2.Finish(); 110 MonsterBuilder mb3(builder); 111 mb3.add_name(wilma); 112 mlocs[2] = mb3.Finish(); 113 114 // Create an array of strings. Also test string pooling, and lambdas. 115 auto vecofstrings = 116 builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>( 117 4, 118 [](size_t i, flatbuffers::FlatBufferBuilder *b) 119 -> flatbuffers::Offset<flatbuffers::String> { 120 static const char *names[] = { "bob", "fred", "bob", "fred" }; 121 return b->CreateSharedString(names[i]); 122 }, 123 &builder); 124 125 // Creating vectors of strings in one convenient call. 126 std::vector<std::string> names2; 127 names2.push_back("jane"); 128 names2.push_back("mary"); 129 auto vecofstrings2 = builder.CreateVectorOfStrings(names2); 130 131 // Create an array of sorted tables, can be used with binary search when read: 132 auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3); 133 134 // Create an array of sorted structs, 135 // can be used with binary search when read: 136 std::vector<Ability> abilities; 137 abilities.push_back(Ability(4, 40)); 138 abilities.push_back(Ability(3, 30)); 139 abilities.push_back(Ability(2, 20)); 140 abilities.push_back(Ability(1, 10)); 141 auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities); 142 143 // Create a nested FlatBuffer. 144 // Nested FlatBuffers are stored in a ubyte vector, which can be convenient 145 // since they can be memcpy'd around much easier than other FlatBuffer 146 // values. They have little overhead compared to storing the table directly. 147 // As a test, create a mostly empty Monster buffer: 148 flatbuffers::FlatBufferBuilder nested_builder; 149 auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0, 150 nested_builder.CreateString("NestedMonster")); 151 FinishMonsterBuffer(nested_builder, nmloc); 152 // Now we can store the buffer in the parent. Note that by default, vectors 153 // are only aligned to their elements or size field, so in this case if the 154 // buffer contains 64-bit elements, they may not be correctly aligned. We fix 155 // that with: 156 builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t), 157 nested_builder.GetBufferMinAlignment()); 158 // If for whatever reason you don't have the nested_builder available, you 159 // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or 160 // the largest force_align value in your schema if you're using it. 161 auto nested_flatbuffer_vector = builder.CreateVector( 162 nested_builder.GetBufferPointer(), nested_builder.GetSize()); 163 164 // Test a nested FlexBuffer: 165 flexbuffers::Builder flexbuild; 166 flexbuild.Int(1234); 167 flexbuild.Finish(); 168 auto flex = builder.CreateVector(flexbuild.GetBuffer()); 169 170 // Test vector of enums. 171 Color colors[] = { Color_Blue, Color_Green }; 172 // We use this special creation function because we have an array of 173 // pre-C++11 (enum class) enums whose size likely is int, yet its declared 174 // type in the schema is byte. 175 auto vecofcolors = builder.CreateVectorScalarCast<int8_t, Color>(colors, 2); 176 177 // shortcut for creating monster with all fields set: 178 auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue, 179 Any_Monster, mlocs[1].Union(), // Store a union. 180 testv, vecofstrings, vecoftables, 0, 181 nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0, 182 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2, 183 vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0, 184 0, 0, 0, AnyUniqueAliases_NONE, 0, 185 AnyAmbiguousAliases_NONE, 0, vecofcolors); 186 187 FinishMonsterBuffer(builder, mloc); 188 189 // clang-format off 190 #ifdef FLATBUFFERS_TEST_VERBOSE 191 // print byte data for debugging: 192 auto p = builder.GetBufferPointer(); 193 for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++) 194 printf("%d ", p[i]); 195 #endif 196 // clang-format on 197 198 // return the buffer for the caller to use. 199 auto bufferpointer = 200 reinterpret_cast<const char *>(builder.GetBufferPointer()); 201 buffer.assign(bufferpointer, bufferpointer + builder.GetSize()); 202 203 return builder.Release(); 204 } 205 206 // example of accessing a buffer loaded in memory: 207 void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length, 208 bool pooled = true) { 209 // First, verify the buffers integrity (optional) 210 flatbuffers::Verifier verifier(flatbuf, length); 211 TEST_EQ(VerifyMonsterBuffer(verifier), true); 212 213 // clang-format off 214 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE 215 std::vector<uint8_t> test_buff; 216 test_buff.resize(length * 2); 217 std::memcpy(&test_buff[0], flatbuf, length); 218 std::memcpy(&test_buff[length], flatbuf, length); 219 220 flatbuffers::Verifier verifier1(&test_buff[0], length); 221 TEST_EQ(VerifyMonsterBuffer(verifier1), true); 222 TEST_EQ(verifier1.GetComputedSize(), length); 223 224 flatbuffers::Verifier verifier2(&test_buff[length], length); 225 TEST_EQ(VerifyMonsterBuffer(verifier2), true); 226 TEST_EQ(verifier2.GetComputedSize(), length); 227 #endif 228 // clang-format on 229 230 TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0); 231 TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true); 232 TEST_EQ(strcmp(MonsterExtension(), "mon"), 0); 233 234 // Access the buffer from the root. 235 auto monster = GetMonster(flatbuf); 236 237 TEST_EQ(monster->hp(), 80); 238 TEST_EQ(monster->mana(), 150); // default 239 TEST_EQ_STR(monster->name()->c_str(), "MyMonster"); 240 // Can't access the following field, it is deprecated in the schema, 241 // which means accessors are not generated: 242 // monster.friendly() 243 244 auto pos = monster->pos(); 245 TEST_NOTNULL(pos); 246 TEST_EQ(pos->z(), 3); 247 TEST_EQ(pos->test3().a(), 10); 248 TEST_EQ(pos->test3().b(), 20); 249 250 auto inventory = monster->inventory(); 251 TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null. 252 TEST_NOTNULL(inventory); 253 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; 254 // Check compatibilty of iterators with STL. 255 std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end()); 256 for (auto it = inventory->begin(); it != inventory->end(); ++it) { 257 auto indx = it - inventory->begin(); 258 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. 259 TEST_EQ(*it, inv_data[indx]); 260 } 261 262 for (auto it = inventory->cbegin(); it != inventory->cend(); ++it) { 263 auto indx = it - inventory->cbegin(); 264 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. 265 TEST_EQ(*it, inv_data[indx]); 266 } 267 268 for (auto it = inventory->rbegin(); it != inventory->rend(); ++it) { 269 auto indx = inventory->rend() - it; 270 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. 271 TEST_EQ(*it, inv_data[indx]); 272 } 273 274 for (auto it = inventory->crbegin(); it != inventory->crend(); ++it) { 275 auto indx = inventory->crend() - it; 276 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. 277 TEST_EQ(*it, inv_data[indx]); 278 } 279 280 TEST_EQ(monster->color(), Color_Blue); 281 282 // Example of accessing a union: 283 TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is. 284 auto monster2 = reinterpret_cast<const Monster *>(monster->test()); 285 TEST_NOTNULL(monster2); 286 TEST_EQ_STR(monster2->name()->c_str(), "Fred"); 287 288 // Example of accessing a vector of strings: 289 auto vecofstrings = monster->testarrayofstring(); 290 TEST_EQ(vecofstrings->size(), 4U); 291 TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob"); 292 TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred"); 293 if (pooled) { 294 // These should have pointer equality because of string pooling. 295 TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str()); 296 TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str()); 297 } 298 299 auto vecofstrings2 = monster->testarrayofstring2(); 300 if (vecofstrings2) { 301 TEST_EQ(vecofstrings2->size(), 2U); 302 TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane"); 303 TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary"); 304 } 305 306 // Example of accessing a vector of tables: 307 auto vecoftables = monster->testarrayoftables(); 308 TEST_EQ(vecoftables->size(), 3U); 309 for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it) 310 TEST_EQ(strlen(it->name()->c_str()) >= 4, true); 311 TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney"); 312 TEST_EQ(vecoftables->Get(0)->hp(), 1000); 313 TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred"); 314 TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma"); 315 TEST_NOTNULL(vecoftables->LookupByKey("Barney")); 316 TEST_NOTNULL(vecoftables->LookupByKey("Fred")); 317 TEST_NOTNULL(vecoftables->LookupByKey("Wilma")); 318 319 // Test accessing a vector of sorted structs 320 auto vecofstructs = monster->testarrayofsortedstruct(); 321 if (vecofstructs) { // not filled in monster_test.bfbs 322 for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) { 323 auto left = vecofstructs->Get(i); 324 auto right = vecofstructs->Get(i + 1); 325 TEST_EQ(true, (left->KeyCompareLessThan(right))); 326 } 327 TEST_NOTNULL(vecofstructs->LookupByKey(3)); 328 TEST_EQ(static_cast<const Ability *>(nullptr), 329 vecofstructs->LookupByKey(5)); 330 } 331 332 // Test nested FlatBuffers if available: 333 auto nested_buffer = monster->testnestedflatbuffer(); 334 if (nested_buffer) { 335 // nested_buffer is a vector of bytes you can memcpy. However, if you 336 // actually want to access the nested data, this is a convenient 337 // accessor that directly gives you the root table: 338 auto nested_monster = monster->testnestedflatbuffer_nested_root(); 339 TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster"); 340 } 341 342 // Test flexbuffer if available: 343 auto flex = monster->flex(); 344 // flex is a vector of bytes you can memcpy etc. 345 TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes. 346 // However, if you actually want to access the nested data, this is a 347 // convenient accessor that directly gives you the root value: 348 TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234); 349 350 // Test vector of enums: 351 auto colors = monster->vector_of_enums(); 352 if (colors) { 353 TEST_EQ(colors->size(), 2); 354 TEST_EQ(colors->Get(0), Color_Blue); 355 TEST_EQ(colors->Get(1), Color_Green); 356 } 357 358 // Since Flatbuffers uses explicit mechanisms to override the default 359 // compiler alignment, double check that the compiler indeed obeys them: 360 // (Test consists of a short and byte): 361 TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL); 362 TEST_EQ(sizeof(Test), 4UL); 363 364 const flatbuffers::Vector<const Test *> *tests_array[] = { 365 monster->test4(), 366 monster->test5(), 367 }; 368 for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) { 369 auto tests = tests_array[i]; 370 TEST_NOTNULL(tests); 371 auto test_0 = tests->Get(0); 372 auto test_1 = tests->Get(1); 373 TEST_EQ(test_0->a(), 10); 374 TEST_EQ(test_0->b(), 20); 375 TEST_EQ(test_1->a(), 30); 376 TEST_EQ(test_1->b(), 40); 377 for (auto it = tests->begin(); it != tests->end(); ++it) { 378 TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators. 379 } 380 } 381 382 // Checking for presence of fields: 383 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true); 384 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false); 385 386 // Obtaining a buffer from a root: 387 TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf); 388 } 389 390 // Change a FlatBuffer in-place, after it has been constructed. 391 void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) { 392 // Get non-const pointer to root. 393 auto monster = GetMutableMonster(flatbuf); 394 395 // Each of these tests mutates, then tests, then set back to the original, 396 // so we can test that the buffer in the end still passes our original test. 397 auto hp_ok = monster->mutate_hp(10); 398 TEST_EQ(hp_ok, true); // Field was present. 399 TEST_EQ(monster->hp(), 10); 400 // Mutate to default value 401 auto hp_ok_default = monster->mutate_hp(100); 402 TEST_EQ(hp_ok_default, true); // Field was present. 403 TEST_EQ(monster->hp(), 100); 404 // Test that mutate to default above keeps field valid for further mutations 405 auto hp_ok_2 = monster->mutate_hp(20); 406 TEST_EQ(hp_ok_2, true); 407 TEST_EQ(monster->hp(), 20); 408 monster->mutate_hp(80); 409 410 // Monster originally at 150 mana (default value) 411 auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value. 412 TEST_EQ(mana_default_ok, 413 true); // Mutation should succeed, because default value. 414 TEST_EQ(monster->mana(), 150); 415 auto mana_ok = monster->mutate_mana(10); 416 TEST_EQ(mana_ok, false); // Field was NOT present, because default value. 417 TEST_EQ(monster->mana(), 150); 418 419 // Mutate structs. 420 auto pos = monster->mutable_pos(); 421 auto test3 = pos->mutable_test3(); // Struct inside a struct. 422 test3.mutate_a(50); // Struct fields never fail. 423 TEST_EQ(test3.a(), 50); 424 test3.mutate_a(10); 425 426 // Mutate vectors. 427 auto inventory = monster->mutable_inventory(); 428 inventory->Mutate(9, 100); 429 TEST_EQ(inventory->Get(9), 100); 430 inventory->Mutate(9, 9); 431 432 auto tables = monster->mutable_testarrayoftables(); 433 auto first = tables->GetMutableObject(0); 434 TEST_EQ(first->hp(), 1000); 435 first->mutate_hp(0); 436 TEST_EQ(first->hp(), 0); 437 first->mutate_hp(1000); 438 439 // Run the verifier and the regular test to make sure we didn't trample on 440 // anything. 441 AccessFlatBufferTest(flatbuf, length); 442 } 443 444 // Unpack a FlatBuffer into objects. 445 void ObjectFlatBuffersTest(uint8_t *flatbuf) { 446 // Optional: we can specify resolver and rehasher functions to turn hashed 447 // strings into object pointers and back, to implement remote references 448 // and such. 449 auto resolver = flatbuffers::resolver_function_t( 450 [](void **pointer_adr, flatbuffers::hash_value_t hash) { 451 (void)pointer_adr; 452 (void)hash; 453 // Don't actually do anything, leave variable null. 454 }); 455 auto rehasher = flatbuffers::rehasher_function_t( 456 [](void *pointer) -> flatbuffers::hash_value_t { 457 (void)pointer; 458 return 0; 459 }); 460 461 // Turn a buffer into C++ objects. 462 auto monster1 = UnPackMonster(flatbuf, &resolver); 463 464 // Re-serialize the data. 465 flatbuffers::FlatBufferBuilder fbb1; 466 fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher), 467 MonsterIdentifier()); 468 469 // Unpack again, and re-serialize again. 470 auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver); 471 flatbuffers::FlatBufferBuilder fbb2; 472 fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher), 473 MonsterIdentifier()); 474 475 // Now we've gone full round-trip, the two buffers should match. 476 auto len1 = fbb1.GetSize(); 477 auto len2 = fbb2.GetSize(); 478 TEST_EQ(len1, len2); 479 TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0); 480 481 // Test it with the original buffer test to make sure all data survived. 482 AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false); 483 484 // Test accessing fields, similar to AccessFlatBufferTest above. 485 TEST_EQ(monster2->hp, 80); 486 TEST_EQ(monster2->mana, 150); // default 487 TEST_EQ_STR(monster2->name.c_str(), "MyMonster"); 488 489 auto &pos = monster2->pos; 490 TEST_NOTNULL(pos); 491 TEST_EQ(pos->z(), 3); 492 TEST_EQ(pos->test3().a(), 10); 493 TEST_EQ(pos->test3().b(), 20); 494 495 auto &inventory = monster2->inventory; 496 TEST_EQ(inventory.size(), 10UL); 497 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; 498 for (auto it = inventory.begin(); it != inventory.end(); ++it) 499 TEST_EQ(*it, inv_data[it - inventory.begin()]); 500 501 TEST_EQ(monster2->color, Color_Blue); 502 503 auto monster3 = monster2->test.AsMonster(); 504 TEST_NOTNULL(monster3); 505 TEST_EQ_STR(monster3->name.c_str(), "Fred"); 506 507 auto &vecofstrings = monster2->testarrayofstring; 508 TEST_EQ(vecofstrings.size(), 4U); 509 TEST_EQ_STR(vecofstrings[0].c_str(), "bob"); 510 TEST_EQ_STR(vecofstrings[1].c_str(), "fred"); 511 512 auto &vecofstrings2 = monster2->testarrayofstring2; 513 TEST_EQ(vecofstrings2.size(), 2U); 514 TEST_EQ_STR(vecofstrings2[0].c_str(), "jane"); 515 TEST_EQ_STR(vecofstrings2[1].c_str(), "mary"); 516 517 auto &vecoftables = monster2->testarrayoftables; 518 TEST_EQ(vecoftables.size(), 3U); 519 TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney"); 520 TEST_EQ(vecoftables[0]->hp, 1000); 521 TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred"); 522 TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma"); 523 524 auto &tests = monster2->test4; 525 TEST_EQ(tests[0].a(), 10); 526 TEST_EQ(tests[0].b(), 20); 527 TEST_EQ(tests[1].a(), 30); 528 TEST_EQ(tests[1].b(), 40); 529 } 530 531 // Prefix a FlatBuffer with a size field. 532 void SizePrefixedTest() { 533 // Create size prefixed buffer. 534 flatbuffers::FlatBufferBuilder fbb; 535 FinishSizePrefixedMonsterBuffer( 536 fbb, 537 CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob"))); 538 539 // Verify it. 540 flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize()); 541 TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true); 542 543 // Access it. 544 auto m = GetSizePrefixedMonster(fbb.GetBufferPointer()); 545 TEST_EQ(m->mana(), 200); 546 TEST_EQ(m->hp(), 300); 547 TEST_EQ_STR(m->name()->c_str(), "bob"); 548 } 549 550 void TriviallyCopyableTest() { 551 // clang-format off 552 #if __GNUG__ && __GNUC__ < 5 553 TEST_EQ(__has_trivial_copy(Vec3), true); 554 #else 555 #if __cplusplus >= 201103L 556 TEST_EQ(std::is_trivially_copyable<Vec3>::value, true); 557 #endif 558 #endif 559 // clang-format on 560 } 561 562 // Check stringify of an default enum value to json 563 void JsonDefaultTest() { 564 // load FlatBuffer schema (.fbs) from disk 565 std::string schemafile; 566 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), 567 false, &schemafile), true); 568 // parse schema first, so we can use it to parse the data after 569 flatbuffers::Parser parser; 570 auto include_test_path = 571 flatbuffers::ConCatPathFileName(test_data_path, "include_test"); 572 const char *include_directories[] = { test_data_path.c_str(), 573 include_test_path.c_str(), nullptr }; 574 575 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); 576 // create incomplete monster and store to json 577 parser.opts.output_default_scalars_in_json = true; 578 parser.opts.output_enum_identifiers = true; 579 flatbuffers::FlatBufferBuilder builder; 580 auto name = builder.CreateString("default_enum"); 581 MonsterBuilder color_monster(builder); 582 color_monster.add_name(name); 583 FinishMonsterBuffer(builder, color_monster.Finish()); 584 std::string jsongen; 585 auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen); 586 TEST_EQ(result, true); 587 // default value of the "color" field is Blue 588 TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true); 589 // default value of the "testf" field is 3.14159 590 TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true); 591 } 592 593 // example of parsing text straight into a buffer, and generating 594 // text back from it: 595 void ParseAndGenerateTextTest(bool binary) { 596 // load FlatBuffer schema (.fbs) and JSON from disk 597 std::string schemafile; 598 std::string jsonfile; 599 TEST_EQ(flatbuffers::LoadFile( 600 (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs")) 601 .c_str(), 602 binary, &schemafile), 603 true); 604 TEST_EQ(flatbuffers::LoadFile( 605 (test_data_path + "monsterdata_test.golden").c_str(), false, 606 &jsonfile), 607 true); 608 609 auto include_test_path = 610 flatbuffers::ConCatPathFileName(test_data_path, "include_test"); 611 const char *include_directories[] = { test_data_path.c_str(), 612 include_test_path.c_str(), nullptr }; 613 614 // parse schema first, so we can use it to parse the data after 615 flatbuffers::Parser parser; 616 if (binary) { 617 flatbuffers::Verifier verifier( 618 reinterpret_cast<const uint8_t *>(schemafile.c_str()), 619 schemafile.size()); 620 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); 621 //auto schema = reflection::GetSchema(schemafile.c_str()); 622 TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true); 623 } else { 624 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); 625 } 626 TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true); 627 628 // here, parser.builder_ contains a binary buffer that is the parsed data. 629 630 // First, verify it, just in case: 631 flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(), 632 parser.builder_.GetSize()); 633 TEST_EQ(VerifyMonsterBuffer(verifier), true); 634 635 AccessFlatBufferTest(parser.builder_.GetBufferPointer(), 636 parser.builder_.GetSize(), false); 637 638 // to ensure it is correct, we now generate text back from the binary, 639 // and compare the two: 640 std::string jsongen; 641 auto result = 642 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); 643 TEST_EQ(result, true); 644 TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str()); 645 646 // We can also do the above using the convenient Registry that knows about 647 // a set of file_identifiers mapped to schemas. 648 flatbuffers::Registry registry; 649 // Make sure schemas can find their includes. 650 registry.AddIncludeDirectory(test_data_path.c_str()); 651 registry.AddIncludeDirectory(include_test_path.c_str()); 652 // Call this with many schemas if possible. 653 registry.Register(MonsterIdentifier(), 654 (test_data_path + "monster_test.fbs").c_str()); 655 // Now we got this set up, we can parse by just specifying the identifier, 656 // the correct schema will be loaded on the fly: 657 auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier()); 658 // If this fails, check registry.lasterror_. 659 TEST_NOTNULL(buf.data()); 660 // Test the buffer, to be sure: 661 AccessFlatBufferTest(buf.data(), buf.size(), false); 662 // We can use the registry to turn this back into text, in this case it 663 // will get the file_identifier from the binary: 664 std::string text; 665 auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text); 666 // If this fails, check registry.lasterror_. 667 TEST_EQ(ok, true); 668 TEST_EQ_STR(text.c_str(), jsonfile.c_str()); 669 670 // Generate text for UTF-8 strings without escapes. 671 std::string jsonfile_utf8; 672 TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(), 673 false, &jsonfile_utf8), 674 true); 675 TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true); 676 // To ensure it is correct, generate utf-8 text back from the binary. 677 std::string jsongen_utf8; 678 // request natural printing for utf-8 strings 679 parser.opts.natural_utf8 = true; 680 parser.opts.strict_json = true; 681 TEST_EQ( 682 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8), 683 true); 684 TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str()); 685 } 686 687 void ReflectionTest(uint8_t *flatbuf, size_t length) { 688 // Load a binary schema. 689 std::string bfbsfile; 690 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(), 691 true, &bfbsfile), 692 true); 693 694 // Verify it, just in case: 695 flatbuffers::Verifier verifier( 696 reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length()); 697 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); 698 699 // Make sure the schema is what we expect it to be. 700 auto &schema = *reflection::GetSchema(bfbsfile.c_str()); 701 auto root_table = schema.root_table(); 702 TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster"); 703 auto fields = root_table->fields(); 704 auto hp_field_ptr = fields->LookupByKey("hp"); 705 TEST_NOTNULL(hp_field_ptr); 706 auto &hp_field = *hp_field_ptr; 707 TEST_EQ_STR(hp_field.name()->c_str(), "hp"); 708 TEST_EQ(hp_field.id(), 2); 709 TEST_EQ(hp_field.type()->base_type(), reflection::Short); 710 auto friendly_field_ptr = fields->LookupByKey("friendly"); 711 TEST_NOTNULL(friendly_field_ptr); 712 TEST_NOTNULL(friendly_field_ptr->attributes()); 713 TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority")); 714 715 // Make sure the table index is what we expect it to be. 716 auto pos_field_ptr = fields->LookupByKey("pos"); 717 TEST_NOTNULL(pos_field_ptr); 718 TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj); 719 auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index()); 720 TEST_NOTNULL(pos_table_ptr); 721 TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3"); 722 723 // Now use it to dynamically access a buffer. 724 auto &root = *flatbuffers::GetAnyRoot(flatbuf); 725 726 // Verify the buffer first using reflection based verification 727 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length), 728 true); 729 730 auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field); 731 TEST_EQ(hp, 80); 732 733 // Rather than needing to know the type, we can also get the value of 734 // any field as an int64_t/double/string, regardless of what it actually is. 735 auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); 736 TEST_EQ(hp_int64, 80); 737 auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field); 738 TEST_EQ(hp_double, 80.0); 739 auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema); 740 TEST_EQ_STR(hp_string.c_str(), "80"); 741 742 // Get struct field through reflection 743 auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr); 744 TEST_NOTNULL(pos_struct); 745 TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct, 746 *pos_table_ptr->fields()->LookupByKey("z")), 747 3.0f); 748 749 auto test3_field = pos_table_ptr->fields()->LookupByKey("test3"); 750 auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field); 751 TEST_NOTNULL(test3_struct); 752 auto test3_object = schema.objects()->Get(test3_field->type()->index()); 753 754 TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct, 755 *test3_object->fields()->LookupByKey("a")), 756 10); 757 758 // We can also modify it. 759 flatbuffers::SetField<uint16_t>(&root, hp_field, 200); 760 hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field); 761 TEST_EQ(hp, 200); 762 763 // We can also set fields generically: 764 flatbuffers::SetAnyFieldI(&root, hp_field, 300); 765 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); 766 TEST_EQ(hp_int64, 300); 767 flatbuffers::SetAnyFieldF(&root, hp_field, 300.5); 768 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); 769 TEST_EQ(hp_int64, 300); 770 flatbuffers::SetAnyFieldS(&root, hp_field, "300"); 771 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); 772 TEST_EQ(hp_int64, 300); 773 774 // Test buffer is valid after the modifications 775 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length), 776 true); 777 778 // Reset it, for further tests. 779 flatbuffers::SetField<uint16_t>(&root, hp_field, 80); 780 781 // More advanced functionality: changing the size of items in-line! 782 // First we put the FlatBuffer inside an std::vector. 783 std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length); 784 // Find the field we want to modify. 785 auto &name_field = *fields->LookupByKey("name"); 786 // Get the root. 787 // This time we wrap the result from GetAnyRoot in a smartpointer that 788 // will keep rroot valid as resizingbuf resizes. 789 auto rroot = flatbuffers::piv( 790 flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)), 791 resizingbuf); 792 SetString(schema, "totally new string", GetFieldS(**rroot, name_field), 793 &resizingbuf); 794 // Here resizingbuf has changed, but rroot is still valid. 795 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string"); 796 // Now lets extend a vector by 100 elements (10 -> 110). 797 auto &inventory_field = *fields->LookupByKey("inventory"); 798 auto rinventory = flatbuffers::piv( 799 flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf); 800 flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory, 801 &resizingbuf); 802 // rinventory still valid, so lets read from it. 803 TEST_EQ(rinventory->Get(10), 50); 804 805 // For reflection uses not covered already, there is a more powerful way: 806 // we can simply generate whatever object we want to add/modify in a 807 // FlatBuffer of its own, then add that to an existing FlatBuffer: 808 // As an example, let's add a string to an array of strings. 809 // First, find our field: 810 auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring"); 811 // Find the vector value: 812 auto rtestarrayofstring = flatbuffers::piv( 813 flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>( 814 **rroot, testarrayofstring_field), 815 resizingbuf); 816 // It's a vector of 2 strings, to which we add one more, initialized to 817 // offset 0. 818 flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>( 819 schema, 3, 0, *rtestarrayofstring, &resizingbuf); 820 // Here we just create a buffer that contans a single string, but this 821 // could also be any complex set of tables and other values. 822 flatbuffers::FlatBufferBuilder stringfbb; 823 stringfbb.Finish(stringfbb.CreateString("hank")); 824 // Add the contents of it to our existing FlatBuffer. 825 // We do this last, so the pointer doesn't get invalidated (since it is 826 // at the end of the buffer): 827 auto string_ptr = flatbuffers::AddFlatBuffer( 828 resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize()); 829 // Finally, set the new value in the vector. 830 rtestarrayofstring->MutateOffset(2, string_ptr); 831 TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob"); 832 TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank"); 833 // Test integrity of all resize operations above. 834 flatbuffers::Verifier resize_verifier( 835 reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)), 836 resizingbuf.size()); 837 TEST_EQ(VerifyMonsterBuffer(resize_verifier), true); 838 839 // Test buffer is valid using reflection as well 840 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), 841 flatbuffers::vector_data(resizingbuf), 842 resizingbuf.size()), 843 true); 844 845 // As an additional test, also set it on the name field. 846 // Note: unlike the name change above, this just overwrites the offset, 847 // rather than changing the string in-place. 848 SetFieldT(*rroot, name_field, string_ptr); 849 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank"); 850 851 // Using reflection, rather than mutating binary FlatBuffers, we can also copy 852 // tables and other things out of other FlatBuffers into a FlatBufferBuilder, 853 // either part or whole. 854 flatbuffers::FlatBufferBuilder fbb; 855 auto root_offset = flatbuffers::CopyTable( 856 fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true); 857 fbb.Finish(root_offset, MonsterIdentifier()); 858 // Test that it was copied correctly: 859 AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize()); 860 861 // Test buffer is valid using reflection as well 862 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), 863 fbb.GetBufferPointer(), fbb.GetSize()), 864 true); 865 } 866 867 void MiniReflectFlatBuffersTest(uint8_t *flatbuf) { 868 auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable()); 869 TEST_EQ_STR( 870 s.c_str(), 871 "{ " 872 "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: " 873 "{ a: 10, b: 20 } }, " 874 "hp: 80, " 875 "name: \"MyMonster\", " 876 "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], " 877 "test_type: Monster, " 878 "test: { name: \"Fred\" }, " 879 "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], " 880 "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], " 881 "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" " 882 "}, " 883 "{ name: \"Wilma\" } ], " 884 // TODO(wvo): should really print this nested buffer correctly. 885 "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, " 886 "0, " 887 "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, " 888 "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], " 889 "testarrayofstring2: [ \"jane\", \"mary\" ], " 890 "testarrayofsortedstruct: [ { id: 1, distance: 10 }, " 891 "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, " 892 "{ id: 4, distance: 40 } ], " 893 "flex: [ 210, 4, 5, 2 ], " 894 "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], " 895 "vector_of_enums: [ Blue, Green ] " 896 "}"); 897 } 898 899 // Parse a .proto schema, output as .fbs 900 void ParseProtoTest() { 901 // load the .proto and the golden file from disk 902 std::string protofile; 903 std::string goldenfile; 904 std::string goldenunionfile; 905 TEST_EQ( 906 flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(), 907 false, &protofile), 908 true); 909 TEST_EQ( 910 flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(), 911 false, &goldenfile), 912 true); 913 TEST_EQ( 914 flatbuffers::LoadFile((test_data_path + 915 "prototest/test_union.golden").c_str(), 916 false, &goldenunionfile), 917 true); 918 919 flatbuffers::IDLOptions opts; 920 opts.include_dependence_headers = false; 921 opts.proto_mode = true; 922 923 // Parse proto. 924 flatbuffers::Parser parser(opts); 925 auto protopath = test_data_path + "prototest/"; 926 const char *include_directories[] = { protopath.c_str(), nullptr }; 927 TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true); 928 929 // Generate fbs. 930 auto fbs = flatbuffers::GenerateFBS(parser, "test"); 931 932 // Ensure generated file is parsable. 933 flatbuffers::Parser parser2; 934 TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true); 935 TEST_EQ_STR(fbs.c_str(), goldenfile.c_str()); 936 937 // Parse proto with --oneof-union option. 938 opts.proto_oneof_union = true; 939 flatbuffers::Parser parser3(opts); 940 TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true); 941 942 // Generate fbs. 943 auto fbs_union = flatbuffers::GenerateFBS(parser3, "test"); 944 945 // Ensure generated file is parsable. 946 flatbuffers::Parser parser4; 947 TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true); 948 TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str()); 949 } 950 951 template<typename T> 952 void CompareTableFieldValue(flatbuffers::Table *table, 953 flatbuffers::voffset_t voffset, T val) { 954 T read = table->GetField(voffset, static_cast<T>(0)); 955 TEST_EQ(read, val); 956 } 957 958 // Low level stress/fuzz test: serialize/deserialize a variety of 959 // different kinds of data in different combinations 960 void FuzzTest1() { 961 // Values we're testing against: chosen to ensure no bits get chopped 962 // off anywhere, and also be different from eachother. 963 const uint8_t bool_val = true; 964 const int8_t char_val = -127; // 0x81 965 const uint8_t uchar_val = 0xFF; 966 const int16_t short_val = -32222; // 0x8222; 967 const uint16_t ushort_val = 0xFEEE; 968 const int32_t int_val = 0x83333333; 969 const uint32_t uint_val = 0xFDDDDDDD; 970 const int64_t long_val = 0x8444444444444444LL; 971 const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL; 972 const float float_val = 3.14159f; 973 const double double_val = 3.14159265359; 974 975 const int test_values_max = 11; 976 const flatbuffers::voffset_t fields_per_object = 4; 977 const int num_fuzz_objects = 10000; // The higher, the more thorough :) 978 979 flatbuffers::FlatBufferBuilder builder; 980 981 lcg_reset(); // Keep it deterministic. 982 983 flatbuffers::uoffset_t objects[num_fuzz_objects]; 984 985 // Generate num_fuzz_objects random objects each consisting of 986 // fields_per_object fields, each of a random type. 987 for (int i = 0; i < num_fuzz_objects; i++) { 988 auto start = builder.StartTable(); 989 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) { 990 int choice = lcg_rand() % test_values_max; 991 auto off = flatbuffers::FieldIndexToOffset(f); 992 switch (choice) { 993 case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break; 994 case 1: builder.AddElement<int8_t>(off, char_val, 0); break; 995 case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break; 996 case 3: builder.AddElement<int16_t>(off, short_val, 0); break; 997 case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break; 998 case 5: builder.AddElement<int32_t>(off, int_val, 0); break; 999 case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break; 1000 case 7: builder.AddElement<int64_t>(off, long_val, 0); break; 1001 case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break; 1002 case 9: builder.AddElement<float>(off, float_val, 0); break; 1003 case 10: builder.AddElement<double>(off, double_val, 0); break; 1004 } 1005 } 1006 objects[i] = builder.EndTable(start); 1007 } 1008 builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer. 1009 1010 lcg_reset(); // Reset. 1011 1012 uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize(); 1013 1014 // Test that all objects we generated are readable and return the 1015 // expected values. We generate random objects in the same order 1016 // so this is deterministic. 1017 for (int i = 0; i < num_fuzz_objects; i++) { 1018 auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]); 1019 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) { 1020 int choice = lcg_rand() % test_values_max; 1021 flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f); 1022 switch (choice) { 1023 case 0: CompareTableFieldValue(table, off, bool_val); break; 1024 case 1: CompareTableFieldValue(table, off, char_val); break; 1025 case 2: CompareTableFieldValue(table, off, uchar_val); break; 1026 case 3: CompareTableFieldValue(table, off, short_val); break; 1027 case 4: CompareTableFieldValue(table, off, ushort_val); break; 1028 case 5: CompareTableFieldValue(table, off, int_val); break; 1029 case 6: CompareTableFieldValue(table, off, uint_val); break; 1030 case 7: CompareTableFieldValue(table, off, long_val); break; 1031 case 8: CompareTableFieldValue(table, off, ulong_val); break; 1032 case 9: CompareTableFieldValue(table, off, float_val); break; 1033 case 10: CompareTableFieldValue(table, off, double_val); break; 1034 } 1035 } 1036 } 1037 } 1038 1039 // High level stress/fuzz test: generate a big schema and 1040 // matching json data in random combinations, then parse both, 1041 // generate json back from the binary, and compare with the original. 1042 void FuzzTest2() { 1043 lcg_reset(); // Keep it deterministic. 1044 1045 const int num_definitions = 30; 1046 const int num_struct_definitions = 5; // Subset of num_definitions. 1047 const int fields_per_definition = 15; 1048 const int instances_per_definition = 5; 1049 const int deprecation_rate = 10; // 1 in deprecation_rate fields will 1050 // be deprecated. 1051 1052 std::string schema = "namespace test;\n\n"; 1053 1054 struct RndDef { 1055 std::string instances[instances_per_definition]; 1056 1057 // Since we're generating schema and corresponding data in tandem, 1058 // this convenience function adds strings to both at once. 1059 static void Add(RndDef (&definitions_l)[num_definitions], 1060 std::string &schema_l, const int instances_per_definition_l, 1061 const char *schema_add, const char *instance_add, 1062 int definition) { 1063 schema_l += schema_add; 1064 for (int i = 0; i < instances_per_definition_l; i++) 1065 definitions_l[definition].instances[i] += instance_add; 1066 } 1067 }; 1068 1069 // clang-format off 1070 #define AddToSchemaAndInstances(schema_add, instance_add) \ 1071 RndDef::Add(definitions, schema, instances_per_definition, \ 1072 schema_add, instance_add, definition) 1073 1074 #define Dummy() \ 1075 RndDef::Add(definitions, schema, instances_per_definition, \ 1076 "byte", "1", definition) 1077 // clang-format on 1078 1079 RndDef definitions[num_definitions]; 1080 1081 // We are going to generate num_definitions, the first 1082 // num_struct_definitions will be structs, the rest tables. For each 1083 // generate random fields, some of which may be struct/table types 1084 // referring to previously generated structs/tables. 1085 // Simultanenously, we generate instances_per_definition JSON data 1086 // definitions, which will have identical structure to the schema 1087 // being generated. We generate multiple instances such that when creating 1088 // hierarchy, we get some variety by picking one randomly. 1089 for (int definition = 0; definition < num_definitions; definition++) { 1090 std::string definition_name = "D" + flatbuffers::NumToString(definition); 1091 1092 bool is_struct = definition < num_struct_definitions; 1093 1094 AddToSchemaAndInstances( 1095 ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(), 1096 "{\n"); 1097 1098 for (int field = 0; field < fields_per_definition; field++) { 1099 const bool is_last_field = field == fields_per_definition - 1; 1100 1101 // Deprecate 1 in deprecation_rate fields. Only table fields can be 1102 // deprecated. 1103 // Don't deprecate the last field to avoid dangling commas in JSON. 1104 const bool deprecated = 1105 !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0); 1106 1107 std::string field_name = "f" + flatbuffers::NumToString(field); 1108 AddToSchemaAndInstances((" " + field_name + ":").c_str(), 1109 deprecated ? "" : (field_name + ": ").c_str()); 1110 // Pick random type: 1111 auto base_type = static_cast<flatbuffers::BaseType>( 1112 lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1)); 1113 switch (base_type) { 1114 case flatbuffers::BASE_TYPE_STRING: 1115 if (is_struct) { 1116 Dummy(); // No strings in structs. 1117 } else { 1118 AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\""); 1119 } 1120 break; 1121 case flatbuffers::BASE_TYPE_VECTOR: 1122 if (is_struct) { 1123 Dummy(); // No vectors in structs. 1124 } else { 1125 AddToSchemaAndInstances("[ubyte]", 1126 deprecated ? "" : "[\n0,\n1,\n255\n]"); 1127 } 1128 break; 1129 case flatbuffers::BASE_TYPE_NONE: 1130 case flatbuffers::BASE_TYPE_UTYPE: 1131 case flatbuffers::BASE_TYPE_STRUCT: 1132 case flatbuffers::BASE_TYPE_UNION: 1133 if (definition) { 1134 // Pick a random previous definition and random data instance of 1135 // that definition. 1136 int defref = lcg_rand() % definition; 1137 int instance = lcg_rand() % instances_per_definition; 1138 AddToSchemaAndInstances( 1139 ("D" + flatbuffers::NumToString(defref)).c_str(), 1140 deprecated ? "" 1141 : definitions[defref].instances[instance].c_str()); 1142 } else { 1143 // If this is the first definition, we have no definition we can 1144 // refer to. 1145 Dummy(); 1146 } 1147 break; 1148 case flatbuffers::BASE_TYPE_BOOL: 1149 AddToSchemaAndInstances( 1150 "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false")); 1151 break; 1152 default: 1153 // All the scalar types. 1154 schema += flatbuffers::kTypeNames[base_type]; 1155 1156 if (!deprecated) { 1157 // We want each instance to use its own random value. 1158 for (int inst = 0; inst < instances_per_definition; inst++) 1159 definitions[definition].instances[inst] += 1160 flatbuffers::IsFloat(base_type) 1161 ? flatbuffers::NumToString<double>(lcg_rand() % 128) 1162 .c_str() 1163 : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str(); 1164 } 1165 } 1166 AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n", 1167 deprecated ? "" : is_last_field ? "\n" : ",\n"); 1168 } 1169 AddToSchemaAndInstances("}\n\n", "}"); 1170 } 1171 1172 schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1); 1173 schema += ";\n"; 1174 1175 flatbuffers::Parser parser; 1176 1177 // Will not compare against the original if we don't write defaults 1178 parser.builder_.ForceDefaults(true); 1179 1180 // Parse the schema, parse the generated data, then generate text back 1181 // from the binary and compare against the original. 1182 TEST_EQ(parser.Parse(schema.c_str()), true); 1183 1184 const std::string &json = 1185 definitions[num_definitions - 1].instances[0] + "\n"; 1186 1187 TEST_EQ(parser.Parse(json.c_str()), true); 1188 1189 std::string jsongen; 1190 parser.opts.indent_step = 0; 1191 auto result = 1192 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); 1193 TEST_EQ(result, true); 1194 1195 if (jsongen != json) { 1196 // These strings are larger than a megabyte, so we show the bytes around 1197 // the first bytes that are different rather than the whole string. 1198 size_t len = std::min(json.length(), jsongen.length()); 1199 for (size_t i = 0; i < len; i++) { 1200 if (json[i] != jsongen[i]) { 1201 i -= std::min(static_cast<size_t>(10), i); // show some context; 1202 size_t end = std::min(len, i + 20); 1203 for (; i < end; i++) 1204 TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n", 1205 static_cast<int>(i), jsongen[i], json[i]); 1206 break; 1207 } 1208 } 1209 TEST_NOTNULL(NULL); 1210 } 1211 1212 // clang-format off 1213 #ifdef FLATBUFFERS_TEST_VERBOSE 1214 TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n", 1215 static_cast<int>(schema.length() / 1024), 1216 static_cast<int>(json.length() / 1024)); 1217 #endif 1218 // clang-format on 1219 } 1220 1221 // Test that parser errors are actually generated. 1222 void TestError_(const char *src, const char *error_substr, bool strict_json, 1223 const char *file, int line, const char *func) { 1224 flatbuffers::IDLOptions opts; 1225 opts.strict_json = strict_json; 1226 flatbuffers::Parser parser(opts); 1227 if (parser.Parse(src)) { 1228 TestFail("true", "false", 1229 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, 1230 func); 1231 } else if (!strstr(parser.error_.c_str(), error_substr)) { 1232 TestFail(parser.error_.c_str(), error_substr, 1233 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, 1234 func); 1235 } 1236 } 1237 1238 void TestError_(const char *src, const char *error_substr, const char *file, 1239 int line, const char *func) { 1240 TestError_(src, error_substr, false, file, line, func); 1241 } 1242 1243 #ifdef _WIN32 1244 # define TestError(src, ...) \ 1245 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__) 1246 #else 1247 # define TestError(src, ...) \ 1248 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__) 1249 #endif 1250 1251 // Test that parsing errors occur as we'd expect. 1252 // Also useful for coverage, making sure these paths are run. 1253 void ErrorTest() { 1254 // In order they appear in idl_parser.cpp 1255 TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit"); 1256 TestError("\"\0", "illegal"); 1257 TestError("\"\\q", "escape code"); 1258 TestError("table ///", "documentation"); 1259 TestError("@", "illegal"); 1260 TestError("table 1", "expecting"); 1261 TestError("table X { Y:[[int]]; }", "nested vector"); 1262 TestError("table X { Y:1; }", "illegal type"); 1263 TestError("table X { Y:int; Y:int; }", "field already"); 1264 TestError("table Y {} table X { Y:int; }", "same as table"); 1265 TestError("struct X { Y:string; }", "only scalar"); 1266 TestError("table X { Y:string = \"\"; }", "default values"); 1267 TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum"); 1268 TestError("struct X { Y:int (deprecated); }", "deprecate"); 1269 TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }", 1270 "missing type field"); 1271 TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {", 1272 "type id"); 1273 TestError("table X { Y:int; } root_type X; { Z:", "unknown field"); 1274 TestError("table X { Y:int; } root_type X; { Y:", "string constant", true); 1275 TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant", 1276 true); 1277 TestError( 1278 "struct X { Y:int; Z:int; } table W { V:X; } root_type W; " 1279 "{ V:{ Y:1 } }", 1280 "wrong number"); 1281 TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }", 1282 "unknown enum value"); 1283 TestError("table X { Y:byte; } root_type X; { Y:; }", "starting"); 1284 TestError("enum X:byte { Y } enum X {", "enum already"); 1285 TestError("enum X:float {}", "underlying"); 1286 TestError("enum X:byte { Y, Y }", "value already"); 1287 TestError("enum X:byte { Y=2, Z=1 }", "ascending"); 1288 TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out"); 1289 TestError("table X { Y:int; } table X {", "datatype already"); 1290 TestError("struct X (force_align: 7) { Y:int; }", "force_align"); 1291 TestError("struct X {}", "size 0"); 1292 TestError("{}", "no root"); 1293 TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file"); 1294 TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }", 1295 "end of file"); 1296 TestError("root_type X;", "unknown root"); 1297 TestError("struct X { Y:int; } root_type X;", "a table"); 1298 TestError("union X { Y }", "referenced"); 1299 TestError("union Z { X } struct X { Y:int; }", "only tables"); 1300 TestError("table X { Y:[int]; YLength:int; }", "clash"); 1301 TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once"); 1302 // float to integer conversion is forbidden 1303 TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float"); 1304 TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float"); 1305 TestError("enum X:bool { Y = true }", "must be integral"); 1306 } 1307 1308 template<typename T> T TestValue(const char *json, const char *type_name) { 1309 flatbuffers::Parser parser; 1310 parser.builder_.ForceDefaults(true); // return defaults 1311 auto check_default = json ? false : true; 1312 if (check_default) { parser.opts.output_default_scalars_in_json = true; } 1313 // Simple schema. 1314 std::string schema = 1315 "table X { Y:" + std::string(type_name) + "; } root_type X;"; 1316 TEST_EQ(parser.Parse(schema.c_str()), true); 1317 1318 auto done = parser.Parse(check_default ? "{}" : json); 1319 TEST_EQ_STR(parser.error_.c_str(), ""); 1320 TEST_EQ(done, true); 1321 1322 // Check with print. 1323 std::string print_back; 1324 parser.opts.indent_step = -1; 1325 TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back), 1326 true); 1327 // restore value from its default 1328 if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); } 1329 1330 auto root = flatbuffers::GetRoot<flatbuffers::Table>( 1331 parser.builder_.GetBufferPointer()); 1332 return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0); 1333 } 1334 1335 bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; } 1336 1337 // Additional parser testing not covered elsewhere. 1338 void ValueTest() { 1339 // Test scientific notation numbers. 1340 TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 1341 3.14159f), 1342 true); 1343 // number in string 1344 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"), 1345 3.14159f), 1346 true); 1347 1348 // Test conversion functions. 1349 TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1), 1350 true); 1351 1352 // int embedded to string 1353 TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876); 1354 TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876); 1355 1356 // Test negative hex constant. 1357 TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512); 1358 TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512); 1359 1360 // positive hex constant 1361 TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef); 1362 // with optional '+' sign 1363 TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef); 1364 // hex in string 1365 TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef); 1366 1367 // Make sure we do unsigned 64bit correctly. 1368 TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"), 1369 12335089644688340133ULL); 1370 1371 // bool in string 1372 TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false); 1373 TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true); 1374 TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false); 1375 TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true); 1376 1377 // check comments before and after json object 1378 TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1); 1379 TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1); 1380 1381 } 1382 1383 void NestedListTest() { 1384 flatbuffers::Parser parser1; 1385 TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }" 1386 "root_type T;" 1387 "{ F:[ [10,20], [30,40]] }"), 1388 true); 1389 } 1390 1391 void EnumStringsTest() { 1392 flatbuffers::Parser parser1; 1393 TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }" 1394 "root_type T;" 1395 "{ F:[ A, B, \"C\", \"A B C\" ] }"), 1396 true); 1397 flatbuffers::Parser parser2; 1398 TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }" 1399 "root_type T;" 1400 "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), 1401 true); 1402 } 1403 1404 void EnumNamesTest() { 1405 TEST_EQ_STR("Red", EnumNameColor(Color_Red)); 1406 TEST_EQ_STR("Green", EnumNameColor(Color_Green)); 1407 TEST_EQ_STR("Blue", EnumNameColor(Color_Blue)); 1408 // Check that Color to string don't crash while decode a mixture of Colors. 1409 // 1) Example::Color enum is enum with unfixed underlying type. 1410 // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1]. 1411 // Consequence: A value is out of this range will lead to UB (since C++17). 1412 // For details see C++17 standard or explanation on the SO: 1413 // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class 1414 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0))); 1415 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1))); 1416 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1))); 1417 } 1418 1419 void EnumOutOfRangeTest() { 1420 TestError("enum X:byte { Y = 128 }", "enum value does not fit"); 1421 TestError("enum X:byte { Y = -129 }", "enum value does not fit"); 1422 TestError("enum X:byte { Y = 127, Z }", "enum value does not fit"); 1423 TestError("enum X:ubyte { Y = -1 }", "enum value does not fit"); 1424 TestError("enum X:ubyte { Y = 256 }", "enum value does not fit"); 1425 // Unions begin with an implicit "NONE = 0". 1426 TestError("table Y{} union X { Y = -1 }", 1427 "enum values must be specified in ascending order"); 1428 TestError("table Y{} union X { Y = 256 }", "enum value does not fit"); 1429 TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit"); 1430 TestError("enum X:int { Y = -2147483649 }", "enum value does not fit"); 1431 TestError("enum X:int { Y = 2147483648 }", "enum value does not fit"); 1432 TestError("enum X:uint { Y = -1 }", "enum value does not fit"); 1433 TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit"); 1434 TestError("enum X:long { Y = 9223372036854775808 }", "constant does not fit"); 1435 TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value overflows"); 1436 TestError("enum X:ulong { Y = -1 }", "enum value does not fit"); 1437 // TODO: these are perfectly valid constants that shouldn't fail 1438 TestError("enum X:ulong { Y = 13835058055282163712 }", "constant does not fit"); 1439 TestError("enum X:ulong { Y = 18446744073709551615 }", "constant does not fit"); 1440 } 1441 1442 void IntegerOutOfRangeTest() { 1443 TestError("table T { F:byte; } root_type T; { F:128 }", 1444 "constant does not fit"); 1445 TestError("table T { F:byte; } root_type T; { F:-129 }", 1446 "constant does not fit"); 1447 TestError("table T { F:ubyte; } root_type T; { F:256 }", 1448 "constant does not fit"); 1449 TestError("table T { F:ubyte; } root_type T; { F:-1 }", 1450 "constant does not fit"); 1451 TestError("table T { F:short; } root_type T; { F:32768 }", 1452 "constant does not fit"); 1453 TestError("table T { F:short; } root_type T; { F:-32769 }", 1454 "constant does not fit"); 1455 TestError("table T { F:ushort; } root_type T; { F:65536 }", 1456 "constant does not fit"); 1457 TestError("table T { F:ushort; } root_type T; { F:-1 }", 1458 "constant does not fit"); 1459 TestError("table T { F:int; } root_type T; { F:2147483648 }", 1460 "constant does not fit"); 1461 TestError("table T { F:int; } root_type T; { F:-2147483649 }", 1462 "constant does not fit"); 1463 TestError("table T { F:uint; } root_type T; { F:4294967296 }", 1464 "constant does not fit"); 1465 TestError("table T { F:uint; } root_type T; { F:-1 }", 1466 "constant does not fit"); 1467 // Check fixed width aliases 1468 TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit"); 1469 TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit"); 1470 TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit"); 1471 TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit"); 1472 TestError("table X { Y:uint32; } root_type X; { Y: -1 }", ""); 1473 TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }", 1474 "does not fit"); 1475 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); 1476 TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }", 1477 "does not fit"); 1478 TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }", 1479 "does not fit"); 1480 1481 TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit"); 1482 TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit"); 1483 TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit"); 1484 TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit"); 1485 TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", ""); 1486 TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }", 1487 "does not fit"); 1488 TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }", 1489 "does not fit"); 1490 TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }", 1491 "does not fit"); 1492 // check out-of-int64 as int8 1493 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }", 1494 "does not fit"); 1495 TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }", 1496 "does not fit"); 1497 1498 // Check default values 1499 TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}", 1500 "does not fit"); 1501 TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}", 1502 "does not fit"); 1503 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); 1504 TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}", 1505 "does not fit"); 1506 TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}", 1507 "does not fit"); 1508 } 1509 1510 void IntegerBoundaryTest() { 1511 TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127); 1512 TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128); 1513 TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255); 1514 TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0); 1515 TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767); 1516 TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768); 1517 TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535); 1518 TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0); 1519 TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647); 1520 TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int"), (-2147483647 - 1)); 1521 TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295); 1522 TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0); 1523 TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"), 1524 9223372036854775807); 1525 TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long"), 1526 (-9223372036854775807 - 1)); 1527 TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"), 1528 18446744073709551615U); 1529 TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0); 1530 TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"), 1531 18446744073709551615ULL); 1532 // check that the default works 1533 TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"), 1534 18446744073709551615ULL); 1535 } 1536 1537 void ValidFloatTest() { 1538 const auto infinityf = flatbuffers::numeric_limits<float>::infinity(); 1539 const auto infinityd = flatbuffers::numeric_limits<double>::infinity(); 1540 // check rounding to infinity 1541 TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf); 1542 TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf); 1543 TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd); 1544 TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd); 1545 1546 TEST_EQ( 1547 FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f), 1548 true); 1549 // float in string 1550 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"), 1551 3.14159f), 1552 true); 1553 1554 TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f); 1555 TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f); 1556 TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f); 1557 TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f); 1558 TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f); 1559 TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f); 1560 TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f); 1561 TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f); 1562 TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f); 1563 TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f); 1564 TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f); 1565 TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f); 1566 TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f); 1567 TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f); 1568 1569 #if defined(FLATBUFFERS_HAS_NEW_STRTOD) 1570 // Old MSVC versions may have problem with this check. 1571 // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/ 1572 TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"), 1573 6929495644600920.0); 1574 // check nan's 1575 TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true); 1576 TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true); 1577 TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true); 1578 TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true); 1579 TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true); 1580 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true); 1581 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true); 1582 // check inf 1583 TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf); 1584 TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf); 1585 TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf); 1586 TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf); 1587 TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf); 1588 TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf); 1589 TestValue<double>( 1590 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " 1591 "3.0e2] }", 1592 "[double]"); 1593 TestValue<float>( 1594 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " 1595 "3.0e2] }", 1596 "[float]"); 1597 1598 // Test binary format of float point. 1599 // https://en.cppreference.com/w/cpp/language/floating_literal 1600 // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 = 1601 TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625); 1602 // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0 1603 TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f); 1604 TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f); 1605 TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f); 1606 TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f); 1607 TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0); 1608 TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625); 1609 TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625); 1610 TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]"); 1611 TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]"); 1612 1613 #else // FLATBUFFERS_HAS_NEW_STRTOD 1614 TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped"); 1615 #endif // FLATBUFFERS_HAS_NEW_STRTOD 1616 } 1617 1618 void InvalidFloatTest() { 1619 auto invalid_msg = "invalid number"; 1620 auto comma_msg = "expecting: ,"; 1621 TestError("table T { F:float; } root_type T; { F:1,0 }", ""); 1622 TestError("table T { F:float; } root_type T; { F:. }", ""); 1623 TestError("table T { F:float; } root_type T; { F:- }", invalid_msg); 1624 TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg); 1625 TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg); 1626 TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg); 1627 TestError("table T { F:float; } root_type T; { F:.e }", ""); 1628 TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg); 1629 TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg); 1630 TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg); 1631 TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg); 1632 TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg); 1633 TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg); 1634 TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg); 1635 TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg); 1636 // exponent pP is mandatory for hex-float 1637 TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg); 1638 TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg); 1639 TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg); 1640 // eE not exponent in hex-float! 1641 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); 1642 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); 1643 TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg); 1644 TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg); 1645 TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg); 1646 TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg); 1647 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); 1648 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); 1649 TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg); 1650 TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg); 1651 TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg); 1652 TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg); 1653 TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg); 1654 TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg); 1655 TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg); 1656 TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg); 1657 TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg); 1658 TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg); 1659 TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg); 1660 TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg); 1661 TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg); 1662 TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg); 1663 TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg); 1664 TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg); 1665 // floats in string 1666 TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg); 1667 TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg); 1668 TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg); 1669 TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg); 1670 TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg); 1671 TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg); 1672 // disable escapes for "number-in-string" 1673 TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid"); 1674 TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid"); 1675 TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid"); 1676 TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid"); 1677 TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid"); 1678 TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg); 1679 // null is not a number constant! 1680 TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg); 1681 TestError("table T { F:float; } root_type T; { F:null }", invalid_msg); 1682 } 1683 1684 template<typename T> 1685 void NumericUtilsTestInteger(const char *lower, const char *upper) { 1686 T x; 1687 TEST_EQ(flatbuffers::StringToNumber("1q", &x), false); 1688 TEST_EQ(x, 0); 1689 TEST_EQ(flatbuffers::StringToNumber(upper, &x), false); 1690 TEST_EQ(x, flatbuffers::numeric_limits<T>::max()); 1691 TEST_EQ(flatbuffers::StringToNumber(lower, &x), false); 1692 auto expval = flatbuffers::is_unsigned<T>::value 1693 ? flatbuffers::numeric_limits<T>::max() 1694 : flatbuffers::numeric_limits<T>::lowest(); 1695 TEST_EQ(x, expval); 1696 } 1697 1698 template<typename T> 1699 void NumericUtilsTestFloat(const char *lower, const char *upper) { 1700 T f; 1701 TEST_EQ(flatbuffers::StringToNumber("", &f), false); 1702 TEST_EQ(flatbuffers::StringToNumber("1q", &f), false); 1703 TEST_EQ(f, 0); 1704 TEST_EQ(flatbuffers::StringToNumber(upper, &f), true); 1705 TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity()); 1706 TEST_EQ(flatbuffers::StringToNumber(lower, &f), true); 1707 TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity()); 1708 } 1709 1710 void NumericUtilsTest() { 1711 NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616"); 1712 NumericUtilsTestInteger<uint8_t>("-1", "256"); 1713 NumericUtilsTestInteger<int64_t>("-9223372036854775809", 1714 "9223372036854775808"); 1715 NumericUtilsTestInteger<int8_t>("-129", "128"); 1716 NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38"); 1717 NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308"); 1718 } 1719 1720 void IsAsciiUtilsTest() { 1721 char c = -128; 1722 for (int cnt = 0; cnt < 256; cnt++) { 1723 auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z')); 1724 auto dec = (('0' <= c) && (c <= '9')); 1725 auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F')); 1726 TEST_EQ(flatbuffers::is_alpha(c), alpha); 1727 TEST_EQ(flatbuffers::is_alnum(c), alpha || dec); 1728 TEST_EQ(flatbuffers::is_digit(c), dec); 1729 TEST_EQ(flatbuffers::is_xdigit(c), dec || hex); 1730 c += 1; 1731 } 1732 } 1733 1734 void UnicodeTest() { 1735 flatbuffers::Parser parser; 1736 // Without setting allow_non_utf8 = true, we treat \x sequences as byte 1737 // sequences which are then validated as UTF-8. 1738 TEST_EQ(parser.Parse("table T { F:string; }" 1739 "root_type T;" 1740 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" 1741 "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8" 1742 "3D\\uDE0E\" }"), 1743 true); 1744 std::string jsongen; 1745 parser.opts.indent_step = -1; 1746 auto result = 1747 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); 1748 TEST_EQ(result, true); 1749 TEST_EQ_STR(jsongen.c_str(), 1750 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" 1751 "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}"); 1752 } 1753 1754 void UnicodeTestAllowNonUTF8() { 1755 flatbuffers::Parser parser; 1756 parser.opts.allow_non_utf8 = true; 1757 TEST_EQ( 1758 parser.Parse( 1759 "table T { F:string; }" 1760 "root_type T;" 1761 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" 1762 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), 1763 true); 1764 std::string jsongen; 1765 parser.opts.indent_step = -1; 1766 auto result = 1767 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); 1768 TEST_EQ(result, true); 1769 TEST_EQ_STR( 1770 jsongen.c_str(), 1771 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" 1772 "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}"); 1773 } 1774 1775 void UnicodeTestGenerateTextFailsOnNonUTF8() { 1776 flatbuffers::Parser parser; 1777 // Allow non-UTF-8 initially to model what happens when we load a binary 1778 // flatbuffer from disk which contains non-UTF-8 strings. 1779 parser.opts.allow_non_utf8 = true; 1780 TEST_EQ( 1781 parser.Parse( 1782 "table T { F:string; }" 1783 "root_type T;" 1784 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" 1785 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), 1786 true); 1787 std::string jsongen; 1788 parser.opts.indent_step = -1; 1789 // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates 1790 // failure. 1791 parser.opts.allow_non_utf8 = false; 1792 auto result = 1793 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); 1794 TEST_EQ(result, false); 1795 } 1796 1797 void UnicodeSurrogatesTest() { 1798 flatbuffers::Parser parser; 1799 1800 TEST_EQ(parser.Parse("table T { F:string (id: 0); }" 1801 "root_type T;" 1802 "{ F:\"\\uD83D\\uDCA9\"}"), 1803 true); 1804 auto root = flatbuffers::GetRoot<flatbuffers::Table>( 1805 parser.builder_.GetBufferPointer()); 1806 auto string = root->GetPointer<flatbuffers::String *>( 1807 flatbuffers::FieldIndexToOffset(0)); 1808 TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9"); 1809 } 1810 1811 void UnicodeInvalidSurrogatesTest() { 1812 TestError( 1813 "table T { F:string; }" 1814 "root_type T;" 1815 "{ F:\"\\uD800\"}", 1816 "unpaired high surrogate"); 1817 TestError( 1818 "table T { F:string; }" 1819 "root_type T;" 1820 "{ F:\"\\uD800abcd\"}", 1821 "unpaired high surrogate"); 1822 TestError( 1823 "table T { F:string; }" 1824 "root_type T;" 1825 "{ F:\"\\uD800\\n\"}", 1826 "unpaired high surrogate"); 1827 TestError( 1828 "table T { F:string; }" 1829 "root_type T;" 1830 "{ F:\"\\uD800\\uD800\"}", 1831 "multiple high surrogates"); 1832 TestError( 1833 "table T { F:string; }" 1834 "root_type T;" 1835 "{ F:\"\\uDC00\"}", 1836 "unpaired low surrogate"); 1837 } 1838 1839 void InvalidUTF8Test() { 1840 // "1 byte" pattern, under min length of 2 bytes 1841 TestError( 1842 "table T { F:string; }" 1843 "root_type T;" 1844 "{ F:\"\x80\"}", 1845 "illegal UTF-8 sequence"); 1846 // 2 byte pattern, string too short 1847 TestError( 1848 "table T { F:string; }" 1849 "root_type T;" 1850 "{ F:\"\xDF\"}", 1851 "illegal UTF-8 sequence"); 1852 // 3 byte pattern, string too short 1853 TestError( 1854 "table T { F:string; }" 1855 "root_type T;" 1856 "{ F:\"\xEF\xBF\"}", 1857 "illegal UTF-8 sequence"); 1858 // 4 byte pattern, string too short 1859 TestError( 1860 "table T { F:string; }" 1861 "root_type T;" 1862 "{ F:\"\xF7\xBF\xBF\"}", 1863 "illegal UTF-8 sequence"); 1864 // "5 byte" pattern, string too short 1865 TestError( 1866 "table T { F:string; }" 1867 "root_type T;" 1868 "{ F:\"\xFB\xBF\xBF\xBF\"}", 1869 "illegal UTF-8 sequence"); 1870 // "6 byte" pattern, string too short 1871 TestError( 1872 "table T { F:string; }" 1873 "root_type T;" 1874 "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}", 1875 "illegal UTF-8 sequence"); 1876 // "7 byte" pattern, string too short 1877 TestError( 1878 "table T { F:string; }" 1879 "root_type T;" 1880 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}", 1881 "illegal UTF-8 sequence"); 1882 // "5 byte" pattern, over max length of 4 bytes 1883 TestError( 1884 "table T { F:string; }" 1885 "root_type T;" 1886 "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}", 1887 "illegal UTF-8 sequence"); 1888 // "6 byte" pattern, over max length of 4 bytes 1889 TestError( 1890 "table T { F:string; }" 1891 "root_type T;" 1892 "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}", 1893 "illegal UTF-8 sequence"); 1894 // "7 byte" pattern, over max length of 4 bytes 1895 TestError( 1896 "table T { F:string; }" 1897 "root_type T;" 1898 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}", 1899 "illegal UTF-8 sequence"); 1900 1901 // Three invalid encodings for U+000A (\n, aka NEWLINE) 1902 TestError( 1903 "table T { F:string; }" 1904 "root_type T;" 1905 "{ F:\"\xC0\x8A\"}", 1906 "illegal UTF-8 sequence"); 1907 TestError( 1908 "table T { F:string; }" 1909 "root_type T;" 1910 "{ F:\"\xE0\x80\x8A\"}", 1911 "illegal UTF-8 sequence"); 1912 TestError( 1913 "table T { F:string; }" 1914 "root_type T;" 1915 "{ F:\"\xF0\x80\x80\x8A\"}", 1916 "illegal UTF-8 sequence"); 1917 1918 // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL) 1919 TestError( 1920 "table T { F:string; }" 1921 "root_type T;" 1922 "{ F:\"\xE0\x81\xA9\"}", 1923 "illegal UTF-8 sequence"); 1924 TestError( 1925 "table T { F:string; }" 1926 "root_type T;" 1927 "{ F:\"\xF0\x80\x81\xA9\"}", 1928 "illegal UTF-8 sequence"); 1929 1930 // Invalid encoding for U+20AC (EURO SYMBOL) 1931 TestError( 1932 "table T { F:string; }" 1933 "root_type T;" 1934 "{ F:\"\xF0\x82\x82\xAC\"}", 1935 "illegal UTF-8 sequence"); 1936 1937 // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in 1938 // UTF-8 1939 TestError( 1940 "table T { F:string; }" 1941 "root_type T;" 1942 // U+10400 "encoded" as U+D801 U+DC00 1943 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}", 1944 "illegal UTF-8 sequence"); 1945 1946 // Check independence of identifier from locale. 1947 std::string locale_ident; 1948 locale_ident += "table T { F"; 1949 locale_ident += static_cast<char>(-32); // unsigned 0xE0 1950 locale_ident += " :string; }"; 1951 locale_ident += "root_type T;"; 1952 locale_ident += "{}"; 1953 TestError(locale_ident.c_str(), ""); 1954 } 1955 1956 void UnknownFieldsTest() { 1957 flatbuffers::IDLOptions opts; 1958 opts.skip_unexpected_fields_in_json = true; 1959 flatbuffers::Parser parser(opts); 1960 1961 TEST_EQ(parser.Parse("table T { str:string; i:int;}" 1962 "root_type T;" 1963 "{ str:\"test\"," 1964 "unknown_string:\"test\"," 1965 "\"unknown_string\":\"test\"," 1966 "unknown_int:10," 1967 "unknown_float:1.0," 1968 "unknown_array: [ 1, 2, 3, 4]," 1969 "unknown_object: { i: 10 }," 1970 "\"unknown_object\": { \"i\": 10 }," 1971 "i:10}"), 1972 true); 1973 1974 std::string jsongen; 1975 parser.opts.indent_step = -1; 1976 auto result = 1977 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); 1978 TEST_EQ(result, true); 1979 TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}"); 1980 } 1981 1982 void ParseUnionTest() { 1983 // Unions must be parseable with the type field following the object. 1984 flatbuffers::Parser parser; 1985 TEST_EQ(parser.Parse("table T { A:int; }" 1986 "union U { T }" 1987 "table V { X:U; }" 1988 "root_type V;" 1989 "{ X:{ A:1 }, X_type: T }"), 1990 true); 1991 // Unions must be parsable with prefixed namespace. 1992 flatbuffers::Parser parser2; 1993 TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }" 1994 "table B { e:U; } root_type B;" 1995 "{ e_type: N_A, e: {} }"), 1996 true); 1997 } 1998 1999 void InvalidNestedFlatbufferTest() { 2000 // First, load and parse FlatBuffer schema (.fbs) 2001 std::string schemafile; 2002 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), 2003 false, &schemafile), 2004 true); 2005 auto include_test_path = 2006 flatbuffers::ConCatPathFileName(test_data_path, "include_test"); 2007 const char *include_directories[] = { test_data_path.c_str(), 2008 include_test_path.c_str(), nullptr }; 2009 flatbuffers::Parser parser1; 2010 TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true); 2011 2012 // "color" inside nested flatbuffer contains invalid enum value 2013 TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: " 2014 "\"Leela\", color: \"nonexistent\"}}"), 2015 false); 2016 // Check that Parser is destroyed correctly after parsing invalid json 2017 } 2018 2019 void UnionVectorTest() { 2020 // load FlatBuffer fbs schema. 2021 // TODO: load a JSON file with such a vector when JSON support is ready. 2022 std::string schemafile; 2023 TEST_EQ(flatbuffers::LoadFile( 2024 (test_data_path + "union_vector/union_vector.fbs").c_str(), false, 2025 &schemafile), 2026 true); 2027 2028 // parse schema. 2029 flatbuffers::IDLOptions idl_opts; 2030 idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kCpp; 2031 flatbuffers::Parser parser(idl_opts); 2032 TEST_EQ(parser.Parse(schemafile.c_str()), true); 2033 2034 flatbuffers::FlatBufferBuilder fbb; 2035 2036 // union types. 2037 std::vector<uint8_t> types; 2038 types.push_back(static_cast<uint8_t>(Character_Belle)); 2039 types.push_back(static_cast<uint8_t>(Character_MuLan)); 2040 types.push_back(static_cast<uint8_t>(Character_BookFan)); 2041 types.push_back(static_cast<uint8_t>(Character_Other)); 2042 types.push_back(static_cast<uint8_t>(Character_Unused)); 2043 2044 // union values. 2045 std::vector<flatbuffers::Offset<void>> characters; 2046 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union()); 2047 characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union()); 2048 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union()); 2049 characters.push_back(fbb.CreateString("Other").Union()); 2050 characters.push_back(fbb.CreateString("Unused").Union()); 2051 2052 // create Movie. 2053 const auto movie_offset = 2054 CreateMovie(fbb, Character_Rapunzel, 2055 fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(), 2056 fbb.CreateVector(types), fbb.CreateVector(characters)); 2057 FinishMovieBuffer(fbb, movie_offset); 2058 auto buf = fbb.GetBufferPointer(); 2059 2060 flatbuffers::Verifier verifier(buf, fbb.GetSize()); 2061 TEST_EQ(VerifyMovieBuffer(verifier), true); 2062 2063 auto flat_movie = GetMovie(buf); 2064 2065 auto TestMovie = [](const Movie *movie) { 2066 TEST_EQ(movie->main_character_type() == Character_Rapunzel, true); 2067 2068 auto cts = movie->characters_type(); 2069 TEST_EQ(movie->characters_type()->size(), 5); 2070 TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true); 2071 TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true); 2072 TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true); 2073 TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true); 2074 TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true); 2075 2076 auto rapunzel = movie->main_character_as_Rapunzel(); 2077 TEST_NOTNULL(rapunzel); 2078 TEST_EQ(rapunzel->hair_length(), 6); 2079 2080 auto cs = movie->characters(); 2081 TEST_EQ(cs->size(), 5); 2082 auto belle = cs->GetAs<BookReader>(0); 2083 TEST_EQ(belle->books_read(), 7); 2084 auto mu_lan = cs->GetAs<Attacker>(1); 2085 TEST_EQ(mu_lan->sword_attack_damage(), 5); 2086 auto book_fan = cs->GetAs<BookReader>(2); 2087 TEST_EQ(book_fan->books_read(), 2); 2088 auto other = cs->GetAsString(3); 2089 TEST_EQ_STR(other->c_str(), "Other"); 2090 auto unused = cs->GetAsString(4); 2091 TEST_EQ_STR(unused->c_str(), "Unused"); 2092 }; 2093 2094 TestMovie(flat_movie); 2095 2096 auto movie_object = flat_movie->UnPack(); 2097 TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6); 2098 TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7); 2099 TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5); 2100 TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2); 2101 TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other"); 2102 TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused"); 2103 2104 fbb.Clear(); 2105 fbb.Finish(Movie::Pack(fbb, movie_object)); 2106 2107 delete movie_object; 2108 2109 auto repacked_movie = GetMovie(fbb.GetBufferPointer()); 2110 2111 TestMovie(repacked_movie); 2112 2113 auto s = 2114 flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable()); 2115 TEST_EQ_STR( 2116 s.c_str(), 2117 "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, " 2118 "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], " 2119 "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, " 2120 "{ books_read: 2 }, \"Other\", \"Unused\" ] }"); 2121 2122 2123 flatbuffers::ToStringVisitor visitor("\n", true, " "); 2124 IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor); 2125 TEST_EQ_STR( 2126 visitor.s.c_str(), 2127 "{\n" 2128 " \"main_character_type\": \"Rapunzel\",\n" 2129 " \"main_character\": {\n" 2130 " \"hair_length\": 6\n" 2131 " },\n" 2132 " \"characters_type\": [\n" 2133 " \"Belle\",\n" 2134 " \"MuLan\",\n" 2135 " \"BookFan\",\n" 2136 " \"Other\",\n" 2137 " \"Unused\"\n" 2138 " ],\n" 2139 " \"characters\": [\n" 2140 " {\n" 2141 " \"books_read\": 7\n" 2142 " },\n" 2143 " {\n" 2144 " \"sword_attack_damage\": 5\n" 2145 " },\n" 2146 " {\n" 2147 " \"books_read\": 2\n" 2148 " },\n" 2149 " \"Other\",\n" 2150 " \"Unused\"\n" 2151 " ]\n" 2152 "}"); 2153 } 2154 2155 void ConformTest() { 2156 flatbuffers::Parser parser; 2157 TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true); 2158 2159 auto test_conform = [](flatbuffers::Parser &parser1, const char *test, 2160 const char *expected_err) { 2161 flatbuffers::Parser parser2; 2162 TEST_EQ(parser2.Parse(test), true); 2163 auto err = parser2.ConformTo(parser1); 2164 TEST_NOTNULL(strstr(err.c_str(), expected_err)); 2165 }; 2166 2167 test_conform(parser, "table T { A:byte; }", "types differ for field"); 2168 test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field"); 2169 test_conform(parser, "table T { A:int = 1; }", "defaults differ for field"); 2170 test_conform(parser, "table T { B:float; }", 2171 "field renamed to different type"); 2172 test_conform(parser, "enum E:byte { B, A }", "values differ for enum"); 2173 } 2174 2175 void ParseProtoBufAsciiTest() { 2176 // We can put the parser in a mode where it will accept JSON that looks more 2177 // like Protobuf ASCII, for users that have data in that format. 2178 // This uses no "" for field names (which we already support by default, 2179 // omits `,`, `:` before `{` and a couple of other features. 2180 flatbuffers::Parser parser; 2181 parser.opts.protobuf_ascii_alike = true; 2182 TEST_EQ( 2183 parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"), 2184 true); 2185 TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true); 2186 // Similarly, in text output, it should omit these. 2187 std::string text; 2188 auto ok = flatbuffers::GenerateText( 2189 parser, parser.builder_.GetBufferPointer(), &text); 2190 TEST_EQ(ok, true); 2191 TEST_EQ_STR(text.c_str(), 2192 "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n"); 2193 } 2194 2195 void FlexBuffersTest() { 2196 flexbuffers::Builder slb(512, 2197 flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS); 2198 2199 // Write the equivalent of: 2200 // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ], 2201 // foo: 100, bool: true, mymap: { foo: "Fred" } } 2202 // clang-format off 2203 #ifndef FLATBUFFERS_CPP98_STL 2204 // It's possible to do this without std::function support as well. 2205 slb.Map([&]() { 2206 slb.Vector("vec", [&]() { 2207 slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100); 2208 slb += "Fred"; 2209 slb.IndirectFloat(4.0f); 2210 uint8_t blob[] = { 77 }; 2211 slb.Blob(blob, 1); 2212 slb += false; 2213 }); 2214 int ints[] = { 1, 2, 3 }; 2215 slb.Vector("bar", ints, 3); 2216 slb.FixedTypedVector("bar3", ints, 3); 2217 bool bools[] = {true, false, true, false}; 2218 slb.Vector("bools", bools, 4); 2219 slb.Bool("bool", true); 2220 slb.Double("foo", 100); 2221 slb.Map("mymap", [&]() { 2222 slb.String("foo", "Fred"); // Testing key and string reuse. 2223 }); 2224 }); 2225 slb.Finish(); 2226 #else 2227 // It's possible to do this without std::function support as well. 2228 slb.Map([](flexbuffers::Builder& slb2) { 2229 slb2.Vector("vec", [](flexbuffers::Builder& slb3) { 2230 slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100); 2231 slb3 += "Fred"; 2232 slb3.IndirectFloat(4.0f); 2233 uint8_t blob[] = { 77 }; 2234 slb3.Blob(blob, 1); 2235 slb3 += false; 2236 }, slb2); 2237 int ints[] = { 1, 2, 3 }; 2238 slb2.Vector("bar", ints, 3); 2239 slb2.FixedTypedVector("bar3", ints, 3); 2240 slb2.Bool("bool", true); 2241 slb2.Double("foo", 100); 2242 slb2.Map("mymap", [](flexbuffers::Builder& slb3) { 2243 slb3.String("foo", "Fred"); // Testing key and string reuse. 2244 }, slb2); 2245 }, slb); 2246 slb.Finish(); 2247 #endif // FLATBUFFERS_CPP98_STL 2248 2249 #ifdef FLATBUFFERS_TEST_VERBOSE 2250 for (size_t i = 0; i < slb.GetBuffer().size(); i++) 2251 printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]); 2252 printf("\n"); 2253 #endif 2254 // clang-format on 2255 2256 auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap(); 2257 TEST_EQ(map.size(), 7); 2258 auto vec = map["vec"].AsVector(); 2259 TEST_EQ(vec.size(), 5); 2260 TEST_EQ(vec[0].AsInt64(), -100); 2261 TEST_EQ_STR(vec[1].AsString().c_str(), "Fred"); 2262 TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed. 2263 TEST_EQ(vec[2].AsDouble(), 4.0); 2264 TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type. 2265 TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though. 2266 TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted. 2267 2268 // Few tests for templated version of As. 2269 TEST_EQ(vec[0].As<int64_t>(), -100); 2270 TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred"); 2271 TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed. 2272 TEST_EQ(vec[2].As<double>(), 4.0); 2273 2274 // Test that the blob can be accessed. 2275 TEST_EQ(vec[3].IsBlob(), true); 2276 auto blob = vec[3].AsBlob(); 2277 TEST_EQ(blob.size(), 1); 2278 TEST_EQ(blob.data()[0], 77); 2279 TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool 2280 TEST_EQ(vec[4].AsBool(), false); // Check if value is false 2281 auto tvec = map["bar"].AsTypedVector(); 2282 TEST_EQ(tvec.size(), 3); 2283 TEST_EQ(tvec[2].AsInt8(), 3); 2284 auto tvec3 = map["bar3"].AsFixedTypedVector(); 2285 TEST_EQ(tvec3.size(), 3); 2286 TEST_EQ(tvec3[2].AsInt8(), 3); 2287 TEST_EQ(map["bool"].AsBool(), true); 2288 auto tvecb = map["bools"].AsTypedVector(); 2289 TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL); 2290 TEST_EQ(map["foo"].AsUInt8(), 100); 2291 TEST_EQ(map["unknown"].IsNull(), true); 2292 auto mymap = map["mymap"].AsMap(); 2293 // These should be equal by pointer equality, since key and value are shared. 2294 TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey()); 2295 TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str()); 2296 // We can mutate values in the buffer. 2297 TEST_EQ(vec[0].MutateInt(-99), true); 2298 TEST_EQ(vec[0].AsInt64(), -99); 2299 TEST_EQ(vec[1].MutateString("John"), true); // Size must match. 2300 TEST_EQ_STR(vec[1].AsString().c_str(), "John"); 2301 TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long. 2302 TEST_EQ(vec[2].MutateFloat(2.0f), true); 2303 TEST_EQ(vec[2].AsFloat(), 2.0f); 2304 TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float. 2305 TEST_EQ(vec[4].AsBool(), false); // Is false before change 2306 TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool 2307 TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true 2308 2309 // Parse from JSON: 2310 flatbuffers::Parser parser; 2311 slb.Clear(); 2312 auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }"; 2313 TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true); 2314 auto jroot = flexbuffers::GetRoot(slb.GetBuffer()); 2315 auto jmap = jroot.AsMap(); 2316 auto jvec = jmap["a"].AsVector(); 2317 TEST_EQ(jvec[0].AsInt64(), 123); 2318 TEST_EQ(jvec[1].AsDouble(), 456.0); 2319 TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello"); 2320 TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool 2321 TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true 2322 TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool 2323 TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false 2324 // And from FlexBuffer back to JSON: 2325 auto jsonback = jroot.ToString(); 2326 TEST_EQ_STR(jsontest, jsonback.c_str()); 2327 } 2328 2329 void TypeAliasesTest() { 2330 flatbuffers::FlatBufferBuilder builder; 2331 2332 builder.Finish(CreateTypeAliases( 2333 builder, flatbuffers::numeric_limits<int8_t>::min(), 2334 flatbuffers::numeric_limits<uint8_t>::max(), 2335 flatbuffers::numeric_limits<int16_t>::min(), 2336 flatbuffers::numeric_limits<uint16_t>::max(), 2337 flatbuffers::numeric_limits<int32_t>::min(), 2338 flatbuffers::numeric_limits<uint32_t>::max(), 2339 flatbuffers::numeric_limits<int64_t>::min(), 2340 flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3)); 2341 2342 auto p = builder.GetBufferPointer(); 2343 auto ta = flatbuffers::GetRoot<TypeAliases>(p); 2344 2345 TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min()); 2346 TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max()); 2347 TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min()); 2348 TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max()); 2349 TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min()); 2350 TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max()); 2351 TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min()); 2352 TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max()); 2353 TEST_EQ(ta->f32(), 2.3f); 2354 TEST_EQ(ta->f64(), 2.3); 2355 using namespace flatbuffers; // is_same 2356 static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type"); 2357 static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type"); 2358 static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type"); 2359 static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type"); 2360 static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type"); 2361 static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type"); 2362 static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type"); 2363 static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type"); 2364 static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type"); 2365 static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type"); 2366 } 2367 2368 void EndianSwapTest() { 2369 TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412); 2370 TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)), 2371 0x78563412); 2372 TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)), 2373 0xEFCDAB9078563412); 2374 TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f); 2375 } 2376 2377 void UninitializedVectorTest() { 2378 flatbuffers::FlatBufferBuilder builder; 2379 2380 Test *buf = nullptr; 2381 auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf); 2382 TEST_NOTNULL(buf); 2383 buf[0] = Test(10, 20); 2384 buf[1] = Test(30, 40); 2385 2386 auto required_name = builder.CreateString("myMonster"); 2387 auto monster_builder = MonsterBuilder(builder); 2388 monster_builder.add_name(required_name); // required field mandated for monster. 2389 monster_builder.add_test4(vector_offset); 2390 builder.Finish(monster_builder.Finish()); 2391 2392 auto p = builder.GetBufferPointer(); 2393 auto uvt = flatbuffers::GetRoot<Monster>(p); 2394 TEST_NOTNULL(uvt); 2395 auto vec = uvt->test4(); 2396 TEST_NOTNULL(vec); 2397 auto test_0 = vec->Get(0); 2398 auto test_1 = vec->Get(1); 2399 TEST_EQ(test_0->a(), 10); 2400 TEST_EQ(test_0->b(), 20); 2401 TEST_EQ(test_1->a(), 30); 2402 TEST_EQ(test_1->b(), 40); 2403 } 2404 2405 void EqualOperatorTest() { 2406 MonsterT a; 2407 MonsterT b; 2408 TEST_EQ(b == a, true); 2409 2410 b.mana = 33; 2411 TEST_EQ(b == a, false); 2412 b.mana = 150; 2413 TEST_EQ(b == a, true); 2414 2415 b.inventory.push_back(3); 2416 TEST_EQ(b == a, false); 2417 b.inventory.clear(); 2418 TEST_EQ(b == a, true); 2419 2420 b.test.type = Any_Monster; 2421 TEST_EQ(b == a, false); 2422 } 2423 2424 // For testing any binaries, e.g. from fuzzing. 2425 void LoadVerifyBinaryTest() { 2426 std::string binary; 2427 if (flatbuffers::LoadFile((test_data_path + 2428 "fuzzer/your-filename-here").c_str(), 2429 true, &binary)) { 2430 flatbuffers::Verifier verifier( 2431 reinterpret_cast<const uint8_t *>(binary.data()), binary.size()); 2432 TEST_EQ(VerifyMonsterBuffer(verifier), true); 2433 } 2434 } 2435 2436 void CreateSharedStringTest() { 2437 flatbuffers::FlatBufferBuilder builder; 2438 const auto one1 = builder.CreateSharedString("one"); 2439 const auto two = builder.CreateSharedString("two"); 2440 const auto one2 = builder.CreateSharedString("one"); 2441 TEST_EQ(one1.o, one2.o); 2442 const auto onetwo = builder.CreateSharedString("onetwo"); 2443 TEST_EQ(onetwo.o != one1.o, true); 2444 TEST_EQ(onetwo.o != two.o, true); 2445 2446 // Support for embedded nulls 2447 const char chars_b[] = {'a', '\0', 'b'}; 2448 const char chars_c[] = {'a', '\0', 'c'}; 2449 const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b)); 2450 const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c)); 2451 const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b)); 2452 TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro 2453 TEST_EQ(null_b1.o, null_b2.o); 2454 2455 // Put the strings into an array for round trip verification. 2456 const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 }; 2457 const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7)); 2458 MonsterBuilder monster_builder(builder); 2459 monster_builder.add_name(two); 2460 monster_builder.add_testarrayofstring(vector_offset); 2461 builder.Finish(monster_builder.Finish()); 2462 2463 // Read the Monster back. 2464 const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer()); 2465 TEST_EQ_STR(monster->name()->c_str(), "two"); 2466 const auto *testarrayofstring = monster->testarrayofstring(); 2467 TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7)); 2468 const auto &a = *testarrayofstring; 2469 TEST_EQ_STR(a[0]->c_str(), "one"); 2470 TEST_EQ_STR(a[1]->c_str(), "two"); 2471 TEST_EQ_STR(a[2]->c_str(), "one"); 2472 TEST_EQ_STR(a[3]->c_str(), "onetwo"); 2473 TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b)))); 2474 TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c)))); 2475 TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b)))); 2476 2477 // Make sure String::operator< works, too, since it is related to StringOffsetCompare. 2478 TEST_EQ((*a[0]) < (*a[1]), true); 2479 TEST_EQ((*a[1]) < (*a[0]), false); 2480 TEST_EQ((*a[1]) < (*a[2]), false); 2481 TEST_EQ((*a[2]) < (*a[1]), true); 2482 TEST_EQ((*a[4]) < (*a[3]), true); 2483 TEST_EQ((*a[5]) < (*a[4]), false); 2484 TEST_EQ((*a[5]) < (*a[4]), false); 2485 TEST_EQ((*a[6]) < (*a[5]), true); 2486 } 2487 2488 int FlatBufferTests() { 2489 // clang-format off 2490 2491 // Run our various test suites: 2492 2493 std::string rawbuf; 2494 auto flatbuf1 = CreateFlatBufferTest(rawbuf); 2495 #if !defined(FLATBUFFERS_CPP98_STL) 2496 auto flatbuf = std::move(flatbuf1); // Test move assignment. 2497 #else 2498 auto &flatbuf = flatbuf1; 2499 #endif // !defined(FLATBUFFERS_CPP98_STL) 2500 2501 TriviallyCopyableTest(); 2502 2503 AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()), 2504 rawbuf.length()); 2505 AccessFlatBufferTest(flatbuf.data(), flatbuf.size()); 2506 2507 MutateFlatBuffersTest(flatbuf.data(), flatbuf.size()); 2508 2509 ObjectFlatBuffersTest(flatbuf.data()); 2510 2511 MiniReflectFlatBuffersTest(flatbuf.data()); 2512 2513 SizePrefixedTest(); 2514 2515 #ifndef FLATBUFFERS_NO_FILE_TESTS 2516 #ifdef FLATBUFFERS_TEST_PATH_PREFIX 2517 test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) + 2518 test_data_path; 2519 #endif 2520 ParseAndGenerateTextTest(false); 2521 ParseAndGenerateTextTest(true); 2522 ReflectionTest(flatbuf.data(), flatbuf.size()); 2523 ParseProtoTest(); 2524 UnionVectorTest(); 2525 LoadVerifyBinaryTest(); 2526 #endif 2527 // clang-format on 2528 2529 FuzzTest1(); 2530 FuzzTest2(); 2531 2532 ErrorTest(); 2533 ValueTest(); 2534 EnumStringsTest(); 2535 EnumNamesTest(); 2536 EnumOutOfRangeTest(); 2537 IntegerOutOfRangeTest(); 2538 IntegerBoundaryTest(); 2539 UnicodeTest(); 2540 UnicodeTestAllowNonUTF8(); 2541 UnicodeTestGenerateTextFailsOnNonUTF8(); 2542 UnicodeSurrogatesTest(); 2543 UnicodeInvalidSurrogatesTest(); 2544 InvalidUTF8Test(); 2545 UnknownFieldsTest(); 2546 ParseUnionTest(); 2547 InvalidNestedFlatbufferTest(); 2548 ConformTest(); 2549 ParseProtoBufAsciiTest(); 2550 TypeAliasesTest(); 2551 EndianSwapTest(); 2552 CreateSharedStringTest(); 2553 JsonDefaultTest(); 2554 FlexBuffersTest(); 2555 UninitializedVectorTest(); 2556 EqualOperatorTest(); 2557 NumericUtilsTest(); 2558 IsAsciiUtilsTest(); 2559 ValidFloatTest(); 2560 InvalidFloatTest(); 2561 return 0; 2562 } 2563 2564 int main(int /*argc*/, const char * /*argv*/ []) { 2565 InitTestEngine(); 2566 2567 std::string req_locale; 2568 if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE", 2569 &req_locale)) { 2570 TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s", 2571 req_locale.c_str()); 2572 req_locale = flatbuffers::RemoveStringQuotes(req_locale); 2573 std::string the_locale; 2574 TEST_ASSERT_FUNC( 2575 flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale)); 2576 TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str()); 2577 } 2578 2579 FlatBufferTests(); 2580 FlatBufferBuilderTest(); 2581 2582 if (!testing_fails) { 2583 TEST_OUTPUT_LINE("ALL TESTS PASSED"); 2584 } else { 2585 TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails); 2586 } 2587 return CloseTestEngine(); 2588 } 2589