Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2014 Google Inc. All rights reserved.
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *     http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 #include <cmath>
     17 #include "flatbuffers/flatbuffers.h"
     18 #include "flatbuffers/idl.h"
     19 #include "flatbuffers/minireflect.h"
     20 #include "flatbuffers/registry.h"
     21 #include "flatbuffers/util.h"
     22 
     23 // clang-format off
     24 #ifdef FLATBUFFERS_CPP98_STL
     25   #include "flatbuffers/stl_emulation.h"
     26   namespace std {
     27     using flatbuffers::unique_ptr;
     28   }
     29 #endif
     30 // clang-format on
     31 
     32 #include "monster_test_generated.h"
     33 #include "namespace_test/namespace_test1_generated.h"
     34 #include "namespace_test/namespace_test2_generated.h"
     35 #include "union_vector/union_vector_generated.h"
     36 #include "monster_extra_generated.h"
     37 #include "test_assert.h"
     38 
     39 #include "flatbuffers/flexbuffers.h"
     40 
     41 using namespace MyGame::Example;
     42 
     43 void FlatBufferBuilderTest();
     44 
     45 // Include simple random number generator to ensure results will be the
     46 // same cross platform.
     47 // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
     48 uint32_t lcg_seed = 48271;
     49 uint32_t lcg_rand() {
     50   return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL;
     51 }
     52 void lcg_reset() { lcg_seed = 48271; }
     53 
     54 std::string test_data_path =
     55 #ifdef BAZEL_TEST_DATA_PATH
     56     "../com_github_google_flatbuffers/tests/";
     57 #else
     58     "tests/";
     59 #endif
     60 
     61 // example of how to build up a serialized buffer algorithmically:
     62 flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
     63   flatbuffers::FlatBufferBuilder builder;
     64 
     65   auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
     66 
     67   auto name = builder.CreateString("MyMonster");
     68 
     69   unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
     70   auto inventory = builder.CreateVector(inv_data, 10);
     71 
     72   // Alternatively, create the vector first, and fill in data later:
     73   // unsigned char *inv_buf = nullptr;
     74   // auto inventory = builder.CreateUninitializedVector<unsigned char>(
     75   //                                                              10, &inv_buf);
     76   // memcpy(inv_buf, inv_data, 10);
     77 
     78   Test tests[] = { Test(10, 20), Test(30, 40) };
     79   auto testv = builder.CreateVectorOfStructs(tests, 2);
     80 
     81   // clang-format off
     82   #ifndef FLATBUFFERS_CPP98_STL
     83     // Create a vector of structures from a lambda.
     84     auto testv2 = builder.CreateVectorOfStructs<Test>(
     85           2, [&](size_t i, Test* s) -> void {
     86             *s = tests[i];
     87           });
     88   #else
     89     // Create a vector of structures using a plain old C++ function.
     90     auto testv2 = builder.CreateVectorOfStructs<Test>(
     91           2, [](size_t i, Test* s, void *state) -> void {
     92             *s = (reinterpret_cast<Test*>(state))[i];
     93           }, tests);
     94   #endif  // FLATBUFFERS_CPP98_STL
     95   // clang-format on
     96 
     97   // create monster with very few fields set:
     98   // (same functionality as CreateMonster below, but sets fields manually)
     99   flatbuffers::Offset<Monster> mlocs[3];
    100   auto fred = builder.CreateString("Fred");
    101   auto barney = builder.CreateString("Barney");
    102   auto wilma = builder.CreateString("Wilma");
    103   MonsterBuilder mb1(builder);
    104   mb1.add_name(fred);
    105   mlocs[0] = mb1.Finish();
    106   MonsterBuilder mb2(builder);
    107   mb2.add_name(barney);
    108   mb2.add_hp(1000);
    109   mlocs[1] = mb2.Finish();
    110   MonsterBuilder mb3(builder);
    111   mb3.add_name(wilma);
    112   mlocs[2] = mb3.Finish();
    113 
    114   // Create an array of strings. Also test string pooling, and lambdas.
    115   auto vecofstrings =
    116       builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
    117           4,
    118           [](size_t i, flatbuffers::FlatBufferBuilder *b)
    119               -> flatbuffers::Offset<flatbuffers::String> {
    120             static const char *names[] = { "bob", "fred", "bob", "fred" };
    121             return b->CreateSharedString(names[i]);
    122           },
    123           &builder);
    124 
    125   // Creating vectors of strings in one convenient call.
    126   std::vector<std::string> names2;
    127   names2.push_back("jane");
    128   names2.push_back("mary");
    129   auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
    130 
    131   // Create an array of sorted tables, can be used with binary search when read:
    132   auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
    133 
    134   // Create an array of sorted structs,
    135   // can be used with binary search when read:
    136   std::vector<Ability> abilities;
    137   abilities.push_back(Ability(4, 40));
    138   abilities.push_back(Ability(3, 30));
    139   abilities.push_back(Ability(2, 20));
    140   abilities.push_back(Ability(1, 10));
    141   auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
    142 
    143   // Create a nested FlatBuffer.
    144   // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
    145   // since they can be memcpy'd around much easier than other FlatBuffer
    146   // values. They have little overhead compared to storing the table directly.
    147   // As a test, create a mostly empty Monster buffer:
    148   flatbuffers::FlatBufferBuilder nested_builder;
    149   auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
    150                              nested_builder.CreateString("NestedMonster"));
    151   FinishMonsterBuffer(nested_builder, nmloc);
    152   // Now we can store the buffer in the parent. Note that by default, vectors
    153   // are only aligned to their elements or size field, so in this case if the
    154   // buffer contains 64-bit elements, they may not be correctly aligned. We fix
    155   // that with:
    156   builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
    157                                nested_builder.GetBufferMinAlignment());
    158   // If for whatever reason you don't have the nested_builder available, you
    159   // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
    160   // the largest force_align value in your schema if you're using it.
    161   auto nested_flatbuffer_vector = builder.CreateVector(
    162       nested_builder.GetBufferPointer(), nested_builder.GetSize());
    163 
    164   // Test a nested FlexBuffer:
    165   flexbuffers::Builder flexbuild;
    166   flexbuild.Int(1234);
    167   flexbuild.Finish();
    168   auto flex = builder.CreateVector(flexbuild.GetBuffer());
    169 
    170   // Test vector of enums.
    171   Color colors[] = { Color_Blue, Color_Green };
    172   // We use this special creation function because we have an array of
    173   // pre-C++11 (enum class) enums whose size likely is int, yet its declared
    174   // type in the schema is byte.
    175   auto vecofcolors = builder.CreateVectorScalarCast<int8_t, Color>(colors, 2);
    176 
    177   // shortcut for creating monster with all fields set:
    178   auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
    179                             Any_Monster, mlocs[1].Union(),  // Store a union.
    180                             testv, vecofstrings, vecoftables, 0,
    181                             nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0,
    182                             0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
    183                             vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0,
    184                             0, 0, 0, AnyUniqueAliases_NONE, 0,
    185                             AnyAmbiguousAliases_NONE, 0, vecofcolors);
    186 
    187   FinishMonsterBuffer(builder, mloc);
    188 
    189   // clang-format off
    190   #ifdef FLATBUFFERS_TEST_VERBOSE
    191   // print byte data for debugging:
    192   auto p = builder.GetBufferPointer();
    193   for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
    194     printf("%d ", p[i]);
    195   #endif
    196   // clang-format on
    197 
    198   // return the buffer for the caller to use.
    199   auto bufferpointer =
    200       reinterpret_cast<const char *>(builder.GetBufferPointer());
    201   buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
    202 
    203   return builder.Release();
    204 }
    205 
    206 //  example of accessing a buffer loaded in memory:
    207 void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
    208                           bool pooled = true) {
    209   // First, verify the buffers integrity (optional)
    210   flatbuffers::Verifier verifier(flatbuf, length);
    211   TEST_EQ(VerifyMonsterBuffer(verifier), true);
    212 
    213   // clang-format off
    214   #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
    215     std::vector<uint8_t> test_buff;
    216     test_buff.resize(length * 2);
    217     std::memcpy(&test_buff[0], flatbuf, length);
    218     std::memcpy(&test_buff[length], flatbuf, length);
    219 
    220     flatbuffers::Verifier verifier1(&test_buff[0], length);
    221     TEST_EQ(VerifyMonsterBuffer(verifier1), true);
    222     TEST_EQ(verifier1.GetComputedSize(), length);
    223 
    224     flatbuffers::Verifier verifier2(&test_buff[length], length);
    225     TEST_EQ(VerifyMonsterBuffer(verifier2), true);
    226     TEST_EQ(verifier2.GetComputedSize(), length);
    227   #endif
    228   // clang-format on
    229 
    230   TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
    231   TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
    232   TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
    233 
    234   // Access the buffer from the root.
    235   auto monster = GetMonster(flatbuf);
    236 
    237   TEST_EQ(monster->hp(), 80);
    238   TEST_EQ(monster->mana(), 150);  // default
    239   TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
    240   // Can't access the following field, it is deprecated in the schema,
    241   // which means accessors are not generated:
    242   // monster.friendly()
    243 
    244   auto pos = monster->pos();
    245   TEST_NOTNULL(pos);
    246   TEST_EQ(pos->z(), 3);
    247   TEST_EQ(pos->test3().a(), 10);
    248   TEST_EQ(pos->test3().b(), 20);
    249 
    250   auto inventory = monster->inventory();
    251   TEST_EQ(VectorLength(inventory), 10UL);  // Works even if inventory is null.
    252   TEST_NOTNULL(inventory);
    253   unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    254   // Check compatibilty of iterators with STL.
    255   std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
    256   for (auto it = inventory->begin(); it != inventory->end(); ++it) {
    257     auto indx = it - inventory->begin();
    258     TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    259     TEST_EQ(*it, inv_data[indx]);
    260   }
    261 
    262   for (auto it = inventory->cbegin(); it != inventory->cend(); ++it) {
    263     auto indx = it - inventory->cbegin();
    264     TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    265     TEST_EQ(*it, inv_data[indx]);
    266   }
    267 
    268   for (auto it = inventory->rbegin(); it != inventory->rend(); ++it) {
    269     auto indx = inventory->rend() - it;
    270     TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    271     TEST_EQ(*it, inv_data[indx]);
    272   }
    273 
    274   for (auto it = inventory->crbegin(); it != inventory->crend(); ++it) {
    275     auto indx = inventory->crend() - it;
    276     TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    277     TEST_EQ(*it, inv_data[indx]);
    278   }
    279 
    280   TEST_EQ(monster->color(), Color_Blue);
    281 
    282   // Example of accessing a union:
    283   TEST_EQ(monster->test_type(), Any_Monster);  // First make sure which it is.
    284   auto monster2 = reinterpret_cast<const Monster *>(monster->test());
    285   TEST_NOTNULL(monster2);
    286   TEST_EQ_STR(monster2->name()->c_str(), "Fred");
    287 
    288   // Example of accessing a vector of strings:
    289   auto vecofstrings = monster->testarrayofstring();
    290   TEST_EQ(vecofstrings->size(), 4U);
    291   TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
    292   TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
    293   if (pooled) {
    294     // These should have pointer equality because of string pooling.
    295     TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
    296     TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
    297   }
    298 
    299   auto vecofstrings2 = monster->testarrayofstring2();
    300   if (vecofstrings2) {
    301     TEST_EQ(vecofstrings2->size(), 2U);
    302     TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
    303     TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
    304   }
    305 
    306   // Example of accessing a vector of tables:
    307   auto vecoftables = monster->testarrayoftables();
    308   TEST_EQ(vecoftables->size(), 3U);
    309   for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
    310     TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
    311   TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
    312   TEST_EQ(vecoftables->Get(0)->hp(), 1000);
    313   TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
    314   TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
    315   TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
    316   TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
    317   TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
    318 
    319   // Test accessing a vector of sorted structs
    320   auto vecofstructs = monster->testarrayofsortedstruct();
    321   if (vecofstructs) {  // not filled in monster_test.bfbs
    322     for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
    323       auto left = vecofstructs->Get(i);
    324       auto right = vecofstructs->Get(i + 1);
    325       TEST_EQ(true, (left->KeyCompareLessThan(right)));
    326     }
    327     TEST_NOTNULL(vecofstructs->LookupByKey(3));
    328     TEST_EQ(static_cast<const Ability *>(nullptr),
    329             vecofstructs->LookupByKey(5));
    330   }
    331 
    332   // Test nested FlatBuffers if available:
    333   auto nested_buffer = monster->testnestedflatbuffer();
    334   if (nested_buffer) {
    335     // nested_buffer is a vector of bytes you can memcpy. However, if you
    336     // actually want to access the nested data, this is a convenient
    337     // accessor that directly gives you the root table:
    338     auto nested_monster = monster->testnestedflatbuffer_nested_root();
    339     TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
    340   }
    341 
    342   // Test flexbuffer if available:
    343   auto flex = monster->flex();
    344   // flex is a vector of bytes you can memcpy etc.
    345   TEST_EQ(flex->size(), 4);  // Encoded FlexBuffer bytes.
    346   // However, if you actually want to access the nested data, this is a
    347   // convenient accessor that directly gives you the root value:
    348   TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
    349 
    350   // Test vector of enums:
    351   auto colors = monster->vector_of_enums();
    352   if (colors) {
    353     TEST_EQ(colors->size(), 2);
    354     TEST_EQ(colors->Get(0), Color_Blue);
    355     TEST_EQ(colors->Get(1), Color_Green);
    356   }
    357 
    358   // Since Flatbuffers uses explicit mechanisms to override the default
    359   // compiler alignment, double check that the compiler indeed obeys them:
    360   // (Test consists of a short and byte):
    361   TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
    362   TEST_EQ(sizeof(Test), 4UL);
    363 
    364   const flatbuffers::Vector<const Test *> *tests_array[] = {
    365     monster->test4(),
    366     monster->test5(),
    367   };
    368   for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
    369     auto tests = tests_array[i];
    370     TEST_NOTNULL(tests);
    371     auto test_0 = tests->Get(0);
    372     auto test_1 = tests->Get(1);
    373     TEST_EQ(test_0->a(), 10);
    374     TEST_EQ(test_0->b(), 20);
    375     TEST_EQ(test_1->a(), 30);
    376     TEST_EQ(test_1->b(), 40);
    377     for (auto it = tests->begin(); it != tests->end(); ++it) {
    378       TEST_EQ(it->a() == 10 || it->a() == 30, true);  // Just testing iterators.
    379     }
    380   }
    381 
    382   // Checking for presence of fields:
    383   TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
    384   TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
    385 
    386   // Obtaining a buffer from a root:
    387   TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
    388 }
    389 
    390 // Change a FlatBuffer in-place, after it has been constructed.
    391 void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
    392   // Get non-const pointer to root.
    393   auto monster = GetMutableMonster(flatbuf);
    394 
    395   // Each of these tests mutates, then tests, then set back to the original,
    396   // so we can test that the buffer in the end still passes our original test.
    397   auto hp_ok = monster->mutate_hp(10);
    398   TEST_EQ(hp_ok, true);  // Field was present.
    399   TEST_EQ(monster->hp(), 10);
    400   // Mutate to default value
    401   auto hp_ok_default = monster->mutate_hp(100);
    402   TEST_EQ(hp_ok_default, true);  // Field was present.
    403   TEST_EQ(monster->hp(), 100);
    404   // Test that mutate to default above keeps field valid for further mutations
    405   auto hp_ok_2 = monster->mutate_hp(20);
    406   TEST_EQ(hp_ok_2, true);
    407   TEST_EQ(monster->hp(), 20);
    408   monster->mutate_hp(80);
    409 
    410   // Monster originally at 150 mana (default value)
    411   auto mana_default_ok = monster->mutate_mana(150);  // Mutate to default value.
    412   TEST_EQ(mana_default_ok,
    413           true);  // Mutation should succeed, because default value.
    414   TEST_EQ(monster->mana(), 150);
    415   auto mana_ok = monster->mutate_mana(10);
    416   TEST_EQ(mana_ok, false);  // Field was NOT present, because default value.
    417   TEST_EQ(monster->mana(), 150);
    418 
    419   // Mutate structs.
    420   auto pos = monster->mutable_pos();
    421   auto test3 = pos->mutable_test3();  // Struct inside a struct.
    422   test3.mutate_a(50);                 // Struct fields never fail.
    423   TEST_EQ(test3.a(), 50);
    424   test3.mutate_a(10);
    425 
    426   // Mutate vectors.
    427   auto inventory = monster->mutable_inventory();
    428   inventory->Mutate(9, 100);
    429   TEST_EQ(inventory->Get(9), 100);
    430   inventory->Mutate(9, 9);
    431 
    432   auto tables = monster->mutable_testarrayoftables();
    433   auto first = tables->GetMutableObject(0);
    434   TEST_EQ(first->hp(), 1000);
    435   first->mutate_hp(0);
    436   TEST_EQ(first->hp(), 0);
    437   first->mutate_hp(1000);
    438 
    439   // Run the verifier and the regular test to make sure we didn't trample on
    440   // anything.
    441   AccessFlatBufferTest(flatbuf, length);
    442 }
    443 
    444 // Unpack a FlatBuffer into objects.
    445 void ObjectFlatBuffersTest(uint8_t *flatbuf) {
    446   // Optional: we can specify resolver and rehasher functions to turn hashed
    447   // strings into object pointers and back, to implement remote references
    448   // and such.
    449   auto resolver = flatbuffers::resolver_function_t(
    450       [](void **pointer_adr, flatbuffers::hash_value_t hash) {
    451         (void)pointer_adr;
    452         (void)hash;
    453         // Don't actually do anything, leave variable null.
    454       });
    455   auto rehasher = flatbuffers::rehasher_function_t(
    456       [](void *pointer) -> flatbuffers::hash_value_t {
    457         (void)pointer;
    458         return 0;
    459       });
    460 
    461   // Turn a buffer into C++ objects.
    462   auto monster1 = UnPackMonster(flatbuf, &resolver);
    463 
    464   // Re-serialize the data.
    465   flatbuffers::FlatBufferBuilder fbb1;
    466   fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
    467               MonsterIdentifier());
    468 
    469   // Unpack again, and re-serialize again.
    470   auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
    471   flatbuffers::FlatBufferBuilder fbb2;
    472   fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
    473               MonsterIdentifier());
    474 
    475   // Now we've gone full round-trip, the two buffers should match.
    476   auto len1 = fbb1.GetSize();
    477   auto len2 = fbb2.GetSize();
    478   TEST_EQ(len1, len2);
    479   TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
    480 
    481   // Test it with the original buffer test to make sure all data survived.
    482   AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
    483 
    484   // Test accessing fields, similar to AccessFlatBufferTest above.
    485   TEST_EQ(monster2->hp, 80);
    486   TEST_EQ(monster2->mana, 150);  // default
    487   TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
    488 
    489   auto &pos = monster2->pos;
    490   TEST_NOTNULL(pos);
    491   TEST_EQ(pos->z(), 3);
    492   TEST_EQ(pos->test3().a(), 10);
    493   TEST_EQ(pos->test3().b(), 20);
    494 
    495   auto &inventory = monster2->inventory;
    496   TEST_EQ(inventory.size(), 10UL);
    497   unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    498   for (auto it = inventory.begin(); it != inventory.end(); ++it)
    499     TEST_EQ(*it, inv_data[it - inventory.begin()]);
    500 
    501   TEST_EQ(monster2->color, Color_Blue);
    502 
    503   auto monster3 = monster2->test.AsMonster();
    504   TEST_NOTNULL(monster3);
    505   TEST_EQ_STR(monster3->name.c_str(), "Fred");
    506 
    507   auto &vecofstrings = monster2->testarrayofstring;
    508   TEST_EQ(vecofstrings.size(), 4U);
    509   TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
    510   TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
    511 
    512   auto &vecofstrings2 = monster2->testarrayofstring2;
    513   TEST_EQ(vecofstrings2.size(), 2U);
    514   TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
    515   TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
    516 
    517   auto &vecoftables = monster2->testarrayoftables;
    518   TEST_EQ(vecoftables.size(), 3U);
    519   TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
    520   TEST_EQ(vecoftables[0]->hp, 1000);
    521   TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
    522   TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
    523 
    524   auto &tests = monster2->test4;
    525   TEST_EQ(tests[0].a(), 10);
    526   TEST_EQ(tests[0].b(), 20);
    527   TEST_EQ(tests[1].a(), 30);
    528   TEST_EQ(tests[1].b(), 40);
    529 }
    530 
    531 // Prefix a FlatBuffer with a size field.
    532 void SizePrefixedTest() {
    533   // Create size prefixed buffer.
    534   flatbuffers::FlatBufferBuilder fbb;
    535   FinishSizePrefixedMonsterBuffer(
    536       fbb,
    537       CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob")));
    538 
    539   // Verify it.
    540   flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
    541   TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
    542 
    543   // Access it.
    544   auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
    545   TEST_EQ(m->mana(), 200);
    546   TEST_EQ(m->hp(), 300);
    547   TEST_EQ_STR(m->name()->c_str(), "bob");
    548 }
    549 
    550 void TriviallyCopyableTest() {
    551   // clang-format off
    552   #if __GNUG__ && __GNUC__ < 5
    553     TEST_EQ(__has_trivial_copy(Vec3), true);
    554   #else
    555     #if __cplusplus >= 201103L
    556       TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
    557     #endif
    558   #endif
    559   // clang-format on
    560 }
    561 
    562 // Check stringify of an default enum value to json
    563 void JsonDefaultTest() {
    564   // load FlatBuffer schema (.fbs) from disk
    565   std::string schemafile;
    566   TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
    567                                 false, &schemafile), true);
    568   // parse schema first, so we can use it to parse the data after
    569   flatbuffers::Parser parser;
    570   auto include_test_path =
    571       flatbuffers::ConCatPathFileName(test_data_path, "include_test");
    572   const char *include_directories[] = { test_data_path.c_str(),
    573                                         include_test_path.c_str(), nullptr };
    574 
    575   TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
    576   // create incomplete monster and store to json
    577   parser.opts.output_default_scalars_in_json = true;
    578   parser.opts.output_enum_identifiers = true;
    579   flatbuffers::FlatBufferBuilder builder;
    580   auto name = builder.CreateString("default_enum");
    581   MonsterBuilder color_monster(builder);
    582   color_monster.add_name(name);
    583   FinishMonsterBuffer(builder, color_monster.Finish());
    584   std::string jsongen;
    585   auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
    586   TEST_EQ(result, true);
    587   // default value of the "color" field is Blue
    588   TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true);
    589   // default value of the "testf" field is 3.14159
    590   TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true);
    591 }
    592 
    593 // example of parsing text straight into a buffer, and generating
    594 // text back from it:
    595 void ParseAndGenerateTextTest(bool binary) {
    596   // load FlatBuffer schema (.fbs) and JSON from disk
    597   std::string schemafile;
    598   std::string jsonfile;
    599   TEST_EQ(flatbuffers::LoadFile(
    600               (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
    601                   .c_str(),
    602               binary, &schemafile),
    603           true);
    604   TEST_EQ(flatbuffers::LoadFile(
    605               (test_data_path + "monsterdata_test.golden").c_str(), false,
    606               &jsonfile),
    607           true);
    608 
    609   auto include_test_path =
    610     flatbuffers::ConCatPathFileName(test_data_path, "include_test");
    611   const char *include_directories[] = { test_data_path.c_str(),
    612                                         include_test_path.c_str(), nullptr };
    613 
    614   // parse schema first, so we can use it to parse the data after
    615   flatbuffers::Parser parser;
    616   if (binary) {
    617     flatbuffers::Verifier verifier(
    618         reinterpret_cast<const uint8_t *>(schemafile.c_str()),
    619         schemafile.size());
    620     TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
    621     //auto schema = reflection::GetSchema(schemafile.c_str());
    622     TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true);
    623   } else {
    624     TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
    625   }
    626   TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
    627 
    628   // here, parser.builder_ contains a binary buffer that is the parsed data.
    629 
    630   // First, verify it, just in case:
    631   flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
    632                                  parser.builder_.GetSize());
    633   TEST_EQ(VerifyMonsterBuffer(verifier), true);
    634 
    635   AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
    636                        parser.builder_.GetSize(), false);
    637 
    638   // to ensure it is correct, we now generate text back from the binary,
    639   // and compare the two:
    640   std::string jsongen;
    641   auto result =
    642       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
    643   TEST_EQ(result, true);
    644   TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
    645 
    646   // We can also do the above using the convenient Registry that knows about
    647   // a set of file_identifiers mapped to schemas.
    648   flatbuffers::Registry registry;
    649   // Make sure schemas can find their includes.
    650   registry.AddIncludeDirectory(test_data_path.c_str());
    651   registry.AddIncludeDirectory(include_test_path.c_str());
    652   // Call this with many schemas if possible.
    653   registry.Register(MonsterIdentifier(),
    654                     (test_data_path + "monster_test.fbs").c_str());
    655   // Now we got this set up, we can parse by just specifying the identifier,
    656   // the correct schema will be loaded on the fly:
    657   auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
    658   // If this fails, check registry.lasterror_.
    659   TEST_NOTNULL(buf.data());
    660   // Test the buffer, to be sure:
    661   AccessFlatBufferTest(buf.data(), buf.size(), false);
    662   // We can use the registry to turn this back into text, in this case it
    663   // will get the file_identifier from the binary:
    664   std::string text;
    665   auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
    666   // If this fails, check registry.lasterror_.
    667   TEST_EQ(ok, true);
    668   TEST_EQ_STR(text.c_str(), jsonfile.c_str());
    669 
    670   // Generate text for UTF-8 strings without escapes.
    671   std::string jsonfile_utf8;
    672   TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(),
    673                                 false, &jsonfile_utf8),
    674           true);
    675   TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
    676   // To ensure it is correct, generate utf-8 text back from the binary.
    677   std::string jsongen_utf8;
    678   // request natural printing for utf-8 strings
    679   parser.opts.natural_utf8 = true;
    680   parser.opts.strict_json = true;
    681   TEST_EQ(
    682       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8),
    683       true);
    684   TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
    685 }
    686 
    687 void ReflectionTest(uint8_t *flatbuf, size_t length) {
    688   // Load a binary schema.
    689   std::string bfbsfile;
    690   TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(),
    691                                 true, &bfbsfile),
    692           true);
    693 
    694   // Verify it, just in case:
    695   flatbuffers::Verifier verifier(
    696       reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
    697   TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
    698 
    699   // Make sure the schema is what we expect it to be.
    700   auto &schema = *reflection::GetSchema(bfbsfile.c_str());
    701   auto root_table = schema.root_table();
    702   TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
    703   auto fields = root_table->fields();
    704   auto hp_field_ptr = fields->LookupByKey("hp");
    705   TEST_NOTNULL(hp_field_ptr);
    706   auto &hp_field = *hp_field_ptr;
    707   TEST_EQ_STR(hp_field.name()->c_str(), "hp");
    708   TEST_EQ(hp_field.id(), 2);
    709   TEST_EQ(hp_field.type()->base_type(), reflection::Short);
    710   auto friendly_field_ptr = fields->LookupByKey("friendly");
    711   TEST_NOTNULL(friendly_field_ptr);
    712   TEST_NOTNULL(friendly_field_ptr->attributes());
    713   TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
    714 
    715   // Make sure the table index is what we expect it to be.
    716   auto pos_field_ptr = fields->LookupByKey("pos");
    717   TEST_NOTNULL(pos_field_ptr);
    718   TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
    719   auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
    720   TEST_NOTNULL(pos_table_ptr);
    721   TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
    722 
    723   // Now use it to dynamically access a buffer.
    724   auto &root = *flatbuffers::GetAnyRoot(flatbuf);
    725 
    726   // Verify the buffer first using reflection based verification
    727   TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
    728           true);
    729 
    730   auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
    731   TEST_EQ(hp, 80);
    732 
    733   // Rather than needing to know the type, we can also get the value of
    734   // any field as an int64_t/double/string, regardless of what it actually is.
    735   auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
    736   TEST_EQ(hp_int64, 80);
    737   auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
    738   TEST_EQ(hp_double, 80.0);
    739   auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
    740   TEST_EQ_STR(hp_string.c_str(), "80");
    741 
    742   // Get struct field through reflection
    743   auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
    744   TEST_NOTNULL(pos_struct);
    745   TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct,
    746                                     *pos_table_ptr->fields()->LookupByKey("z")),
    747           3.0f);
    748 
    749   auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
    750   auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
    751   TEST_NOTNULL(test3_struct);
    752   auto test3_object = schema.objects()->Get(test3_field->type()->index());
    753 
    754   TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct,
    755                                     *test3_object->fields()->LookupByKey("a")),
    756           10);
    757 
    758   // We can also modify it.
    759   flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
    760   hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
    761   TEST_EQ(hp, 200);
    762 
    763   // We can also set fields generically:
    764   flatbuffers::SetAnyFieldI(&root, hp_field, 300);
    765   hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
    766   TEST_EQ(hp_int64, 300);
    767   flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
    768   hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
    769   TEST_EQ(hp_int64, 300);
    770   flatbuffers::SetAnyFieldS(&root, hp_field, "300");
    771   hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
    772   TEST_EQ(hp_int64, 300);
    773 
    774   // Test buffer is valid after the modifications
    775   TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
    776           true);
    777 
    778   // Reset it, for further tests.
    779   flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
    780 
    781   // More advanced functionality: changing the size of items in-line!
    782   // First we put the FlatBuffer inside an std::vector.
    783   std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
    784   // Find the field we want to modify.
    785   auto &name_field = *fields->LookupByKey("name");
    786   // Get the root.
    787   // This time we wrap the result from GetAnyRoot in a smartpointer that
    788   // will keep rroot valid as resizingbuf resizes.
    789   auto rroot = flatbuffers::piv(
    790       flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)),
    791       resizingbuf);
    792   SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
    793             &resizingbuf);
    794   // Here resizingbuf has changed, but rroot is still valid.
    795   TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
    796   // Now lets extend a vector by 100 elements (10 -> 110).
    797   auto &inventory_field = *fields->LookupByKey("inventory");
    798   auto rinventory = flatbuffers::piv(
    799       flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf);
    800   flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
    801                                      &resizingbuf);
    802   // rinventory still valid, so lets read from it.
    803   TEST_EQ(rinventory->Get(10), 50);
    804 
    805   // For reflection uses not covered already, there is a more powerful way:
    806   // we can simply generate whatever object we want to add/modify in a
    807   // FlatBuffer of its own, then add that to an existing FlatBuffer:
    808   // As an example, let's add a string to an array of strings.
    809   // First, find our field:
    810   auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
    811   // Find the vector value:
    812   auto rtestarrayofstring = flatbuffers::piv(
    813       flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
    814           **rroot, testarrayofstring_field),
    815       resizingbuf);
    816   // It's a vector of 2 strings, to which we add one more, initialized to
    817   // offset 0.
    818   flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
    819       schema, 3, 0, *rtestarrayofstring, &resizingbuf);
    820   // Here we just create a buffer that contans a single string, but this
    821   // could also be any complex set of tables and other values.
    822   flatbuffers::FlatBufferBuilder stringfbb;
    823   stringfbb.Finish(stringfbb.CreateString("hank"));
    824   // Add the contents of it to our existing FlatBuffer.
    825   // We do this last, so the pointer doesn't get invalidated (since it is
    826   // at the end of the buffer):
    827   auto string_ptr = flatbuffers::AddFlatBuffer(
    828       resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize());
    829   // Finally, set the new value in the vector.
    830   rtestarrayofstring->MutateOffset(2, string_ptr);
    831   TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
    832   TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
    833   // Test integrity of all resize operations above.
    834   flatbuffers::Verifier resize_verifier(
    835       reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)),
    836       resizingbuf.size());
    837   TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
    838 
    839   // Test buffer is valid using reflection as well
    840   TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
    841                               flatbuffers::vector_data(resizingbuf),
    842                               resizingbuf.size()),
    843           true);
    844 
    845   // As an additional test, also set it on the name field.
    846   // Note: unlike the name change above, this just overwrites the offset,
    847   // rather than changing the string in-place.
    848   SetFieldT(*rroot, name_field, string_ptr);
    849   TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
    850 
    851   // Using reflection, rather than mutating binary FlatBuffers, we can also copy
    852   // tables and other things out of other FlatBuffers into a FlatBufferBuilder,
    853   // either part or whole.
    854   flatbuffers::FlatBufferBuilder fbb;
    855   auto root_offset = flatbuffers::CopyTable(
    856       fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true);
    857   fbb.Finish(root_offset, MonsterIdentifier());
    858   // Test that it was copied correctly:
    859   AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
    860 
    861   // Test buffer is valid using reflection as well
    862   TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
    863                               fbb.GetBufferPointer(), fbb.GetSize()),
    864           true);
    865 }
    866 
    867 void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
    868   auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable());
    869   TEST_EQ_STR(
    870       s.c_str(),
    871       "{ "
    872       "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
    873       "{ a: 10, b: 20 } }, "
    874       "hp: 80, "
    875       "name: \"MyMonster\", "
    876       "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
    877       "test_type: Monster, "
    878       "test: { name: \"Fred\" }, "
    879       "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
    880       "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
    881       "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" "
    882       "}, "
    883       "{ name: \"Wilma\" } ], "
    884       // TODO(wvo): should really print this nested buffer correctly.
    885       "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, "
    886       "0, "
    887       "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
    888       "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
    889       "testarrayofstring2: [ \"jane\", \"mary\" ], "
    890       "testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
    891       "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
    892       "{ id: 4, distance: 40 } ], "
    893       "flex: [ 210, 4, 5, 2 ], "
    894       "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
    895       "vector_of_enums: [ Blue, Green ] "
    896       "}");
    897 }
    898 
    899 // Parse a .proto schema, output as .fbs
    900 void ParseProtoTest() {
    901   // load the .proto and the golden file from disk
    902   std::string protofile;
    903   std::string goldenfile;
    904   std::string goldenunionfile;
    905   TEST_EQ(
    906       flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
    907                             false, &protofile),
    908       true);
    909   TEST_EQ(
    910       flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(),
    911                             false, &goldenfile),
    912       true);
    913   TEST_EQ(
    914       flatbuffers::LoadFile((test_data_path +
    915                             "prototest/test_union.golden").c_str(),
    916                             false, &goldenunionfile),
    917       true);
    918 
    919   flatbuffers::IDLOptions opts;
    920   opts.include_dependence_headers = false;
    921   opts.proto_mode = true;
    922 
    923   // Parse proto.
    924   flatbuffers::Parser parser(opts);
    925   auto protopath = test_data_path + "prototest/";
    926   const char *include_directories[] = { protopath.c_str(), nullptr };
    927   TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
    928 
    929   // Generate fbs.
    930   auto fbs = flatbuffers::GenerateFBS(parser, "test");
    931 
    932   // Ensure generated file is parsable.
    933   flatbuffers::Parser parser2;
    934   TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
    935   TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
    936 
    937   // Parse proto with --oneof-union option.
    938   opts.proto_oneof_union = true;
    939   flatbuffers::Parser parser3(opts);
    940   TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
    941 
    942   // Generate fbs.
    943   auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
    944 
    945   // Ensure generated file is parsable.
    946   flatbuffers::Parser parser4;
    947   TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
    948   TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
    949 }
    950 
    951 template<typename T>
    952 void CompareTableFieldValue(flatbuffers::Table *table,
    953                             flatbuffers::voffset_t voffset, T val) {
    954   T read = table->GetField(voffset, static_cast<T>(0));
    955   TEST_EQ(read, val);
    956 }
    957 
    958 // Low level stress/fuzz test: serialize/deserialize a variety of
    959 // different kinds of data in different combinations
    960 void FuzzTest1() {
    961   // Values we're testing against: chosen to ensure no bits get chopped
    962   // off anywhere, and also be different from eachother.
    963   const uint8_t bool_val = true;
    964   const int8_t char_val = -127;  // 0x81
    965   const uint8_t uchar_val = 0xFF;
    966   const int16_t short_val = -32222;  // 0x8222;
    967   const uint16_t ushort_val = 0xFEEE;
    968   const int32_t int_val = 0x83333333;
    969   const uint32_t uint_val = 0xFDDDDDDD;
    970   const int64_t long_val = 0x8444444444444444LL;
    971   const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
    972   const float float_val = 3.14159f;
    973   const double double_val = 3.14159265359;
    974 
    975   const int test_values_max = 11;
    976   const flatbuffers::voffset_t fields_per_object = 4;
    977   const int num_fuzz_objects = 10000;  // The higher, the more thorough :)
    978 
    979   flatbuffers::FlatBufferBuilder builder;
    980 
    981   lcg_reset();  // Keep it deterministic.
    982 
    983   flatbuffers::uoffset_t objects[num_fuzz_objects];
    984 
    985   // Generate num_fuzz_objects random objects each consisting of
    986   // fields_per_object fields, each of a random type.
    987   for (int i = 0; i < num_fuzz_objects; i++) {
    988     auto start = builder.StartTable();
    989     for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
    990       int choice = lcg_rand() % test_values_max;
    991       auto off = flatbuffers::FieldIndexToOffset(f);
    992       switch (choice) {
    993         case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break;
    994         case 1: builder.AddElement<int8_t>(off, char_val, 0); break;
    995         case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break;
    996         case 3: builder.AddElement<int16_t>(off, short_val, 0); break;
    997         case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
    998         case 5: builder.AddElement<int32_t>(off, int_val, 0); break;
    999         case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
   1000         case 7: builder.AddElement<int64_t>(off, long_val, 0); break;
   1001         case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
   1002         case 9: builder.AddElement<float>(off, float_val, 0); break;
   1003         case 10: builder.AddElement<double>(off, double_val, 0); break;
   1004       }
   1005     }
   1006     objects[i] = builder.EndTable(start);
   1007   }
   1008   builder.PreAlign<flatbuffers::largest_scalar_t>(0);  // Align whole buffer.
   1009 
   1010   lcg_reset();  // Reset.
   1011 
   1012   uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
   1013 
   1014   // Test that all objects we generated are readable and return the
   1015   // expected values. We generate random objects in the same order
   1016   // so this is deterministic.
   1017   for (int i = 0; i < num_fuzz_objects; i++) {
   1018     auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
   1019     for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
   1020       int choice = lcg_rand() % test_values_max;
   1021       flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
   1022       switch (choice) {
   1023         case 0: CompareTableFieldValue(table, off, bool_val); break;
   1024         case 1: CompareTableFieldValue(table, off, char_val); break;
   1025         case 2: CompareTableFieldValue(table, off, uchar_val); break;
   1026         case 3: CompareTableFieldValue(table, off, short_val); break;
   1027         case 4: CompareTableFieldValue(table, off, ushort_val); break;
   1028         case 5: CompareTableFieldValue(table, off, int_val); break;
   1029         case 6: CompareTableFieldValue(table, off, uint_val); break;
   1030         case 7: CompareTableFieldValue(table, off, long_val); break;
   1031         case 8: CompareTableFieldValue(table, off, ulong_val); break;
   1032         case 9: CompareTableFieldValue(table, off, float_val); break;
   1033         case 10: CompareTableFieldValue(table, off, double_val); break;
   1034       }
   1035     }
   1036   }
   1037 }
   1038 
   1039 // High level stress/fuzz test: generate a big schema and
   1040 // matching json data in random combinations, then parse both,
   1041 // generate json back from the binary, and compare with the original.
   1042 void FuzzTest2() {
   1043   lcg_reset();  // Keep it deterministic.
   1044 
   1045   const int num_definitions = 30;
   1046   const int num_struct_definitions = 5;  // Subset of num_definitions.
   1047   const int fields_per_definition = 15;
   1048   const int instances_per_definition = 5;
   1049   const int deprecation_rate = 10;  // 1 in deprecation_rate fields will
   1050                                     // be deprecated.
   1051 
   1052   std::string schema = "namespace test;\n\n";
   1053 
   1054   struct RndDef {
   1055     std::string instances[instances_per_definition];
   1056 
   1057     // Since we're generating schema and corresponding data in tandem,
   1058     // this convenience function adds strings to both at once.
   1059     static void Add(RndDef (&definitions_l)[num_definitions],
   1060                     std::string &schema_l, const int instances_per_definition_l,
   1061                     const char *schema_add, const char *instance_add,
   1062                     int definition) {
   1063       schema_l += schema_add;
   1064       for (int i = 0; i < instances_per_definition_l; i++)
   1065         definitions_l[definition].instances[i] += instance_add;
   1066     }
   1067   };
   1068 
   1069   // clang-format off
   1070   #define AddToSchemaAndInstances(schema_add, instance_add) \
   1071     RndDef::Add(definitions, schema, instances_per_definition, \
   1072                 schema_add, instance_add, definition)
   1073 
   1074   #define Dummy() \
   1075     RndDef::Add(definitions, schema, instances_per_definition, \
   1076                 "byte", "1", definition)
   1077   // clang-format on
   1078 
   1079   RndDef definitions[num_definitions];
   1080 
   1081   // We are going to generate num_definitions, the first
   1082   // num_struct_definitions will be structs, the rest tables. For each
   1083   // generate random fields, some of which may be struct/table types
   1084   // referring to previously generated structs/tables.
   1085   // Simultanenously, we generate instances_per_definition JSON data
   1086   // definitions, which will have identical structure to the schema
   1087   // being generated. We generate multiple instances such that when creating
   1088   // hierarchy, we get some variety by picking one randomly.
   1089   for (int definition = 0; definition < num_definitions; definition++) {
   1090     std::string definition_name = "D" + flatbuffers::NumToString(definition);
   1091 
   1092     bool is_struct = definition < num_struct_definitions;
   1093 
   1094     AddToSchemaAndInstances(
   1095         ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
   1096         "{\n");
   1097 
   1098     for (int field = 0; field < fields_per_definition; field++) {
   1099       const bool is_last_field = field == fields_per_definition - 1;
   1100 
   1101       // Deprecate 1 in deprecation_rate fields. Only table fields can be
   1102       // deprecated.
   1103       // Don't deprecate the last field to avoid dangling commas in JSON.
   1104       const bool deprecated =
   1105           !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0);
   1106 
   1107       std::string field_name = "f" + flatbuffers::NumToString(field);
   1108       AddToSchemaAndInstances(("  " + field_name + ":").c_str(),
   1109                               deprecated ? "" : (field_name + ": ").c_str());
   1110       // Pick random type:
   1111       auto base_type = static_cast<flatbuffers::BaseType>(
   1112           lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
   1113       switch (base_type) {
   1114         case flatbuffers::BASE_TYPE_STRING:
   1115           if (is_struct) {
   1116             Dummy();  // No strings in structs.
   1117           } else {
   1118             AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
   1119           }
   1120           break;
   1121         case flatbuffers::BASE_TYPE_VECTOR:
   1122           if (is_struct) {
   1123             Dummy();  // No vectors in structs.
   1124           } else {
   1125             AddToSchemaAndInstances("[ubyte]",
   1126                                     deprecated ? "" : "[\n0,\n1,\n255\n]");
   1127           }
   1128           break;
   1129         case flatbuffers::BASE_TYPE_NONE:
   1130         case flatbuffers::BASE_TYPE_UTYPE:
   1131         case flatbuffers::BASE_TYPE_STRUCT:
   1132         case flatbuffers::BASE_TYPE_UNION:
   1133           if (definition) {
   1134             // Pick a random previous definition and random data instance of
   1135             // that definition.
   1136             int defref = lcg_rand() % definition;
   1137             int instance = lcg_rand() % instances_per_definition;
   1138             AddToSchemaAndInstances(
   1139                 ("D" + flatbuffers::NumToString(defref)).c_str(),
   1140                 deprecated ? ""
   1141                            : definitions[defref].instances[instance].c_str());
   1142           } else {
   1143             // If this is the first definition, we have no definition we can
   1144             // refer to.
   1145             Dummy();
   1146           }
   1147           break;
   1148         case flatbuffers::BASE_TYPE_BOOL:
   1149           AddToSchemaAndInstances(
   1150               "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false"));
   1151           break;
   1152         default:
   1153           // All the scalar types.
   1154           schema += flatbuffers::kTypeNames[base_type];
   1155 
   1156           if (!deprecated) {
   1157             // We want each instance to use its own random value.
   1158             for (int inst = 0; inst < instances_per_definition; inst++)
   1159               definitions[definition].instances[inst] +=
   1160                   flatbuffers::IsFloat(base_type)
   1161                       ? flatbuffers::NumToString<double>(lcg_rand() % 128)
   1162                             .c_str()
   1163                       : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
   1164           }
   1165       }
   1166       AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n",
   1167                               deprecated ? "" : is_last_field ? "\n" : ",\n");
   1168     }
   1169     AddToSchemaAndInstances("}\n\n", "}");
   1170   }
   1171 
   1172   schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
   1173   schema += ";\n";
   1174 
   1175   flatbuffers::Parser parser;
   1176 
   1177   // Will not compare against the original if we don't write defaults
   1178   parser.builder_.ForceDefaults(true);
   1179 
   1180   // Parse the schema, parse the generated data, then generate text back
   1181   // from the binary and compare against the original.
   1182   TEST_EQ(parser.Parse(schema.c_str()), true);
   1183 
   1184   const std::string &json =
   1185       definitions[num_definitions - 1].instances[0] + "\n";
   1186 
   1187   TEST_EQ(parser.Parse(json.c_str()), true);
   1188 
   1189   std::string jsongen;
   1190   parser.opts.indent_step = 0;
   1191   auto result =
   1192       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   1193   TEST_EQ(result, true);
   1194 
   1195   if (jsongen != json) {
   1196     // These strings are larger than a megabyte, so we show the bytes around
   1197     // the first bytes that are different rather than the whole string.
   1198     size_t len = std::min(json.length(), jsongen.length());
   1199     for (size_t i = 0; i < len; i++) {
   1200       if (json[i] != jsongen[i]) {
   1201         i -= std::min(static_cast<size_t>(10), i);  // show some context;
   1202         size_t end = std::min(len, i + 20);
   1203         for (; i < end; i++)
   1204           TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
   1205                            static_cast<int>(i), jsongen[i], json[i]);
   1206         break;
   1207       }
   1208     }
   1209     TEST_NOTNULL(NULL);
   1210   }
   1211 
   1212   // clang-format off
   1213   #ifdef FLATBUFFERS_TEST_VERBOSE
   1214     TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
   1215                      static_cast<int>(schema.length() / 1024),
   1216                      static_cast<int>(json.length() / 1024));
   1217   #endif
   1218   // clang-format on
   1219 }
   1220 
   1221 // Test that parser errors are actually generated.
   1222 void TestError_(const char *src, const char *error_substr, bool strict_json,
   1223                 const char *file, int line, const char *func) {
   1224   flatbuffers::IDLOptions opts;
   1225   opts.strict_json = strict_json;
   1226   flatbuffers::Parser parser(opts);
   1227   if (parser.Parse(src)) {
   1228     TestFail("true", "false",
   1229              ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
   1230              func);
   1231   } else if (!strstr(parser.error_.c_str(), error_substr)) {
   1232     TestFail(parser.error_.c_str(), error_substr,
   1233              ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
   1234              func);
   1235   }
   1236 }
   1237 
   1238 void TestError_(const char *src, const char *error_substr, const char *file,
   1239                 int line, const char *func) {
   1240   TestError_(src, error_substr, false, file, line, func);
   1241 }
   1242 
   1243 #ifdef _WIN32
   1244 #  define TestError(src, ...) \
   1245     TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
   1246 #else
   1247 #  define TestError(src, ...) \
   1248     TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
   1249 #endif
   1250 
   1251 // Test that parsing errors occur as we'd expect.
   1252 // Also useful for coverage, making sure these paths are run.
   1253 void ErrorTest() {
   1254   // In order they appear in idl_parser.cpp
   1255   TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
   1256   TestError("\"\0", "illegal");
   1257   TestError("\"\\q", "escape code");
   1258   TestError("table ///", "documentation");
   1259   TestError("@", "illegal");
   1260   TestError("table 1", "expecting");
   1261   TestError("table X { Y:[[int]]; }", "nested vector");
   1262   TestError("table X { Y:1; }", "illegal type");
   1263   TestError("table X { Y:int; Y:int; }", "field already");
   1264   TestError("table Y {} table X { Y:int; }", "same as table");
   1265   TestError("struct X { Y:string; }", "only scalar");
   1266   TestError("table X { Y:string = \"\"; }", "default values");
   1267   TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
   1268   TestError("struct X { Y:int (deprecated); }", "deprecate");
   1269   TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
   1270             "missing type field");
   1271   TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
   1272             "type id");
   1273   TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
   1274   TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
   1275   TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
   1276             true);
   1277   TestError(
   1278       "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
   1279       "{ V:{ Y:1 } }",
   1280       "wrong number");
   1281   TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
   1282             "unknown enum value");
   1283   TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
   1284   TestError("enum X:byte { Y } enum X {", "enum already");
   1285   TestError("enum X:float {}", "underlying");
   1286   TestError("enum X:byte { Y, Y }", "value already");
   1287   TestError("enum X:byte { Y=2, Z=1 }", "ascending");
   1288   TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out");
   1289   TestError("table X { Y:int; } table X {", "datatype already");
   1290   TestError("struct X (force_align: 7) { Y:int; }", "force_align");
   1291   TestError("struct X {}", "size 0");
   1292   TestError("{}", "no root");
   1293   TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
   1294   TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
   1295             "end of file");
   1296   TestError("root_type X;", "unknown root");
   1297   TestError("struct X { Y:int; } root_type X;", "a table");
   1298   TestError("union X { Y }", "referenced");
   1299   TestError("union Z { X } struct X { Y:int; }", "only tables");
   1300   TestError("table X { Y:[int]; YLength:int; }", "clash");
   1301   TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
   1302   // float to integer conversion is forbidden
   1303   TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
   1304   TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
   1305   TestError("enum X:bool { Y = true }", "must be integral");
   1306 }
   1307 
   1308 template<typename T> T TestValue(const char *json, const char *type_name) {
   1309   flatbuffers::Parser parser;
   1310   parser.builder_.ForceDefaults(true);  // return defaults
   1311   auto check_default = json ? false : true;
   1312   if (check_default) { parser.opts.output_default_scalars_in_json = true; }
   1313   // Simple schema.
   1314   std::string schema =
   1315       "table X { Y:" + std::string(type_name) + "; } root_type X;";
   1316   TEST_EQ(parser.Parse(schema.c_str()), true);
   1317 
   1318   auto done = parser.Parse(check_default ? "{}" : json);
   1319   TEST_EQ_STR(parser.error_.c_str(), "");
   1320   TEST_EQ(done, true);
   1321 
   1322   // Check with print.
   1323   std::string print_back;
   1324   parser.opts.indent_step = -1;
   1325   TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
   1326           true);
   1327   // restore value from its default
   1328   if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
   1329 
   1330   auto root = flatbuffers::GetRoot<flatbuffers::Table>(
   1331       parser.builder_.GetBufferPointer());
   1332   return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
   1333 }
   1334 
   1335 bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
   1336 
   1337 // Additional parser testing not covered elsewhere.
   1338 void ValueTest() {
   1339   // Test scientific notation numbers.
   1340   TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"),
   1341                        3.14159f),
   1342           true);
   1343   // number in string
   1344   TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"),
   1345                        3.14159f),
   1346           true);
   1347 
   1348   // Test conversion functions.
   1349   TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1),
   1350           true);
   1351 
   1352   // int embedded to string
   1353   TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876);
   1354   TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876);
   1355 
   1356   // Test negative hex constant.
   1357   TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512);
   1358   TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
   1359 
   1360   // positive hex constant
   1361   TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef);
   1362   // with optional '+' sign
   1363   TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
   1364   // hex in string
   1365   TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
   1366 
   1367   // Make sure we do unsigned 64bit correctly.
   1368   TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"),
   1369           12335089644688340133ULL);
   1370 
   1371   // bool in string
   1372   TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false);
   1373   TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true);
   1374   TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false);
   1375   TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true);
   1376 
   1377   // check comments before and after json object
   1378   TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1);
   1379   TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1);
   1380 
   1381 }
   1382 
   1383 void NestedListTest() {
   1384   flatbuffers::Parser parser1;
   1385   TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
   1386                         "root_type T;"
   1387                         "{ F:[ [10,20], [30,40]] }"),
   1388           true);
   1389 }
   1390 
   1391 void EnumStringsTest() {
   1392   flatbuffers::Parser parser1;
   1393   TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
   1394                         "root_type T;"
   1395                         "{ F:[ A, B, \"C\", \"A B C\" ] }"),
   1396           true);
   1397   flatbuffers::Parser parser2;
   1398   TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
   1399                         "root_type T;"
   1400                         "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
   1401           true);
   1402 }
   1403 
   1404 void EnumNamesTest() {
   1405   TEST_EQ_STR("Red", EnumNameColor(Color_Red));
   1406   TEST_EQ_STR("Green", EnumNameColor(Color_Green));
   1407   TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
   1408   // Check that Color to string don't crash while decode a mixture of Colors.
   1409   // 1) Example::Color enum is enum with unfixed underlying type.
   1410   // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
   1411   // Consequence: A value is out of this range will lead to UB (since C++17).
   1412   // For details see C++17 standard or explanation on the SO:
   1413   // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
   1414   TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
   1415   TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1)));
   1416   TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1)));
   1417 }
   1418 
   1419 void EnumOutOfRangeTest() {
   1420   TestError("enum X:byte { Y = 128 }", "enum value does not fit");
   1421   TestError("enum X:byte { Y = -129 }", "enum value does not fit");
   1422   TestError("enum X:byte { Y = 127, Z }", "enum value does not fit");
   1423   TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
   1424   TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
   1425   // Unions begin with an implicit "NONE = 0".
   1426   TestError("table Y{} union X { Y = -1 }",
   1427             "enum values must be specified in ascending order");
   1428   TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
   1429   TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
   1430   TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
   1431   TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
   1432   TestError("enum X:uint { Y = -1 }", "enum value does not fit");
   1433   TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
   1434   TestError("enum X:long { Y = 9223372036854775808 }", "constant does not fit");
   1435   TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value overflows");
   1436   TestError("enum X:ulong { Y = -1 }", "enum value does not fit");
   1437   // TODO: these are perfectly valid constants that shouldn't fail
   1438   TestError("enum X:ulong { Y = 13835058055282163712 }", "constant does not fit");
   1439   TestError("enum X:ulong { Y = 18446744073709551615 }", "constant does not fit");
   1440 }
   1441 
   1442 void IntegerOutOfRangeTest() {
   1443   TestError("table T { F:byte; } root_type T; { F:128 }",
   1444             "constant does not fit");
   1445   TestError("table T { F:byte; } root_type T; { F:-129 }",
   1446             "constant does not fit");
   1447   TestError("table T { F:ubyte; } root_type T; { F:256 }",
   1448             "constant does not fit");
   1449   TestError("table T { F:ubyte; } root_type T; { F:-1 }",
   1450             "constant does not fit");
   1451   TestError("table T { F:short; } root_type T; { F:32768 }",
   1452             "constant does not fit");
   1453   TestError("table T { F:short; } root_type T; { F:-32769 }",
   1454             "constant does not fit");
   1455   TestError("table T { F:ushort; } root_type T; { F:65536 }",
   1456             "constant does not fit");
   1457   TestError("table T { F:ushort; } root_type T; { F:-1 }",
   1458             "constant does not fit");
   1459   TestError("table T { F:int; } root_type T; { F:2147483648 }",
   1460             "constant does not fit");
   1461   TestError("table T { F:int; } root_type T; { F:-2147483649 }",
   1462             "constant does not fit");
   1463   TestError("table T { F:uint; } root_type T; { F:4294967296 }",
   1464             "constant does not fit");
   1465   TestError("table T { F:uint; } root_type T; { F:-1 }",
   1466             "constant does not fit");
   1467   // Check fixed width aliases
   1468   TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
   1469   TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
   1470   TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
   1471   TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
   1472   TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
   1473   TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
   1474             "does not fit");
   1475   TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
   1476   TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
   1477             "does not fit");
   1478   TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
   1479             "does not fit");
   1480 
   1481   TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
   1482   TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
   1483   TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
   1484   TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
   1485   TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
   1486   TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
   1487             "does not fit");
   1488   TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
   1489             "does not fit");
   1490   TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
   1491             "does not fit");
   1492   // check out-of-int64 as int8
   1493   TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
   1494             "does not fit");
   1495   TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
   1496             "does not fit");
   1497 
   1498   // Check default values
   1499   TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
   1500             "does not fit");
   1501   TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
   1502             "does not fit");
   1503   TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
   1504   TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
   1505             "does not fit");
   1506   TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
   1507             "does not fit");
   1508 }
   1509 
   1510 void IntegerBoundaryTest() {
   1511   TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127);
   1512   TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128);
   1513   TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255);
   1514   TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0);
   1515   TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767);
   1516   TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768);
   1517   TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535);
   1518   TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0);
   1519   TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647);
   1520   TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int"), (-2147483647 - 1));
   1521   TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295);
   1522   TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0);
   1523   TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"),
   1524           9223372036854775807);
   1525   TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long"),
   1526           (-9223372036854775807 - 1));
   1527   TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"),
   1528           18446744073709551615U);
   1529   TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0);
   1530   TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"),
   1531           18446744073709551615ULL);
   1532   // check that the default works
   1533   TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
   1534           18446744073709551615ULL);
   1535 }
   1536 
   1537 void ValidFloatTest() {
   1538   const auto infinityf = flatbuffers::numeric_limits<float>::infinity();
   1539   const auto infinityd = flatbuffers::numeric_limits<double>::infinity();
   1540   // check rounding to infinity
   1541   TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf);
   1542   TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf);
   1543   TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd);
   1544   TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd);
   1545 
   1546   TEST_EQ(
   1547       FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
   1548       true);
   1549   // float in string
   1550   TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2  \" }", "float"),
   1551                        3.14159f),
   1552           true);
   1553 
   1554   TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f);
   1555   TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f);
   1556   TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f);
   1557   TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f);
   1558   TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f);
   1559   TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f);
   1560   TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f);
   1561   TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f);
   1562   TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f);
   1563   TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f);
   1564   TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f);
   1565   TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f);
   1566   TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f);
   1567   TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f);
   1568 
   1569   #if defined(FLATBUFFERS_HAS_NEW_STRTOD)
   1570   // Old MSVC versions may have problem with this check.
   1571   // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
   1572   TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"),
   1573     6929495644600920.0);
   1574   // check nan's
   1575   TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true);
   1576   TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true);
   1577   TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true);
   1578   TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true);
   1579   TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true);
   1580   TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
   1581   TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
   1582   // check inf
   1583   TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf);
   1584   TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf);
   1585   TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf);
   1586   TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf);
   1587   TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf);
   1588   TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf);
   1589   TestValue<double>(
   1590       "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
   1591       "3.0e2] }",
   1592       "[double]");
   1593   TestValue<float>(
   1594       "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
   1595       "3.0e2] }",
   1596       "[float]");
   1597 
   1598   // Test binary format of float point.
   1599   // https://en.cppreference.com/w/cpp/language/floating_literal
   1600   // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
   1601   TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625);
   1602   // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
   1603   TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f);
   1604   TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f);
   1605   TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f);
   1606   TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f);
   1607   TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0);
   1608   TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625);
   1609   TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625);
   1610   TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
   1611   TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
   1612 
   1613 #else   // FLATBUFFERS_HAS_NEW_STRTOD
   1614   TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
   1615 #endif  // FLATBUFFERS_HAS_NEW_STRTOD
   1616 }
   1617 
   1618 void InvalidFloatTest() {
   1619   auto invalid_msg = "invalid number";
   1620   auto comma_msg = "expecting: ,";
   1621   TestError("table T { F:float; } root_type T; { F:1,0 }", "");
   1622   TestError("table T { F:float; } root_type T; { F:. }", "");
   1623   TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
   1624   TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
   1625   TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
   1626   TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
   1627   TestError("table T { F:float; } root_type T; { F:.e }", "");
   1628   TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
   1629   TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
   1630   TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
   1631   TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
   1632   TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
   1633   TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
   1634   TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
   1635   TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
   1636   // exponent pP is mandatory for hex-float
   1637   TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
   1638   TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
   1639   TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
   1640   // eE not exponent in hex-float!
   1641   TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
   1642   TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
   1643   TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
   1644   TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
   1645   TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
   1646   TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
   1647   TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
   1648   TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
   1649   TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
   1650   TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
   1651   TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
   1652   TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
   1653   TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
   1654   TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
   1655   TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
   1656   TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
   1657   TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
   1658   TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
   1659   TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
   1660   TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
   1661   TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
   1662   TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
   1663   TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
   1664   TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
   1665   // floats in string
   1666   TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
   1667   TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
   1668   TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
   1669   TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
   1670   TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
   1671   TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
   1672   // disable escapes for "number-in-string"
   1673   TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
   1674   TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
   1675   TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
   1676   TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
   1677   TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
   1678   TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
   1679   // null is not a number constant!
   1680   TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
   1681   TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
   1682 }
   1683 
   1684 template<typename T>
   1685 void NumericUtilsTestInteger(const char *lower, const char *upper) {
   1686   T x;
   1687   TEST_EQ(flatbuffers::StringToNumber("1q", &x), false);
   1688   TEST_EQ(x, 0);
   1689   TEST_EQ(flatbuffers::StringToNumber(upper, &x), false);
   1690   TEST_EQ(x, flatbuffers::numeric_limits<T>::max());
   1691   TEST_EQ(flatbuffers::StringToNumber(lower, &x), false);
   1692   auto expval = flatbuffers::is_unsigned<T>::value
   1693                     ? flatbuffers::numeric_limits<T>::max()
   1694                     : flatbuffers::numeric_limits<T>::lowest();
   1695   TEST_EQ(x, expval);
   1696 }
   1697 
   1698 template<typename T>
   1699 void NumericUtilsTestFloat(const char *lower, const char *upper) {
   1700   T f;
   1701   TEST_EQ(flatbuffers::StringToNumber("", &f), false);
   1702   TEST_EQ(flatbuffers::StringToNumber("1q", &f), false);
   1703   TEST_EQ(f, 0);
   1704   TEST_EQ(flatbuffers::StringToNumber(upper, &f), true);
   1705   TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity());
   1706   TEST_EQ(flatbuffers::StringToNumber(lower, &f), true);
   1707   TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity());
   1708 }
   1709 
   1710 void NumericUtilsTest() {
   1711   NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616");
   1712   NumericUtilsTestInteger<uint8_t>("-1", "256");
   1713   NumericUtilsTestInteger<int64_t>("-9223372036854775809",
   1714                                    "9223372036854775808");
   1715   NumericUtilsTestInteger<int8_t>("-129", "128");
   1716   NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38");
   1717   NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308");
   1718 }
   1719 
   1720 void IsAsciiUtilsTest() {
   1721   char c = -128;
   1722   for (int cnt = 0; cnt < 256; cnt++) {
   1723     auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'));
   1724     auto dec = (('0' <= c) && (c <= '9'));
   1725     auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F'));
   1726     TEST_EQ(flatbuffers::is_alpha(c), alpha);
   1727     TEST_EQ(flatbuffers::is_alnum(c), alpha || dec);
   1728     TEST_EQ(flatbuffers::is_digit(c), dec);
   1729     TEST_EQ(flatbuffers::is_xdigit(c), dec || hex);
   1730     c += 1;
   1731   }
   1732 }
   1733 
   1734 void UnicodeTest() {
   1735   flatbuffers::Parser parser;
   1736   // Without setting allow_non_utf8 = true, we treat \x sequences as byte
   1737   // sequences which are then validated as UTF-8.
   1738   TEST_EQ(parser.Parse("table T { F:string; }"
   1739                        "root_type T;"
   1740                        "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   1741                        "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
   1742                        "3D\\uDE0E\" }"),
   1743           true);
   1744   std::string jsongen;
   1745   parser.opts.indent_step = -1;
   1746   auto result =
   1747       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   1748   TEST_EQ(result, true);
   1749   TEST_EQ_STR(jsongen.c_str(),
   1750               "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   1751               "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
   1752 }
   1753 
   1754 void UnicodeTestAllowNonUTF8() {
   1755   flatbuffers::Parser parser;
   1756   parser.opts.allow_non_utf8 = true;
   1757   TEST_EQ(
   1758       parser.Parse(
   1759           "table T { F:string; }"
   1760           "root_type T;"
   1761           "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   1762           "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
   1763       true);
   1764   std::string jsongen;
   1765   parser.opts.indent_step = -1;
   1766   auto result =
   1767       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   1768   TEST_EQ(result, true);
   1769   TEST_EQ_STR(
   1770       jsongen.c_str(),
   1771       "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   1772       "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
   1773 }
   1774 
   1775 void UnicodeTestGenerateTextFailsOnNonUTF8() {
   1776   flatbuffers::Parser parser;
   1777   // Allow non-UTF-8 initially to model what happens when we load a binary
   1778   // flatbuffer from disk which contains non-UTF-8 strings.
   1779   parser.opts.allow_non_utf8 = true;
   1780   TEST_EQ(
   1781       parser.Parse(
   1782           "table T { F:string; }"
   1783           "root_type T;"
   1784           "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   1785           "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
   1786       true);
   1787   std::string jsongen;
   1788   parser.opts.indent_step = -1;
   1789   // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
   1790   // failure.
   1791   parser.opts.allow_non_utf8 = false;
   1792   auto result =
   1793       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   1794   TEST_EQ(result, false);
   1795 }
   1796 
   1797 void UnicodeSurrogatesTest() {
   1798   flatbuffers::Parser parser;
   1799 
   1800   TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
   1801                        "root_type T;"
   1802                        "{ F:\"\\uD83D\\uDCA9\"}"),
   1803           true);
   1804   auto root = flatbuffers::GetRoot<flatbuffers::Table>(
   1805       parser.builder_.GetBufferPointer());
   1806   auto string = root->GetPointer<flatbuffers::String *>(
   1807       flatbuffers::FieldIndexToOffset(0));
   1808   TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
   1809 }
   1810 
   1811 void UnicodeInvalidSurrogatesTest() {
   1812   TestError(
   1813       "table T { F:string; }"
   1814       "root_type T;"
   1815       "{ F:\"\\uD800\"}",
   1816       "unpaired high surrogate");
   1817   TestError(
   1818       "table T { F:string; }"
   1819       "root_type T;"
   1820       "{ F:\"\\uD800abcd\"}",
   1821       "unpaired high surrogate");
   1822   TestError(
   1823       "table T { F:string; }"
   1824       "root_type T;"
   1825       "{ F:\"\\uD800\\n\"}",
   1826       "unpaired high surrogate");
   1827   TestError(
   1828       "table T { F:string; }"
   1829       "root_type T;"
   1830       "{ F:\"\\uD800\\uD800\"}",
   1831       "multiple high surrogates");
   1832   TestError(
   1833       "table T { F:string; }"
   1834       "root_type T;"
   1835       "{ F:\"\\uDC00\"}",
   1836       "unpaired low surrogate");
   1837 }
   1838 
   1839 void InvalidUTF8Test() {
   1840   // "1 byte" pattern, under min length of 2 bytes
   1841   TestError(
   1842       "table T { F:string; }"
   1843       "root_type T;"
   1844       "{ F:\"\x80\"}",
   1845       "illegal UTF-8 sequence");
   1846   // 2 byte pattern, string too short
   1847   TestError(
   1848       "table T { F:string; }"
   1849       "root_type T;"
   1850       "{ F:\"\xDF\"}",
   1851       "illegal UTF-8 sequence");
   1852   // 3 byte pattern, string too short
   1853   TestError(
   1854       "table T { F:string; }"
   1855       "root_type T;"
   1856       "{ F:\"\xEF\xBF\"}",
   1857       "illegal UTF-8 sequence");
   1858   // 4 byte pattern, string too short
   1859   TestError(
   1860       "table T { F:string; }"
   1861       "root_type T;"
   1862       "{ F:\"\xF7\xBF\xBF\"}",
   1863       "illegal UTF-8 sequence");
   1864   // "5 byte" pattern, string too short
   1865   TestError(
   1866       "table T { F:string; }"
   1867       "root_type T;"
   1868       "{ F:\"\xFB\xBF\xBF\xBF\"}",
   1869       "illegal UTF-8 sequence");
   1870   // "6 byte" pattern, string too short
   1871   TestError(
   1872       "table T { F:string; }"
   1873       "root_type T;"
   1874       "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
   1875       "illegal UTF-8 sequence");
   1876   // "7 byte" pattern, string too short
   1877   TestError(
   1878       "table T { F:string; }"
   1879       "root_type T;"
   1880       "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
   1881       "illegal UTF-8 sequence");
   1882   // "5 byte" pattern, over max length of 4 bytes
   1883   TestError(
   1884       "table T { F:string; }"
   1885       "root_type T;"
   1886       "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
   1887       "illegal UTF-8 sequence");
   1888   // "6 byte" pattern, over max length of 4 bytes
   1889   TestError(
   1890       "table T { F:string; }"
   1891       "root_type T;"
   1892       "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
   1893       "illegal UTF-8 sequence");
   1894   // "7 byte" pattern, over max length of 4 bytes
   1895   TestError(
   1896       "table T { F:string; }"
   1897       "root_type T;"
   1898       "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
   1899       "illegal UTF-8 sequence");
   1900 
   1901   // Three invalid encodings for U+000A (\n, aka NEWLINE)
   1902   TestError(
   1903       "table T { F:string; }"
   1904       "root_type T;"
   1905       "{ F:\"\xC0\x8A\"}",
   1906       "illegal UTF-8 sequence");
   1907   TestError(
   1908       "table T { F:string; }"
   1909       "root_type T;"
   1910       "{ F:\"\xE0\x80\x8A\"}",
   1911       "illegal UTF-8 sequence");
   1912   TestError(
   1913       "table T { F:string; }"
   1914       "root_type T;"
   1915       "{ F:\"\xF0\x80\x80\x8A\"}",
   1916       "illegal UTF-8 sequence");
   1917 
   1918   // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
   1919   TestError(
   1920       "table T { F:string; }"
   1921       "root_type T;"
   1922       "{ F:\"\xE0\x81\xA9\"}",
   1923       "illegal UTF-8 sequence");
   1924   TestError(
   1925       "table T { F:string; }"
   1926       "root_type T;"
   1927       "{ F:\"\xF0\x80\x81\xA9\"}",
   1928       "illegal UTF-8 sequence");
   1929 
   1930   // Invalid encoding for U+20AC (EURO SYMBOL)
   1931   TestError(
   1932       "table T { F:string; }"
   1933       "root_type T;"
   1934       "{ F:\"\xF0\x82\x82\xAC\"}",
   1935       "illegal UTF-8 sequence");
   1936 
   1937   // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
   1938   // UTF-8
   1939   TestError(
   1940       "table T { F:string; }"
   1941       "root_type T;"
   1942       // U+10400 "encoded" as U+D801 U+DC00
   1943       "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
   1944       "illegal UTF-8 sequence");
   1945 
   1946   // Check independence of identifier from locale.
   1947   std::string locale_ident;
   1948   locale_ident += "table T { F";
   1949   locale_ident += static_cast<char>(-32); // unsigned 0xE0
   1950   locale_ident += " :string; }";
   1951   locale_ident += "root_type T;";
   1952   locale_ident += "{}";
   1953   TestError(locale_ident.c_str(), "");
   1954 }
   1955 
   1956 void UnknownFieldsTest() {
   1957   flatbuffers::IDLOptions opts;
   1958   opts.skip_unexpected_fields_in_json = true;
   1959   flatbuffers::Parser parser(opts);
   1960 
   1961   TEST_EQ(parser.Parse("table T { str:string; i:int;}"
   1962                        "root_type T;"
   1963                        "{ str:\"test\","
   1964                        "unknown_string:\"test\","
   1965                        "\"unknown_string\":\"test\","
   1966                        "unknown_int:10,"
   1967                        "unknown_float:1.0,"
   1968                        "unknown_array: [ 1, 2, 3, 4],"
   1969                        "unknown_object: { i: 10 },"
   1970                        "\"unknown_object\": { \"i\": 10 },"
   1971                        "i:10}"),
   1972           true);
   1973 
   1974   std::string jsongen;
   1975   parser.opts.indent_step = -1;
   1976   auto result =
   1977       GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   1978   TEST_EQ(result, true);
   1979   TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
   1980 }
   1981 
   1982 void ParseUnionTest() {
   1983   // Unions must be parseable with the type field following the object.
   1984   flatbuffers::Parser parser;
   1985   TEST_EQ(parser.Parse("table T { A:int; }"
   1986                        "union U { T }"
   1987                        "table V { X:U; }"
   1988                        "root_type V;"
   1989                        "{ X:{ A:1 }, X_type: T }"),
   1990           true);
   1991   // Unions must be parsable with prefixed namespace.
   1992   flatbuffers::Parser parser2;
   1993   TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
   1994                         "table B { e:U; } root_type B;"
   1995                         "{ e_type: N_A, e: {} }"),
   1996           true);
   1997 }
   1998 
   1999 void InvalidNestedFlatbufferTest() {
   2000   // First, load and parse FlatBuffer schema (.fbs)
   2001   std::string schemafile;
   2002   TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
   2003                                 false, &schemafile),
   2004           true);
   2005   auto include_test_path =
   2006       flatbuffers::ConCatPathFileName(test_data_path, "include_test");
   2007   const char *include_directories[] = { test_data_path.c_str(),
   2008                                         include_test_path.c_str(), nullptr };
   2009   flatbuffers::Parser parser1;
   2010   TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true);
   2011 
   2012   // "color" inside nested flatbuffer contains invalid enum value
   2013   TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: "
   2014                         "\"Leela\", color: \"nonexistent\"}}"),
   2015           false);
   2016   // Check that Parser is destroyed correctly after parsing invalid json
   2017 }
   2018 
   2019 void UnionVectorTest() {
   2020   // load FlatBuffer fbs schema.
   2021   // TODO: load a JSON file with such a vector when JSON support is ready.
   2022   std::string schemafile;
   2023   TEST_EQ(flatbuffers::LoadFile(
   2024               (test_data_path + "union_vector/union_vector.fbs").c_str(), false,
   2025               &schemafile),
   2026           true);
   2027 
   2028   // parse schema.
   2029   flatbuffers::IDLOptions idl_opts;
   2030   idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kCpp;
   2031   flatbuffers::Parser parser(idl_opts);
   2032   TEST_EQ(parser.Parse(schemafile.c_str()), true);
   2033 
   2034   flatbuffers::FlatBufferBuilder fbb;
   2035 
   2036   // union types.
   2037   std::vector<uint8_t> types;
   2038   types.push_back(static_cast<uint8_t>(Character_Belle));
   2039   types.push_back(static_cast<uint8_t>(Character_MuLan));
   2040   types.push_back(static_cast<uint8_t>(Character_BookFan));
   2041   types.push_back(static_cast<uint8_t>(Character_Other));
   2042   types.push_back(static_cast<uint8_t>(Character_Unused));
   2043 
   2044   // union values.
   2045   std::vector<flatbuffers::Offset<void>> characters;
   2046   characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
   2047   characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
   2048   characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
   2049   characters.push_back(fbb.CreateString("Other").Union());
   2050   characters.push_back(fbb.CreateString("Unused").Union());
   2051 
   2052   // create Movie.
   2053   const auto movie_offset =
   2054       CreateMovie(fbb, Character_Rapunzel,
   2055                   fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
   2056                   fbb.CreateVector(types), fbb.CreateVector(characters));
   2057   FinishMovieBuffer(fbb, movie_offset);
   2058   auto buf = fbb.GetBufferPointer();
   2059 
   2060   flatbuffers::Verifier verifier(buf, fbb.GetSize());
   2061   TEST_EQ(VerifyMovieBuffer(verifier), true);
   2062 
   2063   auto flat_movie = GetMovie(buf);
   2064 
   2065   auto TestMovie = [](const Movie *movie) {
   2066     TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
   2067 
   2068     auto cts = movie->characters_type();
   2069     TEST_EQ(movie->characters_type()->size(), 5);
   2070     TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
   2071     TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
   2072     TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
   2073     TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
   2074     TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
   2075 
   2076     auto rapunzel = movie->main_character_as_Rapunzel();
   2077     TEST_NOTNULL(rapunzel);
   2078     TEST_EQ(rapunzel->hair_length(), 6);
   2079 
   2080     auto cs = movie->characters();
   2081     TEST_EQ(cs->size(), 5);
   2082     auto belle = cs->GetAs<BookReader>(0);
   2083     TEST_EQ(belle->books_read(), 7);
   2084     auto mu_lan = cs->GetAs<Attacker>(1);
   2085     TEST_EQ(mu_lan->sword_attack_damage(), 5);
   2086     auto book_fan = cs->GetAs<BookReader>(2);
   2087     TEST_EQ(book_fan->books_read(), 2);
   2088     auto other = cs->GetAsString(3);
   2089     TEST_EQ_STR(other->c_str(), "Other");
   2090     auto unused = cs->GetAsString(4);
   2091     TEST_EQ_STR(unused->c_str(), "Unused");
   2092   };
   2093 
   2094   TestMovie(flat_movie);
   2095 
   2096   auto movie_object = flat_movie->UnPack();
   2097   TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
   2098   TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
   2099   TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
   2100   TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
   2101   TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
   2102   TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
   2103 
   2104   fbb.Clear();
   2105   fbb.Finish(Movie::Pack(fbb, movie_object));
   2106 
   2107   delete movie_object;
   2108 
   2109   auto repacked_movie = GetMovie(fbb.GetBufferPointer());
   2110 
   2111   TestMovie(repacked_movie);
   2112 
   2113   auto s =
   2114       flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable());
   2115   TEST_EQ_STR(
   2116       s.c_str(),
   2117       "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
   2118       "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
   2119       "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
   2120       "{ books_read: 2 }, \"Other\", \"Unused\" ] }");
   2121 
   2122 
   2123   flatbuffers::ToStringVisitor visitor("\n", true, "  ");
   2124   IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor);
   2125   TEST_EQ_STR(
   2126       visitor.s.c_str(),
   2127       "{\n"
   2128       "  \"main_character_type\": \"Rapunzel\",\n"
   2129       "  \"main_character\": {\n"
   2130       "    \"hair_length\": 6\n"
   2131       "  },\n"
   2132       "  \"characters_type\": [\n"
   2133       "    \"Belle\",\n"
   2134       "    \"MuLan\",\n"
   2135       "    \"BookFan\",\n"
   2136       "    \"Other\",\n"
   2137       "    \"Unused\"\n"
   2138       "  ],\n"
   2139       "  \"characters\": [\n"
   2140       "    {\n"
   2141       "      \"books_read\": 7\n"
   2142       "    },\n"
   2143       "    {\n"
   2144       "      \"sword_attack_damage\": 5\n"
   2145       "    },\n"
   2146       "    {\n"
   2147       "      \"books_read\": 2\n"
   2148       "    },\n"
   2149       "    \"Other\",\n"
   2150       "    \"Unused\"\n"
   2151       "  ]\n"
   2152       "}");
   2153 }
   2154 
   2155 void ConformTest() {
   2156   flatbuffers::Parser parser;
   2157   TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
   2158 
   2159   auto test_conform = [](flatbuffers::Parser &parser1, const char *test,
   2160                          const char *expected_err) {
   2161     flatbuffers::Parser parser2;
   2162     TEST_EQ(parser2.Parse(test), true);
   2163     auto err = parser2.ConformTo(parser1);
   2164     TEST_NOTNULL(strstr(err.c_str(), expected_err));
   2165   };
   2166 
   2167   test_conform(parser, "table T { A:byte; }", "types differ for field");
   2168   test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
   2169   test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
   2170   test_conform(parser, "table T { B:float; }",
   2171                "field renamed to different type");
   2172   test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
   2173 }
   2174 
   2175 void ParseProtoBufAsciiTest() {
   2176   // We can put the parser in a mode where it will accept JSON that looks more
   2177   // like Protobuf ASCII, for users that have data in that format.
   2178   // This uses no "" for field names (which we already support by default,
   2179   // omits `,`, `:` before `{` and a couple of other features.
   2180   flatbuffers::Parser parser;
   2181   parser.opts.protobuf_ascii_alike = true;
   2182   TEST_EQ(
   2183       parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"),
   2184       true);
   2185   TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
   2186   // Similarly, in text output, it should omit these.
   2187   std::string text;
   2188   auto ok = flatbuffers::GenerateText(
   2189       parser, parser.builder_.GetBufferPointer(), &text);
   2190   TEST_EQ(ok, true);
   2191   TEST_EQ_STR(text.c_str(),
   2192               "{\n  A [\n    1\n    2\n  ]\n  C {\n    B: 2\n  }\n}\n");
   2193 }
   2194 
   2195 void FlexBuffersTest() {
   2196   flexbuffers::Builder slb(512,
   2197                            flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
   2198 
   2199   // Write the equivalent of:
   2200   // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
   2201   // foo: 100, bool: true, mymap: { foo: "Fred" } }
   2202   // clang-format off
   2203   #ifndef FLATBUFFERS_CPP98_STL
   2204     // It's possible to do this without std::function support as well.
   2205     slb.Map([&]() {
   2206        slb.Vector("vec", [&]() {
   2207         slb += -100;  // Equivalent to slb.Add(-100) or slb.Int(-100);
   2208         slb += "Fred";
   2209         slb.IndirectFloat(4.0f);
   2210         uint8_t blob[] = { 77 };
   2211         slb.Blob(blob, 1);
   2212         slb += false;
   2213       });
   2214       int ints[] = { 1, 2, 3 };
   2215       slb.Vector("bar", ints, 3);
   2216       slb.FixedTypedVector("bar3", ints, 3);
   2217       bool bools[] = {true, false, true, false};
   2218       slb.Vector("bools", bools, 4);
   2219       slb.Bool("bool", true);
   2220       slb.Double("foo", 100);
   2221       slb.Map("mymap", [&]() {
   2222         slb.String("foo", "Fred");  // Testing key and string reuse.
   2223       });
   2224     });
   2225     slb.Finish();
   2226   #else
   2227     // It's possible to do this without std::function support as well.
   2228     slb.Map([](flexbuffers::Builder& slb2) {
   2229        slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
   2230         slb3 += -100;  // Equivalent to slb.Add(-100) or slb.Int(-100);
   2231         slb3 += "Fred";
   2232         slb3.IndirectFloat(4.0f);
   2233         uint8_t blob[] = { 77 };
   2234         slb3.Blob(blob, 1);
   2235         slb3 += false;
   2236       }, slb2);
   2237       int ints[] = { 1, 2, 3 };
   2238       slb2.Vector("bar", ints, 3);
   2239       slb2.FixedTypedVector("bar3", ints, 3);
   2240       slb2.Bool("bool", true);
   2241       slb2.Double("foo", 100);
   2242       slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
   2243         slb3.String("foo", "Fred");  // Testing key and string reuse.
   2244       }, slb2);
   2245     }, slb);
   2246     slb.Finish();
   2247   #endif  // FLATBUFFERS_CPP98_STL
   2248 
   2249   #ifdef FLATBUFFERS_TEST_VERBOSE
   2250     for (size_t i = 0; i < slb.GetBuffer().size(); i++)
   2251       printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
   2252     printf("\n");
   2253   #endif
   2254   // clang-format on
   2255 
   2256   auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
   2257   TEST_EQ(map.size(), 7);
   2258   auto vec = map["vec"].AsVector();
   2259   TEST_EQ(vec.size(), 5);
   2260   TEST_EQ(vec[0].AsInt64(), -100);
   2261   TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
   2262   TEST_EQ(vec[1].AsInt64(), 0);  // Number parsing failed.
   2263   TEST_EQ(vec[2].AsDouble(), 4.0);
   2264   TEST_EQ(vec[2].AsString().IsTheEmptyString(), true);  // Wrong Type.
   2265   TEST_EQ_STR(vec[2].AsString().c_str(), "");     // This still works though.
   2266   TEST_EQ_STR(vec[2].ToString().c_str(), "4.0");  // Or have it converted.
   2267 
   2268   // Few tests for templated version of As.
   2269   TEST_EQ(vec[0].As<int64_t>(), -100);
   2270   TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
   2271   TEST_EQ(vec[1].As<int64_t>(), 0);  // Number parsing failed.
   2272   TEST_EQ(vec[2].As<double>(), 4.0);
   2273 
   2274   // Test that the blob can be accessed.
   2275   TEST_EQ(vec[3].IsBlob(), true);
   2276   auto blob = vec[3].AsBlob();
   2277   TEST_EQ(blob.size(), 1);
   2278   TEST_EQ(blob.data()[0], 77);
   2279   TEST_EQ(vec[4].IsBool(), true);   // Check if type is a bool
   2280   TEST_EQ(vec[4].AsBool(), false);  // Check if value is false
   2281   auto tvec = map["bar"].AsTypedVector();
   2282   TEST_EQ(tvec.size(), 3);
   2283   TEST_EQ(tvec[2].AsInt8(), 3);
   2284   auto tvec3 = map["bar3"].AsFixedTypedVector();
   2285   TEST_EQ(tvec3.size(), 3);
   2286   TEST_EQ(tvec3[2].AsInt8(), 3);
   2287   TEST_EQ(map["bool"].AsBool(), true);
   2288   auto tvecb = map["bools"].AsTypedVector();
   2289   TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
   2290   TEST_EQ(map["foo"].AsUInt8(), 100);
   2291   TEST_EQ(map["unknown"].IsNull(), true);
   2292   auto mymap = map["mymap"].AsMap();
   2293   // These should be equal by pointer equality, since key and value are shared.
   2294   TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
   2295   TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
   2296   // We can mutate values in the buffer.
   2297   TEST_EQ(vec[0].MutateInt(-99), true);
   2298   TEST_EQ(vec[0].AsInt64(), -99);
   2299   TEST_EQ(vec[1].MutateString("John"), true);  // Size must match.
   2300   TEST_EQ_STR(vec[1].AsString().c_str(), "John");
   2301   TEST_EQ(vec[1].MutateString("Alfred"), false);  // Too long.
   2302   TEST_EQ(vec[2].MutateFloat(2.0f), true);
   2303   TEST_EQ(vec[2].AsFloat(), 2.0f);
   2304   TEST_EQ(vec[2].MutateFloat(3.14159), false);  // Double does not fit in float.
   2305   TEST_EQ(vec[4].AsBool(), false);              // Is false before change
   2306   TEST_EQ(vec[4].MutateBool(true), true);       // Can change a bool
   2307   TEST_EQ(vec[4].AsBool(), true);               // Changed bool is now true
   2308 
   2309   // Parse from JSON:
   2310   flatbuffers::Parser parser;
   2311   slb.Clear();
   2312   auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
   2313   TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
   2314   auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
   2315   auto jmap = jroot.AsMap();
   2316   auto jvec = jmap["a"].AsVector();
   2317   TEST_EQ(jvec[0].AsInt64(), 123);
   2318   TEST_EQ(jvec[1].AsDouble(), 456.0);
   2319   TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
   2320   TEST_EQ(jmap["c"].IsBool(), true);   // Parsed correctly to a bool
   2321   TEST_EQ(jmap["c"].AsBool(), true);   // Parsed correctly to true
   2322   TEST_EQ(jmap["d"].IsBool(), true);   // Parsed correctly to a bool
   2323   TEST_EQ(jmap["d"].AsBool(), false);  // Parsed correctly to false
   2324   // And from FlexBuffer back to JSON:
   2325   auto jsonback = jroot.ToString();
   2326   TEST_EQ_STR(jsontest, jsonback.c_str());
   2327 }
   2328 
   2329 void TypeAliasesTest() {
   2330   flatbuffers::FlatBufferBuilder builder;
   2331 
   2332   builder.Finish(CreateTypeAliases(
   2333       builder, flatbuffers::numeric_limits<int8_t>::min(),
   2334       flatbuffers::numeric_limits<uint8_t>::max(),
   2335       flatbuffers::numeric_limits<int16_t>::min(),
   2336       flatbuffers::numeric_limits<uint16_t>::max(),
   2337       flatbuffers::numeric_limits<int32_t>::min(),
   2338       flatbuffers::numeric_limits<uint32_t>::max(),
   2339       flatbuffers::numeric_limits<int64_t>::min(),
   2340       flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
   2341 
   2342   auto p = builder.GetBufferPointer();
   2343   auto ta = flatbuffers::GetRoot<TypeAliases>(p);
   2344 
   2345   TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
   2346   TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
   2347   TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
   2348   TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
   2349   TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
   2350   TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
   2351   TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
   2352   TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
   2353   TEST_EQ(ta->f32(), 2.3f);
   2354   TEST_EQ(ta->f64(), 2.3);
   2355   using namespace flatbuffers; // is_same
   2356   static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
   2357   static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
   2358   static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
   2359   static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
   2360   static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
   2361   static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
   2362   static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
   2363   static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
   2364   static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
   2365   static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
   2366 }
   2367 
   2368 void EndianSwapTest() {
   2369   TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412);
   2370   TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
   2371           0x78563412);
   2372   TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
   2373           0xEFCDAB9078563412);
   2374   TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
   2375 }
   2376 
   2377 void UninitializedVectorTest() {
   2378   flatbuffers::FlatBufferBuilder builder;
   2379 
   2380   Test *buf = nullptr;
   2381   auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf);
   2382   TEST_NOTNULL(buf);
   2383   buf[0] = Test(10, 20);
   2384   buf[1] = Test(30, 40);
   2385 
   2386   auto required_name = builder.CreateString("myMonster");
   2387   auto monster_builder = MonsterBuilder(builder);
   2388   monster_builder.add_name(required_name); // required field mandated for monster.
   2389   monster_builder.add_test4(vector_offset);
   2390   builder.Finish(monster_builder.Finish());
   2391 
   2392   auto p = builder.GetBufferPointer();
   2393   auto uvt = flatbuffers::GetRoot<Monster>(p);
   2394   TEST_NOTNULL(uvt);
   2395   auto vec = uvt->test4();
   2396   TEST_NOTNULL(vec);
   2397   auto test_0 = vec->Get(0);
   2398   auto test_1 = vec->Get(1);
   2399   TEST_EQ(test_0->a(), 10);
   2400   TEST_EQ(test_0->b(), 20);
   2401   TEST_EQ(test_1->a(), 30);
   2402   TEST_EQ(test_1->b(), 40);
   2403 }
   2404 
   2405 void EqualOperatorTest() {
   2406   MonsterT a;
   2407   MonsterT b;
   2408   TEST_EQ(b == a, true);
   2409 
   2410   b.mana = 33;
   2411   TEST_EQ(b == a, false);
   2412   b.mana = 150;
   2413   TEST_EQ(b == a, true);
   2414 
   2415   b.inventory.push_back(3);
   2416   TEST_EQ(b == a, false);
   2417   b.inventory.clear();
   2418   TEST_EQ(b == a, true);
   2419 
   2420   b.test.type = Any_Monster;
   2421   TEST_EQ(b == a, false);
   2422 }
   2423 
   2424 // For testing any binaries, e.g. from fuzzing.
   2425 void LoadVerifyBinaryTest() {
   2426   std::string binary;
   2427   if (flatbuffers::LoadFile((test_data_path +
   2428                              "fuzzer/your-filename-here").c_str(),
   2429                             true, &binary)) {
   2430     flatbuffers::Verifier verifier(
   2431           reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
   2432     TEST_EQ(VerifyMonsterBuffer(verifier), true);
   2433   }
   2434 }
   2435 
   2436 void CreateSharedStringTest() {
   2437   flatbuffers::FlatBufferBuilder builder;
   2438   const auto one1 = builder.CreateSharedString("one");
   2439   const auto two = builder.CreateSharedString("two");
   2440   const auto one2 = builder.CreateSharedString("one");
   2441   TEST_EQ(one1.o, one2.o);
   2442   const auto onetwo = builder.CreateSharedString("onetwo");
   2443   TEST_EQ(onetwo.o != one1.o, true);
   2444   TEST_EQ(onetwo.o != two.o, true);
   2445 
   2446   // Support for embedded nulls
   2447   const char chars_b[] = {'a', '\0', 'b'};
   2448   const char chars_c[] = {'a', '\0', 'c'};
   2449   const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b));
   2450   const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c));
   2451   const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b));
   2452   TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro
   2453   TEST_EQ(null_b1.o, null_b2.o);
   2454 
   2455   // Put the strings into an array for round trip verification.
   2456   const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 };
   2457   const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7));
   2458   MonsterBuilder monster_builder(builder);
   2459   monster_builder.add_name(two);
   2460   monster_builder.add_testarrayofstring(vector_offset);
   2461   builder.Finish(monster_builder.Finish());
   2462 
   2463   // Read the Monster back.
   2464   const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer());
   2465   TEST_EQ_STR(monster->name()->c_str(), "two");
   2466   const auto *testarrayofstring = monster->testarrayofstring();
   2467   TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7));
   2468   const auto &a = *testarrayofstring;
   2469   TEST_EQ_STR(a[0]->c_str(), "one");
   2470   TEST_EQ_STR(a[1]->c_str(), "two");
   2471   TEST_EQ_STR(a[2]->c_str(), "one");
   2472   TEST_EQ_STR(a[3]->c_str(), "onetwo");
   2473   TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b))));
   2474   TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c))));
   2475   TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b))));
   2476 
   2477   // Make sure String::operator< works, too, since it is related to StringOffsetCompare.
   2478   TEST_EQ((*a[0]) < (*a[1]), true);
   2479   TEST_EQ((*a[1]) < (*a[0]), false);
   2480   TEST_EQ((*a[1]) < (*a[2]), false);
   2481   TEST_EQ((*a[2]) < (*a[1]), true);
   2482   TEST_EQ((*a[4]) < (*a[3]), true);
   2483   TEST_EQ((*a[5]) < (*a[4]), false);
   2484   TEST_EQ((*a[5]) < (*a[4]), false);
   2485   TEST_EQ((*a[6]) < (*a[5]), true);
   2486 }
   2487 
   2488 int FlatBufferTests() {
   2489   // clang-format off
   2490 
   2491   // Run our various test suites:
   2492 
   2493   std::string rawbuf;
   2494   auto flatbuf1 = CreateFlatBufferTest(rawbuf);
   2495   #if !defined(FLATBUFFERS_CPP98_STL)
   2496     auto flatbuf = std::move(flatbuf1);  // Test move assignment.
   2497   #else
   2498     auto &flatbuf = flatbuf1;
   2499   #endif // !defined(FLATBUFFERS_CPP98_STL)
   2500 
   2501   TriviallyCopyableTest();
   2502 
   2503   AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
   2504                        rawbuf.length());
   2505   AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
   2506 
   2507   MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
   2508 
   2509   ObjectFlatBuffersTest(flatbuf.data());
   2510 
   2511   MiniReflectFlatBuffersTest(flatbuf.data());
   2512 
   2513   SizePrefixedTest();
   2514 
   2515   #ifndef FLATBUFFERS_NO_FILE_TESTS
   2516     #ifdef FLATBUFFERS_TEST_PATH_PREFIX
   2517       test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
   2518                        test_data_path;
   2519     #endif
   2520     ParseAndGenerateTextTest(false);
   2521     ParseAndGenerateTextTest(true);
   2522     ReflectionTest(flatbuf.data(), flatbuf.size());
   2523     ParseProtoTest();
   2524     UnionVectorTest();
   2525     LoadVerifyBinaryTest();
   2526   #endif
   2527   // clang-format on
   2528 
   2529   FuzzTest1();
   2530   FuzzTest2();
   2531 
   2532   ErrorTest();
   2533   ValueTest();
   2534   EnumStringsTest();
   2535   EnumNamesTest();
   2536   EnumOutOfRangeTest();
   2537   IntegerOutOfRangeTest();
   2538   IntegerBoundaryTest();
   2539   UnicodeTest();
   2540   UnicodeTestAllowNonUTF8();
   2541   UnicodeTestGenerateTextFailsOnNonUTF8();
   2542   UnicodeSurrogatesTest();
   2543   UnicodeInvalidSurrogatesTest();
   2544   InvalidUTF8Test();
   2545   UnknownFieldsTest();
   2546   ParseUnionTest();
   2547   InvalidNestedFlatbufferTest();
   2548   ConformTest();
   2549   ParseProtoBufAsciiTest();
   2550   TypeAliasesTest();
   2551   EndianSwapTest();
   2552   CreateSharedStringTest();
   2553   JsonDefaultTest();
   2554   FlexBuffersTest();
   2555   UninitializedVectorTest();
   2556   EqualOperatorTest();
   2557   NumericUtilsTest();
   2558   IsAsciiUtilsTest();
   2559   ValidFloatTest();
   2560   InvalidFloatTest();
   2561   return 0;
   2562 }
   2563 
   2564 int main(int /*argc*/, const char * /*argv*/ []) {
   2565   InitTestEngine();
   2566 
   2567   std::string req_locale;
   2568   if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE",
   2569                                           &req_locale)) {
   2570     TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s",
   2571                      req_locale.c_str());
   2572     req_locale = flatbuffers::RemoveStringQuotes(req_locale);
   2573     std::string the_locale;
   2574     TEST_ASSERT_FUNC(
   2575         flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale));
   2576     TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str());
   2577   }
   2578 
   2579   FlatBufferTests();
   2580   FlatBufferBuilderTest();
   2581 
   2582   if (!testing_fails) {
   2583     TEST_OUTPUT_LINE("ALL TESTS PASSED");
   2584   } else {
   2585     TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
   2586   }
   2587   return CloseTestEngine();
   2588 }
   2589