1 /* 2 * Copyright 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <assert.h> 25 #include <stdbool.h> 26 #include <string.h> 27 #include <sys/mman.h> 28 #include <sys/sysinfo.h> 29 #include <unistd.h> 30 #include <fcntl.h> 31 #include <xf86drm.h> 32 #include <drm_fourcc.h> 33 34 #include "anv_private.h" 35 #include "util/strtod.h" 36 #include "util/debug.h" 37 #include "util/build_id.h" 38 #include "util/mesa-sha1.h" 39 #include "vk_util.h" 40 41 #include "genxml/gen7_pack.h" 42 43 static void 44 compiler_debug_log(void *data, const char *fmt, ...) 45 { } 46 47 static void 48 compiler_perf_log(void *data, const char *fmt, ...) 49 { 50 va_list args; 51 va_start(args, fmt); 52 53 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) 54 intel_logd_v(fmt, args); 55 56 va_end(args); 57 } 58 59 static VkResult 60 anv_compute_heap_size(int fd, uint64_t *heap_size) 61 { 62 uint64_t gtt_size; 63 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE, 64 >t_size) == -1) { 65 /* If, for whatever reason, we can't actually get the GTT size from the 66 * kernel (too old?) fall back to the aperture size. 67 */ 68 anv_perf_warn(NULL, NULL, 69 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m"); 70 71 if (anv_gem_get_aperture(fd, >t_size) == -1) { 72 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED, 73 "failed to get aperture size: %m"); 74 } 75 } 76 77 /* Query the total ram from the system */ 78 struct sysinfo info; 79 sysinfo(&info); 80 81 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit; 82 83 /* We don't want to burn too much ram with the GPU. If the user has 4GiB 84 * or less, we use at most half. If they have more than 4GiB, we use 3/4. 85 */ 86 uint64_t available_ram; 87 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull) 88 available_ram = total_ram / 2; 89 else 90 available_ram = total_ram * 3 / 4; 91 92 /* We also want to leave some padding for things we allocate in the driver, 93 * so don't go over 3/4 of the GTT either. 94 */ 95 uint64_t available_gtt = gtt_size * 3 / 4; 96 97 *heap_size = MIN2(available_ram, available_gtt); 98 99 return VK_SUCCESS; 100 } 101 102 static VkResult 103 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd) 104 { 105 /* The kernel query only tells us whether or not the kernel supports the 106 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the 107 * hardware has actual 48bit address support. 108 */ 109 device->supports_48bit_addresses = 110 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd); 111 112 uint64_t heap_size; 113 VkResult result = anv_compute_heap_size(fd, &heap_size); 114 if (result != VK_SUCCESS) 115 return result; 116 117 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) { 118 /* When running with an overridden PCI ID, we may get a GTT size from 119 * the kernel that is greater than 2 GiB but the execbuf check for 48bit 120 * address support can still fail. Just clamp the address space size to 121 * 2 GiB if we don't have 48-bit support. 122 */ 123 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but " 124 "not support for 48-bit addresses", 125 __FILE__, __LINE__); 126 heap_size = 2ull << 30; 127 } 128 129 if (heap_size <= 3ull * (1ull << 30)) { 130 /* In this case, everything fits nicely into the 32-bit address space, 131 * so there's no need for supporting 48bit addresses on client-allocated 132 * memory objects. 133 */ 134 device->memory.heap_count = 1; 135 device->memory.heaps[0] = (struct anv_memory_heap) { 136 .size = heap_size, 137 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, 138 .supports_48bit_addresses = false, 139 }; 140 } else { 141 /* Not everything will fit nicely into a 32-bit address space. In this 142 * case we need a 64-bit heap. Advertise a small 32-bit heap and a 143 * larger 48-bit heap. If we're in this case, then we have a total heap 144 * size larger than 3GiB which most likely means they have 8 GiB of 145 * video memory and so carving off 1 GiB for the 32-bit heap should be 146 * reasonable. 147 */ 148 const uint64_t heap_size_32bit = 1ull << 30; 149 const uint64_t heap_size_48bit = heap_size - heap_size_32bit; 150 151 assert(device->supports_48bit_addresses); 152 153 device->memory.heap_count = 2; 154 device->memory.heaps[0] = (struct anv_memory_heap) { 155 .size = heap_size_48bit, 156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, 157 .supports_48bit_addresses = true, 158 }; 159 device->memory.heaps[1] = (struct anv_memory_heap) { 160 .size = heap_size_32bit, 161 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, 162 .supports_48bit_addresses = false, 163 }; 164 } 165 166 uint32_t type_count = 0; 167 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) { 168 uint32_t valid_buffer_usage = ~0; 169 170 /* There appears to be a hardware issue in the VF cache where it only 171 * considers the bottom 32 bits of memory addresses. If you happen to 172 * have two vertex buffers which get placed exactly 4 GiB apart and use 173 * them in back-to-back draw calls, you can get collisions. In order to 174 * solve this problem, we require vertex and index buffers be bound to 175 * memory allocated out of the 32-bit heap. 176 */ 177 if (device->memory.heaps[heap].supports_48bit_addresses) { 178 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | 179 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); 180 } 181 182 if (device->info.has_llc) { 183 /* Big core GPUs share LLC with the CPU and thus one memory type can be 184 * both cached and coherent at the same time. 185 */ 186 device->memory.types[type_count++] = (struct anv_memory_type) { 187 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | 188 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | 189 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | 190 VK_MEMORY_PROPERTY_HOST_CACHED_BIT, 191 .heapIndex = heap, 192 .valid_buffer_usage = valid_buffer_usage, 193 }; 194 } else { 195 /* The spec requires that we expose a host-visible, coherent memory 196 * type, but Atom GPUs don't share LLC. Thus we offer two memory types 197 * to give the application a choice between cached, but not coherent and 198 * coherent but uncached (WC though). 199 */ 200 device->memory.types[type_count++] = (struct anv_memory_type) { 201 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | 202 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | 203 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, 204 .heapIndex = heap, 205 .valid_buffer_usage = valid_buffer_usage, 206 }; 207 device->memory.types[type_count++] = (struct anv_memory_type) { 208 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | 209 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | 210 VK_MEMORY_PROPERTY_HOST_CACHED_BIT, 211 .heapIndex = heap, 212 .valid_buffer_usage = valid_buffer_usage, 213 }; 214 } 215 } 216 device->memory.type_count = type_count; 217 218 return VK_SUCCESS; 219 } 220 221 static VkResult 222 anv_physical_device_init_uuids(struct anv_physical_device *device) 223 { 224 const struct build_id_note *note = 225 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids); 226 if (!note) { 227 return vk_errorf(device->instance, device, 228 VK_ERROR_INITIALIZATION_FAILED, 229 "Failed to find build-id"); 230 } 231 232 unsigned build_id_len = build_id_length(note); 233 if (build_id_len < 20) { 234 return vk_errorf(device->instance, device, 235 VK_ERROR_INITIALIZATION_FAILED, 236 "build-id too short. It needs to be a SHA"); 237 } 238 239 struct mesa_sha1 sha1_ctx; 240 uint8_t sha1[20]; 241 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1)); 242 243 /* The pipeline cache UUID is used for determining when a pipeline cache is 244 * invalid. It needs both a driver build and the PCI ID of the device. 245 */ 246 _mesa_sha1_init(&sha1_ctx); 247 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len); 248 _mesa_sha1_update(&sha1_ctx, &device->chipset_id, 249 sizeof(device->chipset_id)); 250 _mesa_sha1_final(&sha1_ctx, sha1); 251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE); 252 253 /* The driver UUID is used for determining sharability of images and memory 254 * between two Vulkan instances in separate processes. People who want to 255 * share memory need to also check the device UUID (below) so all this 256 * needs to be is the build-id. 257 */ 258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE); 259 260 /* The device UUID uniquely identifies the given device within the machine. 261 * Since we never have more than one device, this doesn't need to be a real 262 * UUID. However, on the off-chance that someone tries to use this to 263 * cache pre-tiled images or something of the like, we use the PCI ID and 264 * some bits of ISL info to ensure that this is safe. 265 */ 266 _mesa_sha1_init(&sha1_ctx); 267 _mesa_sha1_update(&sha1_ctx, &device->chipset_id, 268 sizeof(device->chipset_id)); 269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling, 270 sizeof(device->isl_dev.has_bit6_swizzling)); 271 _mesa_sha1_final(&sha1_ctx, sha1); 272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE); 273 274 return VK_SUCCESS; 275 } 276 277 static VkResult 278 anv_physical_device_init(struct anv_physical_device *device, 279 struct anv_instance *instance, 280 const char *path) 281 { 282 VkResult result; 283 int fd; 284 285 brw_process_intel_debug_variable(); 286 287 fd = open(path, O_RDWR | O_CLOEXEC); 288 if (fd < 0) 289 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); 290 291 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; 292 device->instance = instance; 293 294 assert(strlen(path) < ARRAY_SIZE(device->path)); 295 strncpy(device->path, path, ARRAY_SIZE(device->path)); 296 297 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID); 298 if (!device->chipset_id) { 299 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); 300 goto fail; 301 } 302 303 device->name = gen_get_device_name(device->chipset_id); 304 if (!gen_get_device_info(device->chipset_id, &device->info)) { 305 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); 306 goto fail; 307 } 308 309 if (device->info.is_haswell) { 310 intel_logw("Haswell Vulkan support is incomplete"); 311 } else if (device->info.gen == 7 && !device->info.is_baytrail) { 312 intel_logw("Ivy Bridge Vulkan support is incomplete"); 313 } else if (device->info.gen == 7 && device->info.is_baytrail) { 314 intel_logw("Bay Trail Vulkan support is incomplete"); 315 } else if (device->info.gen >= 8 && device->info.gen <= 10) { 316 /* Gen8-10 fully supported */ 317 } else { 318 result = vk_errorf(device->instance, device, 319 VK_ERROR_INCOMPATIBLE_DRIVER, 320 "Vulkan not yet supported on %s", device->name); 321 goto fail; 322 } 323 324 device->cmd_parser_version = -1; 325 if (device->info.gen == 7) { 326 device->cmd_parser_version = 327 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION); 328 if (device->cmd_parser_version == -1) { 329 result = vk_errorf(device->instance, device, 330 VK_ERROR_INITIALIZATION_FAILED, 331 "failed to get command parser version"); 332 goto fail; 333 } 334 } 335 336 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) { 337 result = vk_errorf(device->instance, device, 338 VK_ERROR_INITIALIZATION_FAILED, 339 "kernel missing gem wait"); 340 goto fail; 341 } 342 343 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) { 344 result = vk_errorf(device->instance, device, 345 VK_ERROR_INITIALIZATION_FAILED, 346 "kernel missing execbuf2"); 347 goto fail; 348 } 349 350 if (!device->info.has_llc && 351 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) { 352 result = vk_errorf(device->instance, device, 353 VK_ERROR_INITIALIZATION_FAILED, 354 "kernel missing wc mmap"); 355 goto fail; 356 } 357 358 result = anv_physical_device_init_heaps(device, fd); 359 if (result != VK_SUCCESS) 360 goto fail; 361 362 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC); 363 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE); 364 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE); 365 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY); 366 device->has_syncobj_wait = device->has_syncobj && 367 anv_gem_supports_syncobj_wait(fd); 368 369 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X); 370 371 /* Starting with Gen10, the timestamp frequency of the command streamer may 372 * vary from one part to another. We can query the value from the kernel. 373 */ 374 if (device->info.gen >= 10) { 375 int timestamp_frequency = 376 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY); 377 378 if (timestamp_frequency < 0) 379 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency"); 380 else 381 device->info.timestamp_frequency = timestamp_frequency; 382 } 383 384 /* GENs prior to 8 do not support EU/Subslice info */ 385 if (device->info.gen >= 8) { 386 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL); 387 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL); 388 389 /* Without this information, we cannot get the right Braswell 390 * brandstrings, and we have to use conservative numbers for GPGPU on 391 * many platforms, but otherwise, things will just work. 392 */ 393 if (device->subslice_total < 1 || device->eu_total < 1) { 394 intel_logw("Kernel 4.1 required to properly query GPU properties"); 395 } 396 } else if (device->info.gen == 7) { 397 device->subslice_total = 1 << (device->info.gt - 1); 398 } 399 400 if (device->info.is_cherryview && 401 device->subslice_total > 0 && device->eu_total > 0) { 402 /* Logical CS threads = EUs per subslice * num threads per EU */ 403 uint32_t max_cs_threads = 404 device->eu_total / device->subslice_total * device->info.num_thread_per_eu; 405 406 /* Fuse configurations may give more threads than expected, never less. */ 407 if (max_cs_threads > device->info.max_cs_threads) 408 device->info.max_cs_threads = max_cs_threads; 409 } 410 411 device->compiler = brw_compiler_create(NULL, &device->info); 412 if (device->compiler == NULL) { 413 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 414 goto fail; 415 } 416 device->compiler->shader_debug_log = compiler_debug_log; 417 device->compiler->shader_perf_log = compiler_perf_log; 418 device->compiler->supports_pull_constants = false; 419 device->compiler->constant_buffer_0_is_relative = true; 420 421 isl_device_init(&device->isl_dev, &device->info, swizzled); 422 423 result = anv_physical_device_init_uuids(device); 424 if (result != VK_SUCCESS) 425 goto fail; 426 427 result = anv_init_wsi(device); 428 if (result != VK_SUCCESS) { 429 ralloc_free(device->compiler); 430 goto fail; 431 } 432 433 anv_physical_device_get_supported_extensions(device, 434 &device->supported_extensions); 435 436 device->local_fd = fd; 437 return VK_SUCCESS; 438 439 fail: 440 close(fd); 441 return result; 442 } 443 444 static void 445 anv_physical_device_finish(struct anv_physical_device *device) 446 { 447 anv_finish_wsi(device); 448 ralloc_free(device->compiler); 449 close(device->local_fd); 450 } 451 452 static void * 453 default_alloc_func(void *pUserData, size_t size, size_t align, 454 VkSystemAllocationScope allocationScope) 455 { 456 return malloc(size); 457 } 458 459 static void * 460 default_realloc_func(void *pUserData, void *pOriginal, size_t size, 461 size_t align, VkSystemAllocationScope allocationScope) 462 { 463 return realloc(pOriginal, size); 464 } 465 466 static void 467 default_free_func(void *pUserData, void *pMemory) 468 { 469 free(pMemory); 470 } 471 472 static const VkAllocationCallbacks default_alloc = { 473 .pUserData = NULL, 474 .pfnAllocation = default_alloc_func, 475 .pfnReallocation = default_realloc_func, 476 .pfnFree = default_free_func, 477 }; 478 479 VkResult anv_EnumerateInstanceExtensionProperties( 480 const char* pLayerName, 481 uint32_t* pPropertyCount, 482 VkExtensionProperties* pProperties) 483 { 484 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); 485 486 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) { 487 if (anv_instance_extensions_supported.extensions[i]) { 488 vk_outarray_append(&out, prop) { 489 *prop = anv_instance_extensions[i]; 490 } 491 } 492 } 493 494 return vk_outarray_status(&out); 495 } 496 497 VkResult anv_CreateInstance( 498 const VkInstanceCreateInfo* pCreateInfo, 499 const VkAllocationCallbacks* pAllocator, 500 VkInstance* pInstance) 501 { 502 struct anv_instance *instance; 503 VkResult result; 504 505 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO); 506 507 /* Check if user passed a debug report callback to be used during 508 * Create/Destroy of instance. 509 */ 510 const VkDebugReportCallbackCreateInfoEXT *ctor_cb = 511 vk_find_struct_const(pCreateInfo->pNext, 512 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT); 513 514 uint32_t client_version; 515 if (pCreateInfo->pApplicationInfo && 516 pCreateInfo->pApplicationInfo->apiVersion != 0) { 517 client_version = pCreateInfo->pApplicationInfo->apiVersion; 518 } else { 519 client_version = VK_MAKE_VERSION(1, 0, 0); 520 } 521 522 if (VK_MAKE_VERSION(1, 0, 0) > client_version || 523 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) { 524 525 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) 526 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT, 527 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, 528 VK_NULL_HANDLE, /* No handle available yet. */ 529 __LINE__, 530 0, 531 "anv", 532 "incompatible driver version", 533 ctor_cb->pUserData); 534 535 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER, 536 "Client requested version %d.%d.%d", 537 VK_VERSION_MAJOR(client_version), 538 VK_VERSION_MINOR(client_version), 539 VK_VERSION_PATCH(client_version)); 540 } 541 542 struct anv_instance_extension_table enabled_extensions = {}; 543 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { 544 int idx; 545 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) { 546 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], 547 anv_instance_extensions[idx].extensionName) == 0) 548 break; 549 } 550 551 if (idx >= ANV_INSTANCE_EXTENSION_COUNT) 552 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); 553 554 if (!anv_instance_extensions_supported.extensions[idx]) 555 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); 556 557 enabled_extensions.extensions[idx] = true; 558 } 559 560 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8, 561 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); 562 if (!instance) 563 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 564 565 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC; 566 567 if (pAllocator) 568 instance->alloc = *pAllocator; 569 else 570 instance->alloc = default_alloc; 571 572 instance->apiVersion = client_version; 573 instance->enabled_extensions = enabled_extensions; 574 575 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) { 576 /* Vulkan requires that entrypoints for extensions which have not been 577 * enabled must not be advertised. 578 */ 579 if (!anv_entrypoint_is_enabled(i, instance->apiVersion, 580 &instance->enabled_extensions, NULL)) { 581 instance->dispatch.entrypoints[i] = NULL; 582 } else if (anv_dispatch_table.entrypoints[i] != NULL) { 583 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i]; 584 } else { 585 instance->dispatch.entrypoints[i] = 586 anv_tramp_dispatch_table.entrypoints[i]; 587 } 588 } 589 590 instance->physicalDeviceCount = -1; 591 592 result = vk_debug_report_instance_init(&instance->debug_report_callbacks); 593 if (result != VK_SUCCESS) { 594 vk_free2(&default_alloc, pAllocator, instance); 595 return vk_error(result); 596 } 597 598 _mesa_locale_init(); 599 600 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false)); 601 602 *pInstance = anv_instance_to_handle(instance); 603 604 return VK_SUCCESS; 605 } 606 607 void anv_DestroyInstance( 608 VkInstance _instance, 609 const VkAllocationCallbacks* pAllocator) 610 { 611 ANV_FROM_HANDLE(anv_instance, instance, _instance); 612 613 if (!instance) 614 return; 615 616 if (instance->physicalDeviceCount > 0) { 617 /* We support at most one physical device. */ 618 assert(instance->physicalDeviceCount == 1); 619 anv_physical_device_finish(&instance->physicalDevice); 620 } 621 622 VG(VALGRIND_DESTROY_MEMPOOL(instance)); 623 624 vk_debug_report_instance_destroy(&instance->debug_report_callbacks); 625 626 _mesa_locale_fini(); 627 628 vk_free(&instance->alloc, instance); 629 } 630 631 static VkResult 632 anv_enumerate_devices(struct anv_instance *instance) 633 { 634 /* TODO: Check for more devices ? */ 635 drmDevicePtr devices[8]; 636 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER; 637 int max_devices; 638 639 instance->physicalDeviceCount = 0; 640 641 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices)); 642 if (max_devices < 1) 643 return VK_ERROR_INCOMPATIBLE_DRIVER; 644 645 for (unsigned i = 0; i < (unsigned)max_devices; i++) { 646 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER && 647 devices[i]->bustype == DRM_BUS_PCI && 648 devices[i]->deviceinfo.pci->vendor_id == 0x8086) { 649 650 result = anv_physical_device_init(&instance->physicalDevice, 651 instance, 652 devices[i]->nodes[DRM_NODE_RENDER]); 653 if (result != VK_ERROR_INCOMPATIBLE_DRIVER) 654 break; 655 } 656 } 657 drmFreeDevices(devices, max_devices); 658 659 if (result == VK_SUCCESS) 660 instance->physicalDeviceCount = 1; 661 662 return result; 663 } 664 665 666 VkResult anv_EnumeratePhysicalDevices( 667 VkInstance _instance, 668 uint32_t* pPhysicalDeviceCount, 669 VkPhysicalDevice* pPhysicalDevices) 670 { 671 ANV_FROM_HANDLE(anv_instance, instance, _instance); 672 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount); 673 VkResult result; 674 675 if (instance->physicalDeviceCount < 0) { 676 result = anv_enumerate_devices(instance); 677 if (result != VK_SUCCESS && 678 result != VK_ERROR_INCOMPATIBLE_DRIVER) 679 return result; 680 } 681 682 if (instance->physicalDeviceCount > 0) { 683 assert(instance->physicalDeviceCount == 1); 684 vk_outarray_append(&out, i) { 685 *i = anv_physical_device_to_handle(&instance->physicalDevice); 686 } 687 } 688 689 return vk_outarray_status(&out); 690 } 691 692 void anv_GetPhysicalDeviceFeatures( 693 VkPhysicalDevice physicalDevice, 694 VkPhysicalDeviceFeatures* pFeatures) 695 { 696 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); 697 698 *pFeatures = (VkPhysicalDeviceFeatures) { 699 .robustBufferAccess = true, 700 .fullDrawIndexUint32 = true, 701 .imageCubeArray = true, 702 .independentBlend = true, 703 .geometryShader = true, 704 .tessellationShader = true, 705 .sampleRateShading = true, 706 .dualSrcBlend = true, 707 .logicOp = true, 708 .multiDrawIndirect = true, 709 .drawIndirectFirstInstance = true, 710 .depthClamp = true, 711 .depthBiasClamp = true, 712 .fillModeNonSolid = true, 713 .depthBounds = false, 714 .wideLines = true, 715 .largePoints = true, 716 .alphaToOne = true, 717 .multiViewport = true, 718 .samplerAnisotropy = true, 719 .textureCompressionETC2 = pdevice->info.gen >= 8 || 720 pdevice->info.is_baytrail, 721 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */ 722 .textureCompressionBC = true, 723 .occlusionQueryPrecise = true, 724 .pipelineStatisticsQuery = true, 725 .fragmentStoresAndAtomics = true, 726 .shaderTessellationAndGeometryPointSize = true, 727 .shaderImageGatherExtended = true, 728 .shaderStorageImageExtendedFormats = true, 729 .shaderStorageImageMultisample = false, 730 .shaderStorageImageReadWithoutFormat = false, 731 .shaderStorageImageWriteWithoutFormat = true, 732 .shaderUniformBufferArrayDynamicIndexing = true, 733 .shaderSampledImageArrayDynamicIndexing = true, 734 .shaderStorageBufferArrayDynamicIndexing = true, 735 .shaderStorageImageArrayDynamicIndexing = true, 736 .shaderClipDistance = true, 737 .shaderCullDistance = true, 738 .shaderFloat64 = pdevice->info.gen >= 8, 739 .shaderInt64 = pdevice->info.gen >= 8, 740 .shaderInt16 = false, 741 .shaderResourceMinLod = false, 742 .variableMultisampleRate = false, 743 .inheritedQueries = true, 744 }; 745 746 /* We can't do image stores in vec4 shaders */ 747 pFeatures->vertexPipelineStoresAndAtomics = 748 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] && 749 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY]; 750 } 751 752 void anv_GetPhysicalDeviceFeatures2KHR( 753 VkPhysicalDevice physicalDevice, 754 VkPhysicalDeviceFeatures2KHR* pFeatures) 755 { 756 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features); 757 758 vk_foreach_struct(ext, pFeatures->pNext) { 759 switch (ext->sType) { 760 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: { 761 VkPhysicalDeviceMultiviewFeaturesKHX *features = 762 (VkPhysicalDeviceMultiviewFeaturesKHX *)ext; 763 features->multiview = true; 764 features->multiviewGeometryShader = true; 765 features->multiviewTessellationShader = true; 766 break; 767 } 768 769 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: { 770 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext; 771 features->variablePointersStorageBuffer = true; 772 features->variablePointers = true; 773 break; 774 } 775 776 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR: { 777 VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *features = 778 (VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *) ext; 779 features->samplerYcbcrConversion = true; 780 break; 781 } 782 783 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: { 784 VkPhysicalDevice16BitStorageFeaturesKHR *features = 785 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext; 786 787 features->storageBuffer16BitAccess = false; 788 features->uniformAndStorageBuffer16BitAccess = false; 789 features->storagePushConstant16 = false; 790 features->storageInputOutput16 = false; 791 break; 792 } 793 794 default: 795 anv_debug_ignored_stype(ext->sType); 796 break; 797 } 798 } 799 } 800 801 void anv_GetPhysicalDeviceProperties( 802 VkPhysicalDevice physicalDevice, 803 VkPhysicalDeviceProperties* pProperties) 804 { 805 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); 806 const struct gen_device_info *devinfo = &pdevice->info; 807 808 /* See assertions made when programming the buffer surface state. */ 809 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ? 810 (1ul << 30) : (1ul << 27); 811 812 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ? 813 128 : 16; 814 815 VkSampleCountFlags sample_counts = 816 isl_device_get_sample_counts(&pdevice->isl_dev); 817 818 VkPhysicalDeviceLimits limits = { 819 .maxImageDimension1D = (1 << 14), 820 .maxImageDimension2D = (1 << 14), 821 .maxImageDimension3D = (1 << 11), 822 .maxImageDimensionCube = (1 << 14), 823 .maxImageArrayLayers = (1 << 11), 824 .maxTexelBufferElements = 128 * 1024 * 1024, 825 .maxUniformBufferRange = (1ul << 27), 826 .maxStorageBufferRange = max_raw_buffer_sz, 827 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE, 828 .maxMemoryAllocationCount = UINT32_MAX, 829 .maxSamplerAllocationCount = 64 * 1024, 830 .bufferImageGranularity = 64, /* A cache line */ 831 .sparseAddressSpaceSize = 0, 832 .maxBoundDescriptorSets = MAX_SETS, 833 .maxPerStageDescriptorSamplers = max_samplers, 834 .maxPerStageDescriptorUniformBuffers = 64, 835 .maxPerStageDescriptorStorageBuffers = 64, 836 .maxPerStageDescriptorSampledImages = max_samplers, 837 .maxPerStageDescriptorStorageImages = 64, 838 .maxPerStageDescriptorInputAttachments = 64, 839 .maxPerStageResources = 250, 840 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */ 841 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */ 842 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, 843 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */ 844 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, 845 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */ 846 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */ 847 .maxDescriptorSetInputAttachments = 256, 848 .maxVertexInputAttributes = MAX_VBS, 849 .maxVertexInputBindings = MAX_VBS, 850 .maxVertexInputAttributeOffset = 2047, 851 .maxVertexInputBindingStride = 2048, 852 .maxVertexOutputComponents = 128, 853 .maxTessellationGenerationLevel = 64, 854 .maxTessellationPatchSize = 32, 855 .maxTessellationControlPerVertexInputComponents = 128, 856 .maxTessellationControlPerVertexOutputComponents = 128, 857 .maxTessellationControlPerPatchOutputComponents = 128, 858 .maxTessellationControlTotalOutputComponents = 2048, 859 .maxTessellationEvaluationInputComponents = 128, 860 .maxTessellationEvaluationOutputComponents = 128, 861 .maxGeometryShaderInvocations = 32, 862 .maxGeometryInputComponents = 64, 863 .maxGeometryOutputComponents = 128, 864 .maxGeometryOutputVertices = 256, 865 .maxGeometryTotalOutputComponents = 1024, 866 .maxFragmentInputComponents = 128, 867 .maxFragmentOutputAttachments = 8, 868 .maxFragmentDualSrcAttachments = 1, 869 .maxFragmentCombinedOutputResources = 8, 870 .maxComputeSharedMemorySize = 32768, 871 .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, 872 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads, 873 .maxComputeWorkGroupSize = { 874 16 * devinfo->max_cs_threads, 875 16 * devinfo->max_cs_threads, 876 16 * devinfo->max_cs_threads, 877 }, 878 .subPixelPrecisionBits = 4 /* FIXME */, 879 .subTexelPrecisionBits = 4 /* FIXME */, 880 .mipmapPrecisionBits = 4 /* FIXME */, 881 .maxDrawIndexedIndexValue = UINT32_MAX, 882 .maxDrawIndirectCount = UINT32_MAX, 883 .maxSamplerLodBias = 16, 884 .maxSamplerAnisotropy = 16, 885 .maxViewports = MAX_VIEWPORTS, 886 .maxViewportDimensions = { (1 << 14), (1 << 14) }, 887 .viewportBoundsRange = { INT16_MIN, INT16_MAX }, 888 .viewportSubPixelBits = 13, /* We take a float? */ 889 .minMemoryMapAlignment = 4096, /* A page */ 890 .minTexelBufferOffsetAlignment = 1, 891 /* We need 16 for UBO block reads to work and 32 for push UBOs */ 892 .minUniformBufferOffsetAlignment = 32, 893 .minStorageBufferOffsetAlignment = 4, 894 .minTexelOffset = -8, 895 .maxTexelOffset = 7, 896 .minTexelGatherOffset = -32, 897 .maxTexelGatherOffset = 31, 898 .minInterpolationOffset = -0.5, 899 .maxInterpolationOffset = 0.4375, 900 .subPixelInterpolationOffsetBits = 4, 901 .maxFramebufferWidth = (1 << 14), 902 .maxFramebufferHeight = (1 << 14), 903 .maxFramebufferLayers = (1 << 11), 904 .framebufferColorSampleCounts = sample_counts, 905 .framebufferDepthSampleCounts = sample_counts, 906 .framebufferStencilSampleCounts = sample_counts, 907 .framebufferNoAttachmentsSampleCounts = sample_counts, 908 .maxColorAttachments = MAX_RTS, 909 .sampledImageColorSampleCounts = sample_counts, 910 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT, 911 .sampledImageDepthSampleCounts = sample_counts, 912 .sampledImageStencilSampleCounts = sample_counts, 913 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT, 914 .maxSampleMaskWords = 1, 915 .timestampComputeAndGraphics = false, 916 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency, 917 .maxClipDistances = 8, 918 .maxCullDistances = 8, 919 .maxCombinedClipAndCullDistances = 8, 920 .discreteQueuePriorities = 1, 921 .pointSizeRange = { 0.125, 255.875 }, 922 .lineWidthRange = { 0.0, 7.9921875 }, 923 .pointSizeGranularity = (1.0 / 8.0), 924 .lineWidthGranularity = (1.0 / 128.0), 925 .strictLines = false, /* FINISHME */ 926 .standardSampleLocations = true, 927 .optimalBufferCopyOffsetAlignment = 128, 928 .optimalBufferCopyRowPitchAlignment = 128, 929 .nonCoherentAtomSize = 64, 930 }; 931 932 *pProperties = (VkPhysicalDeviceProperties) { 933 .apiVersion = anv_physical_device_api_version(pdevice), 934 .driverVersion = vk_get_driver_version(), 935 .vendorID = 0x8086, 936 .deviceID = pdevice->chipset_id, 937 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, 938 .limits = limits, 939 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */ 940 }; 941 942 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName), 943 "%s", pdevice->name); 944 memcpy(pProperties->pipelineCacheUUID, 945 pdevice->pipeline_cache_uuid, VK_UUID_SIZE); 946 } 947 948 void anv_GetPhysicalDeviceProperties2KHR( 949 VkPhysicalDevice physicalDevice, 950 VkPhysicalDeviceProperties2KHR* pProperties) 951 { 952 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); 953 954 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties); 955 956 vk_foreach_struct(ext, pProperties->pNext) { 957 switch (ext->sType) { 958 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: { 959 VkPhysicalDevicePushDescriptorPropertiesKHR *properties = 960 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext; 961 962 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS; 963 break; 964 } 965 966 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: { 967 VkPhysicalDeviceIDPropertiesKHR *id_props = 968 (VkPhysicalDeviceIDPropertiesKHR *)ext; 969 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE); 970 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE); 971 /* The LUID is for Windows. */ 972 id_props->deviceLUIDValid = false; 973 break; 974 } 975 976 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: { 977 VkPhysicalDeviceMultiviewPropertiesKHX *properties = 978 (VkPhysicalDeviceMultiviewPropertiesKHX *)ext; 979 properties->maxMultiviewViewCount = 16; 980 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16; 981 break; 982 } 983 984 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: { 985 VkPhysicalDevicePointClippingPropertiesKHR *properties = 986 (VkPhysicalDevicePointClippingPropertiesKHR *) ext; 987 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR; 988 anv_finishme("Implement pop-free point clipping"); 989 break; 990 } 991 992 default: 993 anv_debug_ignored_stype(ext->sType); 994 break; 995 } 996 } 997 } 998 999 /* We support exactly one queue family. */ 1000 static const VkQueueFamilyProperties 1001 anv_queue_family_properties = { 1002 .queueFlags = VK_QUEUE_GRAPHICS_BIT | 1003 VK_QUEUE_COMPUTE_BIT | 1004 VK_QUEUE_TRANSFER_BIT, 1005 .queueCount = 1, 1006 .timestampValidBits = 36, /* XXX: Real value here */ 1007 .minImageTransferGranularity = { 1, 1, 1 }, 1008 }; 1009 1010 void anv_GetPhysicalDeviceQueueFamilyProperties( 1011 VkPhysicalDevice physicalDevice, 1012 uint32_t* pCount, 1013 VkQueueFamilyProperties* pQueueFamilyProperties) 1014 { 1015 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount); 1016 1017 vk_outarray_append(&out, p) { 1018 *p = anv_queue_family_properties; 1019 } 1020 } 1021 1022 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR( 1023 VkPhysicalDevice physicalDevice, 1024 uint32_t* pQueueFamilyPropertyCount, 1025 VkQueueFamilyProperties2KHR* pQueueFamilyProperties) 1026 { 1027 1028 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount); 1029 1030 vk_outarray_append(&out, p) { 1031 p->queueFamilyProperties = anv_queue_family_properties; 1032 1033 vk_foreach_struct(s, p->pNext) { 1034 anv_debug_ignored_stype(s->sType); 1035 } 1036 } 1037 } 1038 1039 void anv_GetPhysicalDeviceMemoryProperties( 1040 VkPhysicalDevice physicalDevice, 1041 VkPhysicalDeviceMemoryProperties* pMemoryProperties) 1042 { 1043 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); 1044 1045 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count; 1046 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) { 1047 pMemoryProperties->memoryTypes[i] = (VkMemoryType) { 1048 .propertyFlags = physical_device->memory.types[i].propertyFlags, 1049 .heapIndex = physical_device->memory.types[i].heapIndex, 1050 }; 1051 } 1052 1053 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count; 1054 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) { 1055 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) { 1056 .size = physical_device->memory.heaps[i].size, 1057 .flags = physical_device->memory.heaps[i].flags, 1058 }; 1059 } 1060 } 1061 1062 void anv_GetPhysicalDeviceMemoryProperties2KHR( 1063 VkPhysicalDevice physicalDevice, 1064 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties) 1065 { 1066 anv_GetPhysicalDeviceMemoryProperties(physicalDevice, 1067 &pMemoryProperties->memoryProperties); 1068 1069 vk_foreach_struct(ext, pMemoryProperties->pNext) { 1070 switch (ext->sType) { 1071 default: 1072 anv_debug_ignored_stype(ext->sType); 1073 break; 1074 } 1075 } 1076 } 1077 1078 PFN_vkVoidFunction anv_GetInstanceProcAddr( 1079 VkInstance _instance, 1080 const char* pName) 1081 { 1082 ANV_FROM_HANDLE(anv_instance, instance, _instance); 1083 1084 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly 1085 * when we have to return valid function pointers, NULL, or it's left 1086 * undefined. See the table for exact details. 1087 */ 1088 if (pName == NULL) 1089 return NULL; 1090 1091 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \ 1092 if (strcmp(pName, "vk" #entrypoint) == 0) \ 1093 return (PFN_vkVoidFunction)anv_##entrypoint 1094 1095 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties); 1096 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties); 1097 LOOKUP_ANV_ENTRYPOINT(CreateInstance); 1098 1099 #undef LOOKUP_ANV_ENTRYPOINT 1100 1101 if (instance == NULL) 1102 return NULL; 1103 1104 int idx = anv_get_entrypoint_index(pName); 1105 if (idx < 0) 1106 return NULL; 1107 1108 return instance->dispatch.entrypoints[idx]; 1109 } 1110 1111 /* With version 1+ of the loader interface the ICD should expose 1112 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps. 1113 */ 1114 PUBLIC 1115 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( 1116 VkInstance instance, 1117 const char* pName); 1118 1119 PUBLIC 1120 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( 1121 VkInstance instance, 1122 const char* pName) 1123 { 1124 return anv_GetInstanceProcAddr(instance, pName); 1125 } 1126 1127 PFN_vkVoidFunction anv_GetDeviceProcAddr( 1128 VkDevice _device, 1129 const char* pName) 1130 { 1131 ANV_FROM_HANDLE(anv_device, device, _device); 1132 1133 if (!device || !pName) 1134 return NULL; 1135 1136 int idx = anv_get_entrypoint_index(pName); 1137 if (idx < 0) 1138 return NULL; 1139 1140 return device->dispatch.entrypoints[idx]; 1141 } 1142 1143 VkResult 1144 anv_CreateDebugReportCallbackEXT(VkInstance _instance, 1145 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, 1146 const VkAllocationCallbacks* pAllocator, 1147 VkDebugReportCallbackEXT* pCallback) 1148 { 1149 ANV_FROM_HANDLE(anv_instance, instance, _instance); 1150 return vk_create_debug_report_callback(&instance->debug_report_callbacks, 1151 pCreateInfo, pAllocator, &instance->alloc, 1152 pCallback); 1153 } 1154 1155 void 1156 anv_DestroyDebugReportCallbackEXT(VkInstance _instance, 1157 VkDebugReportCallbackEXT _callback, 1158 const VkAllocationCallbacks* pAllocator) 1159 { 1160 ANV_FROM_HANDLE(anv_instance, instance, _instance); 1161 vk_destroy_debug_report_callback(&instance->debug_report_callbacks, 1162 _callback, pAllocator, &instance->alloc); 1163 } 1164 1165 void 1166 anv_DebugReportMessageEXT(VkInstance _instance, 1167 VkDebugReportFlagsEXT flags, 1168 VkDebugReportObjectTypeEXT objectType, 1169 uint64_t object, 1170 size_t location, 1171 int32_t messageCode, 1172 const char* pLayerPrefix, 1173 const char* pMessage) 1174 { 1175 ANV_FROM_HANDLE(anv_instance, instance, _instance); 1176 vk_debug_report(&instance->debug_report_callbacks, flags, objectType, 1177 object, location, messageCode, pLayerPrefix, pMessage); 1178 } 1179 1180 static void 1181 anv_queue_init(struct anv_device *device, struct anv_queue *queue) 1182 { 1183 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC; 1184 queue->device = device; 1185 queue->pool = &device->surface_state_pool; 1186 } 1187 1188 static void 1189 anv_queue_finish(struct anv_queue *queue) 1190 { 1191 } 1192 1193 static struct anv_state 1194 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p) 1195 { 1196 struct anv_state state; 1197 1198 state = anv_state_pool_alloc(pool, size, align); 1199 memcpy(state.map, p, size); 1200 1201 anv_state_flush(pool->block_pool.device, state); 1202 1203 return state; 1204 } 1205 1206 struct gen8_border_color { 1207 union { 1208 float float32[4]; 1209 uint32_t uint32[4]; 1210 }; 1211 /* Pad out to 64 bytes */ 1212 uint32_t _pad[12]; 1213 }; 1214 1215 static void 1216 anv_device_init_border_colors(struct anv_device *device) 1217 { 1218 static const struct gen8_border_color border_colors[] = { 1219 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } }, 1220 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } }, 1221 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } }, 1222 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } }, 1223 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } }, 1224 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } }, 1225 }; 1226 1227 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool, 1228 sizeof(border_colors), 64, 1229 border_colors); 1230 } 1231 1232 static void 1233 anv_device_init_trivial_batch(struct anv_device *device) 1234 { 1235 anv_bo_init_new(&device->trivial_batch_bo, device, 4096); 1236 1237 if (device->instance->physicalDevice.has_exec_async) 1238 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC; 1239 1240 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle, 1241 0, 4096, 0); 1242 1243 struct anv_batch batch = { 1244 .start = map, 1245 .next = map, 1246 .end = map + 4096, 1247 }; 1248 1249 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); 1250 anv_batch_emit(&batch, GEN7_MI_NOOP, noop); 1251 1252 if (!device->info.has_llc) 1253 gen_clflush_range(map, batch.next - map); 1254 1255 anv_gem_munmap(map, device->trivial_batch_bo.size); 1256 } 1257 1258 VkResult anv_EnumerateDeviceExtensionProperties( 1259 VkPhysicalDevice physicalDevice, 1260 const char* pLayerName, 1261 uint32_t* pPropertyCount, 1262 VkExtensionProperties* pProperties) 1263 { 1264 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice); 1265 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); 1266 (void)device; 1267 1268 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) { 1269 if (device->supported_extensions.extensions[i]) { 1270 vk_outarray_append(&out, prop) { 1271 *prop = anv_device_extensions[i]; 1272 } 1273 } 1274 } 1275 1276 return vk_outarray_status(&out); 1277 } 1278 1279 static void 1280 anv_device_init_dispatch(struct anv_device *device) 1281 { 1282 const struct anv_dispatch_table *genX_table; 1283 switch (device->info.gen) { 1284 case 10: 1285 genX_table = &gen10_dispatch_table; 1286 break; 1287 case 9: 1288 genX_table = &gen9_dispatch_table; 1289 break; 1290 case 8: 1291 genX_table = &gen8_dispatch_table; 1292 break; 1293 case 7: 1294 if (device->info.is_haswell) 1295 genX_table = &gen75_dispatch_table; 1296 else 1297 genX_table = &gen7_dispatch_table; 1298 break; 1299 default: 1300 unreachable("unsupported gen\n"); 1301 } 1302 1303 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) { 1304 /* Vulkan requires that entrypoints for extensions which have not been 1305 * enabled must not be advertised. 1306 */ 1307 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion, 1308 &device->instance->enabled_extensions, 1309 &device->enabled_extensions)) { 1310 device->dispatch.entrypoints[i] = NULL; 1311 } else if (genX_table->entrypoints[i]) { 1312 device->dispatch.entrypoints[i] = genX_table->entrypoints[i]; 1313 } else { 1314 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i]; 1315 } 1316 } 1317 } 1318 1319 VkResult anv_CreateDevice( 1320 VkPhysicalDevice physicalDevice, 1321 const VkDeviceCreateInfo* pCreateInfo, 1322 const VkAllocationCallbacks* pAllocator, 1323 VkDevice* pDevice) 1324 { 1325 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); 1326 VkResult result; 1327 struct anv_device *device; 1328 1329 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO); 1330 1331 struct anv_device_extension_table enabled_extensions = { }; 1332 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { 1333 int idx; 1334 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) { 1335 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], 1336 anv_device_extensions[idx].extensionName) == 0) 1337 break; 1338 } 1339 1340 if (idx >= ANV_DEVICE_EXTENSION_COUNT) 1341 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); 1342 1343 if (!physical_device->supported_extensions.extensions[idx]) 1344 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); 1345 1346 enabled_extensions.extensions[idx] = true; 1347 } 1348 1349 /* Check enabled features */ 1350 if (pCreateInfo->pEnabledFeatures) { 1351 VkPhysicalDeviceFeatures supported_features; 1352 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features); 1353 VkBool32 *supported_feature = (VkBool32 *)&supported_features; 1354 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures; 1355 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32); 1356 for (uint32_t i = 0; i < num_features; i++) { 1357 if (enabled_feature[i] && !supported_feature[i]) 1358 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT); 1359 } 1360 } 1361 1362 device = vk_alloc2(&physical_device->instance->alloc, pAllocator, 1363 sizeof(*device), 8, 1364 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); 1365 if (!device) 1366 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 1367 1368 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; 1369 device->instance = physical_device->instance; 1370 device->chipset_id = physical_device->chipset_id; 1371 device->lost = false; 1372 1373 if (pAllocator) 1374 device->alloc = *pAllocator; 1375 else 1376 device->alloc = physical_device->instance->alloc; 1377 1378 /* XXX(chadv): Can we dup() physicalDevice->fd here? */ 1379 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC); 1380 if (device->fd == -1) { 1381 result = vk_error(VK_ERROR_INITIALIZATION_FAILED); 1382 goto fail_device; 1383 } 1384 1385 device->context_id = anv_gem_create_context(device); 1386 if (device->context_id == -1) { 1387 result = vk_error(VK_ERROR_INITIALIZATION_FAILED); 1388 goto fail_fd; 1389 } 1390 1391 device->info = physical_device->info; 1392 device->isl_dev = physical_device->isl_dev; 1393 1394 /* On Broadwell and later, we can use batch chaining to more efficiently 1395 * implement growing command buffers. Prior to Haswell, the kernel 1396 * command parser gets in the way and we have to fall back to growing 1397 * the batch. 1398 */ 1399 device->can_chain_batches = device->info.gen >= 8; 1400 1401 device->robust_buffer_access = pCreateInfo->pEnabledFeatures && 1402 pCreateInfo->pEnabledFeatures->robustBufferAccess; 1403 device->enabled_extensions = enabled_extensions; 1404 1405 anv_device_init_dispatch(device); 1406 1407 if (pthread_mutex_init(&device->mutex, NULL) != 0) { 1408 result = vk_error(VK_ERROR_INITIALIZATION_FAILED); 1409 goto fail_context_id; 1410 } 1411 1412 pthread_condattr_t condattr; 1413 if (pthread_condattr_init(&condattr) != 0) { 1414 result = vk_error(VK_ERROR_INITIALIZATION_FAILED); 1415 goto fail_mutex; 1416 } 1417 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) { 1418 pthread_condattr_destroy(&condattr); 1419 result = vk_error(VK_ERROR_INITIALIZATION_FAILED); 1420 goto fail_mutex; 1421 } 1422 if (pthread_cond_init(&device->queue_submit, NULL) != 0) { 1423 pthread_condattr_destroy(&condattr); 1424 result = vk_error(VK_ERROR_INITIALIZATION_FAILED); 1425 goto fail_mutex; 1426 } 1427 pthread_condattr_destroy(&condattr); 1428 1429 uint64_t bo_flags = 1430 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) | 1431 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) | 1432 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0); 1433 1434 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags); 1435 1436 result = anv_bo_cache_init(&device->bo_cache); 1437 if (result != VK_SUCCESS) 1438 goto fail_batch_bo_pool; 1439 1440 /* For the state pools we explicitly disable 48bit. */ 1441 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) | 1442 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0); 1443 1444 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384, 1445 bo_flags); 1446 if (result != VK_SUCCESS) 1447 goto fail_bo_cache; 1448 1449 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384, 1450 bo_flags); 1451 if (result != VK_SUCCESS) 1452 goto fail_dynamic_state_pool; 1453 1454 result = anv_state_pool_init(&device->surface_state_pool, device, 4096, 1455 bo_flags); 1456 if (result != VK_SUCCESS) 1457 goto fail_instruction_state_pool; 1458 1459 result = anv_bo_init_new(&device->workaround_bo, device, 1024); 1460 if (result != VK_SUCCESS) 1461 goto fail_surface_state_pool; 1462 1463 anv_device_init_trivial_batch(device); 1464 1465 anv_scratch_pool_init(device, &device->scratch_pool); 1466 1467 anv_queue_init(device, &device->queue); 1468 1469 switch (device->info.gen) { 1470 case 7: 1471 if (!device->info.is_haswell) 1472 result = gen7_init_device_state(device); 1473 else 1474 result = gen75_init_device_state(device); 1475 break; 1476 case 8: 1477 result = gen8_init_device_state(device); 1478 break; 1479 case 9: 1480 result = gen9_init_device_state(device); 1481 break; 1482 case 10: 1483 result = gen10_init_device_state(device); 1484 break; 1485 default: 1486 /* Shouldn't get here as we don't create physical devices for any other 1487 * gens. */ 1488 unreachable("unhandled gen"); 1489 } 1490 if (result != VK_SUCCESS) 1491 goto fail_workaround_bo; 1492 1493 anv_device_init_blorp(device); 1494 1495 anv_device_init_border_colors(device); 1496 1497 *pDevice = anv_device_to_handle(device); 1498 1499 return VK_SUCCESS; 1500 1501 fail_workaround_bo: 1502 anv_queue_finish(&device->queue); 1503 anv_scratch_pool_finish(device, &device->scratch_pool); 1504 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size); 1505 anv_gem_close(device, device->workaround_bo.gem_handle); 1506 fail_surface_state_pool: 1507 anv_state_pool_finish(&device->surface_state_pool); 1508 fail_instruction_state_pool: 1509 anv_state_pool_finish(&device->instruction_state_pool); 1510 fail_dynamic_state_pool: 1511 anv_state_pool_finish(&device->dynamic_state_pool); 1512 fail_bo_cache: 1513 anv_bo_cache_finish(&device->bo_cache); 1514 fail_batch_bo_pool: 1515 anv_bo_pool_finish(&device->batch_bo_pool); 1516 pthread_cond_destroy(&device->queue_submit); 1517 fail_mutex: 1518 pthread_mutex_destroy(&device->mutex); 1519 fail_context_id: 1520 anv_gem_destroy_context(device, device->context_id); 1521 fail_fd: 1522 close(device->fd); 1523 fail_device: 1524 vk_free(&device->alloc, device); 1525 1526 return result; 1527 } 1528 1529 void anv_DestroyDevice( 1530 VkDevice _device, 1531 const VkAllocationCallbacks* pAllocator) 1532 { 1533 ANV_FROM_HANDLE(anv_device, device, _device); 1534 1535 if (!device) 1536 return; 1537 1538 anv_device_finish_blorp(device); 1539 1540 anv_queue_finish(&device->queue); 1541 1542 #ifdef HAVE_VALGRIND 1543 /* We only need to free these to prevent valgrind errors. The backing 1544 * BO will go away in a couple of lines so we don't actually leak. 1545 */ 1546 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors); 1547 #endif 1548 1549 anv_scratch_pool_finish(device, &device->scratch_pool); 1550 1551 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size); 1552 anv_gem_close(device, device->workaround_bo.gem_handle); 1553 1554 anv_gem_close(device, device->trivial_batch_bo.gem_handle); 1555 1556 anv_state_pool_finish(&device->surface_state_pool); 1557 anv_state_pool_finish(&device->instruction_state_pool); 1558 anv_state_pool_finish(&device->dynamic_state_pool); 1559 1560 anv_bo_cache_finish(&device->bo_cache); 1561 1562 anv_bo_pool_finish(&device->batch_bo_pool); 1563 1564 pthread_cond_destroy(&device->queue_submit); 1565 pthread_mutex_destroy(&device->mutex); 1566 1567 anv_gem_destroy_context(device, device->context_id); 1568 1569 close(device->fd); 1570 1571 vk_free(&device->alloc, device); 1572 } 1573 1574 VkResult anv_EnumerateInstanceLayerProperties( 1575 uint32_t* pPropertyCount, 1576 VkLayerProperties* pProperties) 1577 { 1578 if (pProperties == NULL) { 1579 *pPropertyCount = 0; 1580 return VK_SUCCESS; 1581 } 1582 1583 /* None supported at this time */ 1584 return vk_error(VK_ERROR_LAYER_NOT_PRESENT); 1585 } 1586 1587 VkResult anv_EnumerateDeviceLayerProperties( 1588 VkPhysicalDevice physicalDevice, 1589 uint32_t* pPropertyCount, 1590 VkLayerProperties* pProperties) 1591 { 1592 if (pProperties == NULL) { 1593 *pPropertyCount = 0; 1594 return VK_SUCCESS; 1595 } 1596 1597 /* None supported at this time */ 1598 return vk_error(VK_ERROR_LAYER_NOT_PRESENT); 1599 } 1600 1601 void anv_GetDeviceQueue( 1602 VkDevice _device, 1603 uint32_t queueNodeIndex, 1604 uint32_t queueIndex, 1605 VkQueue* pQueue) 1606 { 1607 ANV_FROM_HANDLE(anv_device, device, _device); 1608 1609 assert(queueIndex == 0); 1610 1611 *pQueue = anv_queue_to_handle(&device->queue); 1612 } 1613 1614 VkResult 1615 anv_device_query_status(struct anv_device *device) 1616 { 1617 /* This isn't likely as most of the callers of this function already check 1618 * for it. However, it doesn't hurt to check and it potentially lets us 1619 * avoid an ioctl. 1620 */ 1621 if (unlikely(device->lost)) 1622 return VK_ERROR_DEVICE_LOST; 1623 1624 uint32_t active, pending; 1625 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending); 1626 if (ret == -1) { 1627 /* We don't know the real error. */ 1628 device->lost = true; 1629 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST, 1630 "get_reset_stats failed: %m"); 1631 } 1632 1633 if (active) { 1634 device->lost = true; 1635 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST, 1636 "GPU hung on one of our command buffers"); 1637 } else if (pending) { 1638 device->lost = true; 1639 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST, 1640 "GPU hung with commands in-flight"); 1641 } 1642 1643 return VK_SUCCESS; 1644 } 1645 1646 VkResult 1647 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo) 1648 { 1649 /* Note: This only returns whether or not the BO is in use by an i915 GPU. 1650 * Other usages of the BO (such as on different hardware) will not be 1651 * flagged as "busy" by this ioctl. Use with care. 1652 */ 1653 int ret = anv_gem_busy(device, bo->gem_handle); 1654 if (ret == 1) { 1655 return VK_NOT_READY; 1656 } else if (ret == -1) { 1657 /* We don't know the real error. */ 1658 device->lost = true; 1659 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST, 1660 "gem wait failed: %m"); 1661 } 1662 1663 /* Query for device status after the busy call. If the BO we're checking 1664 * got caught in a GPU hang we don't want to return VK_SUCCESS to the 1665 * client because it clearly doesn't have valid data. Yes, this most 1666 * likely means an ioctl, but we just did an ioctl to query the busy status 1667 * so it's no great loss. 1668 */ 1669 return anv_device_query_status(device); 1670 } 1671 1672 VkResult 1673 anv_device_wait(struct anv_device *device, struct anv_bo *bo, 1674 int64_t timeout) 1675 { 1676 int ret = anv_gem_wait(device, bo->gem_handle, &timeout); 1677 if (ret == -1 && errno == ETIME) { 1678 return VK_TIMEOUT; 1679 } else if (ret == -1) { 1680 /* We don't know the real error. */ 1681 device->lost = true; 1682 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST, 1683 "gem wait failed: %m"); 1684 } 1685 1686 /* Query for device status after the wait. If the BO we're waiting on got 1687 * caught in a GPU hang we don't want to return VK_SUCCESS to the client 1688 * because it clearly doesn't have valid data. Yes, this most likely means 1689 * an ioctl, but we just did an ioctl to wait so it's no great loss. 1690 */ 1691 return anv_device_query_status(device); 1692 } 1693 1694 VkResult anv_DeviceWaitIdle( 1695 VkDevice _device) 1696 { 1697 ANV_FROM_HANDLE(anv_device, device, _device); 1698 if (unlikely(device->lost)) 1699 return VK_ERROR_DEVICE_LOST; 1700 1701 struct anv_batch batch; 1702 1703 uint32_t cmds[8]; 1704 batch.start = batch.next = cmds; 1705 batch.end = (void *) cmds + sizeof(cmds); 1706 1707 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); 1708 anv_batch_emit(&batch, GEN7_MI_NOOP, noop); 1709 1710 return anv_device_submit_simple_batch(device, &batch); 1711 } 1712 1713 VkResult 1714 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size) 1715 { 1716 uint32_t gem_handle = anv_gem_create(device, size); 1717 if (!gem_handle) 1718 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); 1719 1720 anv_bo_init(bo, gem_handle, size); 1721 1722 return VK_SUCCESS; 1723 } 1724 1725 VkResult anv_AllocateMemory( 1726 VkDevice _device, 1727 const VkMemoryAllocateInfo* pAllocateInfo, 1728 const VkAllocationCallbacks* pAllocator, 1729 VkDeviceMemory* pMem) 1730 { 1731 ANV_FROM_HANDLE(anv_device, device, _device); 1732 struct anv_physical_device *pdevice = &device->instance->physicalDevice; 1733 struct anv_device_memory *mem; 1734 VkResult result = VK_SUCCESS; 1735 1736 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO); 1737 1738 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */ 1739 assert(pAllocateInfo->allocationSize > 0); 1740 1741 /* The kernel relocation API has a limitation of a 32-bit delta value 1742 * applied to the address before it is written which, in spite of it being 1743 * unsigned, is treated as signed . Because of the way that this maps to 1744 * the Vulkan API, we cannot handle an offset into a buffer that does not 1745 * fit into a signed 32 bits. The only mechanism we have for dealing with 1746 * this at the moment is to limit all VkDeviceMemory objects to a maximum 1747 * of 2GB each. The Vulkan spec allows us to do this: 1748 * 1749 * "Some platforms may have a limit on the maximum size of a single 1750 * allocation. For example, certain systems may fail to create 1751 * allocations with a size greater than or equal to 4GB. Such a limit is 1752 * implementation-dependent, and if such a failure occurs then the error 1753 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned." 1754 * 1755 * We don't use vk_error here because it's not an error so much as an 1756 * indication to the application that the allocation is too large. 1757 */ 1758 if (pAllocateInfo->allocationSize > (1ull << 31)) 1759 return VK_ERROR_OUT_OF_DEVICE_MEMORY; 1760 1761 /* FINISHME: Fail if allocation request exceeds heap size. */ 1762 1763 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8, 1764 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 1765 if (mem == NULL) 1766 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 1767 1768 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count); 1769 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex]; 1770 mem->map = NULL; 1771 mem->map_size = 0; 1772 1773 const VkImportMemoryFdInfoKHR *fd_info = 1774 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR); 1775 1776 /* The Vulkan spec permits handleType to be 0, in which case the struct is 1777 * ignored. 1778 */ 1779 if (fd_info && fd_info->handleType) { 1780 /* At the moment, we support only the below handle types. */ 1781 assert(fd_info->handleType == 1782 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR || 1783 fd_info->handleType == 1784 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); 1785 1786 result = anv_bo_cache_import(device, &device->bo_cache, 1787 fd_info->fd, &mem->bo); 1788 if (result != VK_SUCCESS) 1789 goto fail; 1790 1791 VkDeviceSize aligned_alloc_size = 1792 align_u64(pAllocateInfo->allocationSize, 4096); 1793 1794 /* For security purposes, we reject importing the bo if it's smaller 1795 * than the requested allocation size. This prevents a malicious client 1796 * from passing a buffer to a trusted client, lying about the size, and 1797 * telling the trusted client to try and texture from an image that goes 1798 * out-of-bounds. This sort of thing could lead to GPU hangs or worse 1799 * in the trusted client. The trusted client can protect itself against 1800 * this sort of attack but only if it can trust the buffer size. 1801 */ 1802 if (mem->bo->size < aligned_alloc_size) { 1803 result = vk_errorf(device->instance, device, 1804 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR, 1805 "aligned allocationSize too large for " 1806 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: " 1807 "%"PRIu64"B > %"PRIu64"B", 1808 aligned_alloc_size, mem->bo->size); 1809 anv_bo_cache_release(device, &device->bo_cache, mem->bo); 1810 goto fail; 1811 } 1812 1813 /* From the Vulkan spec: 1814 * 1815 * "Importing memory from a file descriptor transfers ownership of 1816 * the file descriptor from the application to the Vulkan 1817 * implementation. The application must not perform any operations on 1818 * the file descriptor after a successful import." 1819 * 1820 * If the import fails, we leave the file descriptor open. 1821 */ 1822 close(fd_info->fd); 1823 } else { 1824 result = anv_bo_cache_alloc(device, &device->bo_cache, 1825 pAllocateInfo->allocationSize, 1826 &mem->bo); 1827 if (result != VK_SUCCESS) 1828 goto fail; 1829 1830 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info = 1831 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR); 1832 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) { 1833 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image); 1834 1835 /* For images using modifiers, we require a dedicated allocation 1836 * and we set the BO tiling to match the tiling of the underlying 1837 * modifier. This is a bit unfortunate as this is completely 1838 * pointless for Vulkan. However, GL needs to be able to map things 1839 * so it needs the tiling to be set. The only way to do this in a 1840 * non-racy way is to set the tiling in the creator of the BO so that 1841 * makes it our job. 1842 * 1843 * One of these days, once the GL driver learns to not map things 1844 * through the GTT in random places, we can drop this and start 1845 * allowing multiple modified images in the same BO. 1846 */ 1847 if (image->drm_format_mod != DRM_FORMAT_MOD_INVALID) { 1848 assert(isl_drm_modifier_get_info(image->drm_format_mod)->tiling == 1849 image->planes[0].surface.isl.tiling); 1850 const uint32_t i915_tiling = 1851 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling); 1852 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle, 1853 image->planes[0].surface.isl.row_pitch, 1854 i915_tiling); 1855 if (ret) { 1856 anv_bo_cache_release(device, &device->bo_cache, mem->bo); 1857 return vk_errorf(device->instance, NULL, 1858 VK_ERROR_OUT_OF_DEVICE_MEMORY, 1859 "failed to set BO tiling: %m"); 1860 } 1861 } 1862 } 1863 } 1864 1865 assert(mem->type->heapIndex < pdevice->memory.heap_count); 1866 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses) 1867 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 1868 1869 const struct wsi_memory_allocate_info *wsi_info = 1870 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA); 1871 if (wsi_info && wsi_info->implicit_sync) { 1872 /* We need to set the WRITE flag on window system buffers so that GEM 1873 * will know we're writing to them and synchronize uses on other rings 1874 * (eg if the display server uses the blitter ring). 1875 */ 1876 mem->bo->flags |= EXEC_OBJECT_WRITE; 1877 } else if (pdevice->has_exec_async) { 1878 mem->bo->flags |= EXEC_OBJECT_ASYNC; 1879 } 1880 1881 *pMem = anv_device_memory_to_handle(mem); 1882 1883 return VK_SUCCESS; 1884 1885 fail: 1886 vk_free2(&device->alloc, pAllocator, mem); 1887 1888 return result; 1889 } 1890 1891 VkResult anv_GetMemoryFdKHR( 1892 VkDevice device_h, 1893 const VkMemoryGetFdInfoKHR* pGetFdInfo, 1894 int* pFd) 1895 { 1896 ANV_FROM_HANDLE(anv_device, dev, device_h); 1897 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory); 1898 1899 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR); 1900 1901 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR || 1902 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); 1903 1904 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd); 1905 } 1906 1907 VkResult anv_GetMemoryFdPropertiesKHR( 1908 VkDevice _device, 1909 VkExternalMemoryHandleTypeFlagBitsKHR handleType, 1910 int fd, 1911 VkMemoryFdPropertiesKHR* pMemoryFdProperties) 1912 { 1913 ANV_FROM_HANDLE(anv_device, device, _device); 1914 struct anv_physical_device *pdevice = &device->instance->physicalDevice; 1915 1916 switch (handleType) { 1917 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: 1918 /* dma-buf can be imported as any memory type */ 1919 pMemoryFdProperties->memoryTypeBits = 1920 (1 << pdevice->memory.type_count) - 1; 1921 return VK_SUCCESS; 1922 1923 default: 1924 /* The valid usage section for this function says: 1925 * 1926 * "handleType must not be one of the handle types defined as 1927 * opaque." 1928 * 1929 * So opaque handle types fall into the default "unsupported" case. 1930 */ 1931 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR); 1932 } 1933 } 1934 1935 void anv_FreeMemory( 1936 VkDevice _device, 1937 VkDeviceMemory _mem, 1938 const VkAllocationCallbacks* pAllocator) 1939 { 1940 ANV_FROM_HANDLE(anv_device, device, _device); 1941 ANV_FROM_HANDLE(anv_device_memory, mem, _mem); 1942 1943 if (mem == NULL) 1944 return; 1945 1946 if (mem->map) 1947 anv_UnmapMemory(_device, _mem); 1948 1949 anv_bo_cache_release(device, &device->bo_cache, mem->bo); 1950 1951 vk_free2(&device->alloc, pAllocator, mem); 1952 } 1953 1954 VkResult anv_MapMemory( 1955 VkDevice _device, 1956 VkDeviceMemory _memory, 1957 VkDeviceSize offset, 1958 VkDeviceSize size, 1959 VkMemoryMapFlags flags, 1960 void** ppData) 1961 { 1962 ANV_FROM_HANDLE(anv_device, device, _device); 1963 ANV_FROM_HANDLE(anv_device_memory, mem, _memory); 1964 1965 if (mem == NULL) { 1966 *ppData = NULL; 1967 return VK_SUCCESS; 1968 } 1969 1970 if (size == VK_WHOLE_SIZE) 1971 size = mem->bo->size - offset; 1972 1973 /* From the Vulkan spec version 1.0.32 docs for MapMemory: 1974 * 1975 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0 1976 * assert(size != 0); 1977 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or 1978 * equal to the size of the memory minus offset 1979 */ 1980 assert(size > 0); 1981 assert(offset + size <= mem->bo->size); 1982 1983 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only 1984 * takes a VkDeviceMemory pointer, it seems like only one map of the memory 1985 * at a time is valid. We could just mmap up front and return an offset 1986 * pointer here, but that may exhaust virtual memory on 32 bit 1987 * userspace. */ 1988 1989 uint32_t gem_flags = 0; 1990 1991 if (!device->info.has_llc && 1992 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) 1993 gem_flags |= I915_MMAP_WC; 1994 1995 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */ 1996 uint64_t map_offset = offset & ~4095ull; 1997 assert(offset >= map_offset); 1998 uint64_t map_size = (offset + size) - map_offset; 1999 2000 /* Let's map whole pages */ 2001 map_size = align_u64(map_size, 4096); 2002 2003 void *map = anv_gem_mmap(device, mem->bo->gem_handle, 2004 map_offset, map_size, gem_flags); 2005 if (map == MAP_FAILED) 2006 return vk_error(VK_ERROR_MEMORY_MAP_FAILED); 2007 2008 mem->map = map; 2009 mem->map_size = map_size; 2010 2011 *ppData = mem->map + (offset - map_offset); 2012 2013 return VK_SUCCESS; 2014 } 2015 2016 void anv_UnmapMemory( 2017 VkDevice _device, 2018 VkDeviceMemory _memory) 2019 { 2020 ANV_FROM_HANDLE(anv_device_memory, mem, _memory); 2021 2022 if (mem == NULL) 2023 return; 2024 2025 anv_gem_munmap(mem->map, mem->map_size); 2026 2027 mem->map = NULL; 2028 mem->map_size = 0; 2029 } 2030 2031 static void 2032 clflush_mapped_ranges(struct anv_device *device, 2033 uint32_t count, 2034 const VkMappedMemoryRange *ranges) 2035 { 2036 for (uint32_t i = 0; i < count; i++) { 2037 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory); 2038 if (ranges[i].offset >= mem->map_size) 2039 continue; 2040 2041 gen_clflush_range(mem->map + ranges[i].offset, 2042 MIN2(ranges[i].size, mem->map_size - ranges[i].offset)); 2043 } 2044 } 2045 2046 VkResult anv_FlushMappedMemoryRanges( 2047 VkDevice _device, 2048 uint32_t memoryRangeCount, 2049 const VkMappedMemoryRange* pMemoryRanges) 2050 { 2051 ANV_FROM_HANDLE(anv_device, device, _device); 2052 2053 if (device->info.has_llc) 2054 return VK_SUCCESS; 2055 2056 /* Make sure the writes we're flushing have landed. */ 2057 __builtin_ia32_mfence(); 2058 2059 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges); 2060 2061 return VK_SUCCESS; 2062 } 2063 2064 VkResult anv_InvalidateMappedMemoryRanges( 2065 VkDevice _device, 2066 uint32_t memoryRangeCount, 2067 const VkMappedMemoryRange* pMemoryRanges) 2068 { 2069 ANV_FROM_HANDLE(anv_device, device, _device); 2070 2071 if (device->info.has_llc) 2072 return VK_SUCCESS; 2073 2074 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges); 2075 2076 /* Make sure no reads get moved up above the invalidate. */ 2077 __builtin_ia32_mfence(); 2078 2079 return VK_SUCCESS; 2080 } 2081 2082 void anv_GetBufferMemoryRequirements( 2083 VkDevice _device, 2084 VkBuffer _buffer, 2085 VkMemoryRequirements* pMemoryRequirements) 2086 { 2087 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 2088 ANV_FROM_HANDLE(anv_device, device, _device); 2089 struct anv_physical_device *pdevice = &device->instance->physicalDevice; 2090 2091 /* The Vulkan spec (git aaed022) says: 2092 * 2093 * memoryTypeBits is a bitfield and contains one bit set for every 2094 * supported memory type for the resource. The bit `1<<i` is set if and 2095 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties 2096 * structure for the physical device is supported. 2097 */ 2098 uint32_t memory_types = 0; 2099 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) { 2100 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage; 2101 if ((valid_usage & buffer->usage) == buffer->usage) 2102 memory_types |= (1u << i); 2103 } 2104 2105 /* Base alignment requirement of a cache line */ 2106 uint32_t alignment = 16; 2107 2108 /* We need an alignment of 32 for pushing UBOs */ 2109 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) 2110 alignment = MAX2(alignment, 32); 2111 2112 pMemoryRequirements->size = buffer->size; 2113 pMemoryRequirements->alignment = alignment; 2114 pMemoryRequirements->memoryTypeBits = memory_types; 2115 } 2116 2117 void anv_GetBufferMemoryRequirements2KHR( 2118 VkDevice _device, 2119 const VkBufferMemoryRequirementsInfo2KHR* pInfo, 2120 VkMemoryRequirements2KHR* pMemoryRequirements) 2121 { 2122 anv_GetBufferMemoryRequirements(_device, pInfo->buffer, 2123 &pMemoryRequirements->memoryRequirements); 2124 2125 vk_foreach_struct(ext, pMemoryRequirements->pNext) { 2126 switch (ext->sType) { 2127 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: { 2128 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext; 2129 requirements->prefersDedicatedAllocation = VK_FALSE; 2130 requirements->requiresDedicatedAllocation = VK_FALSE; 2131 break; 2132 } 2133 2134 default: 2135 anv_debug_ignored_stype(ext->sType); 2136 break; 2137 } 2138 } 2139 } 2140 2141 void anv_GetImageMemoryRequirements( 2142 VkDevice _device, 2143 VkImage _image, 2144 VkMemoryRequirements* pMemoryRequirements) 2145 { 2146 ANV_FROM_HANDLE(anv_image, image, _image); 2147 ANV_FROM_HANDLE(anv_device, device, _device); 2148 struct anv_physical_device *pdevice = &device->instance->physicalDevice; 2149 2150 /* The Vulkan spec (git aaed022) says: 2151 * 2152 * memoryTypeBits is a bitfield and contains one bit set for every 2153 * supported memory type for the resource. The bit `1<<i` is set if and 2154 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties 2155 * structure for the physical device is supported. 2156 * 2157 * All types are currently supported for images. 2158 */ 2159 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1; 2160 2161 pMemoryRequirements->size = image->size; 2162 pMemoryRequirements->alignment = image->alignment; 2163 pMemoryRequirements->memoryTypeBits = memory_types; 2164 } 2165 2166 void anv_GetImageMemoryRequirements2KHR( 2167 VkDevice _device, 2168 const VkImageMemoryRequirementsInfo2KHR* pInfo, 2169 VkMemoryRequirements2KHR* pMemoryRequirements) 2170 { 2171 ANV_FROM_HANDLE(anv_device, device, _device); 2172 ANV_FROM_HANDLE(anv_image, image, pInfo->image); 2173 2174 anv_GetImageMemoryRequirements(_device, pInfo->image, 2175 &pMemoryRequirements->memoryRequirements); 2176 2177 vk_foreach_struct_const(ext, pInfo->pNext) { 2178 switch (ext->sType) { 2179 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR: { 2180 struct anv_physical_device *pdevice = &device->instance->physicalDevice; 2181 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs = 2182 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext; 2183 uint32_t plane = anv_image_aspect_to_plane(image->aspects, 2184 plane_reqs->planeAspect); 2185 2186 assert(image->planes[plane].offset == 0); 2187 2188 /* The Vulkan spec (git aaed022) says: 2189 * 2190 * memoryTypeBits is a bitfield and contains one bit set for every 2191 * supported memory type for the resource. The bit `1<<i` is set 2192 * if and only if the memory type `i` in the 2193 * VkPhysicalDeviceMemoryProperties structure for the physical 2194 * device is supported. 2195 * 2196 * All types are currently supported for images. 2197 */ 2198 pMemoryRequirements->memoryRequirements.memoryTypeBits = 2199 (1ull << pdevice->memory.type_count) - 1; 2200 2201 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size; 2202 pMemoryRequirements->memoryRequirements.alignment = 2203 image->planes[plane].alignment; 2204 break; 2205 } 2206 2207 default: 2208 anv_debug_ignored_stype(ext->sType); 2209 break; 2210 } 2211 } 2212 2213 vk_foreach_struct(ext, pMemoryRequirements->pNext) { 2214 switch (ext->sType) { 2215 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: { 2216 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext; 2217 if (image->drm_format_mod != DRM_FORMAT_MOD_INVALID) { 2218 /* Require a dedicated allocation for images with modifiers. 2219 * 2220 * See also anv_AllocateMemory. 2221 */ 2222 requirements->prefersDedicatedAllocation = VK_TRUE; 2223 requirements->requiresDedicatedAllocation = VK_TRUE; 2224 } else { 2225 requirements->prefersDedicatedAllocation = VK_FALSE; 2226 requirements->requiresDedicatedAllocation = VK_FALSE; 2227 } 2228 break; 2229 } 2230 2231 default: 2232 anv_debug_ignored_stype(ext->sType); 2233 break; 2234 } 2235 } 2236 } 2237 2238 void anv_GetImageSparseMemoryRequirements( 2239 VkDevice device, 2240 VkImage image, 2241 uint32_t* pSparseMemoryRequirementCount, 2242 VkSparseImageMemoryRequirements* pSparseMemoryRequirements) 2243 { 2244 *pSparseMemoryRequirementCount = 0; 2245 } 2246 2247 void anv_GetImageSparseMemoryRequirements2KHR( 2248 VkDevice device, 2249 const VkImageSparseMemoryRequirementsInfo2KHR* pInfo, 2250 uint32_t* pSparseMemoryRequirementCount, 2251 VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements) 2252 { 2253 *pSparseMemoryRequirementCount = 0; 2254 } 2255 2256 void anv_GetDeviceMemoryCommitment( 2257 VkDevice device, 2258 VkDeviceMemory memory, 2259 VkDeviceSize* pCommittedMemoryInBytes) 2260 { 2261 *pCommittedMemoryInBytes = 0; 2262 } 2263 2264 static void 2265 anv_bind_buffer_memory(const VkBindBufferMemoryInfoKHR *pBindInfo) 2266 { 2267 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory); 2268 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer); 2269 2270 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR); 2271 2272 if (mem) { 2273 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage); 2274 buffer->bo = mem->bo; 2275 buffer->offset = pBindInfo->memoryOffset; 2276 } else { 2277 buffer->bo = NULL; 2278 buffer->offset = 0; 2279 } 2280 } 2281 2282 VkResult anv_BindBufferMemory( 2283 VkDevice device, 2284 VkBuffer buffer, 2285 VkDeviceMemory memory, 2286 VkDeviceSize memoryOffset) 2287 { 2288 anv_bind_buffer_memory( 2289 &(VkBindBufferMemoryInfoKHR) { 2290 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR, 2291 .buffer = buffer, 2292 .memory = memory, 2293 .memoryOffset = memoryOffset, 2294 }); 2295 2296 return VK_SUCCESS; 2297 } 2298 2299 VkResult anv_BindBufferMemory2KHR( 2300 VkDevice device, 2301 uint32_t bindInfoCount, 2302 const VkBindBufferMemoryInfoKHR* pBindInfos) 2303 { 2304 for (uint32_t i = 0; i < bindInfoCount; i++) 2305 anv_bind_buffer_memory(&pBindInfos[i]); 2306 2307 return VK_SUCCESS; 2308 } 2309 2310 VkResult anv_QueueBindSparse( 2311 VkQueue _queue, 2312 uint32_t bindInfoCount, 2313 const VkBindSparseInfo* pBindInfo, 2314 VkFence fence) 2315 { 2316 ANV_FROM_HANDLE(anv_queue, queue, _queue); 2317 if (unlikely(queue->device->lost)) 2318 return VK_ERROR_DEVICE_LOST; 2319 2320 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT); 2321 } 2322 2323 // Event functions 2324 2325 VkResult anv_CreateEvent( 2326 VkDevice _device, 2327 const VkEventCreateInfo* pCreateInfo, 2328 const VkAllocationCallbacks* pAllocator, 2329 VkEvent* pEvent) 2330 { 2331 ANV_FROM_HANDLE(anv_device, device, _device); 2332 struct anv_state state; 2333 struct anv_event *event; 2334 2335 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO); 2336 2337 state = anv_state_pool_alloc(&device->dynamic_state_pool, 2338 sizeof(*event), 8); 2339 event = state.map; 2340 event->state = state; 2341 event->semaphore = VK_EVENT_RESET; 2342 2343 if (!device->info.has_llc) { 2344 /* Make sure the writes we're flushing have landed. */ 2345 __builtin_ia32_mfence(); 2346 __builtin_ia32_clflush(event); 2347 } 2348 2349 *pEvent = anv_event_to_handle(event); 2350 2351 return VK_SUCCESS; 2352 } 2353 2354 void anv_DestroyEvent( 2355 VkDevice _device, 2356 VkEvent _event, 2357 const VkAllocationCallbacks* pAllocator) 2358 { 2359 ANV_FROM_HANDLE(anv_device, device, _device); 2360 ANV_FROM_HANDLE(anv_event, event, _event); 2361 2362 if (!event) 2363 return; 2364 2365 anv_state_pool_free(&device->dynamic_state_pool, event->state); 2366 } 2367 2368 VkResult anv_GetEventStatus( 2369 VkDevice _device, 2370 VkEvent _event) 2371 { 2372 ANV_FROM_HANDLE(anv_device, device, _device); 2373 ANV_FROM_HANDLE(anv_event, event, _event); 2374 2375 if (unlikely(device->lost)) 2376 return VK_ERROR_DEVICE_LOST; 2377 2378 if (!device->info.has_llc) { 2379 /* Invalidate read cache before reading event written by GPU. */ 2380 __builtin_ia32_clflush(event); 2381 __builtin_ia32_mfence(); 2382 2383 } 2384 2385 return event->semaphore; 2386 } 2387 2388 VkResult anv_SetEvent( 2389 VkDevice _device, 2390 VkEvent _event) 2391 { 2392 ANV_FROM_HANDLE(anv_device, device, _device); 2393 ANV_FROM_HANDLE(anv_event, event, _event); 2394 2395 event->semaphore = VK_EVENT_SET; 2396 2397 if (!device->info.has_llc) { 2398 /* Make sure the writes we're flushing have landed. */ 2399 __builtin_ia32_mfence(); 2400 __builtin_ia32_clflush(event); 2401 } 2402 2403 return VK_SUCCESS; 2404 } 2405 2406 VkResult anv_ResetEvent( 2407 VkDevice _device, 2408 VkEvent _event) 2409 { 2410 ANV_FROM_HANDLE(anv_device, device, _device); 2411 ANV_FROM_HANDLE(anv_event, event, _event); 2412 2413 event->semaphore = VK_EVENT_RESET; 2414 2415 if (!device->info.has_llc) { 2416 /* Make sure the writes we're flushing have landed. */ 2417 __builtin_ia32_mfence(); 2418 __builtin_ia32_clflush(event); 2419 } 2420 2421 return VK_SUCCESS; 2422 } 2423 2424 // Buffer functions 2425 2426 VkResult anv_CreateBuffer( 2427 VkDevice _device, 2428 const VkBufferCreateInfo* pCreateInfo, 2429 const VkAllocationCallbacks* pAllocator, 2430 VkBuffer* pBuffer) 2431 { 2432 ANV_FROM_HANDLE(anv_device, device, _device); 2433 struct anv_buffer *buffer; 2434 2435 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO); 2436 2437 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8, 2438 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 2439 if (buffer == NULL) 2440 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 2441 2442 buffer->size = pCreateInfo->size; 2443 buffer->usage = pCreateInfo->usage; 2444 buffer->bo = NULL; 2445 buffer->offset = 0; 2446 2447 *pBuffer = anv_buffer_to_handle(buffer); 2448 2449 return VK_SUCCESS; 2450 } 2451 2452 void anv_DestroyBuffer( 2453 VkDevice _device, 2454 VkBuffer _buffer, 2455 const VkAllocationCallbacks* pAllocator) 2456 { 2457 ANV_FROM_HANDLE(anv_device, device, _device); 2458 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 2459 2460 if (!buffer) 2461 return; 2462 2463 vk_free2(&device->alloc, pAllocator, buffer); 2464 } 2465 2466 void 2467 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state, 2468 enum isl_format format, 2469 uint32_t offset, uint32_t range, uint32_t stride) 2470 { 2471 isl_buffer_fill_state(&device->isl_dev, state.map, 2472 .address = offset, 2473 .mocs = device->default_mocs, 2474 .size = range, 2475 .format = format, 2476 .stride = stride); 2477 2478 anv_state_flush(device, state); 2479 } 2480 2481 void anv_DestroySampler( 2482 VkDevice _device, 2483 VkSampler _sampler, 2484 const VkAllocationCallbacks* pAllocator) 2485 { 2486 ANV_FROM_HANDLE(anv_device, device, _device); 2487 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler); 2488 2489 if (!sampler) 2490 return; 2491 2492 vk_free2(&device->alloc, pAllocator, sampler); 2493 } 2494 2495 VkResult anv_CreateFramebuffer( 2496 VkDevice _device, 2497 const VkFramebufferCreateInfo* pCreateInfo, 2498 const VkAllocationCallbacks* pAllocator, 2499 VkFramebuffer* pFramebuffer) 2500 { 2501 ANV_FROM_HANDLE(anv_device, device, _device); 2502 struct anv_framebuffer *framebuffer; 2503 2504 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO); 2505 2506 size_t size = sizeof(*framebuffer) + 2507 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount; 2508 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8, 2509 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 2510 if (framebuffer == NULL) 2511 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 2512 2513 framebuffer->attachment_count = pCreateInfo->attachmentCount; 2514 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) { 2515 VkImageView _iview = pCreateInfo->pAttachments[i]; 2516 framebuffer->attachments[i] = anv_image_view_from_handle(_iview); 2517 } 2518 2519 framebuffer->width = pCreateInfo->width; 2520 framebuffer->height = pCreateInfo->height; 2521 framebuffer->layers = pCreateInfo->layers; 2522 2523 *pFramebuffer = anv_framebuffer_to_handle(framebuffer); 2524 2525 return VK_SUCCESS; 2526 } 2527 2528 void anv_DestroyFramebuffer( 2529 VkDevice _device, 2530 VkFramebuffer _fb, 2531 const VkAllocationCallbacks* pAllocator) 2532 { 2533 ANV_FROM_HANDLE(anv_device, device, _device); 2534 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb); 2535 2536 if (!fb) 2537 return; 2538 2539 vk_free2(&device->alloc, pAllocator, fb); 2540 } 2541 2542 /* vk_icd.h does not declare this function, so we declare it here to 2543 * suppress Wmissing-prototypes. 2544 */ 2545 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL 2546 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion); 2547 2548 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL 2549 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion) 2550 { 2551 /* For the full details on loader interface versioning, see 2552 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>. 2553 * What follows is a condensed summary, to help you navigate the large and 2554 * confusing official doc. 2555 * 2556 * - Loader interface v0 is incompatible with later versions. We don't 2557 * support it. 2558 * 2559 * - In loader interface v1: 2560 * - The first ICD entrypoint called by the loader is 2561 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this 2562 * entrypoint. 2563 * - The ICD must statically expose no other Vulkan symbol unless it is 2564 * linked with -Bsymbolic. 2565 * - Each dispatchable Vulkan handle created by the ICD must be 2566 * a pointer to a struct whose first member is VK_LOADER_DATA. The 2567 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. 2568 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and 2569 * vkDestroySurfaceKHR(). The ICD must be capable of working with 2570 * such loader-managed surfaces. 2571 * 2572 * - Loader interface v2 differs from v1 in: 2573 * - The first ICD entrypoint called by the loader is 2574 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must 2575 * statically expose this entrypoint. 2576 * 2577 * - Loader interface v3 differs from v2 in: 2578 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), 2579 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, 2580 * because the loader no longer does so. 2581 */ 2582 *pSupportedVersion = MIN2(*pSupportedVersion, 3u); 2583 return VK_SUCCESS; 2584 } 2585