1 /* 2 * Copyright 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include "common/gen_decoder.h" 25 #include "gen_disasm.h" 26 27 #include <string.h> 28 29 void 30 gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx, 31 const struct gen_device_info *devinfo, 32 FILE *fp, enum gen_batch_decode_flags flags, 33 const char *xml_path, 34 struct gen_batch_decode_bo (*get_bo)(void *, 35 uint64_t), 36 void *user_data) 37 { 38 memset(ctx, 0, sizeof(*ctx)); 39 40 ctx->get_bo = get_bo; 41 ctx->user_data = user_data; 42 ctx->fp = fp; 43 ctx->flags = flags; 44 45 if (xml_path == NULL) 46 ctx->spec = gen_spec_load(devinfo); 47 else 48 ctx->spec = gen_spec_load_from_path(devinfo, xml_path); 49 ctx->disasm = gen_disasm_create(devinfo); 50 } 51 52 void 53 gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx) 54 { 55 gen_spec_destroy(ctx->spec); 56 gen_disasm_destroy(ctx->disasm); 57 } 58 59 #define CSI "\e[" 60 #define BLUE_HEADER CSI "0;44m" 61 #define GREEN_HEADER CSI "1;42m" 62 #define NORMAL CSI "0m" 63 64 #define ARRAY_LENGTH(a) (sizeof (a) / sizeof (a)[0]) 65 66 static void 67 ctx_print_group(struct gen_batch_decode_ctx *ctx, 68 struct gen_group *group, 69 uint64_t address, const void *map) 70 { 71 gen_print_group(ctx->fp, group, address, map, 0, 72 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0); 73 } 74 75 static struct gen_batch_decode_bo 76 ctx_get_bo(struct gen_batch_decode_ctx *ctx, uint64_t addr) 77 { 78 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) { 79 /* On Broadwell and above, we have 48-bit addresses which consume two 80 * dwords. Some packets require that these get stored in a "canonical 81 * form" which means that bit 47 is sign-extended through the upper 82 * bits. In order to correctly handle those aub dumps, we need to mask 83 * off the top 16 bits. 84 */ 85 addr &= (~0ull >> 16); 86 } 87 88 struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, addr); 89 90 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) 91 bo.addr &= (~0ull >> 16); 92 93 /* We may actually have an offset into the bo */ 94 if (bo.map != NULL) { 95 assert(bo.addr <= addr); 96 uint64_t offset = addr - bo.addr; 97 bo.map += offset; 98 bo.addr += offset; 99 bo.size -= offset; 100 } 101 102 return bo; 103 } 104 105 static void 106 ctx_disassemble_program(struct gen_batch_decode_ctx *ctx, 107 uint32_t ksp, const char *type) 108 { 109 if (!ctx->instruction_base.map) 110 return; 111 112 printf("\nReferenced %s:\n", type); 113 gen_disasm_disassemble(ctx->disasm, 114 (void *)ctx->instruction_base.map, ksp, 115 ctx->fp); 116 } 117 118 /* Heuristic to determine whether a uint32_t is probably actually a float 119 * (http://stackoverflow.com/a/2953466) 120 */ 121 122 static bool 123 probably_float(uint32_t bits) 124 { 125 int exp = ((bits & 0x7f800000U) >> 23) - 127; 126 uint32_t mant = bits & 0x007fffff; 127 128 /* +- 0.0 */ 129 if (exp == -127 && mant == 0) 130 return true; 131 132 /* +- 1 billionth to 1 billion */ 133 if (-30 <= exp && exp <= 30) 134 return true; 135 136 /* some value with only a few binary digits */ 137 if ((mant & 0x0000ffff) == 0) 138 return true; 139 140 return false; 141 } 142 143 static void 144 ctx_print_buffer(struct gen_batch_decode_ctx *ctx, 145 struct gen_batch_decode_bo bo, 146 uint32_t read_length, 147 uint32_t pitch) 148 { 149 const uint32_t *dw_end = bo.map + MIN2(bo.size, read_length); 150 151 unsigned line_count = 0; 152 for (const uint32_t *dw = bo.map; dw < dw_end; dw++) { 153 if (line_count * 4 == pitch || line_count == 8) { 154 fprintf(ctx->fp, "\n"); 155 line_count = 0; 156 } 157 fprintf(ctx->fp, line_count == 0 ? " " : " "); 158 159 if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw)) 160 fprintf(ctx->fp, " %8.2f", *(float *) dw); 161 else 162 fprintf(ctx->fp, " 0x%08x", *dw); 163 164 line_count++; 165 } 166 fprintf(ctx->fp, "\n"); 167 } 168 169 static void 170 handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p) 171 { 172 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 173 174 struct gen_field_iterator iter; 175 gen_field_iterator_init(&iter, inst, p, 0, false); 176 177 do { 178 if (strcmp(iter.name, "Surface State Base Address") == 0) { 179 ctx->surface_base = ctx_get_bo(ctx, iter.raw_value); 180 } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) { 181 ctx->dynamic_base = ctx_get_bo(ctx, iter.raw_value); 182 } else if (strcmp(iter.name, "Instruction Base Address") == 0) { 183 ctx->instruction_base = ctx_get_bo(ctx, iter.raw_value); 184 } 185 } while (gen_field_iterator_next(&iter)); 186 } 187 188 static void 189 dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count) 190 { 191 struct gen_group *strct = 192 gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE"); 193 if (strct == NULL) { 194 fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n"); 195 return; 196 } 197 198 /* If we don't know the actual count, guess. */ 199 if (count < 0) 200 count = 8; 201 202 if (ctx->surface_base.map == NULL) { 203 fprintf(ctx->fp, " binding table unavailable\n"); 204 return; 205 } 206 207 if (offset % 32 != 0 || offset >= UINT16_MAX || 208 offset >= ctx->surface_base.size) { 209 fprintf(ctx->fp, " invalid binding table pointer\n"); 210 return; 211 } 212 213 const uint32_t *pointers = ctx->surface_base.map + offset; 214 for (int i = 0; i < count; i++) { 215 if (pointers[i] == 0) 216 continue; 217 218 if (pointers[i] % 32 != 0 || 219 (pointers[i] + strct->dw_length * 4) >= ctx->surface_base.size) { 220 fprintf(ctx->fp, "pointer %u: %08x <not valid>\n", i, pointers[i]); 221 continue; 222 } 223 224 fprintf(ctx->fp, "pointer %u: %08x\n", i, pointers[i]); 225 ctx_print_group(ctx, strct, ctx->surface_base.addr + pointers[i], 226 ctx->surface_base.map + pointers[i]); 227 } 228 } 229 230 static void 231 dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count) 232 { 233 struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE"); 234 235 /* If we don't know the actual count, guess. */ 236 if (count < 0) 237 count = 4; 238 239 if (ctx->dynamic_base.map == NULL) { 240 fprintf(ctx->fp, " samplers unavailable\n"); 241 return; 242 } 243 244 if (offset % 32 != 0 || offset >= ctx->dynamic_base.size) { 245 fprintf(ctx->fp, " invalid sampler state pointer\n"); 246 return; 247 } 248 249 uint64_t state_addr = ctx->dynamic_base.addr + offset; 250 const void *state_map = ctx->dynamic_base.map + offset; 251 for (int i = 0; i < count; i++) { 252 fprintf(ctx->fp, "sampler state %d\n", i); 253 ctx_print_group(ctx, strct, state_addr, state_map); 254 state_addr += 16; 255 state_map += 16; 256 } 257 } 258 259 static void 260 handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx, 261 const uint32_t *p) 262 { 263 if (ctx->dynamic_base.map == NULL) 264 return; 265 266 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 267 struct gen_group *desc = 268 gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA"); 269 270 struct gen_field_iterator iter; 271 gen_field_iterator_init(&iter, inst, p, 0, false); 272 uint32_t descriptor_offset = 0; 273 int descriptor_count = 0; 274 do { 275 if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) { 276 descriptor_offset = strtol(iter.value, NULL, 16); 277 } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) { 278 descriptor_count = 279 strtol(iter.value, NULL, 16) / (desc->dw_length * 4); 280 } 281 } while (gen_field_iterator_next(&iter)); 282 283 uint64_t desc_addr = ctx->dynamic_base.addr + descriptor_offset; 284 const uint32_t *desc_map = ctx->dynamic_base.map + descriptor_offset; 285 for (int i = 0; i < descriptor_count; i++) { 286 fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset); 287 288 ctx_print_group(ctx, inst, desc_addr, desc_map); 289 290 gen_field_iterator_init(&iter, desc, desc_map, 0, false); 291 uint64_t ksp; 292 uint32_t sampler_offset, sampler_count; 293 uint32_t binding_table_offset, binding_entry_count; 294 do { 295 if (strcmp(iter.name, "Kernel Start Pointer") == 0) { 296 ksp = strtoll(iter.value, NULL, 16); 297 } else if (strcmp(iter.name, "Sampler State Pointer") == 0) { 298 sampler_offset = strtol(iter.value, NULL, 16); 299 } else if (strcmp(iter.name, "Sampler Count") == 0) { 300 sampler_count = strtol(iter.value, NULL, 10); 301 } else if (strcmp(iter.name, "Binding Table Pointer") == 0) { 302 binding_table_offset = strtol(iter.value, NULL, 16); 303 } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) { 304 binding_entry_count = strtol(iter.value, NULL, 10); 305 } 306 } while (gen_field_iterator_next(&iter)); 307 308 ctx_disassemble_program(ctx, ksp, "compute shader"); 309 printf("\n"); 310 311 dump_samplers(ctx, sampler_offset, sampler_count); 312 dump_binding_table(ctx, binding_table_offset, binding_entry_count); 313 314 desc_map += desc->dw_length; 315 desc_addr += desc->dw_length * 4; 316 } 317 } 318 319 static void 320 handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx, 321 const uint32_t *p) 322 { 323 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 324 325 struct gen_batch_decode_bo vb = {}; 326 uint32_t vb_size = 0; 327 int index = -1; 328 int pitch = -1; 329 bool ready = false; 330 331 struct gen_field_iterator iter; 332 gen_field_iterator_init(&iter, inst, p, 0, false); 333 do { 334 if (strcmp(iter.name, "Vertex Buffer Index") == 0) { 335 index = iter.raw_value; 336 } else if (strcmp(iter.name, "Buffer Pitch") == 0) { 337 pitch = iter.raw_value; 338 } else if (strcmp(iter.name, "Buffer Starting Address") == 0) { 339 vb = ctx_get_bo(ctx, iter.raw_value); 340 } else if (strcmp(iter.name, "Buffer Size") == 0) { 341 vb_size = iter.raw_value; 342 ready = true; 343 } else if (strcmp(iter.name, "End Address") == 0) { 344 if (vb.map && iter.raw_value >= vb.addr) 345 vb_size = iter.raw_value - vb.addr; 346 else 347 vb_size = 0; 348 ready = true; 349 } 350 351 if (!ready) 352 continue; 353 354 fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size); 355 356 if (vb.map == NULL) { 357 fprintf(ctx->fp, " buffer contents unavailable\n"); 358 continue; 359 } 360 361 if (vb.map == 0 || vb_size == 0) 362 continue; 363 364 ctx_print_buffer(ctx, vb, vb_size, pitch); 365 366 vb.map = NULL; 367 vb_size = 0; 368 index = -1; 369 pitch = -1; 370 ready = false; 371 } while (gen_field_iterator_next(&iter)); 372 } 373 374 static void 375 handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx, 376 const uint32_t *p) 377 { 378 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 379 380 struct gen_batch_decode_bo ib = {}; 381 uint32_t ib_size = 0; 382 uint32_t format = 0; 383 384 struct gen_field_iterator iter; 385 gen_field_iterator_init(&iter, inst, p, 0, false); 386 do { 387 if (strcmp(iter.name, "Index Format") == 0) { 388 format = iter.raw_value; 389 } else if (strcmp(iter.name, "Buffer Starting Address") == 0) { 390 ib = ctx_get_bo(ctx, iter.raw_value); 391 } else if (strcmp(iter.name, "Buffer Size") == 0) { 392 ib_size = iter.raw_value; 393 } 394 } while (gen_field_iterator_next(&iter)); 395 396 if (ib.map == NULL) { 397 fprintf(ctx->fp, " buffer contents unavailable\n"); 398 return; 399 } 400 401 const void *m = ib.map; 402 const void *ib_end = ib.map + MIN2(ib.size, ib_size); 403 for (int i = 0; m < ib_end && i < 10; i++) { 404 switch (format) { 405 case 0: 406 fprintf(ctx->fp, "%3d ", *(uint8_t *)m); 407 m += 1; 408 break; 409 case 1: 410 fprintf(ctx->fp, "%3d ", *(uint16_t *)m); 411 m += 2; 412 break; 413 case 2: 414 fprintf(ctx->fp, "%3d ", *(uint32_t *)m); 415 m += 4; 416 break; 417 } 418 } 419 420 if (m < ib_end) 421 fprintf(ctx->fp, "..."); 422 fprintf(ctx->fp, "\n"); 423 } 424 425 static void 426 decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p) 427 { 428 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 429 430 uint64_t ksp = 0; 431 bool is_simd8 = false; /* vertex shaders on Gen8+ only */ 432 bool is_enabled = true; 433 434 struct gen_field_iterator iter; 435 gen_field_iterator_init(&iter, inst, p, 0, false); 436 do { 437 if (strcmp(iter.name, "Kernel Start Pointer") == 0) { 438 ksp = iter.raw_value; 439 } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) { 440 is_simd8 = iter.raw_value; 441 } else if (strcmp(iter.name, "Dispatch Mode") == 0) { 442 is_simd8 = strcmp(iter.value, "SIMD8") == 0; 443 } else if (strcmp(iter.name, "Dispatch Enable") == 0) { 444 is_simd8 = strcmp(iter.value, "SIMD8") == 0; 445 } else if (strcmp(iter.name, "Enable") == 0) { 446 is_enabled = iter.raw_value; 447 } 448 } while (gen_field_iterator_next(&iter)); 449 450 const char *type = 451 strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" : 452 strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" : 453 strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" : 454 strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" : 455 strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation control shader" : 456 strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation evaluation shader" : 457 strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") : 458 strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") : 459 NULL; 460 461 if (is_enabled) { 462 ctx_disassemble_program(ctx, ksp, type); 463 printf("\n"); 464 } 465 } 466 467 static void 468 decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p) 469 { 470 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 471 472 uint64_t ksp[3] = {0, 0, 0}; 473 bool enabled[3] = {false, false, false}; 474 475 struct gen_field_iterator iter; 476 gen_field_iterator_init(&iter, inst, p, 0, false); 477 do { 478 if (strncmp(iter.name, "Kernel Start Pointer ", 479 strlen("Kernel Start Pointer ")) == 0) { 480 int idx = iter.name[strlen("Kernel Start Pointer ")] - '0'; 481 ksp[idx] = strtol(iter.value, NULL, 16); 482 } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) { 483 enabled[0] = strcmp(iter.value, "true") == 0; 484 } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) { 485 enabled[1] = strcmp(iter.value, "true") == 0; 486 } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) { 487 enabled[2] = strcmp(iter.value, "true") == 0; 488 } 489 } while (gen_field_iterator_next(&iter)); 490 491 /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */ 492 if (enabled[0] + enabled[1] + enabled[2] == 1) { 493 if (enabled[1]) { 494 ksp[1] = ksp[0]; 495 ksp[0] = 0; 496 } else if (enabled[2]) { 497 ksp[2] = ksp[0]; 498 ksp[0] = 0; 499 } 500 } else { 501 uint64_t tmp = ksp[1]; 502 ksp[1] = ksp[2]; 503 ksp[2] = tmp; 504 } 505 506 if (enabled[0]) 507 ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader"); 508 if (enabled[1]) 509 ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader"); 510 if (enabled[2]) 511 ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader"); 512 fprintf(ctx->fp, "\n"); 513 } 514 515 static void 516 decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p) 517 { 518 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 519 520 uint32_t read_length[4]; 521 struct gen_batch_decode_bo buffer[4]; 522 memset(buffer, 0, sizeof(buffer)); 523 524 int rlidx = 0, bidx = 0; 525 526 struct gen_field_iterator iter; 527 gen_field_iterator_init(&iter, inst, p, 0, false); 528 do { 529 if (strcmp(iter.name, "Read Length") == 0) { 530 read_length[rlidx++] = iter.raw_value; 531 } else if (strcmp(iter.name, "Buffer") == 0) { 532 buffer[bidx++] = ctx_get_bo(ctx, iter.raw_value); 533 } 534 } while (gen_field_iterator_next(&iter)); 535 536 for (int i = 0; i < 4; i++) { 537 if (read_length[i] == 0 || buffer[i].map == NULL) 538 continue; 539 540 unsigned size = read_length[i] * 32; 541 fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size); 542 543 ctx_print_buffer(ctx, buffer[i], size, 0); 544 } 545 } 546 547 static void 548 decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx, 549 const uint32_t *p) 550 { 551 dump_binding_table(ctx, p[1], -1); 552 } 553 554 static void 555 decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx, 556 const uint32_t *p) 557 { 558 dump_samplers(ctx, p[1], -1); 559 } 560 561 static void 562 decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx, 563 const uint32_t *p) 564 { 565 dump_samplers(ctx, p[1], -1); 566 dump_samplers(ctx, p[2], -1); 567 dump_samplers(ctx, p[3], -1); 568 } 569 570 static bool 571 str_ends_with(const char *str, const char *end) 572 { 573 int offset = strlen(str) - strlen(end); 574 if (offset < 0) 575 return false; 576 577 return strcmp(str + offset, end) == 0; 578 } 579 580 static void 581 decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx, 582 const char *struct_type, const uint32_t *p, 583 int count) 584 { 585 if (ctx->dynamic_base.map == NULL) { 586 fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type); 587 return; 588 } 589 590 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p); 591 struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type); 592 593 uint32_t state_offset; 594 595 struct gen_field_iterator iter; 596 gen_field_iterator_init(&iter, inst, p, 0, false); 597 do { 598 if (str_ends_with(iter.name, "Pointer")) { 599 state_offset = iter.raw_value; 600 break; 601 } 602 } while (gen_field_iterator_next(&iter)); 603 604 uint32_t state_addr = ctx->dynamic_base.addr + state_offset; 605 const uint32_t *state_map = ctx->dynamic_base.map + state_offset; 606 for (int i = 0; i < count; i++) { 607 fprintf(ctx->fp, "%s %d\n", struct_type, i); 608 ctx_print_group(ctx, state, state_offset, state_map); 609 610 state_addr += state->dw_length * 4; 611 state_map += state->dw_length; 612 } 613 } 614 615 static void 616 decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx, 617 const uint32_t *p) 618 { 619 decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4); 620 } 621 622 static void 623 decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx, 624 const uint32_t *p) 625 { 626 decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4); 627 } 628 629 static void 630 decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx, 631 const uint32_t *p) 632 { 633 decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1); 634 } 635 636 static void 637 decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx, 638 const uint32_t *p) 639 { 640 decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1); 641 } 642 643 static void 644 decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx, 645 const uint32_t *p) 646 { 647 decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1); 648 } 649 650 static void 651 decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p) 652 { 653 struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]); 654 655 if (reg != NULL) { 656 fprintf(ctx->fp, "register %s (0x%x): 0x%x\n", 657 reg->name, reg->register_offset, p[2]); 658 ctx_print_group(ctx, reg, reg->register_offset, &p[2]); 659 } 660 } 661 662 struct custom_decoder { 663 const char *cmd_name; 664 void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p); 665 } custom_decoders[] = { 666 { "STATE_BASE_ADDRESS", handle_state_base_address }, 667 { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load }, 668 { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers }, 669 { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer }, 670 { "3DSTATE_VS", decode_single_ksp }, 671 { "3DSTATE_GS", decode_single_ksp }, 672 { "3DSTATE_DS", decode_single_ksp }, 673 { "3DSTATE_HS", decode_single_ksp }, 674 { "3DSTATE_PS", decode_ps_kernels }, 675 { "3DSTATE_CONSTANT_VS", decode_3dstate_constant }, 676 { "3DSTATE_CONSTANT_GS", decode_3dstate_constant }, 677 { "3DSTATE_CONSTANT_PS", decode_3dstate_constant }, 678 { "3DSTATE_CONSTANT_HS", decode_3dstate_constant }, 679 { "3DSTATE_CONSTANT_DS", decode_3dstate_constant }, 680 681 { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers }, 682 { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers }, 683 { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers }, 684 { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers }, 685 { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers }, 686 687 { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers }, 688 { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers }, 689 { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers }, 690 { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers }, 691 { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers }, 692 { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 }, 693 694 { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc }, 695 { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip }, 696 { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers }, 697 { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers }, 698 { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers }, 699 { "MI_LOAD_REGISTER_IMM", decode_load_register_imm } 700 }; 701 702 static inline uint64_t 703 get_address(struct gen_spec *spec, const uint32_t *p) 704 { 705 /* Addresses are always guaranteed to be page-aligned and sometimes 706 * hardware packets have extra stuff stuffed in the bottom 12 bits. 707 */ 708 uint64_t addr = p[0] & ~0xfffu; 709 710 if (gen_spec_get_gen(spec) >= gen_make_gen(8,0)) { 711 /* On Broadwell and above, we have 48-bit addresses which consume two 712 * dwords. Some packets require that these get stored in a "canonical 713 * form" which means that bit 47 is sign-extended through the upper 714 * bits. In order to correctly handle those aub dumps, we need to mask 715 * off the top 16 bits. 716 */ 717 addr |= ((uint64_t)p[1] & 0xffff) << 32; 718 } 719 720 return addr; 721 } 722 723 void 724 gen_print_batch(struct gen_batch_decode_ctx *ctx, 725 const uint32_t *batch, uint32_t batch_size, 726 uint64_t batch_addr) 727 { 728 const uint32_t *p, *end = batch + batch_size; 729 int length; 730 struct gen_group *inst; 731 732 for (p = batch; p < end; p += length) { 733 inst = gen_spec_find_instruction(ctx->spec, p); 734 length = gen_group_get_length(inst, p); 735 assert(inst == NULL || length > 0); 736 length = MAX2(1, length); 737 if (inst == NULL) { 738 fprintf(ctx->fp, "unknown instruction %08x\n", p[0]); 739 continue; 740 } 741 742 const char *color, *reset_color; 743 uint64_t offset; 744 745 const char *inst_name = gen_group_get_name(inst); 746 if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) { 747 reset_color = NORMAL; 748 if (ctx->flags & GEN_BATCH_DECODE_FULL) { 749 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 || 750 strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) 751 color = GREEN_HEADER; 752 else 753 color = BLUE_HEADER; 754 } else { 755 color = NORMAL; 756 } 757 } else { 758 color = ""; 759 reset_color = ""; 760 } 761 762 if (ctx->flags & GEN_BATCH_DECODE_OFFSETS) 763 offset = batch_addr + ((char *)p - (char *)batch); 764 else 765 offset = 0; 766 767 fprintf(ctx->fp, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", 768 color, offset, p[0], inst_name, reset_color); 769 770 if (ctx->flags & GEN_BATCH_DECODE_FULL) { 771 ctx_print_group(ctx, inst, offset, p); 772 773 for (int i = 0; i < ARRAY_LENGTH(custom_decoders); i++) { 774 if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) { 775 custom_decoders[i].decode(ctx, p); 776 break; 777 } 778 } 779 } 780 781 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) { 782 struct gen_batch_decode_bo next_batch; 783 bool second_level; 784 struct gen_field_iterator iter; 785 gen_field_iterator_init(&iter, inst, p, 0, false); 786 do { 787 if (strcmp(iter.name, "Batch Buffer Start Address") == 0) { 788 next_batch = ctx_get_bo(ctx, iter.raw_value); 789 } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) { 790 second_level = iter.raw_value; 791 } 792 } while (gen_field_iterator_next(&iter)); 793 794 if (next_batch.map == NULL) { 795 fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable", 796 next_batch.addr); 797 } 798 799 if (second_level) { 800 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts 801 * like a subroutine call. Commands that come afterwards get 802 * processed once the 2nd level batch buffer returns with 803 * MI_BATCH_BUFFER_END. 804 */ 805 if (next_batch.map) { 806 gen_print_batch(ctx, next_batch.map, next_batch.size, 807 next_batch.addr); 808 } 809 } else { 810 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts 811 * like a goto. Nothing after it will ever get processed. In 812 * order to prevent the recursion from growing, we just reset the 813 * loop and continue; 814 */ 815 if (next_batch.map) { 816 p = next_batch.map; 817 end = next_batch.map + next_batch.size; 818 length = 0; 819 continue; 820 } else { 821 /* Nothing we can do */ 822 break; 823 } 824 } 825 } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) { 826 break; 827 } 828 } 829 } 830